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Abstract

Temporal Expression Extraction (TEE) is es-
sential for understanding time in natural lan-
guage. It has applications in Natural Lan-
guage Processing (NLP) tasks such as question
answering, information retrieval, and causal
inference. To date, work in this area has
mostly focused on English as TEE for low-
resource languages is hindered by a scarcity
of training data. We propose XLTime, a
novel framework for zero-shot low-resource
language TEE. XLTime works on top of pre-
trained language models and leverages multi-
task learning to prompt cross-language knowl-
edge transfer both from English and within the
low-resource languages. It alleviates the prob-
lems caused by the shortage in low-resource
language training data. We apply XLTime
with different language models and show that
it outperforms the previous automatic SOTA
methods on four low-resource languages, i.e.,
French, Spanish, Portuguese, and Basque, by
large margins. It also closes the gap consider-
ably on the handcrafted HeidelTime tool.

1 Introduction

Temporal Expression Extraction (TEE) refers to the
detection of temporal expressions (such as dates,
durations, etc. as shown in Table 1). It is an impor-
tant NLP task and has downstream applications in
question answering (Choi et al., 2018), information
retrieval (Mitra et al., 2018), and causal inference
(Feder et al., 2021). Most TEE methods work on
English and are rule-based (Strétgen and Gertz,
2013; Zhong et al., 2017). Deep learning-based
methods (Chen et al., 2019; Lange et al., 2020)
are less common and report results on par with or
inferior to the rule-based SOTAs.

Moreover, methods that work on low-resource
languages are rare, because of the scarcity of an-
notated data. We find that that there is consider-
able room for improving TEE, especially for low-
resource languages (e.g., the previous SOTA per-

Table 1: Temporal expressions of different types (See Ap-
pendix A for the definitions of the types).

In the last three months (Duration), net revenue rose 4.3%
to $525.8 million from $504.2 million last year (Date).
The official news agency, which gives the daily (Set)

tally of inspections, updated on Friday evening (Time).

formance on the English TE3 dataset (UzZaman
et al., 2013) is around 0.90 in F1, while that on
the Basque TEE benchmark (Altuna et al., 2016)
is merely 0.47). Recent deep learning methods,
which have shown gains for many tasks, are under-
explored for this important area of NLP.

Developing an approach that can learn from a
limited amount of training data is crucial for this
field because of the efforts required to develop high-
quality rules for any language. Thus we propose
a cross-lingual knowledge transfer framework for
zero-shot low-resource language TEE, namely, XL-
Time. We base our framework on pre-trained multi-
lingual models (Devlin et al., 2019; Conneau et al.,
2020). We then use Multi-Task Learning (MTL)
(Liu et al., 2019a) to prompt knowledge transfer
both from English and within the low-resource lan-
guages. We design primary and secondary tasks.
The former leverages the existing data of the other
languages. It transfers explicit knowledge that ex-
plicitly tells the forms of the temporal expressions
in a source language. The latter constructs its train-
ing data in a self-supervised (Liu et al., 2021) man-
ner. It transfers implicit knowledge by teaching the
model to tell if a sentence in the farget language
contains temporal expressions.

Contributions. 1) We propose XLTime, which
prompts cross-lingual knowledge transfer using
MTL to address low-resource language TEE. 2)
We show that XLTime outperforms the previous
automatic SOTA methods by large margins on four
low-resource languages, i.e., French, Spanish, Por-
tuguese, and Basque, in a zero-shot setting. 3)
We show that XLTime also approaches the per-



formance of the heavily handcrafted HeidelTime
(Strotgen and Gertz, 2013), and even beats it on
two languages (Portuguese and Basque). We make
our code and data publicly available .

2 Related Work

While TEE is an important problem in NLP, there
is relatively little work in the area, and most of
this work focuses on English. Prior art can be di-
vided into two classes: rule/pattern-based and deep
learning approaches. In the first class, Heidel Time
(Strotgen and Gertz, 2013) is the most commonly
used tool and is the top approach to date, even
though it is a collection of finely-tuned rules. It
covers over a dozen languages. The approach was
later extended to more languages with HeidelTime-
auto (Strotgen and Gertz, 2015), which leverages
language-independent processing and rules. Other
approaches include SynTime (Zhong et al., 2017),
which is based on heuristic rules, and SUTIME
(Chang and Manning, 2012) and PTime (Ding et al.,
2019), which leverages pattern learning.

For the second class, Laparra et al. (2018) pro-
poses a model based on RNNs. Chen et al. (2019)
uses BERT with a linear classifier. Lange et al.
(2020) inputs mBERT embeddings to a BILSTM
with a CRF layer and outperforms Heidel Time-auto
on four languages. However, the reported perfor-
mances of the deep learning-based methods are
inferior to the rule-based ones, which is, in part,
due to the complexity of the problem and training
data paucity. In our work, we propose a new model
which outperforms prior deep learning methods but
also closes the gap considerably on HeidelTime.

3 Proposed Method

We formalize TEE as a sequence labeling task, sim-
ilar to named entity recognition (NER) (Lample
et al., 2016). Figure 1 shows the architecture of
XLTime.

3.1 Pre-trained Multilingual Backbone

We adopt SOTA multilingual models (Devlin et al.,
2019; Conneau et al., 2020) as the backbone of
XLTime, denoted as: T'(E(X)). X is the input se-
quence. E and T are the lexicon and Transformer
encoder layers as shown in Figure 1(b). The back-
bone allows XLTime to acquire semantic and syn-
tactic knowledge of various languages. It is shared
by the MTL tasks introduced in Section 3.2.

! Github to be added.

3.2 MTL-based Cross-Lingual Knowledge
Transfer

XLTime transfers knowledge from multiple source
languages to the low-resource target language. The
source languages include English and other lan-
guages for which TEE training data is available.
We design primary and secondary tasks on top
of the backbone to prompt explicit and implicit
knowledge transfer. The primary task transfers
knowledge that explicitly encodes the forms of the
temporal expressions in a source language. It is for-
malized as sequence labeling and directly leverages
the training data of the source language to train the
backbone along with the primary task head, shown
in Figure 1 (b). The primary task minimizes Lg;:

b my;

Log=— Z Z 1(yij, c)log(softmax(W - x)), (1)
i=1 j=1

where x € R? is the embedding of a token output
by the backbone. W € RI°1*? is the primary task
head. c and y;; are the predicted and ground-truth
labels of the token. b is the total number of input
sequences and m; is the length of the ith sequence.

The secondary task implicitly reveals how the
temporal expressions would be expressed in the
target language. We translate the sequences in
the source language training data into the target
language using Google Translate? (we also exper-
iment with AWS Translate’ and observe similar
results). The secondary task is formalized as bi-
nary classification, where the input samples are the
translated sequences and the labels are indicators
of whether or not the original sequences contain
temporal expressions (can be easily inferred from
the original labels). This task tunes the model to
learn the characteristics of temporal expressions in
the target language in an implicit manner. It is self-
supervised and requires no token-level labeling. It
trains the backbone along with the secondary task
head and minimizes Ly,

b
Lye = — Z L(yi, ¢)log(softmazx(W'-x")), (2)
1=1

where x’ € R? is the sequence embedding output
by the [CLS] of the backbone. W’ € R?*¢ is the
secondary task head. ¢’ and y, are the predicted
and true sequence labels. We train XLTime concur-
rently on the primary and secondary tasks, further
explanation is in Appendix B.

Zhttps://translate.google.com/
3https://aws.amazon.com/translate/



(a) Sample Input and label

Task 1:
_\'us: Six deaths were reported in  the last  week.\ Primary task head Secondary task head Task-type-specific
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Xy: 1l est possible quiil y en ait plus. ¥ Yi2 : 0 >SS ~<_ Trnsate __—~ - — > Task4

(b) Architecture of the XLTime Framework

Figure 1: The architecture and sample training input of the proposed XLTime framework (best viewed in color).

Table 2: Dataset statistics (more details in Appendix C).

Lang | Dataset # Exprs
FR Bittar et al. (2011) 425
ES UzZaman et al. (2013) 1,094
PT Costa and Branco (2012) 1,227
EU Altuna et al. (2016) 847

TE3 (UzZaman et al., 2013) 1,830
EN Wikiwars (Mazur and Dale, 2010) 2,634
Tweets (Zhong et al., 2017) 1,128

An Illustrative Example. In Figure 1, Tasks 1 and
4 transfer knowledge from English to French. Task
1 (primary) transfers knowledge about the exact
forms of English temporal expressions using token-
level labels (Y71 and Y79). Task 4 (secondary) takes
the French translations (X4; and X4o) of X711 and
X129 as input and let Y4y and Yj9 indicate whether
or not the original sequences contain temporal ex-
pressions (can be inferred from Y7; and Yi2). Task
4 provides indirect knowledge about French tem-
poral expressions. Similarly, Tasks 2 and 3 transfer
from Spanish to French.

4 [Experiments

4.1 Experimental Setup

Datasets. We use the English (EN), French (FR),
Spanish (ES), Portuguese (PT), and Basque (EU)
TEE benchmark datasets. Table 2 shows dataset
statistics (see Appendix C for a more detailed de-
scription). For each target language, we split its
dataset with 10% for validation and 90% for test.
For each source language (applicable to XLTime),
we use the whole dataset for training.

Baselines. We evaluate against rule-based as
well as deep learning-based methods. We com-
pare to the handcrafted Heidel Time (Strotgen and
Gertz, 2013) and its automatically extended ver-
sion, HeidelTime-auto (Strotgen and Gertz, 2015).

We also compare to deep learning methods: BiL-
STM+CRF (Lange et al., 2020), mBERT, base and
large versions of XLMR (trained on English TEE
datasets and evaluated on low-resource languages).
Our Approaches. We test out several variants of
our proposed model, which can be broken into two
classes: 1) Cross-lingual transfer from EN. We
apply XLTime on mBERT, base and large versions
of XLMR and use EN as the only source language.
2) Cross-lingual transfer from EN and others. We
transfer from other languages in addition to EN.
Experimental settings are found in Appendix D.
Evaluation Metrics. We report F1, precision, and
recall in strict match (UzZaman et al., 2013), i.e.,
all its tokens must be correctly recognized for an
expression to be counted as correctly extracted.
We follow the setting in prior work of evaluating
“without type” and report the results without con-
sidering the types of the temporal expressions (e.g.,
for ‘see you tomorrow’, a prediction such as ‘O O
B-Duration” would be counted as correct, though
the proper labeling would be ‘O O B-Date’).

We do note that the temporal expression field
should ultimately evaluate on the more complex
task of identifying temporal expressions as well
as their types. This is in the spirit of the annota-
tions and is in line with other sequence labeling
tasks, such as NER. Therefore, we also experiment
with the “with type” setting and show results in Ap-
pendix F. In both settings, the observations made
in Section 4.2 hold and XLTime outperforms the
previous automatic SOTAs by large margins.

4.2 Evaluation Results

We evaluate XLTime on zero-shot low-resource lan-
guage TEE (see Table 3). We observe: 1) XLTime-
XLMRIlarge outperforms the strongest automatic
baseline by up to 13%, 14%, and 18% in F1, pre-
cision, and recall on all languages. It even out-



Table 3: Zero-shot low-resource language TEE results (w/o type).

Model FR ES PT EU

F1 Pr. Re. | FI Pr. Re. | FI Pr. Re. | FI Pr. Re.
Automatic Baseline Models
HeidelTime-auto 0.55 0.65 0.47 042 0.58 0.33 0.50 0.67 0.39 0.17 0.66 0.10
BiLSTM+CRF(temp) 0.64 0.73 0.57 0.62 0.68 0.56 0.64 0.66 0.63 0.47 0.58 0.40
mBERT 0.63 0.70 0.58 062 069 0.56 0.66 0.63 0.69 0.65 0.71 0.60
XLMR-base 0.69 0.75 0.64 0.54 0.61 0.48 0.63 0.64 0.62 0.46 0.64 0.36
XLMR-large 0.75 0.78 0.73 0.72 0.75 0.69 0.75 0.74 0.76 070 0.74 0.67
Cross—-Lingual Transfer from EN (Ours)
XLTime-mBERT 0.73 0.73 0.72 0.71 0.77  0.66 0.67 0.64 0.71 0.76 0.81 0.71
XLTime-XLMRbase 0.78 0.79 0.78 066 070 0.63 0.68 0.67 0.70 0.71 0.76  0.66
XLTime-XLMRlarge 076  0.79 0.73 072 079 0.67 0.77 0.74 0.81 0.78 085 0.71
Cross—-Lingual Transfer from EN and Additional Source Languages (Ours)
XLTime-mBERT 0.80 0.77 0.82 0.77 079 0.74 0.80 0.77 0.83 0.77 0.82 0.72
XLTime-XLMRbase 0.82 0.79 0.86 072 0.78 0.68 0.73 0.72 0.75 0.79 086 0.73
XLTime-XLMRlarge 084 082 0.86 0.75 0.79 0.71 0.84 0.82 0.87 0.79 084 0.74
Handcrafted Method
HeidelTime \ 0.86 0.87 0.85 \ 0.86 0091 0.81 \ 0.60 0.64 0.57 \ / / /

Table 4: Zero-shot low-resource language TEE with additional source languages (F1 scores w/o type). The blue cells are
expected to, while the underlined cells actually outperform (by > 4%) using EN as the only source language.

Target Language FR ES

Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.73 0.76 0.72 0.80 0.71 0.72 0.72 0.77
XLTime-XLMRbase 0.78 0.76 0.78 0.82 0.66 0.68 0.71 0.72
XLTime-XLMRlarge 0.76 0.81 0.80 0.84 0.72 0.72 0.75 0.73
Target Language PT EU

Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.67 0.80 0.70 0.80 0.76 0.73 0.75 0.77
XLTime-XLMRbase 0.68 0.73 0.63 0.56 0.71 0.74 0.75 0.79
XLTime-XLMRlarge 0.77 0.82 0.84 0.74 0.78 0.79 0.79 0.77

performs the handcrafted HeidelTime method by
a large margin (24% in F1) in PT. 2) Applying
XLTime improves upon the vanilla language mod-
els, even by transferring knowledge only from EN.
E.g., XLTime-XLMRbase outperforms XLMR-
base by 13%, 22%, 8%, and 54% in F1 on FR,
ES, PT, and EU. 3) Introducing additional source
languages to XLTime further improves the perfor-
mance: the F1 improves by up to 19%, 11%, and
11% for XLTime-mBERT, XLTime-XLMRbase,
and XLTime-XLMRIlarge. 4) HeidelTime is a very
hard baseline to beat given the time and care that
went into developing language-specific rules. How-
ever, XLTime approaches its performance for FR
and ES, outperforms it for PT, and makes predic-
tions for EU (where HeidelTime has no rules).

We also study the effect of transferring addi-
tional knowledge from low-resource language(s),
see Table 4 and Appendix E. Our assumption is,
similar languages (FR, ES, and PT) would help
each other (one exception is PT, as its dataset is
translated from the EN dataset and we, therefore,

don’t expect it to provide a benefit beyond what
EN already provides). We observe: 1) In most
cases, transferring additional knowledge from simi-
lar languages does help (the blue cells overlap with
the underlined cells), and improves the F1 by up
to 13%. 2) In some rare cases, negative transfer
(Wu et al., 2020) occurs as adding source languages
hurts performance (e.g., EN, ES — PT scores lower
than EN — PT for XLTime-XLMRbase). We hy-
pothesize this is related to the quality of the datasets
and plan to address this in the future (Appendix H).

5 Conclusion

We propose XLTime for zero-shot low-resource
language TEE. XLTime is based on language mod-
els and leverages MTL to prompt cross-language
knowledge transfer. It greatly alleviates the prob-
lems caused by the shortage in low-resource lan-
guage data and shows results superior to the previ-
ous automatic SOTA methods on four languages.
In addition, it approaches the performance of a
highly engineered rule-based system.
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Algorithm 1: Training XLTime

1 //Initialize model.

2 Load the parameters of F and 7" from a
pre-trained multilingual model.

3 Initialize W and W’ randomly.

4 // Prepare task data.

s for ¢ in {primary, secondary} do

6 Split the data of task ¢ into

mini-batches B

EN]

B= primary U Bsecandary
forein I, ..., epoch do

9 Randomly shuffle B
10 //by is a mini-batch of task ¢
11 for b; in B do

o®

12 if t is a primary task then

13 ‘ L = Equation 1

14 else

15 L Ly, = Equation 2

16 Compute gradient and update
model parameters

A Types of the Temporal Expressions

According to ISO-TimeML (Pustejovsky et al.,
2010), the TEE dataset annotation guideline, there
are four types of temporal expressions, i.e., Date,
Time, Duration, and Set. Date refers to a calendar
date, generally of a day or a larger temporal unit;
Time refers to a time of the day and the granularity
of which is smaller than a day; Duration refers to
the expressions that explicitly describe some period
of time; Set refers to a set of regularly recurring
times (Pustejovsky et al., 2010).

B The Training Procedure

We adopt mini-batch-based stochastic gradient de-
scent (SGD) to train XLTime, as shown in Algo-
rithm 1. To concurrently train on the primary and
secondary tasks, we split the training data of both
tasks into mini-batches and randomly take one at
each step. We then calculate loss using that mini-
batch and update the parameters of the shared back-
bone (including F and T) as well as the task-type-
specific head. The head of the other task type is
unaffected.

C Detailed Statistics of the Datasets

Table 5 shows the detailed statistics of the datasets
used in this study.



Table 5: The statistics of the datasets.

Lang | Dataset Domain  #Docs #Exprs #Dates #Times #Durations #Sets
FR Bittar et al. (2011) News 108 425 227 130 52 16
ES UzZaman et al. (2013) News 175 1,094 749 57 251 37
PT Costa and Branco (2012) News 182 1,227 998 41 176 12
EU Altuna et al. (2016) News 91 847 662 22 151 12

TE3 (UzZaman et al., 2013) News 276 1,830 1,471 34 291 34
EN | Wikiwars (Mazur and Dale, 2010)  Narrative 22 2,634 2,634 0 0 0
Tweets (Zhong et al., 2017) Utterance 942 1,128 ave 173 200 38

D Experimental Setting

We set d, the embedding dimension, to be 768
when applying on the base version language mod-
els and 1024 on large versions. We use AdamW
(Loshchilov and Hutter, 2019) with a learning rate
of 7e~% and warm-up proportion of 0.1. We train
the models for 50 epochs and use the best model as
indicated by the validation set for prediction. All
datasets are transformed into IOB2 format to fit the
sequence labeling setting. For BILSTM+CRF, we
use the hyperparameters as suggested in the orig-
inal paper. We repeat all experiments for 5 times
and report the mean results.

E Full Table for Zero-shot Low-resource
Language TEE with Additional Source
Languages

Table 6 shows the precision and recall of zero-shot
low-resource language TEE with additional source
languages (w/o type).

F Zero-shot Low-resource Language
TEE with type

Tables 7 and 8 show the results for zero-shot low-
resource language TEE when considering the types
of the temporal expressions. Note that the superi-
ority of our proposed XLTime over the previous
automatic SOTA still holds.

G Language Models on English TEE

In our early experiments, we reexamine the lan-
guage models on English TEE. This section
presents the results.

G.1 Experimental Setup

We study BERT (Devlin et al., 2019) and XLMR
(Conneau et al., 2020) variants, RoOBERTa (Liu
et al., 2019b) and T5 Encoder (Raffel et al., 2019).
We compare them to rule-based methods including
HeidelTime (Strotgen and Gertz, 2013), SynTime

(Zhong et al., 2017), and PTime (Ding et al., 2019),
which report SOTA performances on Wikiwars,
TE3, and Tweets, respectively. We experiment on
both settings, i.e., “with type" and “without type",
and report F1, precision, and recall in strict match
(UzZaman et al., 2013). We use the data splits
following Ding et al. (2019) and the experimental
settings introduced in Appendix D.

G.2 Evaluation Results

Table 9 shows the results. We observe: 1) When
ignoring the types, the language models are inferior
to SynTime on TE3, on par with or better than the
rule-based methods on Wikiwars and Tweets. 2)
When considering the types, the language models
outperform the previous SOTAs by 11-22%, 18-
21%, and 30-41% in F1 on TE3, Wikiwars, and
Tweets datasets.

H Future Work

We observe negative transfer in some rare cases
when transferring from multiple source languages
(Tables 4 and 6). As suggested by Wu et al. (2020),
the extent of negative transfer is affected by rask co-
variance, which measures the similarities between
the embedded task samples. We plan to verify this
on XLTime by calculating and comparing the task
covariances of the positively transferred cases to
that of the negatively transferred cases.

One approach to reduce task covariance is to
transform task sample embeddings by inserting an
alignment layer between the lexicon encoder and
the first Transformer layer. Wu et al. (2020) pro-
poses an alignment layer design, i.e., one linear ma-
trix for each of the tasks. However, as the training
data for low-resource TEE is sparse, the parameters
introduced by these matrices might cause the model
to overfit. We plan to design a new alignment layer
that is more suitable for XLTime. The new design
aims to reduce task covariance while prompting
parameter sharing and reducing overfitting.



Table 6: Zero-shot low-resource language TEE with additional source languages (precision and recall scores w/o type). The
blue cells are expected to, while the underlined cells actually outperform (by > 4%) using EN as the only source language.

Precision

Target Language FR ES

Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.73 0.76 0.76 0.77 0.77 0.76 0.79 0.79
XLTime-XLMRbase 0.79 0.77 0.81 0.79 0.70 0.72 0.75 0.78
XLTime-XLMRlarge 0.79 0.81 0.84 0.82 0.79 0.70 0.79 0.74
Target Language PT EU

Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.64 0.77 0.67 0.77 0.81 0.78 0.79 0.82
XLTime-XLMRbase 0.67 0.72 0.60 0.54 0.76 0.82 0.79 0.86
XLTime-XLMRlarge 0.74 0.79 0.82 0.72 0.85 0.85 0.84 0.84

Recall

Target Language FR ES

Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.72 0.77 0.69 0.82 0.66 0.69 0.66 0.74
XLTime-XLMRbase 0.78 0.76 0.75 0.86 0.63 0.64 0.68 0.68
XLTime-XLMRlarge 0.73 0.81 0.77 0.86 0.67 0.75 0.71 0.72
Target Language PT EU

Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.71 0.83 0.74 0.83 0.71 0.69 0.70 0.72
XLTime-XLMRbase 0.70 0.75 0.66 0.59 0.66 0.67 0.70 0.73
XLTime-XLMRlarge 0.81 0.87 0.87 0.77 0.71 0.74 0.74 0.71

Table 7: Zero-shot low-resource language TEE results (w/ type).

FR ES PT EU

Model FI P Re | FI __Pr _Re | FI __Pr Re | FI _Pr Re

Automatic Baseline Models

HeidelTime-auto 053 063 046 | 041 056 032 | 049 0.66 039 | 015 0.60 0.09
BiLSTM+CRF 058 064 051 | 056 0.61 051 | 058 059 058 | 044 054 037
mBERT 056 061 051 | 056 0.62 051 | 060 056 064 | 059 064 055
XLMR-base 064 069 059 | 051 058 046 | 059 059 059 | 043 060 0.34
XLMR-large 069 070 068 | 068 071 066 | 071 0.69 073 | 0.66 0.70 0.63

Cross—-Lingual Transfer from EN (Ours)
XLTime-mBERT 062 062 062 | 065 070 0.61 0.61 058 0.66 | 0.68 0.72 0.65
XLTime-XLMRbase 0.67 067 068 | 0.60 063 058 | 0.64 0.62 066 | 0.64 0.68 0.60
XLTime-XLMRlarge | 0.71 0.74 068 | 0.70 0.76 065 | 0.74 071 0.78 | 0.72 0.79 0.66

Cross—-Lingual Transfer from EN and Additional Source Languages (Ours)

XLTime-mBERT 071 0.69 0.73 0.68 0.69 066 | 073 0.70 0.76 | 0.68 0.72 0.65
XLTime-XLMRbase 070 067 074 | 0.65 069 062 | 066 064 068 | 070 0.76 0.65
XLTime-XLMRlarge | 0.75 0.72 0.78 | 0.70 0.76 065 | 0.81 0.79 084 | 0.74 0.79 0.69

Handcrafted Method
HeidelTime \ 0.80 0.81 0.79 \ 0.85 0.90 0.80 \ 0.57 0.60 0.53 \ / / /




Table 8: Zero-shot low-resource language TEE with additional source languages (F1, precision, and recall scores w/ type). The

blue cells are expected to, while the underlined cells actually outperform (by > 3%) using EN as the only source language.

F1
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.61 0.61 0.71 0.65 0.66 0.65 0.68
XLTime-XLMRbase 0.67 0.67 0.66 0.70 0.60 0.61 0.64 0.65
XLTime-XLMRlarge 0.71 0.73 0.73 0.75 0.70 0.68 0.69 0.68
Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.61 0.72 0.59 0.73 0.68 0.66 0.66 0.68
XLTime-XLMRbase 0.64 0.66 0.55 0.52 0.64 0.66 0.66 0.70
XLTime-XLMRlarge 0.74 0.79 0.81 0.71 0.72 0.71 0.74 0.72
Precision
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.59 0.62 0.69 0.70 0.69 0.71 0.69
XLTime-XLMRbase 0.67 0.66 0.67 0.67 0.63 0.64 0.67 0.69
XLTime-XLMRlarge 0.74 0.72 0.76 0.72 0.76 0.65 0.73 0.68
Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.58 0.68 0.56 0.70 0.72 0.70 0.69 0.72
XLTime-XLMRbase 0.62 0.64 0.51 0.49 0.68 0.73 0.69 0.76
XLTime-XLMRlarge 0.71 0.75 0.79 0.68 0.79 0.75 0.79 0.79
Recall
Target Language FR ES
Source Language(s) EN EN, EU EN, PT EN, ES EN EN, EU EN, PT EN, FR
XLTime-mBERT 0.62 0.62 0.59 0.73 0.61 0.64 0.60 0.66
XLTime-XLMRbase 0.68 0.67 0.64 0.74 0.58 0.59 0.61 0.62
XLTime-XLMRlarge 0.68 0.73 0.71 0.78 0.65 0.71 0.65 0.67
Target Language PT EU
Source Language(s) EN EN, FR EN, ES EN, EU EN EN, PT EN, ES EN, FR
XLTime-mBERT 0.66 0.75 0.62 0.76 0.65 0.63 0.64 0.64
XLTime-XLMRbase 0.66 0.68 0.60 0.55 0.60 0.60 0.63 0.65
XLTime-XLMRIlarge 0.78 0.83 0.84 0.74 0.66 0.67 0.69 0.67
Table 9: Supervised English TEE results (w/l w/o type).
Datasets
Model TE3 Wikiwars Tweets
F1 Pr. Re. F1 Pr. Re. F1 Pr. Re.
Rule-based Models
HeidelTime 0.7710.81 0.801 0.84 0.7510.79 0.801 0.85 0.861 0.92 0.751 0.80 0.8010.80 0.901 0.90 0.7210.72
SynTime 0.6510.92 0.6510.91 0.661 0.93 0.7910.79 0.7910.79 0.7910.79 0.6310.92 0.6210.91 0.6510.95
PTime 0.671 0.85 0.681 0.88 0.6510.83 0.861 0.86 0.8710.87 0.861 0.86 0.661 0.95 0.651 0.94 0.671 0.96
Language Models
BERT-base 0.761 0.82 0.7810.85 0.7410.80 0.9410.94 0.9510.95 0.9410.94 0.921 0.94 0.901 0.93 0.9310.95
BERT-large 0.791 0.83 0.7710.82 0.801 0.84 0.9510.95 0.9410.94 0.961 0.96 0.861 0.92 0.8410.92 0.8810.92
mBERT 0.791 0.84 0.801 0.86 0.7710.82 0.971 0.97 0.961 0.96 0.9710.97 0.8710.91 0.8510.88 0.901 0.94
RoBERTa 0.781 0.84 0.7910.86 0.7710.82 0.9510.95 0.9410.94 0.9710.97 0.9110.95 0.8910.93 0.9410.97
XLMR-base 0.791 0.81 0.8010.82 0.7710.81 0.9710.97 0.9510.95 0.981 0.98 0.901 0.94 0.8710.92 0.9310.97
XLMR-large 0.7810.81 0.7810.82 0.7810.81 0.961 0.96 0.9410.94 0.9710.97 0.931 0.95 0.9110.93 0.951 0.96
T5Encoder 0.791 0.82 0.8210.85 0.781 0.80 0.961 0.96 0.9510.95 0.9710.97 0.8710.93 0.8410.91 0.9110.95




