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Abstract

The ability to sequence unordered events is ev-001
idence of comprehension and reasoning about002
real world tasks/procedures, and is essential003
for applications such as task planning and004
multi-source instruction summarization. It of-005
ten requires thorough understanding of tem-006
poral common sense and multimodal infor-007
mation, since these procedures are often con-008
veyed by a combination of texts and images.009
While humans are capable of reasoning about010
and sequencing unordered procedural instruc-011
tions, the extent to which the current ma-012
chine learning methods possess such a ca-013
pability is still an open question. In this014
work, we benchmark models’ capability of rea-015
soning over and sequencing unordered multi-016
modal instructions by curating datasets from017
online instructional manuals and collecting018
comprehensive human annotations. We find019
current state-of-the-art models not only per-020
form significantly worse than humans but also021
seem incapable of efficiently utilizing multi-022
modal information. To improve machines’023
performance on multimodal event sequenc-024
ing, we propose sequence-aware pretraining025
techniques exploiting the sequential alignment026
properties of both texts and images, resulting027
in >5% improvements on perfect match ratio.028

1 Introduction029

Instructions are essential sources for agents to learn030

how to complete complex tasks composed of multi-031

ple steps (e.g., “making a wood sign from scratch”).032

However, instructions do not always come in a033

proper sequential order, for example, when instruc-034

tions must be combined across sources. Therefore,035

sequencing unordered task-steps is crucial for com-036

prehending and inferring task procedures, which037

requires thorough understanding of event causal038

and temporal common sense. It is essential for039

applications such as multi-source instruction sum-040

marization and robot task planning (Garattoni and041

Birattari, 2018).042
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Figure 1: Multimodal task procedure sequencing: The
left column shows unordered instruction steps from the man-
ual How To Make Wood Signs. Each step is a text description
and its associated image. Without the complementary infor-
mation from the visuals, a novice may have difficulty inferring
the proper task order. Considering multimodal information,
the proper order can be correctly inferred (right column).

Existing work has studied sequencing unordered 043

texts from paper abstracts or short stories (Chen 044

et al., 2016; Cui et al., 2018). However, real-life 045

tasks are often complex, and multimodal informa- 046

tion is usually provided to supplement textual de- 047

scriptions to avoid ambiguity or illustrate details 048

that are hard to narrate, as illustrated in Figure 1. 049

To investigate whether current AI techniques can 050

efficiently leverage multimodal information to se- 051

quence unordered task instructions, we curate two 052

datasets from online instructional manuals (Hadley 053

et al.; Yagcioglu et al., 2018). We consider two rep- 054

resentative instruction domains: cooking recipes 055

and “How-To" instructions (WikiHow). We estab- 056

lish human performance for the sequencing task 057

on a subset of each data resource. As certain steps 058

to perform a task can potentially be interchange- 059

able1, we collect annotations of possible orders 060

alternative to the originally authored ones to cre- 061

ate multiple references. Such additional annotation 062

provides not only better measurement of human 063

1For example, without special requirements, preparing cer-
tain ingredients of a dish, such as slicing carrots or cucumbers,
does not necessarily need to follow a specific order.
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and model performance by alleviating unintended064

biases from content creators, but also a useful re-065

source for future research of models that are aware066

of task-step dependencies and interchangeability.067

To measure the ability of state-of-the-art AI tech-068

niques to sequence instruction steps, we construct069

models consisting of: (1) an input encoder which070

encodes image, text, or multimodal inputs, and (2)071

an order decoder which predicts step order us-072

ing the encoded representations. They are jointly073

trained with the order supervisions.074

Our preliminary studies show that multimodal075

information is consistently helpful for the sequenc-076

ing task. However, compared to humans, current077

models are less efficient in utilizing multimodal078

information. We hypothesize that it is because the079

models do not effectively capture the sequential080

information in the vision modality as well as the081

sequential alignment between multimodal contents.082

To address this, we propose to equip models with083

capabilities of performing multimodal grounding084

with sequential awareness. Specifically, we pro-085

pose several self-supervised objectives, including086

sequence-based masked language modeling, image087

region modeling, and content swapped prediction,088

to pretrain the models before finetune them on the089

downstream sequencing task.090

The proposed pretraining techniques are shown091

to be effective in improving multimodal perfor-092

mance, enjoying a >5% improvement on the per-093

fect match ratio metric. However, it is still sig-094

nificantly behind human performance (∼ 15% in095

perfect match ratio metric). The same conclusion096

holds when alternative orders are considered.097

Our key contributions are two-fold: (1) We pro-098

pose a multimodal sequencing task with two cu-099

rated instructional manuals, and collected compre-100

hensive human annotations. (2) We investigate101

model performance on sequencing unordered man-102

uals, and propose sequence-aware pretraining tech-103

niques to more effectively use the multimodal in-104

formation. Our experiments and extensive analysis105

provide insights on which task categories are most106

challenging and reveal that more sophisticated se-107

quential multimodal grounding can potentially fur-108

ther improve the performance on our task.109

2 Problem Definition110

Given a task procedure S consisting of N steps,111

where each step Si ∈ S can consist of two types112

of contents: a textual description Ti of tokens113

{Ti,k}nT
k=1 and/or image(s) Ii = {Ii,k}nI

k=1.2 A 114

model is required to take as inputs a random per- 115

mutation of S, i.e. Sp = {Sp1 , ..., SpN }, where p 116

is a permutation (Spj can take one of the follow- 117

ing three modalities: Tpj , Ipj , and {Tpj , Ipj}), and 118

predict the correct order of Sp, i.e. argsort(Sp). 119

3 Datasets and Human Annotation 120

We are interested in understanding the current state- 121

of-the-art models’ performance on this multimodal 122

instruction sequencing task. To this end, we curate 123

instruction datasets to support our study. 124

3.1 Instruction Manual Datasets 125

There are three major features we require for the 126

target datasets: (1) It is multimodal. (2) It con- 127

sists of task procedures as sequences of steps. (3) 128

Different modalities are used intentionally to com- 129

plement each other. In light of these, we consider 130

the following two datasets: 131

RecipeQA. We start from a popular as well as intu- 132

itive choice of instruction manuals, recipes, which 133

fully fulfill the aforementioned criteria. RecipeQA 134

is a multimodal question answering dataset consists 135

of recipes scraped from Instructables.com (Yag- 136

cioglu et al., 2018). We utilize the recipes collected 137

in RecipeQA and convert each unique recipe into 138

sequential multimodal steps for our task. 139

WikiHow. To expand the types of instruction man- 140

uals for our task beyond recipes, we also consider a 141

popular “How To ..." type of instructions, WikiHow, 142

which is an online knowledge base that consists of 143

human-created articles describing procedures to 144

accomplish a desired task. Each article contains 145

a high level goal of a task, a short summary of 146

the task procedures, and several multimodal steps 147

where each step consists of a description paired 148

with one or a few corresponding images. 149

We scrape the entire WikiHow knowledge re- 150

source, containing more than 100k unique articles 151

(mostly) with multimodal contents , as well as the 152

hierarchically structured category for each article. 153

See Append. Sec. A for more dataset details. 154

3.2 Human Performance Benchmark 155

To ensure the validity of our proposed multimodal 156

sequencing task, we establish the human perfor- 157

mance via Amazon Mechanical Turk. Since our 158

dataset is constructed from resources that are not 159

2For computational concerns, we set nI = 1 in this work.
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designed for the sequencing task, the quality of ran-160

dom samples is unverified. Specifically, some arti-161

cles in WikiHow may not have a notion of proper162

order among the steps.3 As a result, to construct a163

high quality test set particularly for WikiHow for164

establishing human performance, we first identify165

a set of categories which are more likely to feature166

proper order, e.g. Home and Garden and Hobbies167

and Crafts.4 A random proportion is then sampled168

and the co-authors further downsample the subset169

to 300 samples with the aforementioned criteria via170

majority vote. For RecipeQA, we randomly sample171

100 recipes from the dataset. And hence, the result-172

ing two subsets will serve as our golden-test-set173

for the performance benchmarking.174

Human Performance. Prompted with a task goal175

and a randomly scrambled sequence of the task-176

steps (can be one of the following modalities: mul-177

timodal or text/image-only), workers are asked to178

examine the contents and decide the proper per-179

forming order. Human performance are then com-180

puted against the original authored orders as the181

ground truths, averaged across the whole set.5182

Alternative Orders. When performing a task,183

some steps can be interchangeable. To take this into184

consideration in our benchmark task, we also col-185

lect possible alternative orders to the original ones186

to create multiple references. For each instance187

in our golden-test-set, given the instruction steps188

sequenced in their original order, we ask workers189

to annotate alternative orders if the presented task-190

steps can be performed following a different order.6191

More details of the two human annotation tasks can192

be found in Append. Sec. B.193

4 Models194

To benchmark the proposed task, we construct mod-195

els comprising: (1) an encoder which encodes mul-196

timodal or text/image-only inputs, and (2) an order197

decoder which utilizes the encoded representations198

3No temporal or other dependencies among the task-steps,
e.g. “How to be a good person”, where each step depicts a
different aspect and tips of being a good person.

4Although the data used for training is not cleansed and
thus can be noisy, we believe models can still learn to sequence
from many of the articles designed to have proper order.

5We design an algorithm to compute the inter-annotator
agreements (IAAs), see Append. Sec. B.3 for details. The
IAAs for (multimodal, text-only, image-only) versions in Wiki-
How is: (0.84, 0.82, 0.69), and (0.92, 0.87, 0.81) in RecipeQA.

6The alternative order annotation IAAs for (multimodal,
text-only, image-only) versions in WikiHow is: (0.73, 0.71,
0.78), and (0.79, 0.76, 0.79) in RecipeQA.

to predict the orders. To help models capture se- 199

quentiality in task-steps better as well as adapt to 200

our target task domains, we pretrain the encoders 201

with several self-supervised objectives on the in- 202

structions before integrating them with the decoder. 203

4.1 Input Encoders 204

Text-Only Encoders. We use RoBERTa (Liu et al., 205

2019) for text-only inputs. Although the next- 206

sentence prediction in BERT (Devlin et al., 2019) 207

can potentially be exploited for sequencing, we 208

empirically find that RoBERTa performs better. 209

Multimodal Encoders. We consider the following 210

two V&L models mainly due to their easy adapta- 211

tion to our proposed sequencing task: 212

VisualBERT (Li et al., 2019) grounds object de- 213

tected image regions (e.g. by Faster-RCNN (Ren 214

et al., 2016)) to language with a single transformer 215

model (Vaswani et al., 2017). VisualBERT is pre- 216

trained with: (1) multimodal masked language 217

modeling (MLM)7, and (2) image-text matching 218

prediction (ITM), where the image in an image- 219

caption pair is randomly replaced with another one 220

to create misalignment, and the model is required 221

to predict whether the current pair is aligned. 222

CLIP-ViL (Shen et al., 2021) is also a single- 223

stream V&L model similar to VisualBERT, while 224

the visual encoder is replaced by a patch-based 225

model inspired by the ViT (Dosovitskiy et al., 2021) 226

in CLIP (Radford et al., 2021), where the image fea- 227

tures are taken as gridded-image-patches as shown 228

in Figure 2. The pretraining objectives remain the 229

same as VisualBERT. Empirically, both Shen et al. 230

(2021) and this work find such patch-based model 231

tends to yield better downstream performance. 232

Image-Only Encoders. We attempt to provide an 233

image-only baseline on our sequencing task with 234

two visual encoders: (1) ResNet-based (He et al., 235

2016) Faster-RCNN model (also the visual encoder 236

in VisualBERT) where both the detected regional 237

features and the whole-image-feature are used, and 238

(2) the aforementioned patch-based CLIP model.8 239

4.2 Sequence-Aware Pretraining 240

The standard multimodal grounding techniques (Li 241

et al., 2019; Lu et al., 2019; Su et al., 2020; Chen 242

et al., 2020a) do not explicitly concern the sequen- 243

tiality of text and associated image sequences, and 244

7RoBERTa is used to initialize VisualBERT and CLIP-ViL.
8Without confusion, throughout the paper we term the ViT-

and CLIP-inspired visual encoder simply as CLIP.
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Vision-Language (V & L) Transformer
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Figure 2: Sequence-aware pretraining includes: (1) masked language modeling (MLM), (2) image-swapping prediction
(ISP/PISP) which requires the model to predict if some images (image-patches) are swapped, and (3) sequential masked region
modeling (SMRM) where models are asked to reconstruct masked regions in each image within the input sequence.

hence may fall short of effectively utilizing the245

sequential properties in multimodal inputs. To en-246

courage models to have better awareness of the se-247

quential alignments in multimodal instruction steps,248

we propose to pretrain the encoders with the fol-249

lowing self-supervised objectives: (1) masked lan-250

guage modeling (MLM), (2) (patch-based) image-251

swapping predictions (ISP/PISP), and (3) sequen-252

tial masked region modeling (SMRM). Figure 2253

illustrates an overview of the pretraining paradigm.254

For the proposed objectives, the inputs to the255

models are generally ordered instruction step se-256

quences, which can be further sub-sampled to pro-257

duce length-varying subsequences. Although we258

do not find this necessarily benefit the downstream259

performance, it is observed that the sub-sampling260

helps the model converge faster. Without loss of261

generality and for simplicity, the following sections262

assume the sub-sampled sequence is of length 2.263

4.2.1 Masked Language Modeling264

The standard MLM (Devlin et al., 2019) is em-265

ployed by the text-only models to adapt a pretrained266

language model to the target domain (task instruc-267

tions). Following prior V&L works, we apply268

MLM to multimodal models. Specifically, we en-269

sure that the textual description of each step Ti gets270

similar amount of maskings such that the models271

can potentially exploit the image sequences more.9272

4.2.2 Swapping-Based Prediction273

This objective concerns, with certain probability,274

randomly swapping a pair of items in a sequence275

and asking the model to judge whether the resulting276

sequence is properly ordered or not (i.e. binary277

classification). We mainly perform the swapping in278

9As higher chances that the complementary textual infor-
mation is also masked out from different steps.

the image modality and hence it can be viewed as a 279

sequence-aware version of ITM objective in most 280

V&L models. As in ITM, the output representation 281

at the [CLS] token is used to make the prediction. 282

Standard. For an ordered sequence S, we can 283

randomly swap two10 items of S, {Si, Sj}, where 284

i < j, to {Sj , Si}, with a certain probability δ. 285

Our preliminary studies find that swapping the tex- 286

tual contents does not necessarily help the down- 287

stream performance for either text-only or multi- 288

modal models, so we only perform the swapping on 289

the images {Ii, Ij} in both multimodal and image- 290

only models. For patch-based image inputs (or 291

regional features), the whole patches of an image 292

are swapped with those of another one within the 293

same sequence, as illustrated in Obj2 in Figure 2. 294

Patch-Based. We can perform the aforementioned 295

swapping prediction with a finer granularity, di- 296

rectly on the image patches. Assuming each im- 297

age Ii is cropped into w patches (or w detected 298

regions), i.e. {ii,k}wk=1 = {ii,1, ..., ii,w}, we ran- 299

domly select M (ranging from 1 to w) number 300

of patches each from the two images Ii, Ij (i.e. 301

{ii,p}, {ii,q}, p, q ∈ M -sized sampled indices) to 302

be swapped with probability δ. Specifically, for 303

each image patch ii,m ∈ Ii, a randomly selected 304

image patch ij,n ∈ Ij is sampled to be swapped 305

with. The sampled M -sized indices do not need 306

to be the same set of integers for each image. The 307

Obj3 in Figure 2 illustrates the patch-based swap- 308

ping prediction with w = 4 and M = 2. 309

4.2.3 Sequential Masked Region Modeling 310

Prior works extend the masked learning to the vi- 311

sual modality, where the masked target is either a 312

predefined discrete visual vocabulary (Sun et al., 313

10Two is our minimum number for a valid subsequence.
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2019; Bao et al., 2021) or (soft) object class la-314

bels (Lu et al., 2019; Su et al., 2020; Chen et al.,315

2020a). In this work, we construct a feature-based316

target vocabulary dynamically in each training317

mini-batch. We first randomly select same amount318

of X% (X = 15) patches for each image to be319

masked out (replaced with 0-tensor), and then con-320

struct a target vocabulary from the original output321

representations (before masking) of these patches.322

Concretely, denote the output representation323

of an input image-patch ii,m as h(i)i,m and the324

masked positions of Ii as Di, we can construct a325

candidate list from all the output representations326

of the patches at the masked positions of each327

image, i.e. C = {h(i)i,m} ∪ {h(i)j,n},m, n ∈328

Di, Dj . Denote the masked image patches as329

mask(i)i,m, for each output masked representation330

h(mask(i))i,m, we concatenate it with all the can-331

didates, i.e. h(mask(i))i,m||h(i’),∀i’ ∈ C, which332

results in |C| concatenated representations for each333

masked position. A |C|-way multi-class classifi-334

cation can then be performed by maximizing the335

probability of p(ii,m|h(mask(i))i,m;C). For ro-336

bust training, we additionally: (1) shuffle the candi-337

date setC for each masked position to prevent over-338

fitting, and (2) ensure the overlapping of masked339

positions in each pair of images,Di∩Dj , is < 50%,340

allowing the models to utilize information of simi-341

lar regions from other images in the sequence.342

4.2.4 Overall Training Objective343

As the mechanism in some objectives cannot guar-344

antee mutually exclusive impacts (e.g. performing345

ISP and PISP simultaneously may create confusing346

swapped patches), we employ a turn-taking fash-347

ion, with uniform probability, one of the objectives348

(Obj) is sampled for each training mini-batch. The349

overall pretraining objective is defined as below:350

L = LMLM + LObj,Obj ∼ {ISP, PISP, SMRM} (1)351

4.3 Order Decoder – BERSON352

BERSON is a recently proposed state-of-the-art353

neural sentence ordering framework (Cui et al.,354

2020), where a pointer network (Vinyals et al.,355

2016) exploits both the local (relative pairwise or-356

der) and global (self-attentions on top of the entire357

input sequence) information of the inputs to decode358

the predicted order. BERSON mainly exploits the359

[CLS] output representations for relational under-360

standing, which aligns well with how our encoders361

are pretrained (Figure 2). We integrate our en-362

coders (with or without sequence-aware pretrain- 363

ing) into BERSON, replacing its original BERT en- 364

coder. The BERSON-module-specific components 365

are freshly initialized and then the entire integrated 366

module is finetuned on our sequencing task. 367

5 Experiments and Analysis 368

Our experiments seek to answer these questions: 369

(1) How valid is the proposed task for humans to 370

complete? (2) Is multimodality helpful? (3) Can 371

the proposed sequence-aware pretraining utilize 372

multimodality more effectively? (4) How would re- 373

sults differ when alternative orders are considered? 374

5.1 Evaluation Metrics 375

We adopt metrics from sentence ordering works: 376

Position-Based metrics concern the correctness of 377

the absolute position of each item in a sequence, in- 378

cluding: (1) Accuracy (Acc) which computes the 379

ratio of absolute positions in the ground truth or- 380

der that are correctly predicted; (2) Perfect Match 381

Ratio (PMR) which measures the percentage of 382

predicted orders exactly matching the ground truth 383

orders; and (3) Distance (Dist.) which measures 384

the average distance11 between the predicted and 385

ground truth positions for each item. 386

Longest Common Subsequence computes the av- 387

erage longest subsequences in common (Gong 388

et al., 2016) between the predicted and ground 389

truth orders (Lq). We also consider a stricter ver- 390

sion, longest common substring, which requires 391

the consecutiveness for the comparisons (Lr). 392

Kendall’s Tau (τ ) (Lapata, 2003) is defined as 393

1 − 2 × (# inversions)/(# pairs), where the 394

inversion denotes that the predicted relative or- 395

der of a pair of items is inverted compared to 396

the corresponding ground truth relative order, and 397

# pairs =
(
N
2

)
for N -length sequence. 398

Each metric focuses on different perspectives of the 399

predictions, i.e. position metrics concern the abso- 400

lute correctness, while common subsequence and 401

τ metrics measure if general sequential tendency is 402

preserved despite incorrect absolute positions. 403

5.2 Implementation Details 404

We use the original data splits for RecipeQA. For 405

WikiHow, to prevent models’ exploiting knowledge 406

from similar articles, we split the data so that cer- 407

tain (sub)categories do not overlap in each split. 408

11Except for distance metric, higher scores are better.
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Modality Encoders Pretrain WikiHow Golden-Test-Set RecipeQA Golden-Test-Set
Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓ Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓

Image-Only

ResNet N 21.73 2.00 2.81 1.73 0.01 7.87 31.20 5.00 3.27 2.07 0.27 6.10
CLIP N 24.92 3.33 2.95 1.84 0.08 7.32 38.40 8.00 3.39 2.02 0.35 5.44
CLIP Y 28.24 5.00 3.09 1.96 0.16 6.80 47.20 16.00 3.68 2.40 0.52 4.12

Human Performance 68.16 47.49 4.27 3.51 0.72 2.43 80.40 64.50 4.54 4.02 0.86 1.29

Text-Only
RoBERTa N 74.75 56.67 4.47 3.78 0.82 1.71 74.00 52.00 4.45 3.68 0.83 1.64
RoBERTa Y 75.68 58.67 4.50 3.87 0.82 1.69 77.00 57.00 4.49 3.81 0.84 1.48
Human Performance 83.35 66.91 4.63 4.11 0.89 1.06 88.92 78.56 4.76 4.41 0.93 0.70

Multimodal

VisualBERT N 75.30 57.33 4.45 3.83 0.81 1.65 76.20 58.00 4.49 3.85 0.83 1.58
VisualBERT Y 77.30 59.67 4.50 3.86 0.83 1.58 78.20 60.00 4.56 3.91 0.85 1.44

CLIP-ViL N 76.15 59.00 4.49 3.87 0.82 1.68 79.20 60.00 4.57 3.93 0.85 1.29
CLIP-ViL Y 79.87 65.67 4.57 4.05 0.85 1.44 82.60 68.00 4.61 4.10 0.88 1.10
Human Performance 91.03 79.61 4.78 4.46 0.94 0.52 92.12 83.13 4.82 4.53 0.95 0.45

Table 1: Golden-test-set performance: Models which take multimodal inputs (for both VisualBERT and CLIP-ViL encoders)
consistently outperform the ones that only take unimodal inputs. Our proposed sequence-aware pretraining is shown consistently
helpful throughout the three modality variants. Humans show larger performance gain when both modalities of inputs are
provided, and are more robust to the local ordering as implied by the smaller gaps between Lq and Lr .

Modality Pretrain WikiHow Golden-Test-Set RecipeQA Golden-Test-Set
Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓ Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓

Image-Only ISP 27.31 4.00 3.02 1.82 0.12 7.00 43.20 9.00 3.49 2.05 0.47 4.46
ISP + PISP 27.57 4.67 3.07 1.93 0.16 6.85 43.40 12.00 3.57 2.24 0.48 4.46

Multimodal

MLM 77.08 61.33 4.52 3.96 0.83 1.65 79.60 61.00 4.55 3.93 0.86 1.29
MLM + ISP 77.61 62.00 4.54 3.97 0.83 1.60 80.00 61.00 4.56 3.93 0.86 1.26

MLM + SMRM 77.94 62.33 4.54 3.98 0.84 1.60 80.00 59.00 4.53 3.89 0.87 1.26
MLM + ISP + PISP 78.14 63.33 4.55 4.03 0.84 1.56 80.80 63.00 4.57 3.99 0.87 1.24

MLM + ISP + SMRM 79.47 63.67 4.57 4.03 0.85 1.54 81.40 63.00 4.57 4.00 0.87 1.20

Table 2: Model ablation studies: We provide a performance breakdown for incremental combinations of the pretraining
objectives, ablated on the best performing models (CLIP and CLIP-ViL) from Table 1 for each dataset and modality.

Details are in Append. Sec. A. Preliminary studies409

show that joint training with both RecipeQA and410

WikiHow data does not necessarily improve the411

downstream performance, thus the models evalu-412

ated in the two datasets are trained simply using413

their respective training sets for faster convergence.414

We cap the overall sequence length at 5 and each415

step description with maximally 5 sentences for416

both models and humans. The maximum input417

length per step is 60 tokens (overall maximum418

length = 300) for training and GPU memory effi-419

ciency. δ = 0.5 for both ISP and PISP. All images420

are resized to 224× 224, and 32× 32 patch is used421

for CLIP-based models, resulting in 7 × 7 = 49422

patches per image. Aside from standard positional423

embedding, we only supplement a modality token424

type embedding (text:=0, image:=1) to the multi-425

modal models. Pretrained weights for each encoder426

is obtained either from their corresponding code427

bases or by running their codes on our setup.12428

5.3 Standard Benchmark Results429

Table 1 summarizes both the human and model per-430

formance for each input modality evaluated using431

the original ground truth orders on the golden-test-432

set, whereas Table 2 summarizes a more detailed433

breakdown of the model performance when incre-434

12We initialize CLIP-ViL with our pretrained CLIP.

menting combinations of pretraining objectives. 435

As is shown, multimodal information is veri- 436

fied consistently helpful for humans. Compared 437

under same scenario with or without the sequence- 438

aware pretraining, the two multimodal models 439

consistently outperform their text-only counter- 440

parts, where the proposed pretraining technique 441

is shown particularly effective for the patch-based 442

multimodal model (CLIP-ViL). However, our top- 443

performing models still exhibit significant gaps be- 444

low human performance, especially in PMR. 445

Additionally, we observe a different trend in the 446

two datasets where the multimodality benefits more 447

in RecipeQA than WikiHow. The gap between 448

the multimodal human and model performance is 449

larger than the text-only counterparts in WikiHow, 450

while a reversed trend is shown in RecipeQA. We 451

hypothesize that recipes may contain less common 452

language usages and/or words for the pretrained 453

language models and hence benefits more from the 454

pretraining. Humans, on the other hand, benefit 455

more from the images in WikiHow as its texts are 456

hypothesized to contain more ambiguities. 457

WikiHow Category Analysis. We are interested 458

in which categories of WikiHow our models per- 459

form closer to humans, as well as in which the mul- 460

timodality is most efficiently utilized. In Figure 461
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Figure 3: Top-3 and least-2 categories of human-model
performance difference (in PMR): The selected categories
have >10 samples. The difference bars on the multimodal
model series are compared against the text-only model series.

3 we select categories with the top and least per-462

formance gaps (with PMR metric, top=3, least=2)463

between the human and our best performing mod-464

els. We observe that the categories of which multi-465

modal model outperforms text-only one the most466

are also the categories the models perform closest467

to humans, e.g. Home and Garden. We hypothesize468

that the images in these categories are well comple-469

mentary to the texts and that our sequence-aware470

grounding performs effectively. In contrast, in cate-471

gories such as Arts and Entertainment and Hobbies472

and Crafts where humans still enjoy benefits from473

multimodality, our models have difficulty utilizing474

the multimodal information. We hypothesize that475

better visual understanding may alleviate the po-476

tentially suboptimal grounding as images of these477

categories can contain many non-common objects.478

5.4 Evaluating with Alternative Orders479

For each instance where alternative ground truth480

orders exist, the performance is computed by the481

best each predicted order can obtain against all the482

ground truth orders13, denoted by multi-reference483

performance, and the subset containing these in-484

stances is denoted as the multi-reference subset.14485

Multi-Reference Performance. The noticeable486

main competitors in Table 1 are multimodal and487

text-only models, and hence for conciseness in Ta-488

ble 3 we mainly report the multi-reference version489

of their best performing variants with the selected490

metrics. Several trends still hold: (1) Multimodal491

models still outperform the text-only counterparts.492

(2) Human performance is still well above mod-493

els’ even under multi-reference setups. Addition-494

ally, both humans and models perform significantly495

worse in the multi-reference subset when single496

(original) ground truth is enforced, implying the497

validity of our alternative order annotations.498

13Jointly considered from all the evaluation metrics.
14The overall average number of ground truth references

becomes 1.19, 1.23, 1.09 for multimodal, text-only, and image-
only versions in WikiHow; and 1.10, 1.17, 1.14 in RecipeQA.

We originally question that whether enforcing 499

the original authored order to be the only ground 500

truth can cause unfairness to text-only models, as 501

images can often better represent the detailed scene 502

changes omitted by the texts, while in reality cer- 503

tain steps may not need to strictly follow the au- 504

thored order. Judging from the number of instances 505

that improve after evaluating with alternative or- 506

ders, the text-only model indeed benefits more from 507

the multi-reference setup. Examining the general 508

trends in Table 3, one can conclude that the textual 509

contents indeed posses certain levels of ambiguities 510

where images can help to alleviate, however, as the 511

performance gaps between multimodal and text- 512

only models are still significant under the multi- 513

reference settings, enforcing the original order as 514

the only ground truth should not be the major rea- 515

son justifying advantages of multimodality. 516

WikiHow Categories. Table 4 lists the WikiHow 517

categories with the most (top-5) annotated multi- 518

reference ground truths. Note that the categories 519

with more annotated alternative ground truths are 520

also among the worse performance from both hu- 521

mans and models (Figure 3). We provide sample 522

qualitative inspections in Append. Sec. C.1. 523

6 Related Work 524

Sequence Ordering. Story sequencing test is a 525

popular way of examining children’s abilities on 526

sequential reasoning which is shown evident for 527

procedural understanding (Tomkins, 1952; Baron- 528

Cohen et al., 1986; Loucks et al., 2017). In NLP, ex- 529

isting works attempt the sequencing task as sorting 530

a series of unordered sentences (Chen et al., 2016; 531

Cui et al., 2018; Logeswaran et al., 2018; Oh et al., 532

2019; Lee et al., 2020; Calizzano et al., 2021) from 533

paper abstracts or short paragraphs. While certain 534

prior work also attempts to extend it to incorporate 535

multimodality (Agrawal et al., 2016), the dataset 536

used, Visual StoryTelling (Huang et al., 2016), fea- 537

tures album images that were not intended to be pro- 538

cedural nor supply unstated details to complement 539

the texts. In computer vision, existing work lever- 540

ages shuffle frame prediction for learning video 541

representations (Lee et al., 2017; Xu et al., 2019; 542

Wang et al., 2020; Li et al., 2020) as well as cy- 543

cle consistency constraints for learning temporal 544

dynamics (Epstein et al., 2021). (Zellers et al., 545

2021) also features a pairwise relative frame re- 546

ordering objective to learn temporal common sense 547

from scripted videos, however, as their downstream 548

7



Modality Subset
WikiHow Golden-Test-Set (Size: 300) RecipeQA Golden-Test-Set (Size: 100)

Acc↑ PMR↑ Lr ↑ Acc↑ PMR↑ Lr ↑
single multi single multi single multi single multi single multi single multi

Text-Only

Single 77.30 — 61.75 — 3.98 — 79.32 — 60.23 — 3.90 —

Multi. 67.35 80.00 40.82 59.18 3.35 3.86 60.00 75.00 33.33 58.33 3.17 3.92
(% of instances benefit w. multi-reference: 34.7%) (% of instances benefit w. multi-reference: 50.0%)

All 75.68 77.74 58.67 61.67 3.87 3.96 77.00 78.80 57.00 60.00 3.81 3.90
Single† 85.57 — 71.41 — 4.24 — 90.27 — 80.41 — 4.47 —

Multi.† 72.03 85.51 43.84 71.38 3.46 4.14 79.00 87.00 65.00 80.00 3.95 4.40
(% of instances benefit w. multi-reference: 42.9%) (% of instances benefit w. multi-reference: 41.6%)

All† 83.35 85.56 66.91 71.40 4.11 4.22 88.92 89.88 78.56 80.36 4.41 4.46

Multimodal

Single 81.68 — 69.90 — 4.15 — 83.71 — 69.07 — 4.12 —

Multi. 70.98 78.82 47.05 61.22 3.59 3.90 46.67 60.00 33.33 33.33 3.67 3.78
(% of instances benefit w. multi-reference: 21.6%) (% of instances benefit w. multi-reference: 66.6%)

All 79.87 81.19 65.67 68.00 4.05 4.11 82.60 83.00 68.00 68.00 4.10 4.11
Single† 92.86 — 83.67 — 4.56 — 91.88 — 82.61 — 4.52 —

Multi.† 82.09 92.22 59.80 83.33 3.99 4.54 100.00 100.00 100.00 100.00 5.00 5.00
(% of instances benefit w. multi-reference: 41.18%) (% of instances benefit w. multi-reference: 0.0%)

All† 91.03 92.75 79.61 83.61 4.46 4.55 92.12 92.12 83.13 83.13 4.53 4.53

∗ The size of the Multi. subsets in (text-only, multimodal) are: (49, 51)/300 in WikiHow and (12, 3)/100 in RecipeQA.

Table 3: Multi-reference performance: († denotes human performance) Our golden-test-set can be decomposed into two
subsets: Single where each instance in this subset only has one single originally authored ground truth, and Multi. where
each instance features multiple ground truths from alternative orders. For the Multi. subset, two types of performance can be
computed: single considers only the originally authored ground truth and multi computes the multi-reference performance.
All denotes the entire test-set combining the results from Single and Multi. subsets. Results are reported on the two main
competitors: multimodal and text-only using the best performing models from Table 1 in each modality. % of instances benefit
w. multi-reference indicates that of what percentage of instances in each multi-reference subset humans and the models benefit
(for each instance if its performance improves in any of the metrics) from alternative ground truth orders.

Categories Mean Per-Instance Refs. (Cnt)
Multimodal Text Image

Home and Garden 2.00 (7) 2.14 (7) 2.00 (3)
Hobbies and Crafts 2.00 (5) 2.73 (11) 2.00 (2)

Food and Entertaining 2.20 (15) 2.22 (14) 2.17 (12)
Others 2.28 (7) 2.67 (5) 2.00 (4)

Personal Care and Style 2.33 (3) 2.00 (1) 2.00 (1)

Table 4: Top-5 mean alternative orders by categories: We
list top-5 categories in WikiHow according to the number of
average ground truth references in their multi-reference subset.
We again only list the categories with total instance count >10.

tasks mainly concern visual reasoning and order-549

ing by frame-text-matching (also on Visual Story-550

Telling), the re-ordering objective is more focused551

on the visual modality. Our work takes a different552

perspective to tackle a comprehensive multimodal553

sequencing task with a focus on the procedural task-554

solving knowledge and gauging the helpfulness of555

complementary information in different modalities.556

Task/Procedure Understanding. Other works557

have utilized WikiHow for learning task knowledge.558

In NLP, textual descriptions of WikiHow have559

been used for abstractive summarization (Koupaee560

and Wang, 2018), procedural understanding (Zhou561

et al., 2019; Tandon et al., 2020), and intent esti-562

mation (Zhang et al., 2020a). Prior work (Zhang563

et al., 2020b) considers WikiHow for learning event564

temporal ordering, but limited to only pairwise re-565

lations. A concurrent work uses WikiHow to infer566

visual goals (Yang et al., 2021). We hope our cura-567

tion can help advancing the goal of comprehensive568

multimodal procedural understanding. 569

Multimodality. Beside models used in this work, 570

there are several recent advanced multimodal 571

grounding techniques (Tan and Bansal, 2019; Li 572

et al., 2019; Lu et al., 2019; Su et al., 2020; Chen 573

et al., 2020b; Huang et al., 2020; Wen et al., 2021). 574

We utilize VisualBERT and CLIP-ViL for their 575

simplicity to be adapted to our task and easier in- 576

tegration to our proposed pretraining techniques, 577

however, our framework is able to incorporate any 578

of the aforementioned multimodal models. 579

7 Conclusions 580

In this work we present studies of language and 581

multimodal models on procedure sequencing, lever- 582

aging popular online instructional manuals. Our 583

experiments show that both multimodality and our 584

proposed sequence-aware pretraining are helpful 585

for multimodal sequencing, however, the results 586

also highlight significant gaps below human perfor- 587

mance (∼ 15% on PMR). 588

We provide insights as well as resources, such 589

as the multi-reference annotations of the sequenc- 590

ing task, to spur future relevant research. We also 591

anticipate that the alternative orders defined and 592

annotated in our work can benefit more comprehen- 593

sive task-procedure understanding. Future work 594

such as predicting task steps which can be parallel 595

or interchangeable, and understanding step depen- 596

dencies can be explored. 597
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8 Ethics and Broader Impacts598

We hereby acknowledge that all of the co-authors599

of this work are aware of the provided ACM Code600

of Ethics and honor the code of conduct. This601

work is mainly about sequencing a given series of602

multimodal task procedures, represented by text de-603

scriptions along with their images. The followings604

give the aspects of both our ethical considerations605

and our potential impacts to the community.606

Dataset. We collect the human performance on607

our sequencing task (both the standard human per-608

formance and the alternative order annotations) via609

Amazon Mechanical Turk (MTurk) and ensure that610

all the personal information of the workers involved611

(e.g., usernames, emails, urls, demographic infor-612

mation, etc.) is discarded in our dataset. While613

the sequence orders either from the original author614

intended ones or those annotated by the workers for615

the standard performance may possess unintended616

biases against certain population group of people617

(e.g. due to cultural differences or educational dif-618

ferences, some tasks may be performed differently619

from the original intended orders), we anticipate620

the additional multi-reference annotation can allevi-621

ate such an issue as well as provide a broader view622

to approach procedural understanding, i.e. certain623

task-steps can be interchanged.624

This research has been reviewed by the IRB625

board and granted the status of an IRB exempt.626

The detailed annotation process (pay per amount of627

work, guidelines) is included in the appendix; and628

overall, we ensure our pay per task is above the the629

annotator’s local minimum wage (approximately630

$12 USD / Hour). We primarily consider English631

speaking regions for our annotations as the task632

requires certain level of English proficiency.633

Techniques. We benchmark the proposed sequenc-634

ing task with the state-of-the-art large-scale pre-635

trained language and multimodal models with our636

novel sequence-aware pretraining techniques. As637

commonsense and task procedure understanding638

are of our main focus, we do not anticipate pro-639

duction of harmful outputs, especially towards vul-640

nerable populations, after training models on our641

proposed task.642
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A Details of Datasets891

A.1 Image Contents892

For simplicity and computational concerns, in this893

work we only pair one image to each of its asso-894

ciated task-step textual descriptions. However, in895

both WikiHow and RecipeQA, each task-step can896

have more than one associated images or visual897

contents represented by short clips or GIFs. We898

simply select the first image, which is supposed to899

be the most representative, for those step featuring900

multiple images; and sample the frame in the mid-901

dle of time interval for clips or GIFs. Nevertheless,902

our framework does not assume any limitation on903

how many images per step to be processed.904

A.2 WikiHow Categories905

The category in WikiHow generally forms a hier-906

archical directed acyclic graph. Each category can907

have its relevant subcategory, which usually spans908

finer-granularity of category types. For example, a909

possible category traversal path is: Cars and Vehi-910

cles →Public Transport →Air Travel, which can911

lead to the article How to Overcome the Fear of Fly-912

ing. We attach these full category traversal paths913

as an additional feature to each of the article in our914

dataset, and we also will provide a complete list915

of the taxonomy composed by all the categories916

and subcategories in WikiHow. We include the917

category-data counts in Table 5 for a reference,918

where we only show the top-level category here.919

The more in-depth categories can be referred to in920

the full released version of the dataset.921

A.3 Train-Dev Splits922

For RecipeQA we use the original data splits which923

ensure no identical recipe appears in more than one924

set (each recipe has its unique recipe-id), as this925

dataset only has one category and the data quality926

is much more uniform than that of WikiHow, i.e.927

most recipes fulfill our target dataset criteria.928

For WikiHow, we split the data according to929

the third level category to prevent models from ex-930

ploiting too similar task knowledge in the same931

category, where the level (three) is empirically de-932

cided. Specifically, we ensure that the third-level933

categories where the articles in our golden-test-set934

belong to, do not appear in the train set. We first935

split the WikiHow dataset into train, development,936

and test set following this strategy, and then con-937

struct our golden-test-set by sub-sampling a subset938

Categories Counts

Arts and Entertainment 4675
Cars and Other Vehicles 2044

Computers and Electronics 15023
Education and Communications 7406

Family Life 1747
Finance and Business 6228

Food and Entertaining 7670
Health 8800

Hobbies and Crafts 9217
Holidays and Traditions 736

Home and Garden 9460
Personal Care and Style 6523

Pets and Animals 5281
Philosophy and Religion 828

Relationships 2877
Sports and Fitness 3271

Travel 746
Work World 1579

Youth 2389
Others 21

Table 5: Top-Level Categories of WikiHow: Number of
unique articles in each top-level category of the WikiHow
dataset. The categories are sorted by alphabetical order. In to-
tal there are 19 top-level categories (same as what this page in-
dicates: https://www.wikihow.com/Special:CategoryListing),
and one "others" category for standalone leaf nodes without
real linkages to these top-level categories.

of this (larger) test set followed by manual inspec- 939

tions, to ensure its quality. And then, we simply 940

join the remaining test set samples to the devel- 941

opment set. Table 6 presents the more detailed 942

essential statistics of the two datasets, WikiHow 943

in Table 6a, and RecipeQA in Table 6b. 944

B Details of Human Annotation 945

B.1 Golden-Test-Set Selections 946

In order to construct a high-quality test set for hu- 947

mans to evaluate, we manually select the samples 948

which meet our general criteria: (1) the tasks are 949

procedural in both texts and images (2) the task’s 950

images are designed to complement the textual de- 951

scriptions or provide a more illustrative informa- 952

tion for some unstated implicit knowledge. We ask 953

three of our internal members (co-authors) to per- 954

form such manual selection, and preserve ones that 955

have majority votes. In total, we select 300 samples 956

for WikiHow and 100 samples for RecipeQA. 957

B.2 General Annotation Procedure 958

B.2.1 Standard Performance Benchmark 959

We collect the human performance via Amazon 960

Mechanical Turk (MTurk). Each MTurk worker is 961

required to read the provided instruction carefully, 962

as shown in Figure 5a, and then perform the task, 963
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Type Counts

Total Unique Articles 109486
Total Unique Images 1521909

Train / Dev / Golden-Test 98268 / 11218 / 300
Type-Token Ratio 216434 / 82396591 = 0.0026

Type Mean Std Min Max

Tokens in a Step Text 52.95 26.25 0 5339
Sentences in a Step Text 3.36 1.3 0 50
Number of Steps of a Task 5.27 2.62 0 75

(a) WikiHow

Type Counts

Total Unique Articles 10063
Total Unique Images 87840

Train / Dev / Golden-Test 8032 / 2031 / 100
Type-Token Ratio 91443 / 5324859 = 0.017

Type Mean Std Min Max

Tokens in a Step Text 82.08 84.72 0 998
Sentences in a Step Text 4.19 4.22 0 73
Number of Steps of a Task 6.45 2.57 4 20

(b) RecipeQA

Table 6: General statistics of the two datasets: We provide
the detailed component counts of the datasets used in this
work, including the statistics of tokens and sentences from the
instruction steps (lower half of the two tables).

which is designed to be done in an intuitive drag-n-964

drop (illustrated in Figure 5b) fashion.965

Each MTurk HIT is designed to have five sets966

of sequencing tasks followed by a few additional967

questions such as confidence level of the worker968

when inferring the order, and whether different969

modalities are helpful in a particular task. For each970

unique sample in the selected golden-test-set, we971

construct three annotation sets each for one modal-972

ity version: multimodal, text-only, and image-only.973

We launch the HITs containing the same sample974

but with different modalities with a week gap to975

prevent potential memorization if the same worker976

happens to annotate the exactly identical data sam-977

ple. We estimate the time required to complete978

each of our HITs to be 10-15 minutes, and adjust979

our pay rate accordingly to $2 or $3 USD depend-980

ing on the length of the task. This roughly equates981

to a $12 to $15 USD per hour wage, which is above982

the local minimum wage for the workers. In total983

we receive annotated HITs from around 80 workers984

for WikiHow, and 14 workers for RecipeQA.985

In order to ensure annotation quality and filter986

potential MTurk spammers, we design a few sets to987

be our qualification rounds for later on worker pool988

selection. The Pearson correlation between the989

performance of the qualification samples and the990

overall HIT performance is 0.6 with p-value < 0.05.991

Since it is positive correlated and significant, we992

censor assignments with substantially low overall 993

performance (<20% on accuracy metric), and re- 994

launch the HITs containing those samples for a few 995

more rounds for higher quality annotations. 996

Finally, since the agreement is sufficiently high 997

(see Section 3.2), we simply compute the human 998

performance using all of the collected annotated 999

orders from all the participated workers, which 1000

result in reasonably high human performance upper 1001

bound for our proposed sequencing task. 1002

B.2.2 Annotating Alternative Orders 1003

We deliberately ask a different set of MTurk work- 1004

ers than those participated in the standard per- 1005

formance benchmark round for annotating the al- 1006

ternative orders. In total we receive HITs from 1007

around 70 workers for WikiHow, and 40 workers 1008

for RecipeQA. The monetary rewards and other 1009

general settings follow the same procedure as in 1010

the standard performance collection. We compute 1011

pairwise IAAs for each worker against every other 1012

workers, using the method described in Append. 1013

Sec. B.3, and then we place a threshold to filter out 1014

workers that tend to have too low IAAs (which is a 1015

likely indicator that a worker is either a spammer or 1016

not understanding our task well). As the final IAAs 1017

among the selected pool of workers are sufficiently 1018

high (see Section 3.2), for each instance we per- 1019

form a majority vote on the annotated alternative 1020

orders to serve as the final multi-references. 1021

B.3 Inter-Annotator Agreements (IAA) 1022

B.3.1 Standard Performance 1023

As orders concern not only positioning of the 1024

items but also more complicated relative informa- 1025

tion among the items in a sequence, we propose 1026

to measure the agreements among orders center- 1027

ing around the concept of pairwise relationship. 1028

Specifically, we transform an integer sequence or- 1029

der to an one-hot encoded representation of the 1030(
N
2

)
pairs of relative relations. Consider an ex- 1031

ample: suppose three items (1, 2, 3) are to be 1032

ordered, and all the pairwise relations are {12, 13, 1033

21, 23, 31, 32}. The transformed one-hot rep- 1034

resentation is defined as: R123 = {12: 1, 13: 1, 1035

21: 0, 23: 1, 31: 0, 32: 0} = {110100}, i.e. , 1036

R(ij) = 1 iff ij is a valid relatively ordered pair. 1037

Similarly, R231 = {001110}. 1038

Using the aforementioned definition of R, we 1039

can compute Cohen’s Kappa inter-annotator agree- 1040

ment score for a pair of annotated order per each 1041

instance. The overall scores can be computed by 1042
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firstly taking the average of pairwise Kappa scores1043

of annotations for each instance, and then taking1044

the average across the entire dataset.1045

B.3.2 Alternative Orders1046

To evaluate the agreements for the alternative or-1047

ders, we focus on the differences between an order1048

and the ground truth in their transformed represen-1049

tations. We first compute the one-hot difference be-1050

tween an alternative order to the ground truth order,1051

e.g. suppose ground truth order is simply og =123,1052

and an alternative order is o1 =132, then Rdiff
og ,o1 =1053

abs|{110100} - {110001}| = {000101}. To focus1054

on the agreements of the differences to the original1055

ground truth, we apply the Kappa score on a pair of1056

orders by retaining the union of the positions where1057

each order differ from the ground truth in their one-1058

hot representations. For example, if o2 =213, then1059

Rdiff
og ,o2 = abs|{110100} - {011100}| = {101000},1060

and hence the differences to the ground truth are1061

at positions 4, 6 from o1 and 1, 3 from o2, i.e. the1062

union is {1, 3, 4, 6}. Computing the Kappa scores1063

on Rdiff
og ,o1 and Rdiff

og ,o2 at these positions leads to1064

computing the scores on lists {0011} and {0110}.1065

To compute the agreements of two series of al-1066

ternative orders from two annotators (the series can1067

have different lengths), we first iteratively find all1068

the best matching pair of orders from the two series1069

(each order in a series can only be matched once).1070

When one series contain more orders than the other,1071

the remaining unmatched orders will be compared1072

to the ground truth to serve as the penalty. For1073

a particular instance, we take the mean of all the1074

Kappa scores (the best-matching-pair and penalty1075

scores) as the IAA for the two annotators, as de-1076

tailed in Algorithm 1. The overall IAA is computed1077

similarly to the standard case.1078

Annotation Statistics. Table 7 lists the essential1079

statistics of the multi-reference subsets.1080

B.4 Additional Statistics1081

Apart from the main sequencing task, we also ask1082

the annotators for their confidence of predictions1083

and if multimodality is helpful for deciding the or-1084

der in the standard benchmark round. We hereby1085

provide two more statistics obtained from the work-1086

ers: the percentages of confidence levels and which1087

modality (modalities) helps for deciding the order.1088

Modality Helps. As which modality is potentially1089

more helpful, we include the percentages of each1090

answer category in Table 8. It can be noticed that1091

Algorithm 1 Alternative Order IAA Per Instance

Require: {An}Nn=1: A list of annotation series,
where An = {an,k}Kn

k=1 denotes Kn orders
annotated by nth worker for an instance.

Require: f(x, y): IAA scoring function.
1: Initialize S: empty score list
2: for i = 1 to N do
3: for j = i+ 1 to N do
4: One-hot encode {ai,k}, and {aj,k}
5: Assume Ki < Kj // otherwise swap
6: while {ai,k} not empty do
7: Find best match according to Rdiff

8: m̂, n̂ = arg max
m,n

f(Rdiff
og ,oi,m , R

diff
og ,oj,n)

9: {ai,k}.pop(m̂); {aj,k}.pop(n̂)
10: S = S ∪ score
11: end while
12: while {aj,k} not empty do
13: S = S ∪ f(og, oj,m); {aj,k}.pop(m)
14: end while
15: end for
16: end for
17: return mean(S)

Modality WikiHow (300) RecipeQA (100)
Cnt Min/Max Avg/Std Cnt Min/Max Avg/Std

Image-Only 24 2/4 2.1/1.4 13 2/3 2.1/0.3

Text-Only 49 2/6 2.4/0.9 12 2/6 2.4/1.1

Multimodal 51 2/4 2.1/0.5 3 2/6 4/1.6

Table 7: Multi-reference subset statistics: We report the
count of multi-reference instances in each dataset across the
three modalities, and their basic statistics.

Dataset Both Text-Only Image-Only Neither

RecipeQA 90.4 1.0 8.6 0.0
WikiHow 62.9 33.7 2.4 1.0

Table 8: Which modality helps? We compute the percent-
age of each answer category. In both datasets, majority of
the annotations indicate that both modality are helpful for
deciding the orders.

majority of workers (> 60%) think that multimodal 1092

(both modalities) is helpful, and especially in the 1093

recipe data, there are > 90% of workers indicating 1094

the effectiveness of utilizing multimodal inputs. 1095

Confidence Levels. As shown in Table 9, majority 1096

of workers feel at least fairly confident (score of 1097

4) about their predictions, which can justify the 1098

validity of our selection of golden-test-set. 1099
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Confidence Level WikiHow RecipeQA

5 (Very) 54.61 64.75
4 (Fairly) 27.38 23.00
3 (Moderately) 12.24 7.00
2 (Somewhat) 5.21 4.75
1 (Not-At-All) 0.56 0.50

Table 9: Confidence Level Statistics (%): In both datasets,
majority (> 80%) of the annotators indicate at least > 4 (fairly)
confidence level, which can help justify the validity of the
human performance.

C Additional Results1100

C.1 Qualitative Inspections1101

Figure 4 shows a few qualitative examples in dif-1102

ferent categories. Figure 4a shows that while step1103

1 and 3 may seem confusing if only looking at1104

the texts, the images can help deciding the proper1105

order, whereas models may fail to grasp such mul-1106

timodal information in Figure 4b. In Figure 4c we1107

show an example where multi-reference benefits1108

both humans and the models, although in reality1109

it should be more commonsensical to stir before1110

refrigerating the mixtures.1111

C.2 Image-Only Multi-References1112

We also provide the detailed multi-reference per-1113

formance break down on the image-only modality1114

using the best performing models in Table 1, CLIP,1115

in Table 10 for references.1116

D More Model Details1117

Multimodal Model Considerations. Bugliarello1118

et al. (2020) suggests that many V&L models can1119

achieve similar downstream performance if well1120

trained, and thus we consider the models presented1121

in this work, VisualBERT and CLIP-ViL, due to1122

their simplicity of adapting to our sequencing task,1123

as well as their main differences being how the1124

visual inputs are encoded (via standard object de-1125

tector networks or patch-based models like CLIP),1126

which suits our proposed objectives well.1127

Swapping-Based Predictions. In Section 4.2.21128

we mention that we do not observe necessary im-1129

provements when swapping the textual contents.1130

Our hypothesis is that the pairwise loss function1131

applied in the BERSON module already takes care1132

of this especially for the textual contents. And1133

that the stronger discourse-level hints inherent in1134

the textual descriptions may make this operation1135

unnecessary. On the other hand, both image and1136

multimodal alignment does not share this similar1137

property with the texts, and hence this reasons why 1138

swapping the visual modality suffices this particu- 1139

larly pretraining objective. 1140

D.1 Training & Implementation Details 1141

Training Details. All the models in this work 1142

are trained on a single Nvidia A100 GPU15 on 1143

a Ubuntu 20.04.2 operating system. The hyperpa- 1144

rameters for each model are manually tuned against 1145

different datasets, and the checkpoints used for test- 1146

ing are selected by the best performing ones on 1147

the held-out development set, which is constructed 1148

using the method described in Append. Sec. A.3. 1149

Implementation Details. The implementations of 1150

the transformer-based models are extended from 1151

the HuggingFace16 code base (Wolf et al., 2020), 1152

and our entire code-base is implemented in Py- 1153

Torch.17 The computer vision detector model used 1154

in one of our image-only encoders, ResNet-based 1155

Faster-RCNN (Ren et al., 2016), adopts the detec- 1156

tron2 open sourced module, and their pretrained 1157

weights are obtained from the official implemen- 1158

tation from Facebook AI Research.18 Implemen- 1159

tation of BERSON modules are adapted from the 1160

original author’s implementation, where more de- 1161

tails can be found in their paper. Implementation 1162

of the VisualBERT is obtained from the MMF19 1163

framework from Facebook AI Research, and CLIP- 1164

ViL model is obtained and adapted from the origi- 1165

nal author’s released code repository.20 We use this 1166

same repository for the image-only encoder CLIP. 1167

D.2 Hyperparameters 1168

For the sequencing task, we train all the models 1169

for 5 or 10 (for multimodal models) epochs for all 1170

the model variants, where the training time varies 1171

from 2-4 hours for the text-only models and 6-8 1172

hours for the multimodal models. We list all the 1173

hyperparameters used in Table 11. We also include 1174

the search bounds and number of trials in Table 1175

12, that all of our models adopt the same search 1176

bounds and ranges of trials. 1177

D.3 WikiHow Images 1178

Although the images in WikiHow can often be syn- 1179

thetic or "cartoon-ish", we observe that modern 1180

15https://www.nvidia.com/en-us/data-center/a100/
16https://github.com/huggingface/transformers
17https://pytorch.org/
18https://github.com/facebookresearch/detectron2
19https://github.com/facebookresearch/mmf
20https://github.com/clip-vil/CLIP-ViL
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How To Clean Platinum

Line a pan with tin foil. 
A cookie sheet should 
work as long as it is 
deep enough to fit your 
platinum…

Mix your base solution. 
Combine one cup of 
boiling water with one 
tablespoon of salt and 
one tbsp of soda…

Add vinegar to the pan. 
Pour half a cup of white 
vinegar to into the pan. 
The vinegar will activate
the base solution…

Pour the solution over 
your platinum. Carefully 
pour the the baking 
soda, salt and water 
solution into the pan…

Rinse and dry your 
platinum. Remove your 
jewelry from the pan. 
Run some lukewarm 
water and rinse…

1 2 3 4 5

(Multimodal, Text-Only, Image-Only) Human Performance = (1.0/1.0, 0.8/0.8, 0.2/0.2)

Multimodal Alt. GTs: [N/A]
Multimodal Model: 1⇢2⇢3⇢4⇢5 (1.0/1.0)

Text-Only Alt. GTs: [32145]
Text-Only Model: 3⇢2⇢1⇢4⇢5 (0.6/1.0)

Image-Only Alt. GTs: [15342]
Image-Only Model: 3⇢5⇢2⇢4⇢1 (0.2/0.4)

Best Model Predictions

(a) Home and Garden Sample
How To Make a Yarn Pumpkin

Find a small, plastic 
pumpkin to use as your
base. If you can't find 
one, you can use a 
Styrofoam ball instead…

Secure the end of your 
yarn to the base of your 
pumpkin with a drop of 
hot glue…

Consider wrapping 
brown or green yarn 
around the stem…

Start wrapping the yarn 
around your pumpkin, 
gluing as you wrap…

Neaten your pumpkin 
up. Trim off any loose 
bits of yarn, and glue 
down any bits that stick 
up…

1 2 3 4 5

(Multimodal, Text-Only, Image-Only) Human Performance = (1.0/1.0, 0.6/0.6, 0.5/0.5)

Multimodal Alt. GTs: [N/A]
Multimodal Model: 4⇢2⇢3⇢1⇢5 (0.6/0.6)

Text-Only Alt. GTs: [N/A]
Text-Only Model: 4⇢2⇢3⇢1⇢5 (0.6/0.6)

Image-Only Alt. GTs: [N/A]
Image-Only Model: 5⇢2⇢4⇢1⇢3 (0.2/0.2)

Best Model Predictions

(b) Hobbies and Crafts Sample
How To Make a Candy Cake

Melt the marshmallows. 
In a saucepan, melt one 
package of miniature 
marshmallows, ¾ cup of 
canola oil…

Combine the candy, 
peanuts, and popcorn. 
In a large bowl, 
combine 20 cups (5 
quarts) of popped 
popcorn…

Refrigerate the mixture. 
Press the mixture into a 
greased 10-inch tube 
pan…

Stir in the marshmallow 
mixture. Pour the 
melted marshmallow 
mixture into popcorn…

Take the cake out of the 
pan. Dip the pan in hot 
water for 5-10 
seconds...

1 2 3 4 5

(Multimodal, Text-Only, Image-Only) Human Performance = (0.6/1.0, 0.6/1.0, 0.5/0.5)

Multimodal Alt. GTs: [12435]
Multimodal Model: 1⇢2⇢4⇢3⇢5 (0.6/1.0)

Text-Only Alt. GTs: [12435]
Text-Only Model: 1⇢2⇢4⇢3⇢5 (0.6/1.0)

Image-Only Alt. GTs: [12435]
Image-Only Model: 2⇢3⇢5⇢1⇢4 (0.0/0.0)

Best Model Predictions

(c) Recipe Sample

Figure 4: Qualitative examples: We show some qualitative samples of our dataset associated with human and model
predictions, and the annotated multi-reference ground truths. The texts are truncated to fit into the box shown in each sample.
The performance are: (single-reference, multi-reference) accuracy metric respectively.

Modality Subset
WikiHow Golden-Test-Set (Size: 300) RecipeQA Golden-Test-Set (Size: 100)

Acc↑ PMR↑ Lr ↑ Acc↑ PMR↑ Lr ↑
single multi single multi single multi single multi single multi single multi

Image-Only

Single 28.38 — 5.07 — 1.97 — 49.89 — 17.24 — 2.47 —
Multi. 26.67 39.17 4.17 8.33 1.83 1.92 29.23 40.00 7.69 7.69 1.92 2.31

All 28.24 29.24 5.00 5.33 1.96 1.97 47.2 48.60 16.00 16.00 2.40 2.45
Single† 68.47 — 48.36 — 3.54 — 81.61 — 66.67 — 4.10 —
Multi.† 64.58 75.83 37.50 56.25 3.19 3.71 72.31 79.23 50.00 61.54 3.50 3.88

All† 68.16 69.06 47.49 48.99 3.51 3.55 80.40 81.30 64.50 66.00 4.02 4.07

∗ The size of the Multi. subsets are: 24/300 in WikiHow and 13/100 in RecipeQA.

Table 10: Multi-reference performance on image-only modality: † denotes human performance. The denotations are same
as the Table 3. Results are reported using the best performing image-only models from Table 1.

object detectors can still propose meaningful re-1181

gions, regardless of whether the object class predic-1182

tion is sensible or not. We include some predicted1183

bounding boxes in Figure 6 for references. And1184

hence, although there may be concerns on subop-1185

timal visual understanding from these images, we1186

do believe both of our ResNet and CLIP visual1187

encoders can extract reasonably useful features.1188

E Releases & Codes1189

The scraped WikiHow dataset will be released upon1190

acceptance, along with a clearly stated documenta-1191

tion for usages. We will also release the code for1192

processing the RecipeQA dataset particularly for1193

our procedure sequencing task, where the original1194

dataset can be obtained from their project web- 1195

site.21 If permitted by the authors of the BERSON 1196

model, we will also release the cleaned code repos- 1197

itory which encompasses the majority of the im- 1198

plementations in this work upon acceptance. We 1199

hope that by sharing the datasets and their essential 1200

tools, more interest could be drawn into research on 1201

multimodal procedure understanding and its future 1202

research directions. 1203

21https://hucvl.github.io/recipeqa/
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Modalities Models Batch Size Initial LR # Training Epochs Gradient Accu- # Paramsmulation Steps

Image-Only ResNet 4 5× 10−6 5 1 112.98M
CLIP 4 5× 10−6 5 1 88.08M

Text-Only RoBERTa 4 5× 10−6 5 1 393.16M

Multimodal VisualBERT 4 5× 10−6 10 1 421.32M
CLIP-ViL 4 5× 10−6 10 1 497.40M

Image-Only Pretrain CLIP 4 1× 10−5 5 1 68.09M
Text-Only Pretrain RoBERTa 4 1× 10−5 5 1 355.36M

Multimodal Pretrain VisualBERT 4 1× 10−5 5 1 383.52M
CLIP-ViL 4 1× 10−5 5 1 465.50M

Table 11: Hyperparameters in this work: Initial LR denotes the initial learning rate. All the models are trained with Adam
optimizers (Kingma and Ba, 2015). We include number of learnable parameters of each model in the column of # params.

Type Batch Size Initial LR # Training Epochs Gradient Accumulation Steps

Bound (lower–upper) 2–8 1× 10−5–1× 10−6 3–10 1–2

Number of Trials 2–4 2–3 2–4 1–2

Table 12: Search bounds for the hyperparameters of all the models.

(a) Human Annotation Instruction

(b) Sample Annotation Interface

Figure 5: MTurk Annotation User Interface: (a) We ask the annotator to follow the indicated instruction, and perform the
sequencing task. (b) The annotation task is designed for an intuitive drag-and-drop usage, followed by a few additional questions
such as confidence level and whether each modality helps. (This example is obtained from RecipeQA dataset.)
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(a) Detected Image Regions 1 (b) Detected Image Regions 2

Figure 6: Proposed image regions by Detectron2: We show some examples that even these synthetic and cartoon-ish images
in the WikiHow dataset can provide meaningful representations which can be utilized by strong pretrained object detection
modules. We show few top-detected objects with their bounding boxes and predicted classes. Note that while the classes may be
wrongly predicted, the proposed regions are all meaningful.
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