
SOFTWARE

METAPAPER

Automated Discovery of
Container Executables

VANESSA SOCHAT

MATTHIEU MUFFATO

AUDREY STOTT

MARCO DE LA PIERRE

GEORGIA STUART

ABSTRACT
Linux container technologies such as Docker and Singularity offer encapsulated
environments for easy execution of software. In high performance computing, this
is especially important for evolving and complex software stacks with conflicting
dependencies that must co-exist. Singularity Registry HPC (“shpc”) was created as
an effort to install containers in this environment as modules, seamlessly allowing
for typically hidden executables inside containers to be presented to the user as
commands, and as such significantly simplifying the user experience. A remaining
challenge, however, is deriving the list of important executables in the container. In
this work, we present a new modular methodology that allows for discovering new
containers in large community sets, deriving container entries with relevant executables
therein, and fully automating both recipe generation and updates over time. As an
exemplar outcome, we have employed this methodology to add to the Registry over
8,000 containers from the BioContainers community that can be maintained and
updated by the software automation. All software is publicly available on the GitHub
platform, and can be beneficial to container registries and infrastructure providers for
automatically generating container modules, thus lowering the usage entry barrier
and improving user experience.

CORRESPONDING AUTHOR:

Vanessa Sochat

Computer Scientist, Lawrence
Livermore National Lab, USA

sochat1@llnl.gov

KEYWORDS:
containers; container modules;
registry; automation; shpc

TO CITE THIS ARTICLE:
Sochat V, Muffato M, Stott A,
De La Pierre M, Stuart G 2023
Automated Discovery of
Container Executables. Journal
of Open Research Software,
11: 6. DOI: https://doi.
org/10.5334/jors.451

*Author affiliations can be found in the back matter of this article

mailto:sochat1@llnl.gov
https://doi.org/10.5334/jors.451
https://doi.org/10.5334/jors.451
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0002-7860-3560
https://orcid.org/0000-0003-0939-3173
https://orcid.org/0000-0002-7429-1846
https://orcid.org/0000-0003-2787-5299

2Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

(1) OVERVIEW

1 INTRODUCTION
Containerization technologies [1, 2] have been a game-
changer for reproducible research, allowing users to
not only build and use reproducible environments on
high performance computing (HPC) systems, but also
allowing for saving the container binaries in a registry
for others in the future to do the same. As HPC has
matured over the decades, tools have been created that
make it easier to install software to this environment,
whether that be in the form of a package manager [3,
4] or module software [5, 6], which allow a user to load
a namespace of commands to use. As most package
managers and modules typically install software from
source, the Singularity Registry HPC (shpc) [7] software
was created as a marriage between the two – allowing
HPC administrators and users to install containers as
modules. However, the software relied on manual
curation of containers to be available to install – a
bottleneck that the work in this paper aims to address.

1.1 The Design of Singularity Registry HPC
Singularity Registry HPC is a command-line tool to
manage installations of containers as modules. Modules
are created from recipes that must live in a registry. Once
the modules are installed, the shpc software is not needed
to load or use the software provided by the modules. At
its initial creation, each registry entry was only allowed
to be a YAML file [8] in a local filesystem folder organized
by the container unique resource identifier namespace.
An example with the unique resource identifier “quay.io/
biocontainers/samtools” is shown below.

$tree quay.io/biocontainers/samtools/
quay.io/biocontainers/samtools/
> container.yaml

The entry provides a main “container.yaml” file with an
installation source (e.g., a container registry), a maintainer
and description, along with container tags and digests
[9], and aliases or named paths [7]. An example alias – a
mapping of a term “samtools” to a path is shown below:

aliases:
samtools: /usr/local/bin/samtools

This named path makes it easy to find useful executables
within a container. The shpc software is able to provide
a set of aliases that are made available to users as
shell commands. This significantly lowers the barrier
to container adoption in HPC, as users need to know
almost nothing about container usage and syntax. For
the example above, loading the container as a module
would expose multiple aliases, the main one of interest
being likely the “samtools” alias for the user to interact

with. An example of the underlying command that the
user would need to know without the shpc software is
shown below in the case of the Singularity [2] container
technology.

$ singularity <singularity-options> exec <options>
-B <bind> <container> /usr/local/bin/samtools
"$@"

Providing a full path to the “samtools” executable
inside the container also ensures that, if an equivalently
named executable exists on a path mounted in the
container in the user’s home directory, the correct one
inside the container is targeted. The shpc software
provides equivalent aliases for container shell, run
and various inspection commands, and also supports
custom container options and binds. The original set of
approximately 200 entries was derived manually by the
creator and contributors, and recognizing the constant
change of container tags, a GitHub workflow was quickly
developed to retrieve updated tags from container
registries [7]. As the design evolved, there was desire
for more automation and separation of responsibility
between the manager software and the registry entries.
As a result, the software was updated to support local
or remote registries, and the main registry, along with
the monthly automation to update tags, moved into a
remote version-controlled repository [10].

This decoupling of the manager software from the
underlying registry presented a new opportunity to extend
automation. Previously, updating the entries of a registry
required pulling the updated software along with the
container entries from the version-control source. With a
remote endpoint that serves a static API, this is no longer
required – the user’s local registry can retrieve the latest
registry entries without updating the software, and the
entries can be updated separately with tagged releases
provided monthly. However, while updating tags in
registry entries was automated, creating an entirely new
registry entry was not. This presented a new challenge
for automation, not only for the manual addition of a
new container entry requested by a user, but also for the
addition of potentially thousands of containers from an
external source. Complete automation would not only
require deriving container tags and digests, but also the
executable paths.

In this work, we walk through the steps and
methodology used to first semiautomate addition of a
single entry, and then to automate adding thousands of
containers from the BioContainers set [11]. We present
supporting software to shpc [7] including a remote
registry [10], software to derive and sort container
versions [12], tools to discover executables within
container binaries [13, 14], and a database that stores
records of BioContainers executables [15]. The newly
added 8,000+ containers are available for install using

3Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

the shpc software, and all work is publicly available with
active automation to keep the registry updated.

2 IMPLEMENTATION AND ARCHITECTURE
2.1 Automated Recipe Generation
A semi-automated solution to generate a container entry
to the online registry was introduced [7] as a workflow. It
takes a container unique resource identifier, description,
and website reference, and generates a pull request to the
repository to add the container. To support this workflow,
we developed the “guts” software [13] that knows how
to pull a container, retrieve and parse the “PATH” from
the image manifest [16], and then dump the container
filesystem to a temporary location to search those
locations statically and clean up. This procedure makes
the assumption that the developer of the container has
added locations of important executables to the “PATH”
variable. An additional filtering step is needed to discover
important executables (and not those found in the
operating system provided by the container). We do an
additional “diff” [17] with known executables from the
most common base containers, which are provided via
another automated workflow that is updated nightly
[14]. The final set of executables represents a set that is
unique to the changes developers made from the base
containers.

To retrieve updated tags, we make a request to the
Docker API [18] to retrieve a list of image tags, and
retrieve associated digests via image manifests [16].
The “pipelib” software [12] is then used to sort tags by
semantic versions, allowing us to filter tags and identify
the “latest,” a special tag provided by the shpc software
as the default version to install. With this workflow to
automatically derive tags and executables given any
container identifier, it became possible to request a
recipe for a specific container directly on the remote
registry repository, and then receive a pull request with
a prepared registry entry. Without any further filtering of
the executables (e.g., installed dependencies unique to
the container that are not of interest), the entry typically
requires additional curation to filter down the discovered
executables to those that are the most important. This
semi-automated workflow allows for easy addition of
hand-picked containers, but would require substantial
work to add tens to thousands more.

2.2 Container Executable Frequency
With a request to make available more BioContainers
[11], a next logical step was to figure out how to combine
the semi-automated generation with a means not only
to add an individual container, but also to add potentially
thousands of containers from an external source. At this
scale, manual edits could not be required – it would
need to be possible to identify the most important
executables without human curation. Addressing this
challenge would require better understanding of the

distribution of executables across containers, and then
determining a strategy to identify the most unique to a
container. Toward this aim, we first developed a cache –
the Singularity Registry HPC cache – to store a complete
list of executables on the “PATH” across all BioContainers
[15]. The cache is enabled by a generalized container
binary discovery workflow designed to work on GitHub
[19], called an action. First, the action is provided with
an updated list of container binaries provided by the
Galaxy Project [20]. For each container identifier, we
then again use the guts software to discover all binaries
on the “PATH,” and save a JSON data file of the binaries
to the repository, organized again by the container
identifier. As a final step, we derive a second JSON data
file with counts of executable names across containers.
This counts data file can next be used alongside the
shpc remote registry to intelligently filter down an entire
set of executables in one container to a more relevant
set. This entire set of actions is enabled by a few lines
added to a workflow file, as shown in the shpc remote
registry workflow [21].

2.3 Automated Scaled Recipe Generation
Given the availability of summary counts for over 8,000
BioContainers (see Figure 1), we observe that many
containers have commands that are rare or unique
to the container, and hence can deploy the following
algorithm to generate a list of meaningful executables
per container. This assumes that we have a regularly
updated executable count cache derived from the Galaxy
Project listing.

1.	 Identify a new container, C, not in the registry from
the executable cache

2.	 Create a set of global executable counts, G
3.	 Define a set of counts from G in C as S
4.	 Rank order S from least to greatest
5.	 Include any entries in S that have a frequency <10
6.	 Include any entries in S that have any portion of the

name matching the container identifier
7.	 Above that, add the next 25 executables with the

lowest frequencies, and <1,000

The algorithm above assumes that the most unique
executables in a container are less likely to appear in other
containers, represented by a lower frequency. Always
including executables that appear fewer than 10 times
across the entire dataset allows for a container to have
many unique commands. We chose these thresholds
based on manual testing and visualization of the final
list of executables, and found that these steps produced
the set of binaries that we would expect or want for
manual curation. We can combine programmatically
derived tags and digests with these container aliases
and other automated metadata to generate a final
“container.yaml.” From this YAML file, the shpc software

4Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

can install the module to an HPC system and generate
the respective executables as module commands.

2.4 Automated Recipe Updates
The original workflow to automatically update container
tags and digests uses a native “update” command
provided by the Singularity Registry HPC client, and this
was run once a month across all containers in the current
registry directly before a monthly release. However, with
the addition of 8,000+ containers this monthly update
would no longer be feasible within the 6 hour limit of a
GitHub action runner [23]. To address this challenge, we
developed a simple strategy to break up an entire list of
container identifiers into equal groups, and have those
groups remain consistent even given new additions to
the registry. To do this, we first generate hashes for each
of our container identifiers, and then generate hexdigests
[24] that we convert into integer numbers. Then we take
the modulus of the minimum number of days that can
possibly appear in any month (N = 28) to assign each
number into a specific group in the range 0–27. We add
1 to this number for a range that matches with days of
the month, 1–28. On a high level, this means that we can
reliably split our container identifiers into equal groups,
each of which is matched to a specific day of the month.
In our workflow, we can then derive the groups, take the
subset for the day the workflow is running, and update
that set. This algorithm is represented and provided in
a GitHub action [25] for the interested reader, and the
entire workflow from the addition of a new BioContainer
through install of a container module on the system is
included in Figure 2.

3 APPLICATIONS
We took this work to the Pawsey Supercomputing
Research Centre (Pawsey) [26], a tier-1 Australian
national high performance computing facility, where
having these BioContainers made available as modules
is perceived to vastly improve the accessibility and
usage of containers in the life sciences. Through their
involvement in the Australian BioCommons [27] Bring-
Your-Own-Device (BYOD) Expansion Project, earlier phase
discussions and surveys have highlighted repeatedly that
containers are an integral part of life science research, but
uptake is impeded by the lack of knowledge, confusion
and time in learning about containers. Along with other
Australian BioCommons partners, Pawsey role was to
provide technical and compute expertise for user access
to an existing Galaxy Project’s repository of BioContainers
images, through a read-only filesystem called CernVM-
FS [28]. While this filesystem cache significantly reduces
duplication of images and time for building, researchers
still face the hurdle of container syntax.

Our automation of shpc recipes for BioContainers
means that Pawsey, as well as other tier-1 and tier-
2 partners of the Australian BioCommons, can easily
install and have the same list of over 8,000 BioContainers
available as modules. With a simple script to match a
discovered container in the filesystem to an shpc container
entry [29], these compute facilities can utilize the existing
library of Singularity images through their CernVM-FS
filesystem. Recipe updates provided by shpc also ensure
that all new versions of BioContainers, while being added
to the CernVM-FS repository, are simultaneously made
available to their researchers as modules via shpc.

Figure 1 Frequency of BioContainers executables by count as of 04/2023. As an example, a count of “1” with a high frequency over
10,000 indicates that there are over 10,000 unique commands that appear in only one container. Manual inspection reveals that we
start to see shared executables approximately after a count of 1000, and thus it serves as a good threshold for unique or “special”
container commands. A Jupyter notebook was used to generate the plot [22].

5Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

4 QUALITY CONTROL
The algorithm was devised and tuned with a pre-existing
set of 135 manual container annotations, from the
Pathogen Informatics team of the Wellcome Sanger
Institute. Of those, 100 matched BioContainers available
in our cache. Those annotations allowed us to tweak the
algorithm and the thresholds until a satisfying amount
of concordance was reached. We also found that some
manual annotations had been carried over from previous
container versions and were missing commands added
in later container versions or including commands that
had since been removed, highlighting a further benefit of
the proposed automation.

The container registry updates and additions are now
done via an automated workflow, and manually checked
by the main developer, author VS, for any changes. Lists
of executables provided in the cache are spot checked
by developers to ensure what is expected is there
(e.g., a samtools container should minimally have the
executable for samtools). Feedback comes in from the
user base about executables that might be removed or
added to further tweak added container recipes.

For shpc, tests are run via continuous integration
for each pull request into the main branch by means
of GitHub Actions. Tests span all functionality of the
software across several versions of module software and
container technologies.

Finally, we wanted to test that software installations
made with shpc are suitable for bioinformatics analyses.

We adapted Nextflow’s RNA-seq pipeline [30] to introduce
a “shpc” profile that uses modules created by shpc.
This profile [31] generates identical files to Nextflow’s
“singularity” profile, which directly calls Singularity. We
found the results to be identical.

(2) AVAILABILITY

OPERATING SYSTEM
Singularity Registry HPC and associated tooling should
work on most Unix and Linux flavored distributions. The
software was developed on Ubuntu 22.04.

PROGRAMMING LANGUAGE
This set of tools is developed to support Python 3.7 and
higher. Python 2.x is not supported.

DEPENDENCIES
The newly released cache and automation can run on
GitHub Actions with the environment encapsulated by the
runner. The shpc set of tools requires the requests library,
jsonschema, and generally expects module software to
be installed [6, 5]. See the “version.py” in each project
for details. Naturally, shpc also requires a container
execution runtime, such as Singularity [2], Podman [32]
or Docker [1]. Note that any container technology that
supports pull by a tag or digest can be integrated into the
software upon request.

Figure 2 Movement of a new BioContainers entry from original repository through being available as a module via the shpc software.
The BioContainers repository (A) provides an updated listing of containers from a web-accessible address. Three times a week, the
container-executable-discovery action [19] (B) is run alongside this shpc-registry-cache [15] repository to discover new executables,
derive their counts, and populate the cache (C). This step uses pipelib [12] to parse and sort container tags to derive newer ones, and
guts [13, 14] to extract executables on a container path. The shpc-registry [10], the remote registry with container YAML files, can
then run an action provided directly by shpc to use the cache to generate new container recipes to install (D). Existing recipes in the
remote registry are updated in increments each day of the month to discover new tags (E) using an action to assign entries to days of
the month [25] and the shpc software “update” command [7]. On the command line, a user that has installed shpc can then request
a module to be installed from the registry. This installation pulls a container from a container registry (G) and installs to the system
module software (H) where it can be loaded by a user, exposing the executables discovered in (B) for easy interaction (H).

6Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

LIST OF CONTRIBUTORS
Authors VS, MM, AS, MDLP, and GS have all contributed
directly to the software.

SOFTWARE LOCATION: ARCHIVE

•	 Name: shpc-registry
–– Identifier: https://zenodo.org/record/7709586
–– License: MPL-2.0
–– Publisher: Vanessa Sochat
–– Version published: 2022-11
–– Date published: 2 November 2022

•	 Name: shpc-registry-cache
–– Identifier: https://zenodo.org/record/7709593
–– License: MPL-2.0
–– Publisher: Vanessa Sochat
–– Version published: 2022-10
–– Date published: 21 November 2022

•	 Name: guts
–– Identifier: https://zenodo.org/record/7703378
–– License: MPL-2.0
–– Publisher: Vanessa Sochat
–– Version published: 0.0.1
–– Date published: 07 March 2023

•	 Name: shpc-guts
–– Identifier: https://zenodo.org/record/7703380
–– License: MPL-2.0
–– Publisher: Vanessa Sochat
–– Version published: 0.0.1
–– Date published: 07 March 2023

•	 Name: pipelib
–– Identifier: https://zenodo.org/record/7703389
–– License: MPL-2.0
–– Publisher: Vanessa Sochat
–– Version published: 0.1.15
–– Date published: 07 March 2023

•	 Name: singularity-hpc
–– Identifier: https://zenodo.org/record/7644421
–– License: MPL-2.0
–– Publisher: Vanessa Sochat
–– Version published: 0.1.16
–– Date published: 5 November 2022

SOFTWARE LOCATION: CODE REPOSITORY
All repositories are hosted on https://github.com.

•	 Name: shpc-registry
–– Identifier: singularityhub/shpc-registry
–– License: MPL-2.0
–– Date published: 31 July 2022

•	 Name: shpc-registry-cache
–– Identifier: singularityhub/shpc-registry-cache
–– License: MPL-2.0
–– Date published: 18 October 2022

•	 Name: guts
–– Identifier: singularityhub/guts

–– License: MPL-2.0
–– Date published: 07 March 2023

•	 Name: shpc-guts
–– Identifier: singularityhub/shpc-guts
–– License: MPL-2.0
–– Date published: 07 March 2023

•	 Name: pipelib
–– Identifier: vsoch/pipelib
–– License: MPL-2.0
–– Date published: 07 March 2023

•	 Name: singularity-hpc
–– Identifier: singularityhub/singularity-hpc
–– License: MPL-2.0
–– Date published: 3 April 2021

SOFTWARE LOCATION: LANGUAGE
English.

(3) REUSE POTENTIAL

The documentation pages [33] for Singularity Registry
HPC have been updated to include a developer tutorial
[34] that guides through the steps to setup and deploy
a registry of container modules based on automatic
recipe generation and executable lookup. Separate
automated workflows exist for cache generation [35]
and for using a cache to update a registry [15, 19]. In
this way, container registries and infrastructure providers
can reuse the software presented in this manuscript to
automatically generate a registry for a custom collection
of containers that is of relevance for their operations
and activities. Some parameters of the protocol can be
modified to tune the resulting registry; for instance, this
flexibility applies to the filtering of container tags/digest,
and to the selection of container executable based on
executable frequencies.

Two package modules that constitute part of the
presented toolkit, pipelib [12] and guts [13], can be
reused independently for purposes that go beyond the
generation of container registries. The former offers
functionalities to filter containers tags and digests,
whereas the latter allows to extract information on
available executables in a container.

Finally, it is also worth mentioning the usability impact
of the real use case presented as application for the
presented software. The collection of 8,000 recipes to
generate container modules for the whole collection of
BioContainers represents a valuable, impactful resource
for the community of life scientists, as well as that of
infrastructure providers and support staff that offer
services to the former.

All packages are open source on GitHub, and
contributions and ideas are welcome. We suggest to
the interested reader to open GitHub issues for help or
support on any of the software components.

https://zenodo.org/record/7709586
https://zenodo.org/record/7709593
https://zenodo.org/record/7703378
https://zenodo.org/record/7703380
https://zenodo.org/record/7703389
https://zenodo.org/record/7644421
https://github.com

7Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

(4) CONCLUSION

4.1 SUMMARY
In this work, we present complete automation to
support and continually update a set of over 8,000
container entries for installation to an HPC system using
the Singularity Registry HPC software. Our interesting
contributions that we desire to share with the community
include:

•	 Singularity Registry HPC, with support for remote
registries and automated updates [7];

•	 shpc-registry, a self-updating, version-controlled
static container registry and API of container
metadata [10];

•	 shpc-registry-cache, a self-updating, version-
controlled database of executable frequencies [15];

•	 the guts software to extract container executables on
the “PATH” [13];

•	 the pipelib software to intelligently filter and sort
container tags [12];

•	 a library of over 8,000 containers to install to an HPC
system with Singularity Registry HPC [7].

This manuscript presents as a strong example of a
research software paper, as the primary focus is on the
development of workflows, interfaces, and software to
support installing software to complex environments.
We hope that any of the automation, data, or software
presented is of use or interest to the larger community.

4.2 DISCUSSION
The algorithm presented in this paper is a necessity
caused by the lack of standard metadata for describing
the content of a package or container. Ideally, there
should be a machine-readable manifest that would
list the primary content (installed by “make install” or
equivalent), the dependencies, and the base image. This
could be tackled first within the Conda [36] system. The
Conda build system knows which binaries are installed
by a given package and what its dependencies are.
The listing could be exposed at the package level. Such
metadata would take research software closer to the
“FAIR principles for research software” [37] (FAIR stands
for Findable, Accessible, Interoperable, Reusable). All
BioConda packages (and many from other channels) are
automatically turned into Docker images by automation
at BioContainers [38]. The build could load those
manifests into standard container labels that shpc could
then use to derive the commands to expose.

It is expected that some recipes created by the
algorithm have too few or too many aliases. Being
the official shpc registry openly hosted on GitHub,
contributions are welcome in the form of pull requests
to modify the list of aliases, and we invite the research
community to report any error they find. This curation

process will happen concurrently to the regular update of
tags and digests.

DATA ACCESSIBILITY STATEMENT

Data and code relevant to this publication are all available
publicly through the supporting Github repositories [7,
10, 12, 13, 14, 15].

ACKNOWLEDGEMENTS

We are grateful to the larger HPC community for bug
reports, feature requests, and helping to strengthen our
community. As this resource has grown out of community
need, the authors encourage interaction via issues or
discussion on the respective repository, and requests for
additions or features.

FUNDING INFORMATION

MM is funded by the Wellcome Trust Grant 218328. AS
and MDLP acknowledge support from the Australian
BioCommons BYOD Expansion Project, which is funded
through NCRIS investments from Bioplatforms Australia
and the Australian Research Data Commons (https://doi.
org/10.47486/PL105).

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Author VS designed and created the Singularity Registry
HPC software, pipelib, and guts, and the automation
detailed in this work. MM, AS, MDLP, and GS contributed
to the codebase and design of the Singularity Registry
HPC software and the automation.

AUTHOR AFFILIATIONS

Vanessa Sochat orcid.org/0000-0002-4387-3819
Computer Scientist, Lawrence Livermore National Lab, USA

Matthieu Muffato orcid.org/0000-0002-7860-3560
Tree of Life, Wellcome Sanger Institute, Cambridge, UK

Audrey Stott orcid.org/0000-0003-0939-3173
Pawsey Supercomputing Research Institute, Kensington, WA,
Australia

Marco De La Pierre orcid.org/0000-0002-7429-1846
Pawsey Supercomputing Research Institute, Kensington, WA,
Australia

https://doi.org/10.47486/PL105
https://doi.org/10.47486/PL105
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0002-7860-3560
https://orcid.org/0000-0002-7860-3560
https://orcid.org/0000-0003-0939-3173
https://orcid.org/0000-0003-0939-3173
https://orcid.org/0000-0002-7429-1846
https://orcid.org/0000-0002-7429-1846

8Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

Georgia Stuart orcid.org/0000-0003-2787-5299

University of Massachusetts, Amherst, MA, USA

REFERENCES

1.	 Ratliff J. Docker: Accelerated, Containerized Application

Development. https://www.docker.com/, 2022. Accessed:

2022-10-25.

2.	 Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific

containers for mobility of compute. PLoS One. May 2017;

12: e0177459. DOI: https://doi.org/10.1371/journal.

pone.0177459

3.	 Gamblin T, LeGendre M, Collette MR, Lee GL,

Moody A, De Supinski BR, Futral S. The Spack

package manager: bringing order to HPC software

chaos. In: Proceedings of the International Conference

for High Performance Computing, Networking,

Storage and Analysis. 2015; 1–12. DOI: https://doi.

org/10.1145/2807591.2807623

4.	 Hoste K, Timmerman J, Georges A, De Weirdt S.

Easybuild: Building software with ease. In: 2012 SC

Companion: High Performance Computing, Networking

Storage and Analysis. IEEE. 2012; 572–582. DOI: https://

doi.org/10.1109/SC.Companion.2012.81

5.	 Furlani JL. Modules: Providing a flexible user environment.

In: Proceedings of the fifth large installation systems

administration conference (LISA V). 1991; 141–152.

6.	 Lmod: A New Environment Module System — Lmod 8.7.13

documentation. 2022. https://lmod.readthedocs.io/en/

latest/. Accessed: 2022-10-25.

7.	 Sochat V, Scott A. Collaborative Container Modules with

Singularity Registry HPC. Journal of Open Source Software.

2021; 6(63): 3311. DOI: https://doi.org/10.21105/

joss.03311

8.	 YAML Specification Index. 2022. https://yaml.org/spec/.

Accessed: 2022-10-25.

9.	 Savanth V. Docker images: Name vs. tag vs. digest. Sept.

2021. https://hackernoon.com/docker-images-name-vs-

tag-vs-digest. Accessed: 2022-11-4.

10.	 shpc-registry: Testing a remote registry for Singularity

Registry HPC. 2022. https://github.com/singularityhub/

shpc-registry.

11.	 da Veiga Leprevost F, Grüning BA, Alves Aflitos S, Röst

HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto

L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer

J, Vera Alvarez R, Griss J, Nesvizhskii AI, Perez-Riverol

Y. BioContainers: an open-source and community-driven

framework for software standardization. Bioinformatics.

Aug. 2017; 33: 2580–2582. DOI: https://doi.org/10.1093/

bioinformatics/btx192

12.	 pipelib: a library for creating pipelines for parsing, filtering,

and sorting iterables. 2022. https://github.com/vsoch/

pipelib.

13.	 guts: Actions and client to derive container guts! 2022.

https://github.com/singularityhub/guts.

14.	 shpc-guts: Singularity Registry HPC… container guts! 2022.

https://github.com/singularityhub/shpc-guts.

15.	 shpc-registry-cache: A cache of commands (currently for

biocontainers). 2022. https://github.com/singularityhub/

shpc-registry-cache.

16.	 opencontainers/image-spec manifest. 2022. https://github.

com/opencontainers/image-spec/blob/main/manifest.md.

17.	 Wikipedia contributors. diff. Oct. 2022. https://en.​

wikipedia.org/w/index.php?title=Diff&oldid=​1118832554.

Accessed: 2022-12-8.

18.	 Docker hub HTTP API V2. Nov. 2020. https://docs.docker.

com/registry/spec/api/. Accessed: 2020-11-23.

19.	 container-executable-discovery action: GitHub action to

assist in creating a cache of container executables. 2022.

https://github.com/singularityhub/container-executable-

discovery/. Accessed: 2022-11-29.

20.	 Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D,

Čech M, Chilton J, Clements D, Coraor N, Grüning BA, et

al. The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2018 update. Nucleic

acids research. 2018; 46(W1): W537–W544. DOI: https://

doi.org/10.1093/nar/gky379

21.	 shpc-registry workflow to update Biocontainers. 2022.

https://github.com/singularityhub/shpc-registry/blob/

main/.github/workflows/update-biocontainers.yaml.

Accessed: 2022-11-29.

22.	 looking-at-counts.ipynb at shpc-registrycache repository.

2022. https://github.com/singularityhub/shpc-registry-

cache/blob/main/looking-at-counts.ipynb. Accessed:

2023-03-16.

23.	 Usage limits, billing, and administration. 2022. https://

docs.github.com/en/actions/learn-github-actions/usage-

limits-billing-and-administration.

24.	 hashlib — secure hashes and message digests — python

3.11.0 documentation. 2022. https://docs.python.org/3/

library/hashlib.html. Accessed: 2022-11-4.

25.	 split-list-action: Simple GitHub action to evenly split (and

present a subset) of items based on random selection or

the day of the month! 2022. https://github.com/vsoch/

split-list-action. Accessed: 2022-11-8.

26.	 Pawsey Supercomputing Research Centre. 2022. https://

pawsey.org.au. Accessed: 2022-11-8.

27.	 Australian BioCommons. 2022. https://biocommons.org.

au. Accessed: 2022-11-8.

28.	 CernVM File System. 2022. https://cernvm.cern.ch/fs/.

Accessed: 2022-11-8.

29.	 biocontainer-match.py at main shpc repository. 2022.

https://github.com/singularityhub/singularity-hpc/blob/main/

example/biocontainer-match.py. Accessed: 2022-11-16.

30.	 A proof of concept of RNA-seq pipeline, written in

Nextflow. 2022. https://github.com/nextflow-io/rnaseq-nf.

31.	 Demo/toy RNAseq pipeline, to test interplay of Nextflow

with SHPC container modules. 2022. https://github.com/

marcodelapierre/demo-shpc-nf.

32.	 Walsh D. The Pod Manager tool (podman). 2022. https://

podman.io/. Accessed: 2022-11-26.

https://orcid.org/0000-0003-2787-5299
https://orcid.org/0000-0003-2787-5299
https://www.docker.com/
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1109/SC.Companion.2012.81
https://lmod.readthedocs.io/en/latest/
https://lmod.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.03311
https://doi.org/10.21105/joss.03311
https://yaml.org/spec/
https://hackernoon.com/docker-images-name-vs-tag-vs-digest
https://hackernoon.com/docker-images-name-vs-tag-vs-digest
https://github.com/singularityhub/shpc-registry
https://github.com/singularityhub/shpc-registry
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1093/bioinformatics/btx192
https://github.com/vsoch/pipelib
https://github.com/vsoch/pipelib
https://github.com/singularityhub/guts
https://github.com/singularityhub/shpc-guts
https://github.com/singularityhub/shpc-registry-cache
https://github.com/singularityhub/shpc-registry-cache
https://github.com/opencontainers/image-spec/blob/main/manifest.md
https://github.com/opencontainers/image-spec/blob/main/manifest.md
https://en.wikipedia.org/w/index.php?title=Diff&oldid=1118832554
https://en.wikipedia.org/w/index.php?title=Diff&oldid=1118832554
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/api/
https://github.com/singularityhub/container-executable-discovery/
https://github.com/singularityhub/container-executable-discovery/
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
https://github.com/singularityhub/shpc-registry/blob/main/.github/workflows/update-biocontainers.yaml
https://github.com/singularityhub/shpc-registry/blob/main/.github/workflows/update-biocontainers.yaml
https://github.com/singularityhub/shpc-registry-cache/blob/main/looking-at-counts.ipynb
https://github.com/singularityhub/shpc-registry-cache/blob/main/looking-at-counts.ipynb
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/hashlib.html
https://github.com/vsoch/split-list-action
https://github.com/vsoch/split-list-action
https://pawsey.org.au
https://pawsey.org.au
https://biocommons.org.au
https://biocommons.org.au
https://cernvm.cern.ch/fs/
https://github.com/singularityhub/singularity-hpc/blob/main/example/biocontainer-match.py
https://github.com/singularityhub/singularity-hpc/blob/main/example/biocontainer-match.py
https://github.com/nextflow-io/rnaseq-nf
https://github.com/marcodelapierre/demo-shpc-nf
https://github.com/marcodelapierre/demo-shpc-nf
https://podman.io/
https://podman.io/

9Sochat et al. Journal of Open Research Software DOI: 10.5334/jors.451

TO CITE THIS ARTICLE:
Sochat V, Muffato M, Stott A, De La Pierre M, Stuart G 2023 Automated Discovery of Container Executables. Journal of Open Research
Software, 11: 6. DOI: https://doi.org/10.5334/jors.451

Submitted: 16 December 2022 Accepted: 12 April 2023 Published: 24 April 2023

COPYRIGHT:
© 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

33.	 Singularity registry hpc – documentation. 2022. https://

singularity-hpc.readthedocs.io. Accessed: 2022-12-8.

34.	 Singularity registry hpc – developer tutorial. 2022. https://

singularity-hpc.readthedocs.io/en/latest/getting_started/

developer-guide.html#developer-tutorial. Accessed: 2022-

12-14.

35.	 container-executable-discovery cache creation action:

GitHub action to assist in creating a cache of container

executables. 2022. https://github.com/singularityhub/

shpc-registry-cache/blob/main/.github/workflows/update-

cache.yaml. Accessed: 2022-11-29.

36.	 Conda: Package, dependency and environment manage

ment for any language. 2022. https://docs.conda.io/.

37.	 Barker M, Chue Hong NP, Katz DS, Lamprecht A-L,

Martinez-Ortiz C, Psomopoulos F, Harrow J, Castro LJ,

Gruenpeter M, Martinez PA, Honeyman T. Introducing the

FAIR Principles for research software. Scientific Data. Oct.

2022; 9: 622. DOI: https://doi.org/10.1038/s41597-022-

01710-x

38.	 Bray S, Chilton J, Bernt M, Soranzo N, van den

Beek M, Batut B, Rasche H, Čech M, Cock PJA,

Grüning B, Nekrutenko A. The Planemo toolkit for

developing, deploying, and executing scientific data

analyses in Galaxy and beyond. Genome Research.

Jan. 2023; 33: 261–268. DOI: https://doi.org/10.1101/

gr.276963.122

https://doi.org/10.5334/jors.451
http://creativecommons.org/licenses/by/4.0/
https://singularity-hpc.readthedocs.io
https://singularity-hpc.readthedocs.io
https://singularity-hpc.readthedocs.io/en/latest/getting_started/developer-guide.html#developer-tutorial
https://singularity-hpc.readthedocs.io/en/latest/getting_started/developer-guide.html#developer-tutorial
https://singularity-hpc.readthedocs.io/en/latest/getting_started/developer-guide.html#developer-tutorial
https://github.com/singularityhub/shpc-registry-cache/blob/main/.github/workflows/update-cache.yaml
https://github.com/singularityhub/shpc-registry-cache/blob/main/.github/workflows/update-cache.yaml
https://github.com/singularityhub/shpc-registry-cache/blob/main/.github/workflows/update-cache.yaml
https://docs.conda.io/
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1101/gr.276963.122
https://doi.org/10.1101/gr.276963.122

