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[1] Vegetation optical depth (VOD) retrievals from three
satellite‐based passive microwave instruments were merged
to produce the first long‐term global microwave‐based
vegetation product. The resulting VOD product spans more
than two decades and shows seasonal cycles and inter‐
annual variations that generally correspond with those
observed in the Advanced Very High Resolution Radiometer
(AVHRR) Normalized Difference Vegetation Index (NDVI).
Some notable differences exist in the long‐term trends: the
NDVI, operating in the optical regime, is sensitive to
chlorophyll abundance and photosynthetically active
biomass of the leaves, whereas the microwave‐based VOD is
an indicator of the vegetation water content in total above‐
ground biomass, i.e., including wood and leaf components.
Preliminary analyses indicate that the fluctuations in VOD
typically correlated to precipitation variations, and that the
mutually independent VOD and NDVI do not necessarily
respond in identical manners. Considering both products
together provides a more robust structural characterization
and assessment of long‐term vegetation dynamics at the
global scale. Citation: Liu, Y. Y., R. A.M. de Jeu,M. F.McCabe,
J. P. Evans, and A. I. J. M. van Dijk (2011), Global long‐term passive
microwave satellite‐based retrievals of vegetation optical depth,
Geophys. Res. Lett., 38, L18402, doi:10.1029/2011GL048684.

1. Introduction

[2] Vegetation dynamics play an important role in the
hydrological, energy and carbon cycles, through influences of
land cover change on hydrologic responses, interactions with
climate and carbon storage and emission [e.g., D’Odorico
et al., 2006; Schimel et al., 2001; Zhang et al., 2001]. Sat-
ellite observations offer the only means to continuously
monitor such variations at the global scale. The Normalized
Difference Vegetation Index (NDVI) [Tucker et al., 2005] is
probably the most commonly used satellite‐based long‐term
vegetation index, with a time series developed from the
Advanced Very High Resolution Radiometer (AVHRR)
extending back to 1981. The NDVI is derived by subtracting

the red reflectance values from the near‐infrared (NIR) and
dividing it by the sum of NIR and red bands, i.e., (NIR‐red)/
(NIR + red). It is a direct measure of radiation absorption by
the canopy [Myneni et al., 1995]. Due to leaf structure and
chlorophyll content, healthy vegetation absorbs most of the
red light and reflects a large portion of the NIR light, resulting
in a high value of NDVI. The disadvantages of NDVI are that
it is affected by atmospheric influences (e.g., aerosols and
cloud) and limited to monitoring the top of the canopy. NDVI
eventually saturates at some level of leaf area coverage and
cannot detect further changes in leaf reflectance, covarying
with leaf biomass.
[3] Unlike optical remote sensing, passive microwave

observations can measure both leaf and woody components
of aboveground living biomass through a retrieved property
termed the vegetation optical depth (VOD) [Jones et al.,
2011; Shi et al., 2008], by virtue of the sensitivity of
passive microwave emissions to water in the environment.
Another advantage is its ability to penetrate cloud cover.
The main disadvantage of passive microwave observations
is the relatively coarse spatial resolution (>10km) as a
result of the low energy of the emissions (the resolution of
AVHRR NDVI is <10 km).
[4] There is no consistent continuous satellite‐based

microwave measurement program that covers a period com-
parable with AVHRR. However,Owe et al. [2008] developed
a method to retrieve vegetation information from passive
microwave emissions that in principle can be applied to all
wavelengths and all sensors. This makes it possible to merge
VOD data from different sensors into a long‐term time series
since 1987. Direct and long‐term in‐situ measurements of
aboveground vegetation dynamics are not available at the
scale of satellite measurement. The VOD, like NDVI, is a
radiometric parameter rather than a well‐defined “easily
validated” geophysical parameter. Furthermore, these two
vegetation parameters are conceptually different. This pre-
vents any formal validation of a merged long‐term VOD
product against either in‐situ or NDVI data. Instead, the
present study analyses the characteristics and interpretation of
long‐term VOD data through more indirect comparison with
global NDVI and precipitation data. Such an approach will
highlight consistencies and differences between NDVI and
VOD data and identify the potential to use both products to
more comprehensively characterize vegetation dynamics.

2. Data and Methods

[5] The VOD retrieval algorithm developed by VU Uni-
versity Amsterdam and NASA (VUA‐NASA model) uses a
radiative transfer model to extract soil moisture and VOD
simultaneously (refer toMeesters et al. [2005] andOwe et al.
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[2001, 2008] for further details). Essentially, the vegetation is
considered to behave like a one‐layered semi‐transparent
medium and the VOD (t, dimensionless), as a measure of the
vegetation transmissivity (G) with a negative exponential
relationship (see equation (1) in which u is the incidence
angle of the observation), represents the degree to which the
vegetation attenuates microwave radiation emitted by the
underlying soils and the vegetation itself.

G ¼ exp ��= cos uð Þ ð1Þ

When the VOD equals 0, the corresponding transmissivity
is 1, which means that there is no vegetation attenuation on
the microwave emission of the soils (i.e., bare soil). The VOD
increases with vegetation density; over dense vegetation
(e.g., tropical rainforest), the transmissivity gets close to zero
and the microwave emissions are dominated by vegetation.
[6] The VOD can be interpreted as being directly pro-

portional to the total vegetation water content, varying
with wavelength of the sensor, vegetation structure and
viewing angle [Jackson and Schmugge, 1991; Kerr and
Njoku, 1990; Kirdyashev et al., 1979]. In the present
study, data from the Special Sensor Microwave Imager
(SSM/I, September 1987–2007), TRMMMicrowave Imager
(TMI, 1998–2008) and Advanced Microwave Scanning
Radiometer (AMSR‐E, July 2002–2008) were used. Char-
acteristics of these microwave instruments are detailed in
Table S1 in the auxiliary material.1 Only VOD retrievals
acquired by night‐time overpasses (specified as occurring
between 1900 and 0800 local time) are used, as vertical
temperature gradients are weaker, and hence more robust
retrievals can be obtained [Owe et al., 2008]. Radio Fre-
quency Interference (RFI) on the AMSR‐E 6.9GHz retrie-
vals affects the quality of retrievals over United States,
Japan and the Middle East [Njoku et al., 2005]. VOD
retrievals from 10.7GHz were used over the regions with
moderate and strong RFI on 6.9 GHz (see Li et al. [2004]
for details).
[7] Because of the dependence of sensor characteristics,

VOD values vary between instruments. For most of the
Earth’s land surface, the daily VOD time series from SSM/I,
TMI and AMSR‐E display strong correlation (Figure S1),
which makes it possible to rescale and merge them into a
long‐term dataset. The mean and range vary between dif-
ferent sensors, which means that a reference dataset needs
to be chosen. AMSR‐E was selected as this reference, as it
has a relatively low measuring frequency which promotes
VOD retrieval accuracy, has the highest spatial and temporal
resolution, and is still operational. The cumulative distri-
bution frequency (CDF) matching technique was applied
to rescale SSM/I and TMI against AMSR‐E, after which
they were merged into a single continuous time series (see
Figure S2 for one example). The rescaling approach does
not change the relative dynamics in the original products
[see Liu et al., 2011]. More details about the piece‐wise
linear CDF matching technique are given by Liu et al.
[2009]. Hereafter the CDF matched product (SSM/I‐TMI‐
AMSR‐E) is referred to as the merged VOD product.

[8] The global VOD time series was compared to global
time series of NDVI and precipitation. The data sources
and pre‐processing steps used in the analyses are detailed
as follows. For NDVI, the long‐term AVHRR based
Global Inventory Monitoring and Modeling Studies prod-
uct (GIMMS, 1981–2006) [Tucker et al., 2005] is used
(available from http://glcf.umiacs.umd.edu/data/gimms/).
Since VOD retrievals are not available when surface tem-
perature is below 0°, concurrent NDVI data were masked
out. To enable spatial and temporal consistency, VOD and
NDVI data were resampled to 0.25° and monthly averages.
The monthly Global Precipitation Climatology Centre data-
set (GPCC, 1901–2009) [Rudolf et al., 2010] (from http://
gpcc.dwd.de) was used, along with the University of Mary-
land (UMD) scheme 14‐class MODIS global land cover
product [De Fries et al., 1998] (from http://modis-land.gsfc.
nasa.gov/landcover.htm and with product code MCD121).
The 0.05° resolution data were aggregated to 0.25° resolution
using the predominant land cover class.
[9] Spearman’s correlation coefficient (r) was calculated

for the period 1987–2006 to investigate agreement between
monthly averages of VOD and NDVI. The Mann‐Kendall
trend test [e.g., Dery and Brown, 2007; Lins and Slack,
1999] was applied to annual averages of VOD and NDVI.
Both techniques are non‐parametric that are based on rela-
tive ranks of sample data rather than absolute values, and do
not require any assumptions about the nature of the rela-
tionship. Detailed equations regarding these two methods
can be obtained from Helsel and Hirsch [2002].

3. Results and Discussions

[10] The annual averages of VOD and NDVI during
1987–2006 were calculated for each 0.25° grid cell across
the globe and then plotted against each other based on their
land cover types (Figure 1). It can be seen that the spatial
distribution of VOD and NDVI is highly correlated over
grassland and cropland. For forested regions, NDVI is likely
to become saturated over dense canopies, whereas VOD
may still record differences due primarily to its deeper
penetration. Over shrublands, the relationship between VOD
and NDVI lies somewhere between grassland, cropland and
forest: likely related to the attribute of shrubland as a
varying mixture of grass and woody components.
[11] Spatial maps of r between monthly values of VOD

and NDVI (Figure 2a) show high correlation over Europe,
northeast Asia, India, Australia, Africa, eastern South
America and central North America, indicating that VOD
generally captures similar seasonal cycles as NDVI. Over
tropical regions, the minimal annual variation of VOD leads
to lower correlation with NDVI. Over central Russia, the
peaks of VOD lag behind NDVI by up to a few months, and
agree more closely with precipitation. The reduced corre-
lation over Southeast Asia and arctic Canada may be caused
by the VUA‐NASA model not accounting for the open
surface water variability (e.g., inundation, wetlands, and
flood irrigation) which could have a significant spurious
impact on retrieved VOD seasonality.
[12] Annual changes in VOD and NDVI during 1987–

2006 are shown in Figures 2b and 2c. Both products show
similar trends over Alaska, Canadian prairies (Canada‐
USA), western Russia, the Sahel, India, and northwestern

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL048684.
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Australia, but dissimilar or even opposite trends over central
North America (USA‐Mexico), northeast Asia, southern
Africa, southeast Australia, Amazon tropical rainforests and
southeast Amazon.
[13] To interpret these similarities and differences, annual

VOD, NDVI and precipitation were plotted for the regions
outlined in Figure 2 (see Figure 3). For regions primarily
represented by grassland and shrubland (Figures 3a–3f), the
long‐term changes in VOD agree well with precipitation,
but the trend is sometimes different from that in NDVI.
These discrepancies are most likely due to the different
vegetation characteristics represented by VOD (water con-
tent in both foliage and woody biomass) and NDVI (canopy
cover). Thus, the total above‐ground biomass (i.e., VOD) of
grassland may decline in precipitation, but the NDVI may
remain unchanged as long as green canopy cover is main-
tained. The land cover categories labeled ‘shrubland’ are a
varying mixture of herbaceous and woody plants. If declines
in VOD are largely caused by declines in the woody bio-
mass component, this may be associated with an increase in
the herbaceous vegetation cover and hence NDVI may not
decline; and vice versa.
[14] Over cropland regions (Figures 3g–3i), both VOD

and NDVI show long‐term increases even where precipita-
tion does not. It seems reasonable to assume that the agri-
cultural intensification for these regions reported by the
Food and Agriculture Organization (see statistics on http://

faostat.fao.org) might also be associated with an increase in
(mean) canopy cover and total biomass.
[15] Over the boreal forests of Alaska (Figure 3j) both

vegetation products show similar fluctuations and decreas-
ing trends. Over the Amazon rainforests (Figure 3k), VOD
values are high with little inter‐annual variations, whereas
NDVI values increase slightly. However, this seems pri-
marily due to the anomalously low NDVI values in 1991
and 1994. Following Kobayashi and Dye [2005], we attri-
bute these low values to aerosol contamination from the
eruption of Mount Pinatubo in 1991 and biomass burning.
The southeast Amazon region (Figure 3l) is a known hotspot
of large‐scale deforestation [Achard et al., 2002; Hansen
et al., 2008], which is evident in the microwave‐based
VOD time series, but not in the NDVI time series. This
seems related to the influences of aerosol contamination on
NDVI as well.

4. Conclusions

[16] A microwave‐based global vegetation product
(VOD) of more than 20 years was developed and compared
with an existing AVHRR NDVI product. The results reveal
that the VOD product captures similar seasonal cycles and
inter‐annual variations as NDVI over most regions. As
expected from its theoretical basis, inter‐annual variations in
VOD in many (water‐limited) regions correspond to varia-

Figure 1. Relationship between annual average NDVI and VOD for 1987–2006 over different land cover types taken for
each 0.25° grid cell at the global scale. Here, the forest includes evergreen, deciduous, and mixed forests, while shrubland
includes shrubland, woodland and wood/grass. Each scatter plot is overlain by a density plot; black, gray and white, respec-
tively, representing high, medium and low density.

LIU ET AL.: LONG‐TERM VEGETATION OPTICAL DEPTH L18402L18402

3 of 6



tions in precipitation. While NDVI is rapidly saturated for
vegetation with a near‐closed canopy, the VOD continues to
distinguish structural differences. More importantly, the
VOD product provides unique global information about
long‐term vegetation changes over ecosystems with a mix-
ture of herbaceous and woody vegetation components, and
appears to detect large‐scale deforestation over tropical
regions better than NDVI, due to its greater penetration
ability.
[17] Nevertheless, this VOD product has its limitations.

Several assumptions are made in the current VUA‐NASA
model, including: a constant single scattering albedo, can-
opy surface temperature equal to soil surface temperature,
equality of vegetation parameters for both horizontal and
vertical polarizations, and a fixed surface roughness value
[Owe et al., 2001]. The influences of these assumptions on

VOD retrieval accuracy and possible improvements of the
current model require further focused investigations. In
addition, the CDF matching and merging of VOD retrievals
from different sensors combine all of these assumptions
together with differences in sensor calibration, center fre-
quencies, bandwidth and other sensor specific features.
Likewise, the GIMMS NDVI product also suffers similar
problems, with sensor inter‐calibration, atmospheric cor-
rections, sensor drift all affecting data integrity. These
uncertainties inherent in both vegetation products under-
score the importance of employing mutually independent
products for vegetation studies. Such an approach is
expected to yield more comprehensive information from
which to characterize vegetation structure, spatial patterns
and behaviour, and detect of long‐term trends and dynamics
at the global scale for multi‐disciplinary investigation.

Figure 2. (a) Correlation coefficient (r) between monthly VOD and NDVI for 1987 through 2006; and trends in annual
averages of (b) VOD and (c) NDVI from 1988 through 2006 (unit: change per year). The ranges of annual averages of VOD
and NDVI (see Figure 1) are 0 to 1 and 0.1 to 0.8, respectively.
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