
Katz, D S et al 2016 Report on the Second Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE2). Journal of Open Research Software,
4: e7, DOI: http://dx.doi.org/10.5334/jors.85

Journal of
open research software

ISSUES IN RESEARCH SOFTWARE

Report on the Second Workshop on Sustainable Software
for Science: Practice and Experiences (WSSSPE2)
Daniel S. Katz1, Sou-Cheng T. Choi2, Nancy Wilkins-Diehr3, Neil Chue Hong4,
Colin C. Venters5, James Howison6, Frank Seinstra7, Matthew Jones8, Karen A. Cranston9,
Thomas L. Clune10, Miguel de Val-Borro11 and Richard Littauer12

 1		Computation Institute, University of Chicago & Argonne National Laboratory, Chicago, IL, USA
dsk@uchicago.edu

 2		NORC at the University of Chicago and Illinois Institute of Technology, Chicago, IL, USA
 3		University of California-San Diego, San Diego, CA, USA
 4		Software Sustainability Institute, University of Edinburgh, Edinburgh, UK
 5		University of Huddersfield, School of Computing and Engineering, Huddersfield, UK
 6		University of Texas at Austin, Austin, TX, USA
 7		Netherlands eScience Center, Amsterdam, Netherlands
 8		National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, USA
 9		Department of Biology, Duke University, Durham, NC, USA
10		NASA Goddard Space Flight Center, Greenbelt, MD, USA
11		Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
12		University of Saarland, Germany
Corresponding author: Daniel S. Katz

This technical report records and discusses the Second Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE2). The report includes a description of the alternative, experimental
submission and review process, two workshop keynote presentations, a series of lightning talks, a
discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software
development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code
review. For each topic, the report includes a list of tangible actions that were proposed and that would
lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all
areas of world-leading research today. The workshop participants then proceeded to explore different
perspectives on the concept of sustainability. Key enablers and barriers of sustainable scientific software
were identified from their experiences. In addition, recommendations with new requirements such as
software credit files and software prize frameworks were outlined for improving practices in sustainable
software engineering. There was also broad consensus that formal training in software development or
engineering was rare among the practitioners. Significant strides need to be made in building a sense
of community via training in software and technical practices, on increasing their size and scope, and
on better integrating them directly into graduate education programs. Finally, journals can define and
publish policies to improve reproducibility, whereas reviewers can insist that authors provide sufficient
information and access to data and software to allow them reproduce the results in the paper. Hence a
list of criteria is compiled for journals to provide to reviewers so as to make it easier to review software
submitted for publication as a “Software Paper.”

Keywords: sustainability; software; research

(1) Introduction
The Second Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE2)1 was held on
16 November, 2014 in the city of New Orleans, Louisiana,
USA, in conjunction with the International Conference for

High Performance Computing, Networking, Storage and
Analysis (SC14).2 WSSSPE2 followed the model of a general
initial workshop, WSSSPE13 [1, 2], which co-occurred with
SC13, and a focused workshop, WSSSPE1.1,4 which was
organized in July 2014 jointly with the SciPy conference.5

http://dx.doi.org/10.5334/jors.85
mailto:dsk@uchicago.edu

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  2 of 23

Progress in scientific research is dependent on the quality
and accessibility of software at all levels. Hence it is critical
to address challenges related to the development, deploy-
ment, maintenance, and overall sustainability of reusable
software as well as education around software practices.
These challenges can be technological, policy based, organ-
izational, and educational, and are of interest to develop-
ers (the software community), users (science disciplines),
software-engineering researchers, and researchers study-
ing the conduct of science (science of team science, science
of organizations, science of science and innovation policy,
and social science communities). The WSSSPE1 workshop
engaged the broad scientific community to identify chal-
lenges and best practices in areas of interest to creating
sustainable scientific software. WSSSPE2 invited the com-
munity to propose and discuss specific mechanisms to
move towards an imagined future practice for software
development and usage in science and engineering. The
workshop included multiple mechanisms for participation,
encouraged team building around solutions, and identified
risky solutions with potentially transformative outcomes.
It strongly encouraged participation of early-career scien-
tists, postdoctoral researchers, and graduate students, with
funds provided to the conference organizers by the Moore
Foundation and the National Science Foundation (NSF), to
support the travel of potential participants who would not
otherwise be able to attend, and young participants and
those from underrepresented groups, respectively. These
funds allowed 17 additional participants to attend, and
each was offered the chance to present a lightning talk.

This report extends a previous report that discussed the
submission, peer-review, and peer-grouping processes in
detail [3]. It is also based on a collaborative set of notes
taken with Google Docs during the workshop [4]. Overall,
the report discusses the organization work done before
the workshop (§2); the keynotes (§3); a series of lightning
talks (§4), intended to give an opportunity for attendees
to quickly highlight an important issue or a potential solu-
tion; a session on defining sustainability (§5). The report
also gives summaries of action plans proposed by five
breakout sessions, which explored in specific areas includ-
ing sustainability (§6); software development experiences
(§7); credit & incentives (§8); reproducibility, reuse, &
sharing (§9); code testing & code review (§10). Lastly, the
report also includes some conclusions (§11) and an incom-
plete list of attendees (Appendix A).

(2) Submissions, Peer-Review, and Peer-Grouping
WSSSPE2 began with a call for papers [3]. Based on the
goal of encouraging a wide range of submissions from
those involved in software practice, ranging from initial
thoughts and partial studies to mature deployments, but
focusing on papers that are intended to lead to changes,
the organizers wanted to make submission as easy as pos-
sible. The call for papers stated:

We invite short (4-page) actionable papers that will
lead to improvements for sustainable software sci-
ence. These papers could be a call to action, or could

provide position or experience reports on sustain-
able software activities. The papers will be used by
the organizing committee to design sessions that
will be highly interactive and targeted towards facil-
itating action. Submitted papers should be archived
by a third-party service that provides DOIs. We
encourage submitters to license their papers under
a Creative Commons license that encourages shar-
ing and remixing, as we will combine ideas (with
attribution) into the outcomes of the workshop.

The call included the following areas of interest:

•	 	defining software sustainability in the context of
science and engineering software
–	 how to evaluate software sustainability

•	 	improving the development process that leads to new
software
–	 methods to develop sustainable software from the

outset
–	 effective approaches to reusable software created as

a by-product of research
–	 impact of computer science research on the devel-

opment of scientific software
•	 	recommendations for the support and maintenance

of existing software
–	 software engineering best practices
–	 governance, business, and sustainability models
–	 the role, operation, and sustainability of commu-

nity software repositories
–	 reproducibility, transparency needs that may be

unique to science
•	 	successful open source software implementations

–	 incentives for using and contributing to open
source software

–	 transitioning users into contributing developers
•	 	building large and engaged user communities

–	 developing strong advocates
–	 measurement of usage and impact

•	 	encouraging industry’s role in sustainability
–	 engagement of industry with volunteer communities
–	 incentives for industry
–	 incentives for community to contribute to industry-

driven projects
•	 	recommending policy changes

–	 software credit, attribution, incentive, and reward
–	 issues related to multiple organizations and multi-

ple countries, such as intellectual property, licens-
ing, etc.

–	 mechanisms and venues for publishing software,
and the role of publishers

•	 	improving education and training
–	 best practices for providing graduate students and

postdoctoral researchers in domain communities
with sufficient training in software development

–	 novel uses of sustainable software in education (K-20)
–	 case studies from students on issues around

software development in the undergraduate or
graduate curricula

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  3 of 23

•	 	careers and profession
–	 successful examples of career paths for developers
–	 institutional changes to support sustainable

software such as promotion and tenure metrics,
job categories, etc.

31 submissions were received; all but one used arXiv6 or
figshare7 to self-publish their papers.

The review process was fairly standard. First, review-
ers bid for papers. Then an automated system matched
the bids to determine assignments. After the review-
ers completed their assigned reviews (with an average of
4.9 reviews per paper and 4.1 reviews per reviewer),
they used EasyChair8 to record scores on relevance and
comments. Finally, the organizers accessed the information
to decide which papers to associate with the workshop
and provided authors with the comments to help them
improve their papers.

The organizers decided to list 28 of the papers as sig-
nificantly contributing to the workshop, a very high
acceptance rate, but one that is reasonable, given the goal
of broad participation and the fact that the reports were
already self-published.

The organizers wanted very interactive sessions, with the
process of creating the sessions open to the full program
committee, the paper authors, and others who might
attend the workshop. In order to do this, the organizers
used Well Sorted9 with the following steps:

(1)	 Authors were asked to create Well Sorted “cards”
for the papers. These cards have a title (50 char-
acters maximum) and a body (255 characters
maximum).

(2)	 Authors, members of the WSSSPE program commit-
tee, and mailing list subscribers were asked to sort
the cards. Each person dragged the cards, one by
one, into groups. A group could have as many cards
as the person wanted it to have, and it could have
any meaning that made sense to that person.

(3)	 Well Sorted produced a set of averages of all the
sorts, with various numbers of card clusters.

The organizers then chose a sort that contained five groups
that felt most meaningful. After that, they decided on
names for the five groups:

•	 Exploring Sustainability
•	 	Software Development Experiences
•	 	Credit & Incentives
•	 	Reproducibility & Reuse & Sharing
•	 Code Testing & Code Review.

Finally, since some of the papers were not represented
by cards in the process, they were not placed in groups
by the peer-grouping system. The authors of these papers
were asked which groups seemed the best for their papers;
these papers were then placed in those groups. Sections 6–10
discuss the breakout groups, including a list of the papers
associated with each group.

(3) Keynotes
The workshop featured two keynote addresses. In the
opening keynote presentation, Kaitlin Thaney of the
Mozilla Science Lab talked about her organization’s work
and policy to enable and support sustainable and repro-
ducible scientific research through the open web. The sec-
ond keynote speaker was Neil Chue Hong of Software
Sustainability Institute. He shed light on how scientific
software is prevalently driving advances in many science
and engineering fields. Both keynote speeches spawned
further discussion among workshop participants on the cru-
cial notion of software sustainability in the theme of our
workshop.

3.1 Kaitlin Thaney, Designing for Truth, Scale, and
Sustainability [5]
Kaitlin Thaney is the Director of the Mozilla Science Lab
(hereafter Mozilla), which is a non-profit organization
interested in openness, news, website creation, and Science,
all taking advantage of the open web.

Thaney started noting the unfortunate fact that many
current systems suffer the unintended consequence of
creating friction that hinders users, despite designers’
original purposes to do good. An example is the National
Cancer Institute’s caBIG. A total of $350 million was
spent, including more than $60 million for management.
More than 70 tools were created, but caBIG is still seen
as a failure.10 Those that had the least investment were
the most used; the most invested software were the least
utilized.

Thaney emphasized that for efficient reproducible open
research, we would need research tools (e.g., software
repositories), social capital (e.g., incentives), and capacity
(e.g., training and mentor-ship). Our systems would need
to communicate with each other. A point was made by a
member of the audience that as systems become less mono-
lithic, it often becomes harder to sustain the links between
them.11

Thaney spoke about Mozilla’s work around code cita-
tion, through a collaboration and prototype crafted
between Mozilla, GitHub, figshare, and Zenodo. This
work was presented at a closed meeting in May 2014
at the National Institutes of Health (NIH) around these
issues, sparking a conversation from that meeting
around what a Software Discovery Index12 might look
like. The meeting included a number of publishers,
researchers, and those behind major scientific software
efforts such as Bioconductor,13 Galaxy,14 and nanoHUB.15
Ted Habermann in the audience commented that if the
metadata is minimal, it would be less onerous for data
providers, but more burdensome for users—it could be
challenging to keep a balance between what have to be
captured and what would be ideal if we do not want to
lose user engagement, which he said he had experienced
with the Harvard Dataverse [6] where a large amount
(three pages) of metadata was requested, but often only
the first four fields were filled out.

The speaker concluded her talk urging the audience to
design scientific software with the general community,

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  4 of 23

not an individual, in mind; and to design to unlock latent
potential of our systems. In addition, she encouraged eve-
ryone to rethink how we reward researchers and support
roles.

3.2 Neil Chue Hong, We are the 92% [7]
Neil Chue Hong is the Director of the Software
Sustainability Institute (SSI) in the United Kingdom (UK).
The SSI was founded to support the UK’s research soft-
ware community by cultivating better, more sustainable
research software to enable world-class research. Chue
Hong’s keynote started by making the point that the use
of – and reliance on – software is pervasive in all areas of
world-leading research, showing examples from disciplines
as diverse as humanities and high-energy physics, quot-
ing Kerstin Kleese Van Dam of the Pacific Northwestern
National Laboratory via a petition campaign16 at change.
org, “Today there are very few science areas left which do
not rely on IT and thus software for the majority of their
research work. More importantly key scientific advances
in experimental and observational science would have been
impossible without better software.” He also cited Daniel
Katz, Software Infrastructure for Sustained Innovation
(SI2) Program Director of the NSF, “Scientific discovery and
innovation are advancing along fundamentally new pathways
opened by development of increasingly sophisticated software.
Software is an integral enabler of computation, experiment
and theory, and directly responsible for increased scientific
productivity and enhancement of researchers’ capabilities.”

Chue Hong drew attention to the issue that in the
cyber-infrastructure and high-performance community,
hundreds of thousands of researchers developing soft-
ware are all too often disregarded or considered the long
tail. Actually, the numbers point to the fact that they
are the mainstream. He emphasized that software is no
longer special; it is both essential to and common in sci-
entific research. A 2014 survey17 conducted by the SSI
polled researchers from 15 research-intensive UK univer-
sities (406 respondents covering a representative range of
funders, disciplines, and seniority). The survey reported
that 92% respondents confirmed the use of research soft-
ware and 89% affirmed that it would be impossible or dif-
ficult to conduct research without software. Nevertheless
the British research community is just starting to under-
stand the magnitude of the issue. Whilst many researchers
make use of software such as MATLAB, SPSS, and Excel,
data from the aforementioned SSI survey shows that over
half (56%) of respondents developed their own research
software (which equates to over 140,000 researchers if
extrapolated across the UK) and yet 71% of all UK research-
ers had no formal software-development training, having
to rely on their own coding skills.

Examining another aspect of the size of the research
software community, Chue Hong noted that the costs of
software-reliant research in the UK included £840 million
of investment in the financial year 2013–2014, and this
amount has risen by 3% on average over the past four years.
About 30% of total research investment has been spent on
research that relies on software over the last four financial

years. These numbers stemmed from an analysis by the SSI
of data from 49, 650 grant titles and abstracts published
on Gateway to Research between years 2010 and 2014. A
similar analysis of university jobs advertised in the same
period discovered that despite this investment, only 4% of
positions were software development related, and of these
only 17% were explicitly named as a software developer or
software engineer positions: the vast majority being adver-
tised as research associate or research assistant positions.
This in turn leads to the issue of career paths for those bridg-
ing the research and software worlds, who are essential to
support the use and further development of research soft-
ware, a point highlighted by a graphic showing UK STEM
graduate career paths18 showing that only 3.5% were able
to secure permanent positions.

To conclude, Chue Hong led the audience in discussing
the following questions: What are we going to do to help
and benefit the 92% of researchers who rely on software?
Who do we need to persuade? What are the incentives we
need to put in place? Finally, he challenged the workshop
participants to change the current deficient practices in
research and academia.

(4) Lightning Talks
Lightning talks were a new feature in WSSSPE2. Since the
workshop program was mostly dedicated to discussions,
the organizers wanted to give the attendees a chance to also
‘make a pitch’ for an idea, either representing a contributed
paper or something different. Eighteen attendees volun-
teered to participate in the lightning talks, each given only
two minutes to speak and at most one slide to show. The
talks were presented in reverse alphabetic order of speak-
ers’ last names. In the rest of this section, we highlight the
gist of some of the speakers’ messages.

(1)	 Colin C. Venters: The Nebuchadnezzar Effect:
Dreaming of Sustainable Software through Sus-
tainable Software Architectures [8]. Venters pro-
posed that sustainable software is a composite, first-
class, non-functional requirement (NFR) that is at a
minimum a measure of a system’s maintainability
and extensibility, but may also include other NFRs
such as efficiency (e.g., energy, cost), interoperabil-
ity, portability, reusability, scalability, and usability.
To achieve technically sustainable software, Ven-
ters suggested that software architectures are fun-
damental as they are the primary carrier of system
NFRs, i.e., pre-system understanding; and influence
how developers are able to understand, analyze,
extend, test, and maintain a software system, i.e.,
post-deployment system understanding. In addi-
tion, Venters highlighted that sustainability of soft-
ware architectures needs to be addressed to endure
different types of change and evolution in order to
mitigate architectural drift, erosion, and knowledge
vaporization.

(2)	 Marlon Pierce: Patching It Up, Pulling It For-
ward [9]. Pierce discussed how open open source
is. Open software needs a diverse, openly governed

http://change.org
http://change.org

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  5 of 23

community behind it, just as it needs open licens-
ing and a public code repository. To probe the level
of governance within open source projects, he and
his co-authors (Marru and Mattmann) suggested a
contest to encourage individual developers to sub-
mit patches and requests to projects that are impor-
tant to them. This simple mechanism shall expose
several governance mechanisms, such as how easy
it is for independent developers to communicate
with project leadership, how projects accept and
license third-party contributions, and how projects
make decisions such as granting source tree write
access.

(3)	 John Peterson: Continuous Integration for Con-
current MOOSE Framework and Application
Development on GitHub [10]. Peterson from the
Idaho National Laboratory reported that in March
2014, the MOOSE framework was released under an
open source license on GitHub, significantly expand-
ing and diversifying the pool of current active and
potential future contributors on the project. The
MOOSE team employs an extensive continuous inte-
gration test suite to ensure that both the framework
and the applications based on the framework are
verified before any code changes are accepted into
the repository. They use a combination of built-in Git
features such as branching and submodules, GitHub
API integration capabilities, and in-house developed
testing software to perform this verification and
update the dependent applications in a relatively
seamless manner for users.

(4)	 Abani Patra: Execute it [11]. Patra discussed the
value of an easily accessible platform for executing
scientific software, e.g., HUBzero to access XSEDE or
other computing resources. Such a platform for exe-
cuting benchmark problems (even at a small scale)
allows the developer community access a reference
implementation and provides an easy way to train
the larger user community. A second idea of this talk
was that for true usability, much more attention and
support needs to be given to the integrated use of
simulation tools inside complex workflows.

(5)	 Daniel S. Katz: Implementing Transitive Credit
with JSON-LD [12]. Science and engineering
research increasingly relies on activities that facilitate
research but are not rewarded or recognized, such
as: data sharing; developing common data resources,
software and methodologies; and annotating data
and publications. To promote and advance these
activities, we must develop mechanisms for assign-
ing credit, facilitate the appropriate attribution of
research outcomes, devise incentives for activities
that facilitate research, and allocate funds to maxi-
mize return on investment. Katz discussed the issue
of assigning credit for both direct and indirect contri-
butions by using JSON-LD to implement a prototype
transitive credit system.

(6)	 Samin Ishtiaq: Daemons, Notifications and Sus-
taining Software. The reproduction and replication

of novel results has become a major issue in com-
puter science, systems biology, and other computa-
tional disciplines. These include both the inability
to re-implement novel algorithms and approaches,
and lack of an agreement on how and what to bench-
mark these algorithms on. Ishtiaq from Microsoft
Research Cambridge pointed out these problems
and made several suggestions to address them.

(7)	 James Howison: Retract all Bit-Rotten Publica-
tions. Howison sought to provoke discussion by
proposing that papers whose workflows are not
kept current with the changing software ecosystem
should be automatically retracted. This would create
an incentive for authors to keep their software cur-
rent and usable, rather than the current situation in
which every potential user has to do this individu-
ally. A softer version of the proposal would identify
papers whose software workflow has become bit-
rotten and allow others to keep the code up to date,
either adding them as new authors of the paper or
providing credit for their academic service in some
other form.

(8)	 Robert Downs: Community Recommendations
for Improving Sustainable Scientific Software
Practices [13]. Robert Downs, of the Columbia Uni-
versity Center for International Earth Science Infor-
mation Network (CIESIN), described a focus group
study conducted with the Science Software Cluster
(SSC) of the Federation of Earth Science Information
Partners (ESIP). For the study, almost 300 attendees
of the 2014 Summer ESIP Meeting were invited to
participate in simultaneous roundtable discussions
on sustainability of science software. Over two-thirds
of the roundtable focus groups responded to a
semi-structured survey that contained three sets of
questions eliciting recommendations for near-term
actions of the community to improve sustainable
software practices. Initial analysis of the participants’
responses to the questionnaire revealed several sug-
gestions, which included improving community
engagement and collaborative activities, increasing
understanding and awareness, and creating incen-
tives to motivate sustainable science software prac-
tices. The ESIP SSC plans to engage the community
in the recommended activities for improving sus-
tainable scientific software practices.

(9)	 Carl Boettiger: rOpenSci: Building Sustainable
Software by Fostering a Diverse Community [14].
Boettiger described how the rOpenSci project has
been successful by focusing not just on building
software but also on building a community of
researchers who learn and adopt their approaches
to reproducible research and sustainable software
practice. Through outreach, mentoring, workshops,
and hackathons, they have not only reached new
users, but also turned users into co-developers
of robust software and good practices to support
data science research across a growing set of
disciplines.

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  6 of 23

(10)	Jakob Blomer: The Need for a Versioned Data
Analysis Environment [15]. Large-scale scientific
endeavors, such as the discovery of the Higgs boson
at the Large Hadron Collider (LHC), often rely on
complex software stacks. Maintaining thousands
of dependencies of software libraries and operating
system versions has shown that despite source code
availability, the setup and the validation of a mini-
mal usable analysis environment can easily become
prohibitively expensive. In high-energy physics,
CernVM-FS, a special-purpose, open-source, ver-
sioning, and snapshotting file system used to cap-
ture and distribute entire software stacks, proved to
be useful for providing instant access to ready-to-
run data analysis environments.

(11)	Alice Allen: Find it! Cite it! The Astrophysics Source
Code Library (ASCL) is an online registry of scientist-
written software used in astronomy research. Their
primary interest is rendering research more transpar-
ent by making this software more discoverable for
examination. The ASCL is treated as a publication by
an indexing resource for astronomy, the Astrophys-
ics Data System (ADS). ADS tracks citations to what it
indexes, including citations to ASCL entries. Increas-
ing rewards for writing software, whether through
citation, transitive credit or other methods, gives
software authors a powerful reason to take the time
to build sustainability into their software and is an
excellent way to drive community change.

(5) Defining Sustainability
In the first interactive session, the attendees divided them-
selves into groups to discuss software sustainability. They
were asked to

(1)	 discuss what the term “software sustainability”
meant to them

(2)	 determine three things they considered to be
significant enablers of software sustainability

(3)	 determine three things they considered to be
significant barriers to software sustainability.

Once each group had come up with answers, all the answers
were compiled, and the attendees voted on which they
thought were important by a show of hands.

The general responses to what software sustainability
meant were:

•	 keeping software scientifically useful
•	 separating techniques in code from knowledge in

code
•	 that an adequately large community finds value in

software and is willing to sustain it.

The enablers of and barriers to software sustainability,
roughly ranked by attendee votes, are shown in Figures 1
and 2, respectively.19

(6) Exploring Sustainability
Six papers were categorized under the theme of Exploring
Sustainability. The group included four of the authors
from the six papers submitted and an additional number
of participants who expressed an interest in the theme at
the workshop. Each paper had a different perspective on
the concept of sustainability, which ranged from the sus-
tainment of communities to defining sustainability as a
first-class, composite non-functional requirement.

6.1 Discussion and Actions
6.1.1 Discussion
Each author was invited to outline the key action from
their paper as a potential discussion point for the group;
where the authors were not present, the group facilitators
outlined the actionable points from their papers. The key
actions from the six papers included recommendations
for improving practice in sustainable software engineer-
ing [16, 17]; development of Software and Infrastructure
as a Service as a mechanism for fostering sustainable sci-
ence communities [18]; developer incentives for code
contributions to open source projects [19]; establish-
ment of a set of software engineering principles based
on scalability, reproducibility, and energy efficiency [20];
and applying software architectures as a mechanism for

Figure 1: Enablers of software sustainability, showing the fraction of attendees (rounded to the nearest 10%) who voted
for an item as important.

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  7 of 23

architectural-level reasoning about sustainability [21].
The group took the position of viewing sustainability from
the perspective of addressing the challenges related to the
development, deployment, and maintenance of reusable
software [2].

The principal focus of the initial discussion considered
how to foster cultural change towards developing sustain-
able software in academic environments. It was suggested
that a new requirement driven by the agencies funding
research projects where software was an intrinsic part of
enabling the research program would be an additional
element within the grant proposal to provide a sustain-
ability plan for sustaining the software. This type of initia-
tive would provide the necessary incentive and motivation
for researchers to consider how to sustain their software
beyond the lifetime of the project.

The discussion then focused on a need for a common
language and a definition on the concept of sustainability
that moved beyond the current fuzzy definitions where
time was the simple measurement of sustainment. It
was suggested that there was a need to identify tangible
actions that underpin sustainability that developers could
incorporate into the development stream of their software.
This prompted a debate regarding whether sustainability
should be considered as a nonfunctional requirement or
software quality as defined within ISO/IEC 25010 [22]. The
focus of the discussion was based on the paper by Venters
et al. [21], which suggested that sustainability is a first-
class, composite, non-functional requirement composed
of a number of sub-characteristics. It was generally agreed
that maintainability and extensibility were key qualities
underlying sus-tainability. In addition, the group also dis-
cussed what other non-functional requirements would
contribute to the development of sustainable software,
e.g., reusability and scalability. However, it was recognized
that there was a need to identify appropriate metrics and
measures.

The group also discussed whether the concept of sus-
tainability itself was a barrier to achieving sustainable
software. It was suggested that “the first rule of software
sustainability is do not talk about software sustainability.”
Instead there should be a focus on best software engineer-
ing practice. Playing devil’s advocate, it was asked that if
the focus on the concept of sustainability was ignored,
what current software engineering practices and princi-
ples could be utilized by software developers and domain
scientists to achieve sustainability? This raised the ques-
tion of why existing software engineering knowledge,
such as that contained in SWEBOK [23], was largely
ignored and to what extent the environment has a strong
influence on practice within the scientific and engineer-
ing community. As a result, there is a need to identify
best practices and reach a consensus beyond the theories
that underpin the discipline of software engineering.
Similarly, how could we translate or distill some of the
key building blocks that underpin software engineering
practice?

A final key point of the discussion was the role that soft-
ware design and patterns play before committing to writ-
ing a line of code. It was suggested that modeling must
play a major role in attaining sustainable software. The
point was raised that design involves making decisions
and a mechanism would be necessary for capturing these
decision points. This introduced the idea of software prov-
enance that moved beyond commits in software reposito-
ries to how to capture and maintain relationships between
sources and design decisions to prevent knowledge vapori-
zation. Whether this could be achieved through software
architectures is an open-research challenge.

6.1.2 Actions
The main action to come from the group was a proposal to
identify the ten best software engineering practices similar
to Philip Bourne’s approach of Ten Simple Rules [24].

Figure 2: Barriers to software sustainability, showing the fraction of attendees (rounded to the nearest 10%) who voted
for an item as important.

(1) � This item also included the fact that that the promotion and tenure process in academic is incompatible with
sustainability.

(2) � The software engineering practices were those in particular that are needed to scale-up projects to support and be
developed by a large sustainable community.

(3) � The smallest number of key people a project would need to lose to become non-viable – the larger the number, the
healthier the project.

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  8 of 23

6.2 Papers
The papers that were discussed in the Exploring
Sustainability group are:

•	 Mario Rosado de Souza, Robert Haines, and Caroline
Jay. Defining sustainability through Developers’ Eyes:
Recommendations from an Interview Study [16].

•	 Robert Downs, W. Christopher Lenhardt, Erin
Robinson, Ethan Davis, and Nicholas Weber. Com-
munity Recommendations for Sustainable Scientific
Software [17].

•	 Abani Patra, Matthew Jones, Steven Gallo, Kyle
Marcus, and Tevfik Kosar. Role of Online Platforms,
Communications and Workflows in Developing Sus-
tainable Software for Science Communities [18].

•	 Marlon Pierce, Suresh Marru, and Chris Mattmann.
WSSSPE2: Patching It Up, Pulling It Forward [19].

•	 Justin Shi. Seeking the principles of sustainable
software engineering [20].

•	 Colin C. Venters, Michael K. Griffiths, Violeta Holmes,
Rupert R. Ward, and David J. Cooke. The Nebuchadn-
ezzar Effect: Dreaming of Sustainable Software through
Sustainable Software Architectures [21].

(7) Software Development Experiences
Of the short actionable papers that would lead to improve-
ments for sustainable software science, 11 submissions
were categorized in the Software Development Experiences
group. Because of the large number, we split these into two
subgroups prior to the event. Some common themes helped
in this division. For example, several papers that addressed
education and training issues, including best practices and
case studies, were grouped together. Others discussed expe-
riences with registries, developer collectives and specific
examples of successful, sustainable software (including a
valuable industry perspective).

7.1 Discussion and Actions
Subgroup A consisted of ten participants who discussed
papers surrounding training and successful community
software initiatives. Subgroup B had six participants who
discussed four papers. Because of the nature of the papers,
training emerged as a common theme. However the con-
versation was wide-ranging, including incentives, repro-
ducibility, and funding to promote sustainability. In the
end, both groups discussed training, though from some-
what different points of view and resulting in somewhat
different suggested actions.

7.1.1 Subgroup A Discussion
Group discussion started with a position statement by
each person surrounding what they had learned from
their software development experiences and how those
lessons might be translated into actionable outcomes.
Participants came from a range of backgrounds, and rep-
resented multiple software and training initiatives, includ-
ing Software Carpentry, Data Carpentry, Open Science
for Synthesis (OSS), the Community Surface Dynamics
Modeling Systems group, ROpenSci, DataONE, the HDF
Group, and others. Some of these software experiences

were focused on development of new products for use in
the sciences (e.g., ROpenSci, CSDMS), and these recounted
the difficulties of engaging with disciplinary scientists in
writing software. Software was clearly utilized broadly
across the various science disciplines represented, and
it was developed within those disciplines as well. Some
researchers created software for statistical analysis and
modeling, while others used it to control instrumen-
tation, collate data across networks, collect informa-
tion from respondents, and many other uses. There was
broad consensus that, within the disciplines represented,
formal training in any type of software development or
engineering was rare among the practitioners; most are
self-taught, and develop software to get another job done.
Any ancillary utility of the software outside of the specific
science target was generally unplanned and few research-
ers would want to invest more time to make their own
software more re-usable.

There was general agreement that this body of discipli-
nary software improvement needed to be understood in
terms of the scientific productivity that could be achieved.
A software maturity model is needed for science soft-
ware, but it needs to be introduced in a way that fits the
culture of science, which largely thinks of software as a
tool, rather than a product itself. The group was in gen-
eral consensus that more widespread training in software
practice is needed within the domain sciences, and several
of the participants were involved in efforts along these
lines. Participants felt that projects that build a sense of
community via training in software and technical prac-
tices would have the most success in changing practices
in that community, but that there was a need for a man-
aged introduction of these practices. Participants also rec-
ognized that these could not be one-time, one-off training
opportunities, as software and technologies change rapidly
over time. For example, while today Software Carpentry is
focused on teaching version control via Git, there has been
a rapid evolution from RCS to CVS to SVN to Git over a
short time frame, and thus communities should expect the
need to train for adaptability and a changing technology
tool chain, rather than assume that these technologies will
stay fixed. Thus, although short term training that intro-
duces specific tools was considered highly valuable, these
trainings were also not considered sufficient to engender
the changes in software practice that were deemed nec-
essary. Combining the need for changes in practice to be
introduced incrementally with the need to minimize the
divergence of training from direct science goals and the dif-
ficulties of training for a rapidly evolving technology space,
participants concluded that multiple training efforts that
targeted different parts of the spectrum were needed.
Short-term courses introducing immediately useful skills
needs to be offered alongside more in-depth courses on
software engineering and practice that allow students to
adapt to a changing landscape.

Finally, after agreeing that these complementary train-
ing models were needed, the group discussed sustainabil-
ity of training, and how the leading groups in this space
are teaching only a small fraction of the community that
needs and wants training. Most graduate programs in the

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  9 of 23

sciences do not currently incorporate these approaches in
their graduate curricula, although there is an increasing
number of quantitatively oriented courses around analy-
sis and modeling. These still, however, generally omit engi-
neering practices such as version control, unit and regression
testing, and software modularity and abstraction, often
because the instructors themselves in the domain sciences
are not familiar with these techniques. Thus, students who
are being trained in these approaches are doing so through
short 2–3 day training workshops such as Software and
Data Carpentry, rather than through semester-long gradu-
ate education courses at their universities, which tend to
focus on statistical and modeling techniques. Hybrid pro-
grams like the three-week Open Science for Synthesis (OSS)
training that combine the three (science, quantitative tech-
niques, and software engineering) into an holistic course
serve part of the need but reach only a few researchers
at this time. Thus, the group concluded that significant
strides needed to be made in coordinating these trainings
so that they are complementary, on increasing their size
and scope, and on better integrating them directly into
graduate education programs.

7.1.2 Subgroup B Discussion
The statement “applied computer science is being
attempted in academia without any formal training”
kicked off our discussion. The group brought exper-
tise in several different training models, from a two-day
Software Carpentry workshop, a three-week Open Science
for Synthesis (OSS) program, to semester-long programs. We
discussed the pros and cons of different training approaches,
touching on informal learning, for example, where people
learn the necessary skills by asking questions of cross-
disciplinary people (“boundary scientists”) in their work
environments.

Some papers explored gaps in training of early-career
scientists. Industry participants in our group confirmed
this observation. We asked ourselves, “Are traditional
courses failing?” We think yes. Changes to undergraduate
curricula requirements are difficult. But as programming
models become more complex, we have to raise the skill
levels. Skills must be improved not only in traditional
programming – learning languages and algorithms – but
also around professional software development. We want to
get to a point where “Everyone has a new minimum now –
everyone knows Git.” Developers also need training on
licensing choices. Just because some source code is on Git
does not mean that it is open.

“How do you get people to look for the training they
need?” wondered one participant. People seek out oppor-
tunities like Software Carpentry to augment skills. While
some instructions can be done in institutional curricula,
independent groups (non-profits, institutes) have more
flexibility. Some asked whether Silicon Valley would be
interested in funding training so that people are better
prepared to enter the workforce. Some felt that companies
were reluctant to deliver training for fear that their employ-
ees might then leave them. While others felt that pushing
all training to industry could lead to good technical people
“getting on the Google bus” and leaving sciences.

“How will we know when people are trained effectively
in these new skills?” We discussed certification. It can be
hard to build the recognition of Java or database certifica-
tions among all technologies. OSS offers badges to those
completing training. However we need to demonstrate
proficiency, not just completion. Google Summer of Code
is a big CV augmentation for participants—can we create
something similar?

The group also discussed how to fund training. On par-
ticipant observed that NYU runs a six-week data-science
training; companies grab the graduates and pay for those
they hire. OSS also used the NSF Software Institutes pro-
gram as a vehicle to fund training activities. Software
Carpentry uses a collaborative teaching approach where
people publish open teaching materials and receive credits
for their use.

We then discussed career paths for those supporting
sustainable software. While tenure track is not the only
option for graduate students, the challenges for those
who remain in academia can be large. Research scien-
tists are entirely dependent on soft money, which can be
unpredictable. Postdocs and those who do pursue tenure
track positions need to publish and see no rewards in soft-
ware development. These challenges were all identified at
WSSSPE1. What actions would we recommend to improve
things? Altmetrics and download statistics may slowly
change the system and improve a developer’s ability to
receive credits for time invested in software development.
NSF’s recognition of scientific products including datasets,
software, and publications is also helping.

We asked ourselves, “Are there examples of things
that are changing because of this and how can we build
momentum?” One example demonstrates change over
time. In 2007, nanoHUB listed the academic reward struc-
ture as a problem in an EDUCAUSE report where the
authors note, “In the future, nanoHUB researchers are
hoping to change the research culture. While they rec-
ognize that young faculty members are unlikely to get
tenure based on their nanoHUB contributions, they hope
to encourage faculty to think beyond their own research
needs to consider publishing tutorials and other content
in their fields on the nanoHUB site.” Fast forward to seven
years later where, in a 2014 iSGTW article, quote nanoHUB
Principal Investigator (PI) Gerhard Klimeck, “A former stu-
dent of mine published eight tools on nanoHUB, serving
over 6,000 people with his tools. He then joined a univer-
sity as a professor and introduced nanoHUB. Use of the
gateway from that university skyrocketed; he used nano-
HUB in existing classes, created new classes, and infused
it in his research. Ultimately, the professor’s department
head attributed his two-year rise to tenure with the repu-
tation and innovation he gained through nanoHUB.”

The group also discussed “attribution trees,” an idea
put forward by Dan Katz and Arfon Smith where a chain
of attributions can, for example, give credit to those devel-
oping libraries and building blocks that other pieces of
software use. The group considered potential journals and
medium to push the application of this idea. One partici-
pant noted that Dryad20 works with journals. If a paper
is accepted to one of those journals, the supporting data

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  10 of 23

must be submitted to Dryad. The group also discussed
reproducibility as a component of the journal review pro-
cess and “active papers,” with immediate links to the data
and software.

We then discussed variations among scientific domain
areas and wondered “Are some communities more or less
open than others?” To some members of the group, biol-
ogy seems to be more open, while physics less so. Some
felt, with the more recent development of bioinformatics
as a field, there were fewer historical practices to undo
in biology. Physics has preprint philosophy to overcome.
Environmental sciences may be mixed. The group felt that
the biomedical area, however, was very competitive and
closed. One participant mentioned blueprints for going
open source (like NWChem recently did) where authors
outline how this helps, what you do and what the next
steps are.

We then moved beyond our training discussion to address
funding that encourages sustainable software – funding of
both people and projects that create a true system to sup-
port sustainability. We called this “institutionalized seren-
dipity.” As science is increasingly reliant on software, one
participant observed that “software development can have
much broader impact than publishing individual research,
but it is not viewed that way.” Because of this central-
ity, one participant mentioned that training ought to be
called Science Carpentry rather than Software Carpentry.
We felt we were beginning to see changes in the research
community as a result of the NSF’s data management plan
requirements. PIs are thinking more about data and some
university libraries are offering data repositories. We won-
dered if a software management plan might be effective.
“How might funding programs need to adapt to reward
good software development practices?” we asked ourselves.
We thought about best practices such as version control,
test harnesses, mailing lists, bug tracking, community con-
tribution, and reuse where appropriate. We thought about
measuring success through usage statistics (downloads,
altmetrics). “Should funders demand reproducibility?” we
wondered. In order for results to be reproduced, software
would need to be carefully curated.

Again, our industry participants contributed unique
viewpoints. Partnering with industry was seen as one path
to sustainability. The unique partnerships Kitware engages
in promote academic freedom while creating an income
stream from certain portions of the software. This type
of approach to sustainable software frees researchers
from performing tasks that do not offer the rewards their
institutions value. We also discussed about successful mod-
els for industry partnerships that preserve open science.
Participants noted that there are some NSF programs that
prohibit partnerships with for-profit companies (but there
are other programs in which this is encouraged).

7.1.3 Subgroup A Actions
Three main actions were identified by Subgroup A that
would be of interest to participants and benefit the
research community. These focused on the desire to amplify
the current community efforts in training and software

engineering by connecting the current train ing initiatives
(e.g., Software and Data Carpentry, rOpenSci, OSS) that
are of different durations at appropriate stages. Generally
it was felt that a modicum of interaction between short
term workshops (SwC, DC), medium term trainings (e.g.,
OSS), and longer-term courses (e.g., BIDS Data Science)
would benefit from coordinating curriculum, discussing
and aligning prerequisites, and coordinating timing of
courses. A training coordination effort would go a long
way towards amplifying the value of the individual efforts
and make them all more effective.

•	 Action 1: Create a roadmap of research software
training initiatives. Such a roadmap would provide
a taxonomy of training opportunities: what they
deliver, and what attendees need to know going in
(prerequisites). It would also show which recom-
mended roadmap actions will have a clear and imme-
diate payoff, and which will have long-term payoffs.
The training roadmap would emphasize time savings
and efficiency gains to be had from each training.

•	 Action 2: Build a report card characterizing use of
best practices in scientific software. Generally, people
felt that researchers would be very willing to migrate
practices if they could identify where they needed
to improve. Such a report card would ask simple
questions to characterize use of best practices in sci-
ence software, and could be structured similarly to
Joel Spolsky’s Software Maturity questionnaire (also
known as the Joel Test [25]). The survey would create
a report card that shows areas where a project could
improve, and then link those areas to specific training
offerings from the training taxonomy from Action 1.

•	 Action 3: Create a science software review forum. It
was generally acknowledged that a little code review
can have a tremendous impact on the quality of
software in a project, but that sites for science code
review are lacking. While people can ask questions on
the Stack Exchange sites, they are generally not open
to questions of style, approach, or appropriateness, as
they try to avoid subjective commentary. Instead, we
need a site where code gets discussed/summarized/
described (in small bites) by the science software com-
munity. The target audience would be graduate and
undergraduate students in the sciences, and there
would need to be mechanisms to keep the review
positive and constructive, and not get pedantic or
judgmental. This could be tied to a software registry
(such as the nascent GeoSoft project), or to language
repositories like R’s CRAN repository, and could lead
to the report card discussed in Action 2.

7.1.4 Subgroup B Actions
Subgroup B then focused on actions it could take. It
discussed development of a white paper that describes
a matrix approach to training (multi-day, multi-week,
semester). The white paper might include a survey of exist-
ing techniques. There are many, some dating back many
years, for example the Interuniversity Consortium for

http://www.joelonsoftware.com/articles/fog0000000043.html

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  11 of 23

Political and Social Research (ICPSR) and various sum-
mer institutes. The white paper could include a call for a
comprehensive assessment of these techniques. We need
to think carefully about the right venue for such a white
paper, where it would have the most impact. The sub-
group believes it would need to approach editors directly
to ascertain this.

The group felt that training in techniques that promote
sustainability has a range of benefits: career paths, edu-
cated reviewers, reproducible science, and more. There is
some information on how that has been approached and
assessed, but more is needed. The group felt that this train-
ing is undervalued and that it is important to commu-
nicate the return on investment (ROI) – both individual
ROI (skills that make scientists more effective and more
marketable) and funder ROI (better use of taxpayer funds,
research more likely to be reproducible because sustainable
software exists, better trained reviewers).

7.2 Papers
The papers that were discussed in the Software Development
Experiences Subgroup A are:

•	 Michael R. Crusoe and C. Titus Brown. Channeling
community contributions to scientific Software: A
Hackathon Experience [26]

•	 Marcus Hanwell, Patrick O’Leary, and Bob O’Bara.
Sustainable software ecosystems: Software Engineers,
Domain Scientists, and Engineers Collaborating for
Science [27]

•	 W. Christopher Lenhardt, Stanley Ahalt, Matt Jones, J.
Aukema, S. Hampton, S. R. Hespanh, R. Idaszak, and
M. Schildhauer. ISEES-WSSI Lessons for Sustainable
Science Software from an Early Career Training Insti-
tute on Open Science Synthesis [28]

•	 Jory Schossau and Greg Wilson. Which Sustainable
Software Practices do Scientists Find Most Useful? [29]

The papers that were discussed in the Software
Development Experiences Subgroup B are:

•	 Jordan Adams, Sai Nudurupati, Nicole Gasparini, Dan-
iel Hobley, Eric Hutton, Gregory Tucker, and Erkan
Istanbulluoglu. Landlab: Sustainable Software Devel-
opment in Practice [30]

•	 Alice Allen and Judy Schmidt. Looking before Leap-
ing: Creating a Software Registry [31]

•	 Carl Boettiger, Ted Hart, Scott Chamberlain, and
Karthik Ram. Building Software, Building Commu-
nity: Lessons from the ROpenSci Project [32]

•	 Yolanda Gil, Eunyoung Moon, and James Howison. No
Science Software Is an Island: Collaborative Software
Development Needs in Geosciences [33]

•	 Ted Habermann, Andrew Collette, Steve Vincena,
Werner Benger, Jay Jay Billings, Matt Gerring, Konrad
Hinsen, Pierre de Buyl, Mark Könnecke, Filipe Rnc
Maia, and Suren Byna. The Hierarchical Data For-
mat (HDF): A Foundation for Sustainable Data and
Software [34]

•	 Eric Hutton, Mark Piper, Irina Overeem, Albert Kettner,
and James Syvitski. Building Sustainable Software –
The CSDMS Approach [35]

•	 James S. Spencer, Nicholas S. Blunt, William A. Vigor,
Fionn D. Malone, W. M. C. Foulkes, James J. Shepherd,
and Alex J. W. Thom. The Highly Accurate N-DEter-
minant (HANDE) Quantum Monte Carlo Project:
Open-source Stochastic Diagonalisation for Quantum
Chemistry [36]

(8) Credit & Incentives
This group, with just three papers but a large amount of
interest and participation from attendees, focused on the
institutional, social, and cultural mechanisms that encour-
age the creation and maintenance of shared software, in the
context of what now exists, what mechanisms are desired,
and how we might achieve them.

8.1 Discussion and Actions
In the first discussion session, this group decided to break
into two smaller groups, each independently working
through the same general topic: credit and incentives.

8.1.1 First breakout discussion: Group A
The first sub-group discussed issues around the current sys-
tem for credit and incentives, which it called “hacking the
incentive structure.” The group considered four potential
points of leverage:

First, that we currently have systems that collect infor-
mation, and these could be modified to collect different
information, then map that information to actions. We
could initially build a proof-of-concept for a new use of
a given system, then determine what actions would be
needed to make this use more common.

Second that we could create entirely new systems,
perhaps because the existing systems are too tied to what
they measure, and modifying them is not practical.

Third that we could change academic culture, rather
than worrying about the systems. This was mostly
focused on citations, because they matter for hiring,
promotion, and tenure decisions. The group discussed
how we could weigh the citations within papers better
than we now do. How could we identify the five citations
that really matter for a paper, distinguishing them from
the related works and general background that are also
cited? Perhaps we could break these out in the refer-
ence list, working with publishers to implement this. Or
maybe we could also break out categories of citations,
such as the most important software used, the previ-
ous publication that we are building from, the data that
we actually used, etc. The Moore Foundation’s award in
data science was given as an example, asking propos-
ers: What are the five canonical citations that are most
important to your work? [37] This would be a way of
giving credit and assigning importance to these works,
differently from how we just count citations today. A
possible action that the group discussed was conduct-
ing a longitudinal study of most useful software, data,
etc. in a discipline.

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  12 of 23

Fourth, that we could change the ways funders make deci-
sions, and use these funding policies as incentives.

After this discussion, group A brainstormed about incen-
tives, with the following items suggested:

•	 running programming contests, creating bounties for
contributing to open source software, etc.

•	 augment author lists to give credit to people who
do not now get credit (and making them machine
readable)

•	 developing a microcitation standard and mechanism
(for both software and data)

•	 developing a well-defined standard for author
contribution – what level of contribution rises to the
level of authorship?

•	 leveraging social media for citation and reviewing of
content – then using social media to bring more peo-
ple into the review process than is traditional

•	 determining where else software can be cited and
recorded (e.g., acknowledgments sections of papers)

•	 developing a taxonomy of contributors (e.g., Project
Credit [38]) tied to places that these metrics are already
stored (e.g., ORCID [39])

•	 making metadata easier to add for software, creating
incentive for providing software metadata – note that
this cannot be centralized

•	 creating something like the h-index that tenure com-
mittees can make use of – simplify a way of measuring
and documenting the overall credit given to an indi-
vidual over different projects

•	 thinking about publishing software versus journal –
software does not have to be novel

•	 determining guidelines for recommending software
characteristics for tenure – perhaps draft guidelines
then get ACM or IEEE agreement.

8.1.2 First breakout discussion: Group B
This group started by discussing who should be incentiv-
ized, thinking of two categories of people: those in science
(who could be incentivized to do better, more shareable,
more sustainable work), and those in industry but inter-
ested in science (who could be incentivized to contribute
to science.) It was pointed out that we are not yet clear
enough on exactly what we want to incentivize, suggest-
ing that we need to have a clearer picture of “good com-
putational work” and what sort of contributions are truly
generative for science.

The discussion of incentivizing those in science acknowl-
edged that the publications system was far from perfect for
incentivizing good software work. Nonetheless, the dis-
cussion focused on bringing software people into publi-
cations. There were two main suggestions. The first is to
focus on end users of software and encourage them to cite
software the “right” way. James Howison suggested that his
research showed that few projects were making a formal
request for citation (but that authors weren’t necessarily
following those suggestions anyway) [40]. He suggested
making access to the software conditional on a license that
requires citation. Others found this “too confrontational”

and preferred to concentrate on making it easier to do the
right thing. The second was focusing on those leading soft-
ware projects, and the group was more enthusiastic about
“forcing” PIs to include their “software people” on publica-
tions, although there were few ideas on how exactly to do
this. Another technique mentioned was that when scientific
software projects are hosted in organizations like Apache,
the scientific contributors can benefit from building their
reputations, perhaps yielding job offers that they can use
to negotiate better job and career packages.

The discussion on incentivizing those outside science
focused on accessing the well of affection that those work-
ing in software have for scientific research. How can the
interest and skills of this group be marshaled towards
sustainable contributions? There is evidence that the
migration of scientific software projects to the Apache
Software Foundation (ASF) has created opportunities for
those not employed in the scientific center to contribute
to projects initiated by scientists (especially where there
is cross-over with industry needs, such as provenance and
workflow).

The group also discussed developing “software prizes”
arguing that while it is hard to “mint” other new sources of
reputation, prizes are possible without getting too many
others on board. The prize criteria can form a template for
describing what we mean by scientific contributions made
through software, particularly focusing on building active
communities, not only writing great code.

8.1.3 Group merger and redivision
After the first breakout session, the groups A and B came
together and discussed a rollup of the ideas from the sub-
groups at a high level:

•	 citation ecosystem – traces of usage (metrics)
•	 taxonomy of contributorship, understanding roles
•	 prizes
•	 new metrics (for people’s activities in software)
•	 guidelines for evaluating scientific contribution

through software (perhaps using new metrics).

In the remaining discussion sessions, the group chose to
split into three subgroups to discuss a version of these
topics: citation ecosystems, taxonomy of contributorship/
guidelines for software for tenure review, and prizes. The
subgroups were asked to clearly identify

•	 the problem to be solved
•	 steps towards a solution.

8.1.4 Remaining breakout discussions: Citation
ecosystems
This group defined its goal as creating a low-barrier-of-
entry method for recording names and roles (and in a sec-
ond phase, optionally including weights) of contributors
(coders and other intellectual contributions) to a software
package in a machine readable way (to be called a credit
file), then encouraging the scientific community to adopt
this practice.

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  13 of 23

The following general points were initially discussed:

•	 The FLASH [41] project was suggested as an example of
how something like this has been done.

•	 This data could be a file that can be associated with
a citation to the software, either through use of a
DOI (digital object identifier) for the credit file, or by
uploading the credit files as associated with the paper.

•	 This idea could also be applied to data.
•	 The credit file should be part of the metadata that are

freely available to those who have not paid for access
to the journal, like citations are now in most cases.

•	 It was suggested that there should also be a separate
file to track software dependencies.

The group came up with the following actions to be
performed:

(1)	 Build a tool that can automatically determine who
the contributors are (from a Git or other repository),
then allows the user to manually edit the output to
add/remove people, define roles.

(2)	 Work with repositories to encourage them to provide
the information we need based on what they already
store.

(3)	 Define what a citation file should look like and what
it should be called.

(4)	 Test adoption with a substantial scientific organiza-
tion such as the Lawrence Berkeley National Labora-
tory (LBNL).

(5)	 Create credit file for a set of software.
(6)	 Build a validator (and perhaps a visualizer) for credit

files.
(7)	 Write a tool to collect files and visualize/output

interconnections (which software is used with
which), based on an existing project.

(8)	 When we (the group members) write papers, we
should track the software we use, and encourage the
software developers to make their software citable
and create credit files.

(9)	 Build a tool to export the credit file to BibTex and
other citation styles.

(10) � Make sure the BibTex entries (exported from internal
data) are somewhat standardized so that they can be
imported into papers. Also make sure that standard
LaTeX style files understand and accept these entries.

8.1.5 Remaining breakout discussions: Taxonomy of
contributorship/guidelines for software for tenure
review
At the start of the discussion, the breakout group brought
forth the important observation of the wide disparity in
commonly accepted habits of publication in different
research fields. In domains which have, historically, relied
on large groups of researchers collaborating towards a com-
mon goal (e.g., high-energy physics, astronomy), publica-
tions often have tens or even hundreds of co-authors (with
some papers in experimental particle physics having
over 3000). In other domains, the number of co-authors is

typically much smaller with, in some cases, even a prefer-
ence for single-author papers. Similarly, the various plat-
forms for publication are valued differently in different
domains. Most commonly, publications in peer-reviewed
scientific journals are regarded as the most important and
most impactful. However, in certain domains, especially
in Computer Science, many researchers typically regard
conference proceedings as their prime publication target. It
is often suggested that this difference is due to the rapid
developments in information technology, a pace that
cannot be upheld by traditional peer-reviewed journals.
Whatever the causes, any useful taxonomy of contributor-
ship or guideline for tenure review should take such differ-
ences into account.

Despite these differences, and despite the fact that soft-
ware often has taken the role of a proper, albeit less tan-
gible, scientific research instrument, neither the software
nor its creators are commonly credited as part of a scien-
tific publication. The group acknowledged the need for
more recognition for the creators of such software instru-
ments, and indicated a number of possible pathways. First
and foremost, domain scientists must be made aware of
the important role of software, and include the develop-
ers as co-authors of papers. A second approach is to fully
embrace an open badging infrastructure (such as Mozilla’s
Open Badges), where a badge is a free, transferrable, evi-
dence-based indicator of an accomplishment, skill, quality,
or interest. A third approach is for the scientific commu-
nity to support the increasing momentum of peer-reviewed
journals specialized in the open source/open access publica-
tion of scientific research software, such as Computer Physics
Communication, F1000 Research, Journal of Open Research
Software, and SoftwareX.

Recognizing publication of research software as a proper
scientific contribution raises several important but cur-
rently unsolved questions, however. For example, is the
number of users of the software a relevant measure of
impact? What standards of coding quality must be fol-
lowed in order to justify publication and hence recogni-
tion? Should the release of a new version of the software
be eligible for a new publication; if so, under what condi-
tions? And above all: should software publications be val-
ued in the same way as traditional scientific publications?
Or is there a need for new measures of productivity and
impact?

In part, the answers will come from the scientific com-
munity at large, as a natural consequence of growing
awareness and mindset change. Some of the answers,
however, also should be based on decades of experience in
(and developing standards for) implementing, maintaining,
refactoring, documenting, testing, and deploying software
instruments in scientific research. Care should be taken,
however, not to impose such standards for all domains in
equal ways right from the start. Forerunners should serve
as an example, but should not scare away domains that
have based their progress on much less advanced methods
of software carpentry. Nevertheless, proper guidelines are
needed, which eventually should be followed across all
domains. The group also recognized that funding bodies,

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  14 of 23

universities, and publishers eventually should demand that
research projects follow such guidelines, and to imple-
ment a proper software sustainability plan.

To enable a form of standardized crediting for developers
of research software, the group proposed to work towards
a taxonomy for software-based contributorship. The tax-
onomy should be derived from, or extend, existing tax-
onomies for research impact and contributorship such as
defined by CASRAI (in particular based on the Wellcome-
Harvard contributorship taxonomy,21 VIVO, or ISNI. An
interesting measure of impact raised by the group was the
betweenness centrality, an indicator of a person’s centrality
(and hence, importance) in a scientific collaboration. It is
expected that developers of research software often play
such a central role.

The group defined the following actions to be performed:

(1)	 Investigate existing taxonomies for roles and con-
tributorships.

(2)	 Investigate prototype badging initiatives.
(3)	 Investigate journals focusing on publishing peer-

reviewed research software.
(4)	 Investigate guidelines and checklists of best practices.
(5)	 Communicate the results of the above investigations

to the WSSSPE community and decision-making
bodies (funders, publishers, universities, and tenure
committee representatives).

(6)	 Ensure engagement of the broader research commu-
nity in this discussion.

8.1.6 Remaining breakout discussions: Prizes
This group discussed the idea of prizes. Prizes are expected
to reframe software as “instrument building” but will
prizes be good or bad, and how can we make sure there
are no negative affects and the process cannot be gamed?

Prizes in different categories were discussed (like
Academy Awards), for example: best contribution (non-
founder), broadest diversity of contributions, best
tutorials or documentation, best leadership transition
(award ex-leader and new leader), best generalization
(taking something that was limited and making it more
general), and best mentorship of contributors (bringing
others into the community).

Other (non-prize) forms of incentives are

•	 Converting reputation by joining the ASF, Google, etc.
•	 Inviting ASF and open source people to contribute to

scientific code (at least in areas where there is overlap-
ping interest).

•	 Template for assessing scientific contributions made
through software.

The group suggested that to determine who should give
out prizes, perhaps we should find those who we think
would be awarded prizes, then ask them who they would
want to receive a prize from, and subsequently contact
those organizations to see if they are willing to be involved
in the process.

One of the group’s ideas was to create a funding pro-
gram for disciplines or other organizations to create a

prize program. We would provide a framework and a
set of requirements, for example: awards to individuals;
must award in 5 or 6 areas; must have a jury that includes
senior/junior domain experts and technologists (and
should have objective criteria); must have the recipients
awarded at a relevant event; and must provide citations
that explain why the prizes should be awarded. Different
organizations could then decide to sign up to the frame-
work and give out awards under this general brand.
However, there was a concern that having many organiza-
tions award prizes may reduce the impact of the prizes.

Possible groups that might give out awards, either
under our framework, or more generally, are AAAS, Nature
Publishing Group, ACM, IEEE, Astro, Ecology Society of
America, etc. Perhaps this could be a joint technology/
science partnership, for example, the [Apache | Mozilla]-
[AAAS | disciplinary society] prize.

Some potential criteria for prizes the group suggested
are: community engagement, helping out others; number
of unique contributors; adding new pieces of functional-
ity to software; integrating software into broader ecosys-
tem; championing broad principles of sustainability, open
science, open source, etc.; improving accessibility to soft-
ware, to scientific software (perhaps championing inclu-
siveness or making software accessible?); documentation;
tutorials; commits/patching; leadership transition; and
best contribution by a non-founder.

The group discussed if there should be different criteria
for “established” members of the community versus junior
members, and if prizes should be restricted to junior mem-
bers, but left these as open questions.

A point the group considered important is that we do
not want to give prizes just to reward people who are
really good at this one thing, but rather we want to reward
people who are building the culture we want as scientists.

8.2 Papers
The papers that were discussed in the Citation & Incentives
group are:

•	 James Howison. Retract Bit-rotten Publications: Align-
ing Incentives for Sustaining Scientific Software [42]

•	 Daniel S. Katz and Arfon M. Smith. Implementing
Transitive Credit with JSON-LD [43]

•	 Ian Kelley. Publish or Perish: The Credit Deficit to Mak-
ing Software and Generating Data [44]

(9) Reproducibility & Reuse & Sharing
This group discussed five papers with a wide variety ideas
of how to support reproducibility and reuse. It focused
on identifying concrete practices that the attendees could
work together on, which would have a positive effect on
the community.

9.1 Discussion and Actions
In the first discussion session, this group broke up
into two smaller groups working on different topics:
Reproducibility, and Reuse and Sharing. In the second
discussion session, three subgroups worked on creating
specific pieces of guidance.

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  15 of 23

9.1.1 First breakout discussion: Reproducibility
group
The first group discussed ways in which reproducibility of
papers could be improved. A consensus surrounded the
provision of examples: demonstrating to others how to
achieve reproducibility. Major public funding investments
go into research that heavily relies on reproducible soft-
ware, hence the lack thereof is raising major concerns.

Two main avenues could be used to implement policy
that would improve reproducibility and drive top-down
culture change:

•	 Funders can aim to get more software expertise on
to funding review panels and provide more guidance
on what is required of software related to research (cf.
data management plans)

•	 Journals can define and publish journal policies to
improve reproducibility, and reviewers can insist that
authors provide sufficient information and access
to data and software to allow them reproduce the
results in the paper. Stronger policies even for some
high-impact journals have recently come into place,
for example Nature Publishing journals.

If journals do enforce greater reproducibility constraints,
it is important to lower the barriers to reviewers attempt-
ing to verifying the correctness of the software used to
generate the results. A major issue is that a lot of software
only builds on certain systems. Should journals provide
more tools/support for reviewers, and if so, what is it?
An idea that came from the groups was to define a set of
support services that should be available to software paper
reviewers. Another was to provide the ability for reviewers
to flag the requirement for a ‘software verification,’ similar
to the ability to flag that a paper needs to be seen by a
statistician.

Other discussion focused on ways in which researchers
themselves could improve the reproducibility of research.
One way would be to establish tracks at conferences that
subject papers to reproduction, which for those that pass
would lend them an additional badge (similar to OOPSLA).
Another is simply to get more people to use your software:
for instance by outreach to high school students – can
your software be used by them? Finally, there is a role for
community-curated benchmarks to validate the perfor-
mance and capabilities of tools.

9.1.2 First breakout discussion: Reuse and Sharing
group
The second group discussed ways in which software could
be more easily reused and shared. From the perspective of
both user and developer, any solutions must be 1) easy; 2)
cheap; 3) not too time-consuming.

Reuse and sharing were considered to be distinct but
linked. In many cases, pre-existing software does not exist,
so new software is written but even then it is not shared
afterwards. The principal barriers to reuse are the difficulty
of finding out what software is available, understanding if
it is usable, and then of installing and running software if
it is located.

Discovery of relevant software is still a fundamental
issue: we need standard vocabularies and metadata, bet-
ter tools, and approaches that are sustainable. Publications
are an easy entry point for locating suitable software, but
should the publishers lead the way, or is this the respon-
sibility of “the community?” Some communities have had
significant initiatives to improve software discovery, e.g.,
the NIH Software Discovery Index.22 Likewise, there were
examples of journals which had made software more dis-
coverable: ACM Transactions on Software offers a repro-
ducibility review; the Journal of Biostatistics has an opt-in
to provide code and a certification mark if it can be run;
the Journal of Open Research Software requires software
to be deposited in suitable repositories and referenced.

An issue around the sustainability of software catalogues
is that their usefulness often depends on the domain. For
instance, in the biosciences, there is more homogeneous
data and standard shared code. In areas like ecology, code
is often very specific to a problem, meaning that the level
of re-use might be at a general statistical level of abstrac-
tion, but then every research use is highly customized.

Finally, it was clear from the discussion that there were
many ways in which software could be made available
in more reusable ways than just a tarball sitting on a
personal website. Using code repositories like GitHub23
gets you an archived, shared platform and improve the
reusability of your software incrementally, for instance by
adding a license or by archiving (with a DOI) in Figshare24
or Zenodo.25 Docker26 might be a solution to the issue of
dependencies, to allow binaries and libraries to be bun-
dled in a more lightweight fashion than a virtual machine
image.

The key enabler for reuse and sharing was to get domain
scientists more effectively connected with programmers/
analysts. Both have skills and experience which is nec-
essary to make the right decisions for improving the
reusability and discoverability of software, and to apply
community pressure to change practice.

9.1.3 Second breakout discussion: Categorization
of software journals
This group aimed to come up with a categorization
of journals which published software papers. Starting
from the list of journals27 maintained by the Software
Sustainability Institute, the group chose seven journals
and looked at their advice to authors and reviewers. These
were the Journal of Open Research Software,28 PLoS ONE,29
Journal of Statistical Software.30 Methods in Ecology and
Evolution,31 Transactions of Mathematical Software,32
GigaScience,33 and PLoS Computational Biology.34 From
these a set of common categories were synthesized,
against which all journals could be compared:

•	 	Journal Policies
—	 Accessibility of papers

*	 Open access
*	 “Freely” available

—	 Repositories
*	 Provides suggestions for recommended repositories
*	 Provides its own repository

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  16 of 23

—	 Review
*	 Reviewing software is mandatory

	 •	 Must check that software runs
	 •	 Must check quality of code
	 •	 �Must check performance of code if paper makes

claims on relative performance
—	 Supporting data

*	 Must be publicly available
*	 Must be in an open access repository
*	 must have a DOI

—	 Article processing charge (APC)
*	 APC charge is transparent
*	 APC waiver program

•	 Paper Policies
—	 Required sections
—	 Keywords

*	 Paper provides keywords to help describe
software

—	 Papers can be updated when new releases of
software are made
*	 At no extra cost/at significantly reduced cost

•	 Software Policies
—	 Software must have a license

*	 Software must have an open source license
—	 Availability

*	 Software must be openly available and
accessible

—	 Deposit policies
*	 Software should be in a public repository

	 •	 Of particular stature/with a preservation plan
*	 Software should have a permanent identifier
*	 Software deposit doesn’t count as a prior

publication
—	 Runnability and dependencies

*	 Provide documentation to understand how
to run

*	 Provide sample data
*	 Provide dependency information

The follow-up actions to this work are to use this set of
categories on all the journals in the list, refining the cat-
egories if necessary, then identify if any of the categories are
seen to be more useful to promote reproducibility, reuse
and sharing.

9.1.4 Second breakout discussion: What should
journals provide reviewers of software papers?
This group discussed whether they could come up with a
list of things that a journal should provide its reviewers to
make it easier to review software submitted for publica-
tion as a “Software Paper.”

Journals should provide guidelines about what to
consider when reviewing a software submission. A good
example for a relatively comprehensive guidelines for
reviewers (and thus in turn authors) are those of JORS.35
Journals might also learn from organizations such as the
ASF as to what is good practice for software submissions.
Guidance is needed on what constitutes an incremen-
tal improvement that is significant enough to qualify

for publication, otherwise this assessment can be very
subjective.

Journals should provide mechanisms to enable and track
communication between reviewers and authors. For anony-
mous peer review journals, anonymity of reviewers should
be maintained. If communication is necessary, that may
mean that software is not that well documented. Journals
should also provide a set of simple metrics for software evalu-
ation that reviewers can use for ratings, similar to Consumer
Reports.

Journals should provide guidelines about requirements
for documentation of code: both in-lined in code, and man-
uals/web pages, etc. Journal editors could provide docu-
mentation checks before it goes out for review. This should
include a requirement for good Use Cases specified for the
software, with references to executable test cases that dem-
onstrate each use-case is met (at least in the form of the test
case).

Journals should support mechanisms to run software.
Sometimes this may be very hard to accomplish, despite
best efforts. Journals could provide an execution environ-
ment for any software submitted for review, perhaps via a
Docker container or a virtual machine. If not, instructions
must be adequate to compile and execute the software;
to interpret the results (output files, formats, etc.); and
the full source code must be accessible to the reviewer.
Mechanisms to quantify what has changed compared to
a previously published version would assist version com-
parison. However, this cannot simply take lines of code
into account. For example, a speedup of an algorithm may
not result in a huge code difference, but may nonetheless
provide a breakthrough. Journals should require software
submissions to also provide ‘test materials’ – sample data,
parameters to validate that code is working as intended.
In certain cases, well-selected benchmark datasets may be
required to assess performance and accuracy.

Journals should ensure minimal metadata are pro-
vided, similarly as is already the case for certain kinds of
data (though the latter is often enforced by data reposi-
tories) – Dublin core-ish (creator, owner), and more
specific (platform and compiler dependencies, sample
benchmarks of performance, etc.). Journals should pro-
vide guidance or constraints as to software licensing
conditions.

The follow-up actions to this work are to work with
journals and reviewers to identify whether any of these
suggestions can be easily provided, perhaps for a range
of journals.

9.1.5 Second breakout discussion: Reproducibility
Meta-track toolkit
This group worked on defining a “toolkit” for running a
reproducibility meta-track at a conference. They decided
to take the work done during the workshop and publish
it as a paper.

9.2 Papers
The papers that were discussed in the Reproducibility &
Reuse & Sharing group are:

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  17 of 23

•	 Jakob Blomer, Dario Berzano, Predrag Buncic, Ioannis
Charalampidis, Gerardo Ganis, George Lestaris and
Ren´e Meusel. The Need for a Versioned Data Analysis
Software Environment [45]

•	 Ryan Chamberlain and Jennifer Schommer. Using
Docker to Support Reproducible Research [46]

•	 Neil Chue Hong. Minimal Information for Reusable
Scientific Software [47]

•	 Tom Crick, Benjamin A. Hall, and Samin Ishtiaq. “Can
I Implement your Algorithm?”: A Model for Reproduc-
ible Research Software [48]

•	 Bryan Marker, Don Batory, Field G. Van Zee, and Rob-
ert van de Geijn. Making Scientific Computing Librar-
ies Forward Compatible [49]

•	 Stephen Piccolo. Building Portable Analytical Environ-
ments to Improve Sustainability of Computational-
Analysis Pipelines in the Sciences [50]

(10) Code Testing & Code Review
This group began by recognizing that they knew what the
problems of code testing and code review are, so the pur-
pose of the group was really to think about concrete things
that people in the group would be willing to commit to, in
order to improve the sustainability of software.

10.1 Discussion and Actions
The consensus of the group was that small, concrete
actions would have the greatest chance of proper follow-
through by members of the group. An example of this
approach was the Architecture of Open Source Applications
book [51], containing contributed chapters on open source
software. The group contemplated creating an analogous
book or web resource for testing of scientific software.

A key point of discussion was that there are two major
challenges to software testing in science. The first is con-
vincing developers to incorporate testing. This challenge
is both social and technical. We need to communicate the
value of testing and also teach developers how to choose and
use testing frameworks. The second challenge—and the one
that the group felt was more difficult—is choosing appro-
priate tests for scientific software. This is the difference
between learning how to use, say, Python unittest and
knowing how to test that one’s code correctly implements,
for example, a Lattice-Boltzmann model in computational
fluid dynamics.

10.1.1 Choosing and implementing testing
frameworks
There was general consensus that once a developer has
been exposed to a testing framework in a nontrivial
fashion, he/she will subsequently insist upon using a
framework for further work. The acknowledged chal-
lenge was how to create that crucial first exposure to such
frameworks.

Within the group, there were several different paths by
which participants had their first exposure to code testing:

•	 Formal tutorials at conferences (for example, a test
driven development (TDD) at a Software Developers

Best Practices conference): These often require self-
learning following a tutorial, but it can be hard to find
a tutorial that matches the programming language
and/or the domain of the participant.

•	 As a way to be confident in other software: When
breaking out pieces of software from a larger applica-
tion, a developer wants to ensure the software works
as expected. These types of tests may be ephemeral
though, living long enough to give the author of the
test confidence in the code, but not handed on and
made available to next user. These experiences can
lead to more systematic testing.

•	 Through experience with coding: As you write more
software, your confidence in code is reduced and the
importance of testing becomes clearer. Attendees
joked that they started testing “when their skepti-
cism/guilt became larger than their arrogance.”

•	 From other projects: When building on top of pro-
jects with good testing frameworks, you realize that
you should also adopt those good software engineer-
ing habits.

The two non-self-taught paths were direct learning and
indirect through other software (learning by example).
The group recognized that teaching about testing needs
to start early in projects and careers. We need to teach
people how to test short bits of code, rather than waiting
until they have thousands of lines of code and being sur-
prised when they don’t write tests. The group generated
a set of practical suggestions for improving adoption of
code testing. Established software projects can encourage
the latter through a simple rule of accepting only software
patches with associated tests and through good documen-
tation of testing practices and requirements.

Simpler, standard ways of setting up appropriate test-
ing infrastructure will be important for adoption by sci-
entists. Jenkins36 was suggested as a common open-source
solution, but the initial configuration was considered to be
challenging for typical scientists.

Teach testing by beginning with a (smallish) piece of
code that lacks appropriate tests and develop an exercise
that involves refactoring the code into a more presentable
form through creating/deriving unit tests. Students would
extract unit-tests through reverse-engineering and/or
questioning a partner who is a developer/expert.

This led into a more general discussion about whether
programming courses should be part of the standard cur-
riculum for science students and the challenges of fitting
additional material into university curricula. This is the
reasons that short workshops such as Software Carpentry
and others exist.

Ironically, Software Carpentry no longer teaches testing
[52]. This boils down to two issues. First, that scientific
computing doesn’t (yet) have the cultural norms for error
bars that experimental sciences have, and second, that
there is a breathtaking diversity of scientific code; scien-
tific research is highly specialized, which means that the
tests scientists write are much less transferable or reus-
able than those found in other fields.

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  18 of 23

10.1.2 Writing tests for scientific software
The second major discussion thread in the group
addressed the issues identified by Software Carpentry –
the difficulties in writing tests appropriate for scien-
tific software: What tests are appropriate to ensure that
an complex method is working correctly? When is the
result of a numerical computation ‘close enough’ to pass
a test?

Several members of the group indicated that while they
valued the concept of software testing in theory, they
were unaware of how to test certain kinds of software. Or,
more importantly, they lacked relevant examples of soft-
ware testing that would be suitable for new members of
their teams. As an example, the group asked if it could
produce a 100-line example of how to test neutron trans-
port (or other specific scientific examples) targeted at a
sophomore? This would be a demonstration of “How do
I do this right?”

Another question was “How do I test so that I know that
the code is not the source of my problems?” A common
challenge is that of stripping things down to an appropri-
ate level for tests. The group recognized that the difficulty
is different for so-called software infrastructure than for
numerical/scientific layers of software applications. There
is some discussion of the issue in the computer science
literature [53, 54] but less in domain-specific journals.
Some lessons on multiphysics software verification can be
found in a recent paper [55].

Two important pieces of the barrier are a) picking/
implementing testing frameworks (a technical barrier) and
b) deciding what are the actual tests that I need to write?
A possible method to solve the latter is to ask students
“how is what you are doing different from typing random
keys on the keyboard?” and then, turn their answer into
the concept of tests. That is to say, expand the process of
creating code from one that is solely about “how?” into
one that also includes “why?”

Another point of discussion is that many scientists are
not aware that “testing the code” and “testing the science”
are distinct issues. A related question that came up is
“How do you know that your method produces a result
that is ‘close enough’?”

The group then decided that a useful action would be to
create a set of scientific codes with associated tests. They
developed the following basic structure for these exam-
ples and sketched out six specific examples:

(1)	 A paragraph or two explaining the scientific problem
the code addresses

(2)	 The size of the simplest piece of relevant, interesting
code (i.e., an estimate of lines of code)

(3)	 A point-form list of the test cases you would use.

The follow-up actions from this work include creating a
compilation of testing examples in scientific software.
Some of the examples from the workshop have become the
starting seed of a collaborative book (https://github.com/
swcarpentry/close-enough-for-scientific-work) in which
scientists provide concrete examples of testing scientific
software. The goal is a set of testing examples, aimed

at sophomores in science and engineering, that cover a
broad range of domains and problems and could be easily
incorporated into other workshops or courses.

10.2 Papers
The papers that were discussed in the Code Testing &
Code Review group are:

•	 Thomas Clune, Michael Rilee, and Damian Rouson.
Testing as an Essential Process for Developing and
Maintaining Scientific Software [56]

•	 Marian Petre and Greg Wilson. Code Review for and by
Scientists [57]

•	 Andrew E. Slaughter, Derek R. Gaston, John Peterson,
Cody J. Permann, David Andrs, and Jason M. Miller.
Continuous Integration for Concurrent MOOSE Frame-
work and Application Development on GitHub [58]

(11) Conclusions
The WSSSPE2 workshop continued our experiment from
WSSSPE1 in how we can collaboratively build a work-
shop agenda, and we began a new experiment in how to
build a series of workshops into an ongoing community
activity.

The differences in workshop organization in WSSSPE2
from WSSSPE1 are in using an existing service (EasyChair)
to handle submissions and reviews, rather than an ad hoc
process, and using an existing service (Well Sorted) to allow
collaborative grouping of papers into themes by all authors,
reviewers, and the community, rather than this being done
in an ad hoc manner by the organizers alone.

The fact remains that contributors also want to get
credit for their participation in the process. And the work-
shop organizers will want to make sure that the work-
shop content and their efforts are recorded. Ideally, there
would be a service that would index the contributions to
the workshop, serving the authors, the organizers, and
the larger community. Since there still isn’t such a ser-
vice today, the workshop organizers are writing this initial
report and making use of arXiv as a partial solution to pro-
vide a record of the workshop.

WSSSPE actively used the online social network Twitter,
with hashtag “#WSSSPE”. There were substantially more
tweets (messages) during the days of the workshops
WSSSPE2, WSSSPE1.1, and WSSSPE1. Out of about 670
tweets as of Apr 18, 2015, more than 225 were about
WSSSPE2 and about 180 were posted during the day of
the workshop. Some of the main points and highlights
in the meeting are shown in Table 1, which summa-
rizes the top #WSSSPE tweets from the day of work-
shop, selected by the metrics that number of retweets or
favorites larger than five and the sum of two measures
greater than ten.

In terms of building community activities, we wanted to
focus primarily on working groups, which we were able to
do, as discussed above, but we also wanted to make sure
that attendees felt they had a chance to get their ideas
across to the whole group, which was the purpose of the
lightning talks. Overall, this seemed to be successful at the
time, in terms of both the lightning talks and the breakout

https://github.com/swcarpentry/close-enough-for-scientific-work
https://github.com/swcarpentry/close-enough-for-scientific-work

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  19 of 23

groups, and the discussion of sustainability also led to
interesting and useful results. However, the challenge that
we have discovered since WSSSPE2 is that it is very hard
to continue the breakout groups’ activities. The WSSSPE2
participants were willing to dedicate their time to the
groups while they were at the meeting, but afterwards,
they have gone back to their (paid) jobs. We need to deter-
mine how to tie the WSSSPE breakout activities to people’s
jobs, so that they feel that continuing them is a higher pri-
ority than it is now, perhaps through funding the partici-
pants, or through funding coordinators for each activity, or

perhaps by getting the workshop participants to agree to a
specific schedule of activities during the workshop.

Competing Interests
The authors believe that solving the issues discussed in
this paper would have beneficial impacts on the devel-
opment and use of software in science and engineering,
including benefits to their own institutions and careers as
parts of the overall community, but other than this gen-
eral interest, they declare that they have only the follow-
ing competing interest: Chue Hong is Editor-in-Chief of

Author Tweet Retweets Favorites

Neil P Chue Hong Here’s @SoftwareSaved guidance on Writing and using a software management
plan used by EPSRC software grants http://www.software.ac.uk/resources/
guides/software-management-plans

7 4

Neil P Chue Hong @jameshowison as well as software plans
http://www.software.ac.uk/resources/guides/software-management-
plans we provide a software evaluation tool: http://www.software.ac.uk/
online-sustainability-evaluation

4 7

Tom Crick 56% of UK researchers develop their own software → 140, 000 UK researchers
write research software w/out any formal training

14 8

Karthik Ram OH: “Institutionalize metadata before metadata institutionalizes you” 8 6

Josh Greenberg @jameshowison: “1. retract any paper with bitrotten dependencies” *mic drop*
“2. add anyone who fixes bitrot as an author” *mic drop*

13 8

Ethan White “@rOpenSci is all about community... our measures of success [include] how
many faces are up on our community page”

9 3

Ethan White Daniel Katz talking about implementing transitive credit for software http://
arxiv.org/abs/1407.5117 Work with @arfon

9 7

Kaitlin Thaney Great point by @tracykteal about planning for “end of life” with scientific soft-
ware projects and sustainability.

4 8

Aleksandra Pawlik Lack of training as one of the main barriers for sustainable software at @
Supercomputing. @swcarpentry @datacarpentry can fix that!

10 4

Kaitlin Thaney My slides from this morning’s keynote at
WSSSPE on Designing for Truth, Scale + Sustainability:
http://www.slideshare.net/kaythaney/designing-for-
truth-scale-and-sustainability-wssspe2-keynote

11 12

Neil P Chue Hong @kaythaney shout out for @swcarpentry @datacarpentry
@rOpenSci @stilettofiend around open training activities for sustainability

9 4

Neil P Chue Hong For those interested in Github – Figshare/Zenodo integration, but want
SWORD/DSpace/Fedora/ePrints see: http://blog.stuartlewis.com/2014/09/09/
github-to-repository-deposit/

5 12

Hilmar Lapp Re: adopting the unix philosophy, consider signing the Small Tools in
Bioinformatics Manifesto: https://github.com/pjotrp/bioinformatics

7 6

Andre Luckow “Traditions last not because they are excellent,
but because influential people are averse to change...” C. Sunstein

12 3

Tom Crick “Can I Implement Your Algorithm?”: A Model for Reproducible Research
Software http://arxiv.org/abs/1407.5981

9 8

Mozilla Science Lab At a loose end this Sunday? Care about reproducibility, software + #open-
science? Follow the #WSSSPE hashtag for more, live from New Orleans.

10 5

Kaitlin Thaney I’m in New Orleans at #WSSSPE, speaking at 9:50 ET on scientific software +
sustainability. Tune in! Live stream: http://ustre.am/17ddh

9 9

Daniel S. Katz #WSSSPE Agenda (Sunday):
http://wssspe.researchcomputing.org.uk/wssspe2/agenda/
URL for live stream of keynotes & lightning talks: http://ustre.am/17ddh

10 1

Table 1: Top tweets tagged #WSSSPE on Nov 16, 2014.

http://www.software.ac.uk/resources/guides/software-management-plans
http://www.software.ac.uk/resources/guides/software-management-plans
http://www.software.ac.uk/resources/guides/software-management-plans
http://www.software.ac.uk/resources/guides/software-management-plans
http://www.software.ac.uk/online-sustainability-evaluation
http://www.software.ac.uk/online-sustainability-evaluation
http://arxiv.org/abs/1407.5117
http://arxiv.org/abs/1407.5117
http://www.slideshare.net/kaythaney/designing-for-truth-scale-and-sustainability-wssspe2-keynote
http://www.slideshare.net/kaythaney/designing-for-truth-scale-and-sustainability-wssspe2-keynote
http://www.slideshare.net/kaythaney/designing-for-truth-scale-and-sustainability-wssspe2-keynote
http://blog.stuartlewis.com/2014/09/09/github-to-repository-deposit/
http://blog.stuartlewis.com/2014/09/09/github-to-repository-deposit/
https://github.com/pjotrp/bioinformatics
http://arxiv.org/abs/1407.5981
http://ustre.am/17ddh
http://wssspe.researchcomputing.org.uk/wssspe2/agenda/
http://ustre.am/17ddh

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  20 of 23

the Journal of Open Research Software; he did not partici-
pate in the review process for this article.

Acknowledgments
Work by Katz was supported by the National Science
Foundation while working at the Foundation. Any opinion,
finding, and conclusions or recommendations expressed
in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation.

Chue Hong was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) Grant EP/
H043160/1 for the UK Software Sustainability Institute.
Howison was supported by NSF Grant 1064209.

Appendix A. Attendees
The following is a partial list of workshop attendees who
registered on the collaborative notes document [4] that
was used for shared note-taking at the meeting, or who
participated in a breakout groups and were noted in that
group’s notes.

Jordan Adams	 Tulane University
Alice Allen	� Astrophysics Source Code Library

(ASCL)
Gabrielle Allen	� University of Illinois

Urbana-Champaign
Pierre-Yves Aquilanti	 TOTAL E&P R&T USA
Wolfgang Bangerth	 Texas A&M University
David Bernholdt	 Oak Ridge National Laboratory
Jakob Blomer	
Carl Boettiger	� University of California Santa

Cruz & rOpenSci
Chris Bogart	 ISR/CMU
Steven R. Brandt	 Louisiana State University
Neil Chue Hong	� Software Sustainability Institute &

University of Edinburgh
Tom Clune	 NASA GSFC
John W. Cobb	
Dirk Colbry	 Michigan State University
Karen Cranston	 NESCent
Tom Crick	� Cardiff Metropolitan University,

UK
Ethan Davis	 UCAR Unidata
Robert R Downs	 CIESIN, Columbia University
Anshu Dubey	� Lawrence Berkeley National

Laboratory
Nicole Gasparini	 Tulane University, New Orleans
Yolanda Gil	� Information Sciences Institute,

University of Southern California
Kurt Glaesemann	 Pacific northwest national lab
Sol Greenspan	 National Science Foundation
Ted Habermann	 The HDF Group
Marcus D. Hanwell	 Kitware
Sarah Harris	 University of Leeds
David Henty	� EPCC, The University of

Edinburgh
James Howison	 University of Texas
Maxime Hughes	
Eric Hutton	 University of Colorado
Ray Idaszak	 RENCI/UNC

Samin Ishtiaq	� Microsoft Research Cambridge,
UK

Matt Jones	� University of California Santa
Barbara

Nick Jones	� New Zealand eScience
Infrastructure, University of
Auckland

Daniel S. Katz	 University of Chicago & Argonne
Ian Kelley 	 National Laboratory
Hilmar Lapp	 National Evolutionary
Christopher Lenhardt 	� Synthesis Center (NESCent) &

Duke University
Richard Littauer	 University of Saarland
Frank Löffler	 Louisiana State University
Andre Luckow	 Rutgers
Berkin Malkoc	 Istanbul Technical University
Kyle Marcus	 University at Buffalo
Bryan Marker	 The University of Texas at Austin
Suresh Marru	 Indiana University
Robert H. McDonald	 Data to Insight Center/Libraries,
Rupert Nash	 Indiana University
Andy Nutter-Upham	 Whitehead Institute
Abani Patra	 University at Buffalo
Aleksandra Pawlik	 Software Sustainability Institute
Cody J. Permann	 Idaho National Laboratory
John W. Peterson	 Idaho National Laboratory
Benjamin Pharr	 University of Mississippi
Stephen Piccolo	 Brigham Young University, Utah
Marlon Pierce	 Indiana University
Ray Plante	� NCSA, University of Illinois

Urbana-Champaign
Sushil Prasad	 Georgia State University, Atlanta
Karthik Ram	� Berkeley Institute for Data

Science, University of California
Berkeley & rOpenSci

Mike Rilee	� NASA/GSFC & Rilee Systems
Technologies

Erin Robinson	 Foundation for Earth Science
Mark Schildhauer	� NCEAS, Univ. California, Santa

Barbara
Jory Schossau	 Michigan State University
Frank Seinstra	 Netherlands eScience Center
James Shepherd	 Rice University
Justin Shi	 Temple University
Ardita Shkurti	 University of Nottingham
Alan Simpson	� EPCC, The University of

Edinburgh
Carol Song	 Purdue University
James Spencer	 Imperial College London
Tracy Teal	 Data Carpentry
Kaitlin Thaney	 Mozilla Science Lab
Matt Turk	� NCSA, University of Illinois

Urbana-Champaign
Colin C. Venters	 University of Huddersfield
Nathan Weeks	
Ethan White	� University of Florida/Utah State

University
Nancy Wilkins-Diehr	� San Diego Supercomputer Center,

University of California San Diego
Greg Wilson	 Software Carpentry

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  21 of 23

Notes
	 1	 http://wssspe.researchcomputing.org.uk/wssspe2/
	 2	 http://sc14.supercomputing.org
	 3	 http://wssspe.researchcomputing.org.uk/wssspe1/
	 4	 http://wssspe.researchcomputing.org.uk/wssspe1-1/
	 5	 https://conference.scipy.org/scipy2014/participate/

wssspe/
	 6	 http://arxiv.org
	 7	 http://figshare.com
	 8	 http://easychair.org/
	 9	 http://www.well-sorted.org
	 10	 Report Blasts Problem-Plagued Cancer Research Grid,

http://tinyurl.com/maf6dz2
	 11	 See, for example, http://tinyurl.com/l76tba2.
	 12	 Software Discovery Index, http://softwarediscoveryindex.

org/report/
	 13	 Bioconductor, http://www.bioconductor.org
	 14	 Galaxy, http://galaxyproject.org
	 15	 nanoHUB, https://nanohub.org
	 16	 http://tinyurl.com/nkn5tnv
	 17	 http://tinyurl.com/ooajs7m
	 18	 Source: The Scientific Century, Royal Society, 2010

(revised to reflect first stage clarification from “What
Do PhD’s Do?” study)

	 19	 A few other items were suggested as barriers, but were
not voted on due to lack of time in the session: layer-
ing up dependencies; using software past its sustain-
able life; using software past its usable life; inertia
for accepted answers versus wrong or right answers;
monolithic or poor code; and need to restructure code
when hardware/software/libraries change

	 20	 The Dryad Digital Repository, http://datadryad.org
	 21	 Project CRediT, http://credit.casrai.org/
	 22	 NIH Software Discovery Index: http://softwarediscov-

eryindex.org/
	 23	 GitHub: http://github.com/
	 24	 FigShare: http://figshare.com/
	 25	 Zenodo: http://zenodo.org/
	 26	 Docker: htp://www.docker.com/
	 27	 http://www.software.ac.uk/resources/guides/which-

journals-should-i-publish-my-software
	 28	 http://openresearchsoftware.metajnl.com/about/edi

torialPolicies#peerReviewProcess
	 29	 http://www.plosone.org/static/guidelines#software
	 30	 http://www.jstatsoft.org/instructions
	 31	 http://www.methodsinecologyandevolution.org/

view/0/authorGuidelines.html
	 32	 http://toms.acm.org/Authors.html
	 33	 http://www.gigasciencejournal.com/about
	 34	 h t t p : / / w w w . p l o s c o m p b i o l . o r g / s t a t i c /

guidelines#software
	 35	 http://openresearchsoftware.metajnl.com/about/

editorialPolicies
	 36	 https://jenkins-ci.org/

References
  1.	 Katz, D S, Allen, G, Chue Hong, N, Parashar, M

and Proctor, D 2013 First Workshop on on Sustain-
able Software for Science: Practice and Experiences
(WSSSPE): Submission and Peer-Review Process, and

Results. arXiv, 1311.3523. Available at http://arxiv.
org/abs/1311.3523.

  2.	 Katz, D S, Choi, S C T, Lapp, H, Maheshwari, K,
Löffler, F, Turk, M, et al. 2014 Summary of the First
Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE1). Journal of Open Research
Software, 2(1). DOI: http://dx.doi.org/10.5334/jors.an

  3.	 Katz, D S, Allen, G, Chue Hong, N, Cranston, K,
Parashar, M, Proctor, D, et al. 2014 Second Work-
shop on Sustainable Software for Science: Practice
and Experiences (WSSSPE2): Submission, Peer-Review
and Sorting Process, and Results. arXiv, 1411.3464.
Available at http://arxiv.org/abs/1411.3464.

  4.	 WSSSPE2 attendees WSSSPE2 Collaborative Notes.
Available at https://docs.google.com/document/d/1-
BxkYWDQ6nNNBXBStUL0xcKF9qCTlEALwf928J
MemI/ (Accessed on 2015-02-15).

  5.	 Thaney, K 2014 Designing for Truth, Scale, and
Sustainability [slides]. Retrieved from http://www.
slideshare.net/kaythaney/designing-for-truth-scale-
and-sustainability-wssspe2-keynote.

  6.	 The Dataverse Project Available at http://dataverse.
org (Accessed on 2015-12-29).

  7.	 Chue Hong, N 2014 We are the 92% [slides]. DOI:
http://dx.doi.org/10.6084/m9.figshare.1243288

  8.	 Venters, C 2014 The Nebuchadnezzar Effect: Dream-
ing of Sustainable Software through Sustainable Soft-
ware Architectures [poster]. Retrieved from http://
figshare.com/articles/The_Nebuchadnezzar_Effect_
Dreaming_of_Sustainable_Software_through_Sus-
tainable_Software_Architectures/1243322.

  9.	 Pierce, M 2014 Patching It Up, Pulling It Forward [poster].
Retrieved from http://wssspe.researchcomputing.org.
uk/wp-content/uploads/2014/11/Pierce.pdf.

10.	 Peterson, J 2014 Continuous Integration for
Concurrent MOOSE Framework and Application
Development on GitHub [poster]. Retrieved from
https://drive.google.com/file/d/0B9BK7pg8se_iWk-
dBYkhkM1d4bkN3QVNoekFGWE9WODVnaUxB/
view?pli=1.

11.	 Patra, A 2014 Execute it [poster]. Retrieved from
http://wssspe.researchcomputing.org.uk/wp-
content/uploads/2014/11/Patra.pdf.

12.	 Katz, D S and Smith, A 2014 Implementing Transi-
tive Credit with JSON-LD [poster]. DOI: http://dx.doi.
org/10.6084/m9.figshare.1234063

13.	 Downs, R, Lenhardt, W C, Robinson, E, Davis, E
and Weber, N 2014 Community Recommenda-
tions for Improving Sustainable Scientific Software
Practices [poster]. Retrieved from http://wssspe.
researchcomputing.org.uk/wp-content/uploads/
2014/11/Downs.pdf.

14.	 Boettiger, C 2014 rOpenSci: Building Sustainable
Software by Fostering a Diverse Community [poster].
Retrieved from http://wssspe.researchcomputing.org.
uk/wp-content/uploads/2014/11/Boettiger1.pdf.

15.	 Blomer, J 2014 The Need for a Versioned Data Anal-
ysis Environment [poster]. Retrieved from http://
wssspe.researchcomputing.org.uk/wp-content/
uploads/2014/11/Blomer.pdf.

http://wssspe.researchcomputing.org.uk/wssspe2/
http://sc14.supercomputing.org
http://wssspe.researchcomputing.org.uk/wssspe1/
http://wssspe.researchcomputing.org.uk/wssspe1-1/
https://conference.scipy.org/scipy2014/participate/wssspe/
https://conference.scipy.org/scipy2014/participate/wssspe/
http://arxiv.org
http://figshare.com
http://easychair.org/
http://tinyurl.com/maf6dz2
http://tinyurl.com/l76tba2
http://softwarediscoveryindex.org/report/
http://softwarediscoveryindex.org/report/
http://www.bioconductor.org
http://galaxyproject.org
https://nanohub.org
http://tinyurl.com/nkn5tnv
http://tinyurl.com/ooajs7m
http://datadryad.org
http://credit.casrai.org/
http://softwarediscoveryindex.org/
http://softwarediscoveryindex.org/
http://github.com/
http://figshare.com/
http://zenodo.org/
htp://www.docker.com/
http://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software
http://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software
http://openresearchsoftware.metajnl.com/about/editorialPolicies#peerReviewProcess
http://openresearchsoftware.metajnl.com/about/editorialPolicies#peerReviewProcess
http://www.plosone.org/static/guidelines#software
http://www.jstatsoft.org/instructions
http://www.methodsinecologyandevolution.org/view/0/authorGuidelines.html
http://www.methodsinecologyandevolution.org/view/0/authorGuidelines.html
http://toms.acm.org/Authors.html
http://www.gigasciencejournal.com/about
http://www.ploscompbiol.org/static/guidelines#software
http://www.ploscompbiol.org/static/guidelines#software
http://openresearchsoftware.metajnl.com/about/editorialPolicies
http://openresearchsoftware.metajnl.com/about/editorialPolicies
https://jenkins-ci.org/
http://arxiv.org/abs/1311.3523
http://arxiv.org/abs/1311.3523
http://dx.doi.org/10.5334/jors.an
http://arxiv.org/abs/1411.3464
https://docs.google.com/document/d/1-BxkYWDQ6nNNBXBStUL0xcKF9qCTlEALwf928J MemI/
https://docs.google.com/document/d/1-BxkYWDQ6nNNBXBStUL0xcKF9qCTlEALwf928J MemI/
https://docs.google.com/document/d/1-BxkYWDQ6nNNBXBStUL0xcKF9qCTlEALwf928J MemI/
http://www.slideshare.net/kaythaney/designing-for-truth-scale-and-sustainability-wssspe2-keynote
http://www.slideshare.net/kaythaney/designing-for-truth-scale-and-sustainability-wssspe2-keynote
http://www.slideshare.net/kaythaney/designing-for-truth-scale-and-sustainability-wssspe2-keynote
http://dataverse.org
http://dataverse.org
http://dx.doi.org/10.6084/m9.figshare.1243288
http://figshare.com/articles/The_Nebuchadnezzar_Effect_Dreaming_of_Sustainable_Software_through_Sustainable_Software_Architectures/1243322
http://figshare.com/articles/The_Nebuchadnezzar_Effect_Dreaming_of_Sustainable_Software_through_Sustainable_Software_Architectures/1243322
http://figshare.com/articles/The_Nebuchadnezzar_Effect_Dreaming_of_Sustainable_Software_through_Sustainable_Software_Architectures/1243322
http://figshare.com/articles/The_Nebuchadnezzar_Effect_Dreaming_of_Sustainable_Software_through_Sustainable_Software_Architectures/1243322
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Pierce.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Pierce.pdf
https://drive.google.com/file/d/0B9BK7pg8se_iWkdBYkhkM1d4bkN3QVNoekFGWE9WODVnaUxB/view?pli=1
https://drive.google.com/file/d/0B9BK7pg8se_iWkdBYkhkM1d4bkN3QVNoekFGWE9WODVnaUxB/view?pli=1
https://drive.google.com/file/d/0B9BK7pg8se_iWkdBYkhkM1d4bkN3QVNoekFGWE9WODVnaUxB/view?pli=1
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Patra.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Patra.pdf
http://dx.doi.org/10.6084/m9.figshare.1234063
http://dx.doi.org/10.6084/m9.figshare.1234063
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Downs.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Downs.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Downs.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Boettiger1.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Boettiger1.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Blomer.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Blomer.pdf
http://wssspe.researchcomputing.org.uk/wp-content/uploads/2014/11/Blomer.pdf

Katz et al: Report on the Second Workshop on Sustainable Software for ScienceArt. e7, p.  22 of 23

16.	 Rosado de Souza, M, Haines, R and Jay, C 2014
Defining Sustainability through Developers’ Eyes:
Recommendations from an Interview Study. figshare,
1111925. DOI: http://dx.doi.org/10.6084/m9.figshare.
1111925

17.	 Downs, R, Lenhardt, W C, Robinson, E, Davis, E
and Weber, N 2014 Community Recommendations
for Sustainable Scientific Software. ESIP Commons;
2014. P3VX0DFX. DOI: http://dx.doi.org/10.7269/
P3VX0DFX

18.	 Patra, A, Jones, M, Gallo, S, Marcus, K and Kosar, T
2014 Role of Online Platforms, Communications and
Workows in Developing Sustainable Software for
Science Communities. figshare, 1112569. DOI: http://
dx.doi.org/10.6084/m9.figshare.1112569

19.	 Pierce, M, Marru, S and Mattmann, C 2014
WSSSPE2: Patching It Up, Pulling It Forward. Fig-
share, 1112540. DOI: http://dx.doi.org/10.6084/
m9.figshare.1112540

20.	Shi, J 2014 Seeking the Principles of Sustainable
Software Engineering. arXiv, 1405.4464. Available at
http://arxiv.org/abs/1405.4464.

21.	 Venters, C C, Griffiths, M K, Holmes, V, Ward, R R
and Cooke, D J 2014 The Nebuchadnezzar Effect:
Dreaming of Sustainable Software through Sustain-
able Software Architectures. Figshare, 1112484. DOI:
http://dx.doi.org/10.6084/m9.figshare.1112484

22.	ISO/IEC ISO/IEC 25010: 2011 Systems and software
engineering: Systems and Software Quality Require-
ments and Evaluation (SQuaRE). System and software
quality models. Available at http://www.iso.org/iso/
catalogue_detail.htm?csnumber=35733

23.	Bourque, P and Fairley, R E (eds.) 2014 SWEBOK v3.0:
Guide to the Software Engineering Body of Knowl-
edge. IEEE Press.

24.	Bourne, P E, et al. 2005–2015 Ten Simple Rules Col-
lection. PLOS Computational Biology. Retrieved from
http://www.ploscollections.org/article/browse/
issue/info%3Adoi%2F10.1371%2Fissue.pcol.v03.i01.

25.	Spolsky, J 2000 The Joel Test: 12 Steps to Better Code.
In Joel on Software. joelonsftware.com [blog]. Avail-
able at http://www.joelonsoftware.com/articles/
fog0000000043.html.

26.	Crusoe, M R and Brown, C T Channeling community
contributions to scientific software: A hackathon
experience. figshare; 2014. 1112541. DOI: http://dx.doi.
org/10.6084/m9.figshare.1112541

27.	 Hanwell, M, O’Leary, P and O’Bara, B 2014 Sustaina-
ble Software Ecosystems: Software Engineers, Domain
Scientists, and Engineers Collaborating for Science.
figshare, 1112482. DOI: http://dx.doi.org/10.6084/
m9.figshare.1112482

28.	Lenhardt, W C, Ahalt, S, Jones, M, Aukema, J,
Hampton, S, Hespanh, S R, et al. 2014 ISEES-WSSI
Lessons for Sustainable Science Software from an Ear-
ly Career Training Institute on Open Science Synthesis.
figshare, 1112560. DOI: http://dx.doi.org/10.6084/
m9.figshare.1112560

29.	 Schossau, J and Wilson, G Which Sustainable Soft-
ware Practices Do Scientists Find Most Useful? arXiv,
1407.6220. Available at http://arxiv.org/abs/1407.6220.

30.	Adams, J, Nudurupati, S, Gasparini, N, Hobley, D,
Hutton, E, Tucker, G, et al. 2014 Landlab: Sustainable
Software Development in Practice. figshare, 1097629.
DOI: http://dx.doi.org/10.6084/m9.figshare.1097629

31.	 Allen, A and Schmidt, J 2014 Looking before leaping:
Creating a software registry. arXiv, 1407.5378. Avail-
able at http://arxiv.org/abs/1407.5378.

32.	Boettiger, C, Hart, T, Chamberlain, S and Ram, K
2014 Building software, building community: lessons
from the ROpenSciproject. figshare, 1112581. DOI:
http://dx.doi.org/10.6084/m9.figshare.1112581

33.	Gil, Y, Moon, E and Howison, J 2014 No Science
Software is an Island: Collaborative Software Develop-
ment Needs in Geosciences. figshare, 1112561. DOI:
http://dx.doi.org/10.6084/m9.figshare.1112561

34.	Habermann, T, Collette, A, Vincena, S, Benger, W,
Billings, J J, Gerring, M, et al. 2014 The Hierarchi-
cal Data Format (HDF): A Foundation for Sustainable
Data and Software. figshare, 1112485. DOI: http://
dx.doi.org/10.6084/m9.figshare.1112485

35.	Hutton, E, Piper, M, Overeem, I, Kettner, A and
Syvitski, J 2014 Building Sustainable Software –
The CSDMS Approach. arXiv, 1407.4106. Available at
http://arxiv.org/abs/1407.4106.

36.	Spencer, J S, Blunt, N S, Vigor, W A, Malone, F D,
Foulkes, W M C, Shepherd, J J, et al. The Highly
Accurate NDEterminant (HANDE) quantum Monte
Carlo project: Open-source stochastic diagonalisation
for quantum chemistry. arXiv; 2014. 1407.5407. Avail-
able at http://arxiv.org/abs/1407.5407.

37.	 Stalzer, M and Mentzel, C 2015 A Preliminary
Review of Influential Works in Data-Driven Discov-
ery. arXiv, 1503.08776. Available at http://arxiv.org/
abs/1503.08776.

38.	CASRAI Project Credit. Accessed: 2015-03-31. Avail-
able at http://credit.casrai.org.

39.	Open Researcher and Contributor ID (ORCID)
Available at http://http://orcid.org/ (Accessed on
2015-03-31).

40.	Howison, J and Bullard, J 2015 Software in the sci-
entific literature: Problems with seeing, finding, and
using software mentioned in the biology literature.
Journal of the Association for Information Science
and Technology (JASIST), Article first published on-
line: 13 May 2015. DOI: http://doi.org/10.1002/
asi.23538

41.	 Dubey, A, Antypas, K, Ganapathy, M K, Reid, L B,
Riley, K, Sheeler, D, et al. 2009 Extensible Compo-
nent Based Architecture for FLASH, A Massively Paral-
lel, Multiphysics Simulation Code. Parallel Computing,
35(10–11): 512–522.

42.	Howison, J 2014 Retract bit-rotten publications:
Aligning incentives for sustaining scientific software.
figshare, 1111632. DOI: http://dx.doi.org/10.6084/
m9.figshare.1111632

http://dx.doi.org/10.6084/m9.figshare.1111925
http://dx.doi.org/10.6084/m9.figshare.1111925
http://dx.doi.org/10.7269/P3VX0DFX
http://dx.doi.org/10.7269/P3VX0DFX
http://dx.doi.org/10.6084/m9.figshare.1112569
http://dx.doi.org/10.6084/m9.figshare.1112569
http://dx.doi.org/10.6084/m9.figshare.1112540
http://dx.doi.org/10.6084/m9.figshare.1112540
http://arxiv.org/abs/1405.4464
http://dx.doi.org/10.6084/m9.figshare.1112484
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.ploscollections.org/article/browse/issue/info%3Adoi%2F10.1371%2Fissue.pcol.v03.i01
http://www.ploscollections.org/article/browse/issue/info%3Adoi%2F10.1371%2Fissue.pcol.v03.i01
http://www.joelonsftware.com
http://www.joelonsoftware.com/articles/fog0000000043.html
http://www.joelonsoftware.com/articles/fog0000000043.html
http://dx.doi.org/10.6084/m9.figshare.1112541
http://dx.doi.org/10.6084/m9.figshare.1112541
http://dx.doi.org/10.6084/m9.figshare.1112482
http://dx.doi.org/10.6084/m9.figshare.1112482
http://dx.doi.org/10.6084/m9.figshare.1112560
http://dx.doi.org/10.6084/m9.figshare.1112560
http://arxiv.org/abs/1407.6220
http://dx.doi.org/10.6084/m9.figshare.1097629
http://arxiv.org/abs/1407.5378
http://dx.doi.org/10.6084/m9.figshare.1112581
http://dx.doi.org/10.6084/m9.figshare.1112561
http://dx.doi.org/10.6084/m9.figshare.1112485
http://dx.doi.org/10.6084/m9.figshare.1112485
http://arxiv.org/abs/1407.4106
http://arxiv.org/abs/1407.5407
http://arxiv.org/abs/1503.08776
http://arxiv.org/abs/1503.08776
http://credit.casrai.org
http://http://orcid.org/
http://doi.org/10.1002/asi.23538
http://doi.org/10.1002/asi.23538
http://dx.doi.org/10.6084/m9.figshare.1111632
http://dx.doi.org/10.6084/m9.figshare.1111632

Katz et al: Report on the Second Workshop on Sustainable Software for Science Art. e7, p.  23 of 23

43.	Katz, D S and Smith, A M 2014 Implementing Transi-
tive Credit with JSON-LD. arXiv, 1407.5117. Available
at http://arxiv.org/abs/1407.5117.

44.	Kelley, I 2014 Publish or perish: the credit defi-
cit to making software and generating data. fig-
share, 1112579. DOI: http://dx.doi.org/10.6084/
m9.figshare.1112579

45.	 Blomer, J, Berzano, D, Buncic, P, Charalampidis, I,
Ganis, G, Lestaris, G, et al. 2014 The Need for a Ver-
sioned Data Analysis Software Environment. arXiv,
1407.3063. Available at http://arxiv.org/abs/1407.3063.

46.	Chamberlain, R and Schommer, J 2014 Using Docker
to Support Reproducible Research. figshare, 1101910.
DOI: http://dx.doi.org/10.6084/m9.figshare.
1101910

47.	Chue Hong, N 2014 Minimal information for
reusable scientific software. figshare, 1112528.
DOI: http://dx.doi.org/10.6084/m9.figshare.
1112528

48.	Crick, T, Hall, B A and Ishtiaq, S 2014 “Can I Imple-
ment Your Algorithm?”: A Model for Reproducible
Research Software. arXiv, 1407.5981. Available at
http://arxiv.org/abs/1407.5981.

49.	Marker, B, Batory, D, Zee, F G V and van de Geijn, R
2014 Making Scientific Computing Libraries Forward
Compatible. figshare, 1101873. DOI: http://dx.doi.
org/10.6084/m9.figshare.1101873

50.	Piccolo, S 2014 Building Portable Analytical
Environments to improve sustainability of compu-
tational-analysis pipelines in the sciences. figshare,
1112571. DOI: http://dx.doi.org/10.6084/m9.figshare.
1112571

51.	 Brown, A and Wilson, G (eds.) 2012 The Architecture
of Open Source Applications. lulu.com. Available at
http://aosabook.org.

52.	Wilson, G 2014 Why We Don’t Teach Testing (Even
Though We’d Like To) [blog]. Available at http://
software-carpentry.org/blog/2014/10/why-we-dont-
teach-testing.html.

53.	Hook, D and Kelly, D 2009 (Nov) Mutation Sensitiv-
ity Testing. Computing in Science Engineering, 11(6):
40–47.

54.	Hook, D and Kelly, D 2009 Testing for trustworthi-
ness in scientific software. In: Software Engineering
for Computational Science and Engineering, SECSE ‘09.
ICSE Workshop, pp. 59–64.

55.	Dubey, A, Weide, K, Lee, D, Bachan, J, Daley, C,
Olofin, S, et al. 2015 Ongoing verification of a mul-
tiphysics community code: FLASH. Software: Practice
and Experience, 45(2): 233–244. DOI: http://dx.doi.
org/10.1002/spe.2220

56.	Clune, T, Rilee, M and Rouson, D 2014 Testing as
an Essential Process for Developing and Maintaining
Scientific Software. figshare, 1112520. DOI: http://
dx.doi.org/10.6084/m9.figshare.1112520

57.	 Petre, M and Wilson, G 2014 Code Review For and By
Scientists. arXiv, 1407.5648. Available at http://arxiv.
org/abs/1407.5648.

58.	Slaughter, A E, Gaston, D R, Peterson, J,
Permann, C J, Andrs, D and Miller, J M 2014 Con-
tinuous Integration for Concurrent MOOSE Frame-
work and Application Development on GitHub. fig-
share, 1112585. DOI: http://dx.doi.org/10.6084/
m9.figshare.1112585

How to cite this article: Katz, D S, Choi, S-C T, Wilkins-Diehr, N, Chue Hong, N, Venters, C C, Howison, J, Seinstra, F, Jones, M,
Cranston, K A, Clune, T L, de Val-Borro, M and Littauer, R 2016 Report on the Second Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE2). Journal of Open Research Software, 4: e7, DOI: http://dx.doi.org/10.5334/jors.85

Submitted: 07 July 2015 Aceepted: 04 January 2016 Published: 22 February 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://arxiv.org/abs/1407.5117
http://dx.doi.org/10.6084/m9.figshare.1112579
http://dx.doi.org/10.6084/m9.figshare.1112579
http://arxiv.org/abs/1407.3063
http://dx.doi.org/10.6084/m9.figshare.1101910
http://dx.doi.org/10.6084/m9.figshare.1101910
http://dx.doi.org/10.6084/m9.figshare.1112528
http://dx.doi.org/10.6084/m9.figshare.1112528
http://arxiv.org/abs/1407.5981
http://dx.doi.org/10.6084/m9.figshare.1101873
http://dx.doi.org/10.6084/m9.figshare.1101873
http://dx.doi.org/10.6084/m9.figshare.1112571
http://dx.doi.org/10.6084/m9.figshare.1112571
http://lulu.com
http://aosabook.org
http://software-carpentry.org/blog/2014/10/why-we-dont-teach-testing.html
http://software-carpentry.org/blog/2014/10/why-we-dont-teach-testing.html
http://software-carpentry.org/blog/2014/10/why-we-dont-teach-testing.html
http://dx.doi.org/10.1002/spe.2220
http://dx.doi.org/10.1002/spe.2220
http://dx.doi.org/10.6084/m9.figshare.1112520
http://dx.doi.org/10.6084/m9.figshare.1112520
http://arxiv.org/abs/1407.5648
http://arxiv.org/abs/1407.5648
http://dx.doi.org/10.6084/m9.figshare.1112585
http://dx.doi.org/10.6084/m9.figshare.1112585
http://dx.doi.org/10.5334/jors.85
http://creativecommons.org/licenses/by/4.0/

	bookmark7
	bookmark15
	bookmark18
	bookmark42
	bookmark2
	bookmark3
	bookmark4
	bookmark5
	bookmark6
	bookmark8
	bookmark9
	bookmark10
	bookmark11
	bookmark12
	bookmark13
	bookmark14
	bookmark16
	bookmark19
	bookmark21
	bookmark23
	bookmark25
	bookmark26
	bookmark27
	bookmark28
	bookmark29
	bookmark30
	bookmark31
	bookmark32
	bookmark33
	bookmark34
	bookmark36
	bookmark37
	bookmark39

