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ABSTRACT
This paper introduces arfpy, a python implementation of Adversarial Random Forests, 
which is a lightweight procedure for synthesizing new data that resembles some given 
data. The software arfpy equips practitioners with straightforward functionalities for 
both density estimation and generative modeling. The method is particularly useful for 
tabular data and its competitive performance is demonstrated in previous literature. As 
a major advantage over the mostly deep learning based alternatives, arfpy combines 
the method’s reduced requirements in tuning efforts and computational resources 
with a user-friendly python interface. This supplies audiences across scientific fields 
with software to generate data effortlessly.

https://github.com/bips-hb/arfpy.
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INTRODUCTION

Generative modeling is a challenging task in machine 
learning that aims to synthesize new data which 
is similar to a set of given data. State of the art are 
computationally intense and tuning-heavy algorithms 
such as generative adversarial networks (GANs) [1, 2], 
variational autoencoders [3], normalizing flows [4], 
diffusion models [5] or transformer-based models [6]. A 
much more lightweight procedure is to use an Adversarial 
Random Forest (ARF) [7]. ARFs achieve competitive 
performance in generative modeling with much faster 
runtime [7], yet they do not require the practitioner to 
have extensive knowledge of generative modeling.

Further, ARFs are especially useful for data that comes 
in a table format, i.e., tabular data. That is because ARFs 
are based on random forests [8] which leverage the 
advantages that tree-based methods have over neural 
networks on tabular data [9] for generative modeling. 
Further, as part of the procedure, ARFs give access to the 
estimated joint density, which is useful for several other 
fields of research, e.g., unsupervised machine learning. 
For the task of density estimation, ARFs have been 
demonstrated to yield remarkable results as well [7]. In 
brief, ARFs are a promising methodological contribution to 
the field of generative modeling and density estimation, 
providing a ready-made solution to generate data for 
practitioners across fields.

ARFs have already gained some attention in the 
scientific community [10], however, the paper by Watson 
et al. [7] provides the audience with a R software package 
only. The machine learning and generative modeling 
community, however, is mostly using python as a 
programming language and to reach a broad audience 
more generally, a fast and user-friendly implementation 
of ARFs in python is highly desirable. We aim to fill this 
gap with the presented python implementation of ARFs.

arfpy is inspired by the R implementation called arf 
[11], but transfers the algorithmic structure to match 
the class-based structure of python code and takes 
advantage of computationally efficient python functions. 
Similar to the R implementation, separate functions for 
first fitting the density (FORDE algorithm [7]) and then 

generating new data samples (FORGE algorithm [7]) 
exist. However, in arfpy, the functions are called for an 
initialized object of class arf, which is showcased in the 
usage example below.

Crucially, for practitioners working with python 
as programming language, the direct python 
implementation is more robust and convenient to users 
than calling fragile wrappers like rpy2 [12] that aim to 
make R code running in python. The benefits of a direct 
python implementation of ARFs for the generative 
modeling community have already been recognized 
by now. For example, arfpy is integrated in the data 
synthesizing framework synthcity [13].

IMPLEMENTATION AND 
ARCHITECTURE

MODULE DESIGN
The general workflow of generating data with arfpy 
is (1) to initialize an object of class arf with real data, 
(2) estimate the density and (3) sample new data. This 
procedure is visualized in Figure 1.

The architecture of arfpy reflects this workflow 
and we have class arf building the backbone of the 
procedure. An instance of class arf takes the real data 
set as input and trains an ARF, i.e., learns the actual 
data’s structure. To this object, functions to estimate 
the density (FORDE algorithm [7], function forde()) and 
generate data (FORGE algorithm [7], function forge()) 
can be applied. This architecture allows users to learn the 
structure of the real data once (when initializing the arf 
class object) and then flexibly adapt density estimation, 
e.g., using different parameters, or repeatedly sampling 
new data without having to refit the model.

METHODOLOGY OVERVIEW
For interested readers, we want to briefly describe the 
methodological foundations of ARFs, but refer to [7] for 
further details. From a given real data set, first, naive 
synthetic data is generated (initial generation step) by 
sampling from the marginal distributions of the features. 
Then, a random forest [8] is fit to distinguish this 

Figure 1 Workflow of arfpy’s core functionalities.
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synthetic from the real data (initial discrimination step). 
This procedure, also known as fitting an unsupervised 
random forest [14], guides the random forest to learn 
the dependency structure in the data. Using this forest, 
we can sample observations from the leaves of the trees 
to generate updated synthetic data (generation step). 
Subsequently, a new random forest is fit to differentiate 
between synthetic and real data (discrimination step). 
Drawing on the adversarial idea of GANs, this iterative 
procedure of data generation and discrimination will 
be repeated until the discriminator cannot distinguish 
between generated and real data anymore. At this stage, 
the accuracy of the forest will be ≤0.5 and the forest is 
assumed to have converged, which implies mutually 
independent features in the terminal nodes. This 
drastically simplifies density estimation and generative 
modeling, as it allows us to formulate the univariate 
density for each feature separately with data in the leaves 
of the fitted ARF (FORDE algorithm) and then combine 
them to the joint density, instead of having to model a 
multivariate density directly. For data generation, we can 
use this trait to sample a new observation by drawing 
a leaf from the forest of the last iteration step and use 
the data distributions with parameters estimated from 
that leaf to sample each feature separately (FORGE 
algorithm).

EXAMPLE USAGE
Let us illustrate the usage of arfpy with a visually 
intuitive example: We create data using make_moons 
from sklearn.datasets, which results in data along 
two continuous axes that looks like two moons from 
different categories. Statistically speaking, this is 
a tabular dataset, consisting of both continuous 
and categorical features that exhibit a dependency 
structure. For a more intuitive understanding of the 
data, see Figure 2, Panel A. The task of arfpy is to learn 
the structure of this given (real) data and generate new 
data instances that appear similar.

To initialize the workflow, we need to run relevant 
imports, including the import of class arf from the 
arfpy module, and create the real dataset. The arf 
class takes a pandas DataFrame as input, so the real 

data is pre-processed to match this requirement. This 
incorporates setting unique column names (‘dim_1’, 
‘dim_2’,’label’) and ensuring that ‘label’ is stored 
in the correct data type ‘category’.

	1	�import pandas as pd
	2	from sklearn.datasets import make_moons
	3	from arfpy import arf
	4
	5	�moons_X, moons_y = make_moons(n_samples =  

   3000, noise = 0.1)
	6	�df = pd.DataFrame({“dim_1” : moons_X[:,0],  

   “dim_2” : moons_X[:,1], “label” : moons_y})
	7	�df[‘label’] = df[‘label’].astype(‘category’)
	8
	9	df.head()
10
11	 #>	 dim_1	 dim_2	 label
12	 #>	 1.782717	 0.099124	 1
13	 #>	 1.087497	 0.298744	 0
14	 #>	–0.576695	 0.801675	 0
15	 #>	 0.623931	 –0.506896	 1

With the real dataset preprocessed as needed, we 
can proceed with training the ARF to learn the data’s 
structure. Creating an object of class arf will trigger ARF 
model fitting using the data provided.

1 my_arf = arf.arf(x = df)
2
3 #> Initial accuracy is 0.82
4 #> Iteration number 1 reached accuracy of 0.36

Because we have used the parameter default verbose = 
True, the training of my_arf prints out some interesting 
information: The initial accuracy, which corresponds to 
the accuracy of the random forest in distinguishing real 
data from naive synthetic data, is 0.82. This implies that 
the random forest is doing very well in distinguishing real 
from naive synthetic data and therefore, we can assume 
the model to have learned relevant dependencies that 
allow the model to make this distinction. Using this forest 
to sample updated synthetic data, and fitting a new 
random forest to distinguish this data from real data leads 

Figure 2 Comparison of real and synthesized data.
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to an accuracy of only 0.36. This accuracy is below the 
default threshold of 0.5, so loosely speaking, the synthetic 
data generated with the forest cannot be accurately 
distinguished from real data, i.e., the generated data looks 
like real data, which is the goal the algorithm was aiming 
for. In other words, the relevant dependency structures of 
the real data have been learned by the forest in the first 
round of iteration already, so the algorithm has converged 
and no further iterations need to be conducted.

After the ARF has converged, we can proceed to 
estimating the joint density. Recap that in a converged 
ARF, the features are mutually independent in the leaves, 
which simplifies the challenging multivariate density 
estimation task into many simple univariate density 
estimation tasks. The joint density is then a factorization 
of the individual density estimates across leaves in the 
ARF. We can call function forde() on the my_arf object 
to estimate the density and store the returned dictionary 
to explore the parameters. The FORDE dictionary contains 
the estimated parameters for continuous (key ‘cnt’) 
and categorical features (key ‘cat’). As mentioned in 
the above paragraph, the parameters are estimated 
using the data points in the forest’s leaves, so we will 
get estimates for each leaf individually. The parameters 
for the categorical features simply correspond to 
the empirical frequency of categories in the leaves, 
so for a more complex example, we can take a look 
at the continuous feature’s parameter estimates in 
FORDE[‘cnt’]. We have used the default distribution 
(truncated normal distribution) to model continuous 
features, so the output will reflect estimates for the mean 
and standard deviation for each continuous feature 
(‘dim_1’, ‘dim_2’) in each leaf, which is uniquely 
identified by ‘tree’ and ‘nodeid’:

1 FORDE = my_arf.forde()
2
3 FORDE[‘cnt’].iloc[:,:5].head()
4
5 #> tree	 nodeid	 variable	 mean	 sd
6 #> 0	 3	 dim_1	 0.961437	 0.214925
7 #> 0	 3	 dim_2	 -0.671571	 0.028193
8 #> 0	 11	 dim_1	 1.040565	 0.185581
9 #> 0	 11	 dim_2	 -0.621924	 0.003328

With the parameters estimated, we can move on to the 
final step of the generative modeling task and sample 
new data instances with the function forge().

For each instance to be generated, the function 
randomly samples a leaf from the forest with weighted 
probability according to the coverage of real data in the 
leaves of the ARF and then uses the parameters estimated 
through forde() to sample a new data instance.

1 df_syn = my_arf.forge(n = 1000)
2

3 df_syn.head()
4
5 #>	 dim_1	 dim_2	 label
6 #>	–0.018004	 0.283963	 1
7 #>	 1.734200	 –0.085115	 1
8 #>	–0.009840	 1.046872	 0
9 #>	 0.868400	 –0.352692	 1

Calling forge() completes the task of generating synthetic 
data that mimics real data. From the generated data table 
itself, the similarity is hard to grasp, but we can visually 
inspect the quality of the synthetic data in Figure 2.

QUALITY CONTROL
The software has been tested through unit tests, which 
includes testing of relevant functionalities with various 
input data sets. The workflow of running these tests is 
automated on GitHub actions, but can be run locally and 
with customized data sets using the instructions provided 
in the software repository. Further, the repository allows 
to publicly raise questions or report bugs and gives clear 
guidelines on how to contribute to the open source 
software project are lined out.

AVAILABILITY

OPERATING SYSTEM
Platform Independent

PROGRAMMING LANGUAGE
Python ≥ 3.8

ADDITIONAL SYSTEM REQUIREMENTS
No specific requirements

DEPENDENCIES
numpy ≥ 1.20.3, pandas ≥ 1.5, scikit-learn ≥ 0.24, 
scipy ≥ 1.4
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REUSE POTENTIAL

ARFs have been introduced with a solid theoretical 
background, yet do not have to compromise on a 
complex algorithmic structure and instead are a low-key 
algorithm that does not require extensive hyperparameter 
tuning [7]. In contrast to the typically deep learning 
based alternatives, ARF does not require background 
knowledge of generative modeling, intense tuning efforts 
or large computational resources. Given the theoretical 
foundation and straightforward implementation with 
arfpy, the methodology is attractive for both scholars 
conducting rather theoretical research in statistics, e.g., 
density estimation, as well as practitioners from other 
fields that need to generate new data samples.

Typical use cases of such synthesized data samples 
are, for example, the imputation of missing values, data 
augmentation or the conduct of analyses that respect 
data protection rules. With the specialty of ARFs being 
particularly suitable for tabular data, including a natural 
incorporation of both continuous and categorical 
features, the straightforward python implementation 
of ARFs provides a convenient algorithm to a broad 
audience from different fields.

With the python programming language being 
widespread, arfpy can smoothly integrate in the code 
of various applications. Further, usability is enhanced by 
the intuitive documentation provided at https://bips-hb.
github.io/arfpy/, making arfpy an easily accessible tool 
to generate data.

In sum, arfpy introduces density estimation and 
generative modeling with ARFs to python, which enables 
practitioners from a wide variety of fields to generate fast 
and reliable synthetic data and density estimates with 
python as a programming language.
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