
SOFTWARE

METAPAPER

CORRESPONDING AUTHOR:
Marvin N. Wright

Leibniz Institute for Prevention
Research and Epidemiology
– BIPS, Bremen, Germany;
Faculty of Mathematics and
Computer Science, University
of Bremen, Bremen, Germany;
Department of Public Health,
University of Copenhagen,
Copenhagen, Denmark

wright@leibniz-bips.de

Kristin Blesch

Leibniz Institute for Prevention
Research and Epidemiology
– BIPS, Bremen, Germany;
Faculty of Mathematics and
Computer Science, University
of Bremen, Bremen, Germany

blesch@leibniz-bips.de

KEYWORDS:
Generative Modeling; Density
Estimation; Machine Learning;
Data Generation

TO CITE THIS ARTICLE:
Blesch K, Wright MN 2024
arfpy: A Python Package
for Density Estimation and
Generative Modeling with
Adversarial Random Forests.
Journal of Open Research
Software, 12: 7. DOI: https://
doi.org/10.5334/jors.492

arfpy: A Python Package
for Density Estimation and
Generative Modeling with
Adversarial Random Forests

KRISTIN BLESCH

MARVIN N. WRIGHT

*Author affiliations can be found in the back matter of this article

ABSTRACT
This paper introduces arfpy, a python implementation of Adversarial Random Forests,
which is a lightweight procedure for synthesizing new data that resembles some given
data. The software arfpy equips practitioners with straightforward functionalities for
both density estimation and generative modeling. The method is particularly useful for
tabular data and its competitive performance is demonstrated in previous literature. As
a major advantage over the mostly deep learning based alternatives, arfpy combines
the method’s reduced requirements in tuning efforts and computational resources
with a user-friendly python interface. This supplies audiences across scientific fields
with software to generate data effortlessly.

https://github.com/bips-hb/arfpy.

https://github.com/bips-hb/arfpy
mailto:wright@leibniz-bips.de
mailto:blesch@leibniz-bips.de
https://doi.org/10.5334/jors.492
https://doi.org/10.5334/jors.492
https://orcid.org/0000-0001-6241-3079
https://orcid.org/0000-0002-8542-6291

2Blesch and Wright Journal of Open Research Software DOI: 10.5334/jors.492

INTRODUCTION

Generative modeling is a challenging task in machine
learning that aims to synthesize new data which
is similar to a set of given data. State of the art are
computationally intense and tuning-heavy algorithms
such as generative adversarial networks (GANs) [1, 2],
variational autoencoders [3], normalizing flows [4],
diffusion models [5] or transformer-based models [6]. A
much more lightweight procedure is to use an Adversarial
Random Forest (ARF) [7]. ARFs achieve competitive
performance in generative modeling with much faster
runtime [7], yet they do not require the practitioner to
have extensive knowledge of generative modeling.

Further, ARFs are especially useful for data that comes
in a table format, i.e., tabular data. That is because ARFs
are based on random forests [8] which leverage the
advantages that tree-based methods have over neural
networks on tabular data [9] for generative modeling.
Further, as part of the procedure, ARFs give access to the
estimated joint density, which is useful for several other
fields of research, e.g., unsupervised machine learning.
For the task of density estimation, ARFs have been
demonstrated to yield remarkable results as well [7]. In
brief, ARFs are a promising methodological contribution to
the field of generative modeling and density estimation,
providing a ready-made solution to generate data for
practitioners across fields.

ARFs have already gained some attention in the
scientific community [10], however, the paper by Watson
et al. [7] provides the audience with a R software package
only. The machine learning and generative modeling
community, however, is mostly using python as a
programming language and to reach a broad audience
more generally, a fast and user-friendly implementation
of ARFs in python is highly desirable. We aim to fill this
gap with the presented python implementation of ARFs.

arfpy is inspired by the R implementation called arf
[11], but transfers the algorithmic structure to match
the class-based structure of python code and takes
advantage of computationally efficient python functions.
Similar to the R implementation, separate functions for
first fitting the density (FORDE algorithm [7]) and then

generating new data samples (FORGE algorithm [7])
exist. However, in arfpy, the functions are called for an
initialized object of class arf, which is showcased in the
usage example below.

Crucially, for practitioners working with python
as programming language, the direct python
implementation is more robust and convenient to users
than calling fragile wrappers like rpy2 [12] that aim to
make R code running in python. The benefits of a direct
python implementation of ARFs for the generative
modeling community have already been recognized
by now. For example, arfpy is integrated in the data
synthesizing framework synthcity [13].

IMPLEMENTATION AND
ARCHITECTURE

MODULE DESIGN
The general workflow of generating data with arfpy
is (1) to initialize an object of class arf with real data,
(2) estimate the density and (3) sample new data. This
procedure is visualized in Figure 1.

The architecture of arfpy reflects this workflow
and we have class arf building the backbone of the
procedure. An instance of class arf takes the real data
set as input and trains an ARF, i.e., learns the actual
data’s structure. To this object, functions to estimate
the density (FORDE algorithm [7], function forde()) and
generate data (FORGE algorithm [7], function forge())
can be applied. This architecture allows users to learn the
structure of the real data once (when initializing the arf
class object) and then flexibly adapt density estimation,
e.g., using different parameters, or repeatedly sampling
new data without having to refit the model.

METHODOLOGY OVERVIEW
For interested readers, we want to briefly describe the
methodological foundations of ARFs, but refer to [7] for
further details. From a given real data set, first, naive
synthetic data is generated (initial generation step) by
sampling from the marginal distributions of the features.
Then, a random forest [8] is fit to distinguish this

Figure 1 Workflow of arfpy’s core functionalities.

3Blesch and Wright Journal of Open Research Software DOI: 10.5334/jors.492

synthetic from the real data (initial discrimination step).
This procedure, also known as fitting an unsupervised
random forest [14], guides the random forest to learn
the dependency structure in the data. Using this forest,
we can sample observations from the leaves of the trees
to generate updated synthetic data (generation step).
Subsequently, a new random forest is fit to differentiate
between synthetic and real data (discrimination step).
Drawing on the adversarial idea of GANs, this iterative
procedure of data generation and discrimination will
be repeated until the discriminator cannot distinguish
between generated and real data anymore. At this stage,
the accuracy of the forest will be ≤0.5 and the forest is
assumed to have converged, which implies mutually
independent features in the terminal nodes. This
drastically simplifies density estimation and generative
modeling, as it allows us to formulate the univariate
density for each feature separately with data in the leaves
of the fitted ARF (FORDE algorithm) and then combine
them to the joint density, instead of having to model a
multivariate density directly. For data generation, we can
use this trait to sample a new observation by drawing
a leaf from the forest of the last iteration step and use
the data distributions with parameters estimated from
that leaf to sample each feature separately (FORGE
algorithm).

EXAMPLE USAGE
Let us illustrate the usage of arfpy with a visually
intuitive example: We create data using make_moons
from sklearn.datasets, which results in data along
two continuous axes that looks like two moons from
different categories. Statistically speaking, this is
a tabular dataset, consisting of both continuous
and categorical features that exhibit a dependency
structure. For a more intuitive understanding of the
data, see Figure 2, Panel A. The task of arfpy is to learn
the structure of this given (real) data and generate new
data instances that appear similar.

To initialize the workflow, we need to run relevant
imports, including the import of class arf from the
arfpy module, and create the real dataset. The arf
class takes a pandas DataFrame as input, so the real

data is pre-processed to match this requirement. This
incorporates setting unique column names (‘dim_1’,
‘dim_2’,’label’) and ensuring that ‘label’ is stored
in the correct data type ‘category’.

	1	�import pandas as pd
	2	from sklearn.datasets import make_moons
	3	from arfpy import arf
	4
	5	�moons_X, moons_y = make_moons(n_samples =

   3000, noise = 0.1)
	6	�df = pd.DataFrame({“dim_1” : moons_X[:,0],

   “dim_2” : moons_X[:,1], “label” : moons_y})
	7	�df[‘label’] = df[‘label’].astype(‘category’)
	8
	9	df.head()
10
11	 #>	 dim_1	 dim_2	 label
12	 #>	 1.782717	 0.099124	 1
13	 #>	 1.087497	 0.298744	 0
14	 #>	–0.576695	 0.801675	 0
15	 #>	 0.623931	 –0.506896	 1

With the real dataset preprocessed as needed, we
can proceed with training the ARF to learn the data’s
structure. Creating an object of class arf will trigger ARF
model fitting using the data provided.

1 my_arf = arf.arf(x = df)
2
3 #> Initial accuracy is 0.82
4 #> Iteration number 1 reached accuracy of 0.36

Because we have used the parameter default verbose =
True, the training of my_arf prints out some interesting
information: The initial accuracy, which corresponds to
the accuracy of the random forest in distinguishing real
data from naive synthetic data, is 0.82. This implies that
the random forest is doing very well in distinguishing real
from naive synthetic data and therefore, we can assume
the model to have learned relevant dependencies that
allow the model to make this distinction. Using this forest
to sample updated synthetic data, and fitting a new
random forest to distinguish this data from real data leads

Figure 2 Comparison of real and synthesized data.

4Blesch and Wright Journal of Open Research Software DOI: 10.5334/jors.492

to an accuracy of only 0.36. This accuracy is below the
default threshold of 0.5, so loosely speaking, the synthetic
data generated with the forest cannot be accurately
distinguished from real data, i.e., the generated data looks
like real data, which is the goal the algorithm was aiming
for. In other words, the relevant dependency structures of
the real data have been learned by the forest in the first
round of iteration already, so the algorithm has converged
and no further iterations need to be conducted.

After the ARF has converged, we can proceed to
estimating the joint density. Recap that in a converged
ARF, the features are mutually independent in the leaves,
which simplifies the challenging multivariate density
estimation task into many simple univariate density
estimation tasks. The joint density is then a factorization
of the individual density estimates across leaves in the
ARF. We can call function forde() on the my_arf object
to estimate the density and store the returned dictionary
to explore the parameters. The FORDE dictionary contains
the estimated parameters for continuous (key ‘cnt’)
and categorical features (key ‘cat’). As mentioned in
the above paragraph, the parameters are estimated
using the data points in the forest’s leaves, so we will
get estimates for each leaf individually. The parameters
for the categorical features simply correspond to
the empirical frequency of categories in the leaves,
so for a more complex example, we can take a look
at the continuous feature’s parameter estimates in
FORDE[‘cnt’]. We have used the default distribution
(truncated normal distribution) to model continuous
features, so the output will reflect estimates for the mean
and standard deviation for each continuous feature
(‘dim_1’, ‘dim_2’) in each leaf, which is uniquely
identified by ‘tree’ and ‘nodeid’:

1 FORDE = my_arf.forde()
2
3 FORDE[‘cnt’].iloc[:,:5].head()
4
5 #> tree	 nodeid	 variable	 mean	 sd
6 #> 0	 3	 dim_1	 0.961437	 0.214925
7 #> 0	 3	 dim_2	 -0.671571	 0.028193
8 #> 0	 11	 dim_1	 1.040565	 0.185581
9 #> 0	 11	 dim_2	 -0.621924	 0.003328

With the parameters estimated, we can move on to the
final step of the generative modeling task and sample
new data instances with the function forge().

For each instance to be generated, the function
randomly samples a leaf from the forest with weighted
probability according to the coverage of real data in the
leaves of the ARF and then uses the parameters estimated
through forde() to sample a new data instance.

1 df_syn = my_arf.forge(n = 1000)
2

3 df_syn.head()
4
5 #>	 dim_1	 dim_2	 label
6 #>	–0.018004	 0.283963	 1
7 #>	 1.734200	 –0.085115	 1
8 #>	–0.009840	 1.046872	 0
9 #>	 0.868400	 –0.352692	 1

Calling forge() completes the task of generating synthetic
data that mimics real data. From the generated data table
itself, the similarity is hard to grasp, but we can visually
inspect the quality of the synthetic data in Figure 2.

QUALITY CONTROL
The software has been tested through unit tests, which
includes testing of relevant functionalities with various
input data sets. The workflow of running these tests is
automated on GitHub actions, but can be run locally and
with customized data sets using the instructions provided
in the software repository. Further, the repository allows
to publicly raise questions or report bugs and gives clear
guidelines on how to contribute to the open source
software project are lined out.

AVAILABILITY

OPERATING SYSTEM
Platform Independent

PROGRAMMING LANGUAGE
Python ≥ 3.8

ADDITIONAL SYSTEM REQUIREMENTS
No specific requirements

DEPENDENCIES
numpy ≥ 1.20.3, pandas ≥ 1.5, scikit-learn ≥ 0.24,
scipy ≥ 1.4

LIST OF CONTRIBUTORS
Blesch, Kristina, b;
Wright, Marvin N.a, b, c;

(a)	 Leibniz Institute for Prevention Research and
Epidemiology – BIPS, Bremen, Germany;

(b)	 Faculty of Mathematics and Computer Science,
University of Bremen, Bremen, Germany;

(c)	 Department of Public Health, University of
Copenhagen, Copenhagen, Denmark

SOFTWARE LOCATION
Archive

Name: arfpy
Persistent identifier: https://pypi.org/project/arfpy/
Licence: MIT

https://pypi.org/project/arfpy/

5Blesch and Wright Journal of Open Research Software DOI: 10.5334/jors.492

Publisher: Kristin Blesch
Version published: v0.1.1
Date published: 22/09/2023

Code repository
Name: arfpy
Persistent identifier: https://github.com/bips-hb/
arfpy
Licence: MIT
Date published: 06/09/2023

LANGUAGE
English

REUSE POTENTIAL

ARFs have been introduced with a solid theoretical
background, yet do not have to compromise on a
complex algorithmic structure and instead are a low-key
algorithm that does not require extensive hyperparameter
tuning [7]. In contrast to the typically deep learning
based alternatives, ARF does not require background
knowledge of generative modeling, intense tuning efforts
or large computational resources. Given the theoretical
foundation and straightforward implementation with
arfpy, the methodology is attractive for both scholars
conducting rather theoretical research in statistics, e.g.,
density estimation, as well as practitioners from other
fields that need to generate new data samples.

Typical use cases of such synthesized data samples
are, for example, the imputation of missing values, data
augmentation or the conduct of analyses that respect
data protection rules. With the specialty of ARFs being
particularly suitable for tabular data, including a natural
incorporation of both continuous and categorical
features, the straightforward python implementation
of ARFs provides a convenient algorithm to a broad
audience from different fields.

With the python programming language being
widespread, arfpy can smoothly integrate in the code
of various applications. Further, usability is enhanced by
the intuitive documentation provided at https://bips-hb.
github.io/arfpy/, making arfpy an easily accessible tool
to generate data.

In sum, arfpy introduces density estimation and
generative modeling with ARFs to python, which enables
practitioners from a wide variety of fields to generate fast
and reliable synthetic data and density estimates with
python as a programming language.

ACKNOWLEDGEMENTS

We thank David S. Watson and Jan Kapar for their
contributions to establishing the theoretical groundwork
of adversarial random forests.

FUNDING INFORMATION

This work was supported by the German Research
Foundation (DFG), Emmy Noether Grant 437611051.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Kristin Blesch orcid.org/0000-0001-6241-3079
Leibniz Institute for Prevention Research and Epidemiology –
BIPS, Bremen, Germany; Faculty of Mathematics and Computer
Science, University of Bremen, Bremen, Germany

Marvin N. Wright orcid.org/0000-0002-8542-6291
Leibniz Institute for Prevention Research and Epidemiology –
BIPS, Bremen, Germany; Faculty of Mathematics and Computer
Science, University of Bremen, Bremen, Germany; Department
of Public Health, University of Copenhagen, Copenhagen,
Denmark

REFERENCES

1.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-

Farley D, Ozair S, Courville A, Bengio Y. Generative

adversarial nets. Advances in Neural Information

Processing Systems. 2014; 27.

2.	 Xu L, Skoularidou M, Cuesta-Infante A,

Veeramachaneni K. Modeling tabular data using

conditional GAN. Advances in Neural Information

Processing Systems. 2019; 32.

3.	 Kingma DP, Welling M. Auto-encoding variational bayes.

International Conference on Learning Representations;

2014.

4.	 Rezende D, Mohamed S. Variational inference with

normalizing flows. Proceedings of the 32nd International

Conference on Machine Learning. 2015; 37: 1530–1538.

5.	 Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic

models. Advances in Neural Information Processing

Systems. 2020; 33: 6840–6851.

6.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,

Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you

need. Advances in Neural Information Processing Systems.

2017; 30.

7.	 Watson DS, Blesch K, Kapar J, Wright MN. Adversarial

random forests for density estimation and generative

modeling. International Conference on Artificial Intelligence

and Statistics. PMLR. 2023; 206: 5357–5375.

8.	 Breiman L. Random forests. Machine learning. 2001; 45:

5–32. DOI: https://doi.org/10.1023/A:1010933404324

9.	 Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based

models still outperform deep learning on typical tabular

data? Advances in Neural Information Processing Systems.

2022; 35: 507–520.

https://github.com/bips-hb/arfpy
https://github.com/bips-hb/arfpy
https://bips-hb.github.io/arfpy/
https://bips-hb.github.io/arfpy/
https://orcid.org/0000-0001-6241-3079
https://orcid.org/0000-0001-6241-3079
https://orcid.org/0000-0002-8542-6291
https://orcid.org/0000-0002-8542-6291
https://doi.org/10.1023/A:1010933404324

6Blesch and Wright Journal of Open Research Software DOI: 10.5334/jors.492

10.	 Nock R, Guillame-Bert M. Generative forests. arXiv

Preprint 2308.03648; 2023. DOI: https://doi.org/10.48550/

arXiv.2308.03648

11.	 Wright MN, Watson DS. arf: Adversarial Random Forests;

2023. URL https://CRAN.R-project.org/package=arf. R

package version 0.1.3.

12.	 Gautier L, et al. rpy2: Python-r bridge. GitHub repository;

2023. URL https://github.com/rpy2/rpy2.

13.	 van der Schaar Lab. synthcity: A library for generating

and evaluating synthetic tabular data. GitHub repository;

2023. URL https://github.com/vanderschaarlab/

synthcity.

14.	 Shi T, Horvath S. Unsupervised learning with random

forest predictors. Journal of Computational and Graphical

Statistics. 2006; 15(1): 118–138. DOI: https://doi.

org/10.1198/106186006X94072

TO CITE THIS ARTICLE:
Blesch K, Wright MN 2024 arfpy: A Python Package for Density Estimation and Generative Modeling with Adversarial Random Forests.
Journal of Open Research Software, 12: 7. DOI: https://doi.org/10.5334/jors.492

Submitted: 20 November 2023 Accepted: 11 April 2024 Published: 01 May 2024

COPYRIGHT:
© 2024 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.48550/arXiv.2308.03648
https://doi.org/10.48550/arXiv.2308.03648
https://CRAN.R-project.org/package=arf
https://github.com/rpy2/rpy2
https://github.com/vanderschaarlab/synthcity
https://github.com/vanderschaarlab/synthcity
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1198/106186006X94072
https://doi.org/10.5334/jors.492
http://creativecommons.org/licenses/by/4.0/

