
SOFTWARE

METAPAPER

ABSTRACT
Well-separated pair decomposition (WSPD) is a well-known geometric decomposition
used for encoding distances, introduced in 1995 by Paul B. Callahan and S. Rao Kosaraju
in a seminal paper. We implemented this remarkable decomposition following the
nontrivial algorithm for computing the partial fair split tree of a point set presented in
the original article. Our implementation is done in C++. In addition to that, we made
further effort to publish it as a Python package on PyPI. By doing so, we made our
software easily accessible on Windows, Linux, or macOS to researchers and students
worldwide.

CORRESPONDING AUTHOR:
Domagoj Matijević

School of Applied Mathematics
and Computer Science,
University of Osijek, Croatia

domagoj@mathos.hr

KEYWORDS:
Well-separated pair
decomposition; computational
geometry

TO CITE THIS ARTICLE:
Matijević D 2024 A Python
Package for Well-Separated
Pair Decomposition. Journal of
Open Research Software, 12: 1.
DOI: https://doi.org/10.5334/
jors.465

DOMAGOJ MATIJEVIĆ

A Python Package for
Well-Separated Pair
Decomposition

mailto:domagoj@mathos.hr
https://doi.org/10.5334/jors.465
https://doi.org/10.5334/jors.465
https://orcid.org/0000-0003-3390-9467

2Matijević Journal of Open Research Software DOI: 10.5334/jors.465

(1) OVERVIEW

INTRODUCTION
Many different problems in geometry involve Euclidean
distances defined by pairs of n points in a given point set.
For example, the closest pair problem, the all-nearest-
neighbors problem, the problem of determining k smallest
distances among ()2

n pairwise distances, etc. The solution
to such problems often relies on some ‘clever’ search
over a quadratic space of pairwise distances. The natural
question is whether one can efficiently approximate the
space of pairwise distances in subquadratic space and, by
doing so, help provide an efficient solution to many of the
problems mentioned above. The answer to that question
was given in a seminal work by Paul B. Callahan and S. Rao
Kosaraju in 1995 ([1]), which showed that the quadratic
space of all pairwise distances could be encoded in
O(n) space and O(n log n) construction time, for a fixed
dimension d. The decomposition they introduced is well-
separated pair decomposition (WSPD), a well-known
decomposition in computational geometry.

Many exact and approximate algorithms for different
proximity problems are based on a WSPD: the diameter
problem, the spanner problem, the minimum spanning
tree, etc. (for the complete list of problems, see [2]). An
extensive overview of the a WSPD and its applications is
given in the book [3]. A WSPD has even been listed among
problems in the Encyclopedia of Algorithms ([4]), which
presents solutions to the most important algorithmic
problems. Surprisingly, no efficient implementation of a
WSPD can be found in public software libraries available
for students and researchers.

This paper presents the software package that
implements a WSPD following the nontrivial algorithm of
the partial fair-split tree presented in [1] that guarantees
the construction time of O (n log n) and a WSPD of O(n)
size. To our knowledge, our implementation is the first
open-source and publicly available implementation of
WSPD that carefully follows the original algorithm in
[1]. Recently published implementation of a WSPD in
ParGeo C++ library (see [5]) uses simple fair-split kdtree
and does not ensure theoretic bounds on the size of a
WSPD.

Moreover, in order to make it convenient for researchers
and students and available for everyday use, we created
Python bindings to our C++ code and published it to PyPI.
Python module can be run on Windows, macOS, and
Linux for all Python versions starting from 3.7.

Formal problem statement
For the sake of the completeness, we provide the formal
definition of a WSPD. Let S be a set of n points in d . A
pair of sets A, B ⊂ S are said to be well-separated if

> ⋅(,) max{diam(), diam()},d A B s A B

for any given separation constant s > 0, where

∈ ∈
=

,
(,) min (,)

a A b B
d A B d a b and diam(·) denotes the diameter
of a set of points.

A well-separated pair decomposition of ⊂ dS , for a
given s > 0, is a sequence (A1, B1), ⋯ , (Ak, Bk), where Ai, Bi
⊆ S, such that

1.	 Ai, Bi are well-separated with respect to the
separation constant s, for all i = 1, ⋯ , k;

2.	 for all p ≠ q ∈ S there exists a unique pair (Ai, Bi) such
that p ∈ Ai, q ∈ Bi or q ∈ Ai, p ∈ Bi.

Note that a WSPD always exists since one could use all
singleton pairs ({p}, {q}) for all pairs p, q ∈ S. However, this
would yield a sequence of well-separated pairs of size k
= Θ(n2). The work of [1] showed that, given a set S of n
points in



d and a separation constant s > 0, a WSPD
of S with O(sddd/2n) many well-separated pairs can be
computed in O(dn log n + sddd/2n) time.

IMPLEMENTATION AND ARCHITECTURE
The implementation of a WSPD was done in C++ with
the help of STL containers, and no other external libraries
were used. To facilitate the practical use of our software,
we used the pybind11 library ([6]) to enable Python
binding to our C++ implementation. The main advantage
of pybind11 is that it allows for automatic conversion
between STL containers and Python list, set, and dict
data structures. More precisely, we use native Python
types <int, int, float, list> in Python function wspd.
build_wspd(), and pybind11 converts them to native
C++ types <int, int, double, stl::vector> in the
corresponding C++ function call. In the opposite direction,
the well-separated pairs of a WSPD, once computed in
C++, are represented as a composite data type

<stl::vector<stl::pair<stl::vector<int>,
stl::vector<int>>>>

and pybind11 converts them to Python’s
list<tupe<list, list>>. Type conversions involve
copying data during Python/C++ transitions due to
memory layout differences. We direct the interested
reader to pybind documentation (see [6]) for more
details about type conversions.

Furthermore, we used the GitHub Actions CI/CD [7] to
compile our project for Windows, Linux, and macOS and
released it as a Python package on the Python Package
Index PyPI [8] platform.

QUALITY CONTROL
Tests for the WSPD package are performed using
different-sized random data and manually constructed
inputs where the correct results are known. In Figure
1, left, one can see that our implementation outputs
well-separated pairs typically in less than a few seconds

3Matijević Journal of Open Research Software DOI: 10.5334/jors.465

for inputs as large as 20 000 points in the plane.
Unfortunately, the dependence in the running time on
the dimension is exponential, which is also reflected in
our experiments. In Figure 1, right, we revealed the total
number of well-separated pairs as a function of the input
size. Surprisingly, the compression ratio, i.e., the total
number of well-separated pairs of sets divided by the
total number of pairwise distances n·(n–1)/2, decreases
in practice as the size of the input set of points increases.
Thus, the larger the space of all pairwise distances, the
better it gets compressed with the WSPD algorithm.

(2) AVAILABILITY

OPERATING SYSTEM
The package is platform-independent and it can be run
on Linux, macOS and Windows.

PROGRAMMING LANGUAGE
Python versions 3.7 and larger. The software can also be
included in other C++ projects.

ADDITIONAL SYSTEM REQUIREMENTS
None

DEPENDENCIES
WSPD is implemented in C++ and uses only standard STL
containers and C++ native types. No dependencies on
the Python side are required. However, for visualizing a
WSPD, you might want to use matplotlib, and for point
set generation, you might want to rely on numpy random
sampling.

SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.8314954
�Licence: Creative Commons Attribution 4.0
International

Publisher: Domagoj Matijević
Version published: Version 1
Date published: 04/09/2023

Code repository
Name: GitHub
�Persistent identifier: https://github.com/dmatijev/
wspd pip
Licence: MIT
Version published: v0.7.0
Date published: 04/09/2023

LANGUAGE
English

(3) REUSE POTENTIAL

Users can request support by raising an issue on GitHub. We
expect our implementation, presented as a C++ code and a
Python module installable from the PyPI repository, can be
easily included in any existing C++ or Python projects. This
project will hopefully bring WSPD, a well-known geometric
decomposition, closer to researchers and students by letting
them easily use WSPD in their Python and C++ projects.

USE CASE FOR THE SOFTWARE
Figure 2 shows a WSPD computed on a simple example.1
Though the example is elementary and comprises
only eight different points, it already demonstrates the
effectiveness of pairwise distance compression, e.g., note
that all possible pairwise distances among any number
of points placed in different red rectangles are already all
efficiently approximated by pairwise distances between
red rectangles.

For Python users, installing the WSPD module now
amounts to a simple pip install wspd command.
In the following, we provide a simple example of how
the WSPD package can be used, following the example
depicted in Figure 2.

Figure 1 (left) Running times with respect to the number of points is shown. (right) The relation between the total number of well-
separated pairs and the number of points is depicted with boxes. The compression ratio, i.e., the total number of wellseparated pairs
divided by the total number of pairwise distances n·(n–1)/2, is depicted with lines.

https://doi.org/10.5281/zenodo.8314954
https://github.com/dmatijev/wspd
https://github.com/dmatijev/wspd

4Matijević Journal of Open Research Software DOI: 10.5334/jors.465

import wspd
data_pts = [(1,0),(2,1),(1,10),(2,9),(10,4
),(11,5),(5,4),(5.5,3.5)]
nr_pts = len(data_pts) # number of points
dim = len(data_pts[0]) # point dimension

move points from Python list to point
class objects
data_pts = [wspd.point(p) for p in data_
pts]
compute WSPD and return well-separated
pairs
dumbbells = wspd.build_wspd(nr_pts, dim,
S, data_pts)

As already stated, a well-separated pair decomposition
has an application in solving a number of problems.
For example, given the well-separated sequence (A1,
B1)⋯ (Ak, Bk) computed by the build_wspd() function,
the closest pair problem can be computed in an
additional O(n) time by a simple inspection of all pairs
(Aj ,Bj), 1 ≤ j ≤ k, where both Aj and Bj are singleton
sets. A similar approach can be used to compute
the k closest pairs problem or for many approximate
proximity problems (for the complete list of proximity
problems, a WSPD has the direct consequence to,
see [2]). Finally, it is worth mentioning that a WSPD
has been successfully used in different geometric
problems, e.g., the computation of energy-efficient
paths in radio networks [9]. A well-separated pairs
were used for the precomputation of ‘template’ paths

that were further used in the query phase of their
algorithm.

In conclusion, a well-separated pair decomposition is
a powerful technique that has proven useful in various
applications in geometry. We hope that this open-source
project could also lead to further collaboration, as other
researchers may contribute improvements and new
features to this Python package over time.

NOTE
1.	 This example is also provided on GitHub under /example and can

be used for further testing of a WSPD.

ACKNOWLEDGEMENTS

We thank Tomislav Prusina, who provided insight and
expertise that greatly assisted the development of this
software.

COMPETING INTERESTS

The author has no competing interests to declare.

AUTHOR AFFILIATIONS
Domagoj Matijević orcid.org/0000-0003-3390-9467
School of Applied Mathematics and Computer Science,
University of Osijek, Croatia

Figure 2 A simple example of a WSPD for eight blue points in the plane computed with separation constant s = 2. The WSPD
algorithm computed ten well-separated pairs, denoted as green dashed lines. Thus, all pairwise distances between points in different
red rectangles will be approximated with corresponding green dashed lines.

https://orcid.org/0000-0003-3390-9467
https://orcid.org/0000-0003-3390-9467

5Matijević Journal of Open Research Software DOI: 10.5334/jors.465

TO CITE THIS ARTICLE:
Matijević D 2024 A Python Package for Well-Separated Pair Decomposition. Journal of Open Research Software, 12: 1. DOI: https://doi.
org/10.5334/jors.465

Submitted: 30 March 2023 Accepted: 20 December 2023 Published: 02 January 2024

COPYRIGHT:
© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

REFERENCES

1.	 Callahan PB, Kosaraju SR. A decomposition of

multidimensional point sets with applications to

k-nearest-neighbors and n-body potential fields. J. ACM,

jan 1995; 42(1): 67–90. ISSN 0004-5411. DOI: https://doi.

org/10.1145/200836.200853

2.	 Smid MHM. The well-separated pair decomposition

and its applications. In Gonzalez TF (ed.), Handbook

of Approximation Algorithms and Metaheuristics,

Second Edition, Volume 2: Contemporary and Emerging

Applications. Chapman and Hall/CRC; 2018.

3.	 Narasimhan G, Smid MHM. Geometric spanner networks.

Cambridge University Press; 2007. DOI: https://doi.

org/10.1017/CBO9780511546884

4.	 Klein R. Well Separated Pair Decomposition. New York, NY:

Springer New York, 2016; 2368–2371. ISBN 978-1-4939-2864-

4. DOI: https://doi.org/10.1007/978-1-4939-2864-4_479

5.	 Wang Y, Yu S, Dhulipala L, Gu Y, Shun J. Pargeo:

A library for parallel computational geometry. In

Proceedings of the 27th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’22.

New York, NY, USA, 2022; 450–452. Association

for Computing Machinery. ISBN 9781450392044.

DOI: https://doi.org/10.1145/3503221.3508

429

6.	 Jakob W, Rhinelander J, Moldovan D. pybind11 –

seamless operability between c++11 and python; 2017.

https://github.com/pybind/pybind11.

7.	 Github actions documentation. URL: https://docs.github.

com/en/actions.

8.	 Python package index pypi. URL: https://pypi.org/.

9.	 Beier R, Funke S, Matijević D, Sanders P. Energy-efficient

paths in radio networks. Algorithmica, oct 2011; 61(2):

298–319. ISSN 0178-4617. DOI: https://doi.org/10.1007/

s00453-010-9414-0

https://doi.org/10.5334/jors.465
https://doi.org/10.5334/jors.465
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/200836.200853
https://doi.org/10.1145/200836.200853
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1007/978-1-4939-2864-4_479
https://doi.org/10.1145/3503221.3508
https://github.com/pybind/pybind11
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://pypi.org/
https://doi.org/10.1007/s00453-010-9414-0
https://doi.org/10.1007/s00453-010-9414-0

