Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Not Accessible

Your library or personal account may give you access

Abstract

To evaluate corn quality quickly, the feasibility of near-infrared spectroscopy (NIRS) coupled with chemometrics was analyzed to detect the moisture, oil, protein, and starch content in corn. A backward interval partial least squares (BiPLS)-principal component analysis (PCA)-extreme learning machine (ELM) quantitative analysis model was constructed based on BiPLS in conjunction with PCA and the ELM. The selection of characteristic spectral intervals was accomplished by BiPLS. The best principal components were determined by the prediction residual error sum of squares of Monte Carlo cross validation. In addition, a genetic simulated annealing algorithm was utilized to optimize the parameters of the ELM regression model. The established regression models for moisture, oil, protein, and starch can meet the demand for corn component detection with the prediction determination coefficients of 0.996, 0.990, 0.974, and 0.976; the prediction root means square errors of 0.018, 0.016, 0.067, and 0.109; and the residual prediction deviations of 15.704, 9.741, 6.330, and 6.236, respectively. The results show that the NIRS rapid detection model has higher robustness and accuracy based on the selection of characteristic spectral intervals in conjunction with spectral data dimensionality reduction and nonlinear modeling and can be used as an alternative strategy to detect multiple components in corn rapidly.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Rapid detection of talc content in flour based on near-infrared spectroscopy combined with feature wavelength selection

Changhao Bao, Changhao Zeng, Jinming Liu, and Dongjie Zhang
Appl. Opt. 61(19) 5790-5798 (2022)

Rapid detection of cellulose and hemicellulose contents of corn stover based on near-infrared spectroscopy combined with chemometrics

Na Wang, Longwei Li, Jinming Liu, Jianfei Shi, Yang Lu, Bo Zhang, Yong Sun, and Wenzhe Li
Appl. Opt. 60(15) 4282-4290 (2021)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel