
Fast Incremental Method for Nonconvex Optimization

Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, Alex Smola

Abstract— We analyze a fast incremental aggregated gradi-
ent method for optimizing nonconvex problems of the form
min

∑
i fi(x). Specifically, we analyze the SAGA algorithm

within an Incremental First-order Oracle framework, and show
that it converges to a stationary point provably faster than
both gradient descent and stochastic gradient descent. We also
discuss a Polyak’s special class of nonconvex problems for which
SAGA converges at a linear rate to the global optimum. Finally,
we analyze the practically valuable regularized and minibatch
variants of SAGA. To our knowledge, this paper presents the
first analysis of fast convergence for an incremental aggregated
gradient method for nonconvex problems.

I. INTRODUCTION
We study the finite-sum optimization problem

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each fi (i ∈ {1, . . . , n} , [n]) can be nonconvex;
our only assumption is that the gradients of fi exist and are
Lipschitz continuous. We denote the class of such instances
of (1) by Fn.
Problems of the form (1) are of central importance in
machine learning where they occur as instances of empirical
risk minimization; well-known examples include logistic
regression (convex) [10] and deep neural networks (noncon-
vex) [7]. Consequently, such problems have been intensively
studied. A basic approach for solving (1) is gradient descent
(GRADDESCENT), described by the following update rule:

xt+1 = xt − ηt∇f(xt), where ηt > 0. (2)

However, iteration (2) is prohibitively expensive in large-
scale settings where n is very large. For such settings,
stochastic and incremental methods are typical [5], [6]. These
methods use cheap noisy estimates of the gradient at each
iteration of (2) instead of ∇f(xt). A particularly popular ap-
proach, stochastic gradient descent (SGD) uses ∇fit , where
it in chosen uniformly randomly from {1, . . . , n}. While the
cost of each iteration is now greatly reduced, it is not without
any drawbacks. Due to the noise (also known as variance in
stochastic methods) in the gradients, one has to typically
use decreasing step-sizes ηt to ensure convergence, and
consequently, the convergence rate gets adversely affected.

Sashank J. Reddi is with Machine Learning Department, Carnegie Mellon
University, Pittsburgh, PA 15213, USA. sjakkamr@cs.cmu.edu

Suvrit Sra is with the Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA.suvrit@mit.edu

Barnabás Póczos is with Machine Learning Department, Carnegie Mellon
University, Pittsburgh, PA 15213, USA. bapoczos@cs.cmu.edu

Alex Smola is with Machine Learning Department, Carnegie Mellon
University, Pittsburgh, PA 15213, USA. alex@smola.org

Therefore, it is of great interest to overcome the slowdown
of SGD without giving up its scalability. Towards this end,
for convex instances of (1), remarkable progress has been
made recently. The key realization is that if we make multiple
passes through the data, we can store information that allows
us to reduce variance of the stochastic gradients. As a
result, we can use constant stepsizes (rather than diminishing
scalars) and obtain convergence faster than SGD, both in
theory and practice [6], [11], [20].
Nonconvex instances of (1) are also known to enjoy similar
speedups [11], but existing analysis does not explain this
success as it relies heavily on convexity to control variance.
Since SGD dominates large-scale nonconvex optimization
(including neural network training), it is of great value to
develop and analyze faster nonconvex stochastic methods.
With the above motivation, we analyze SAGA [6], an in-
cremental aggregated gradient algorithm that extends the
seminal SAG method of [20], and has been shown to work
well for convex finite-sum problems [6]. Specifically, we
analyze SAGA for the class Fn using the incremental first-
order oracle (IFO) framework [1]. For f ∈ Fn, an IFO is a
subroutine that takes an index i ∈ [n] and a point x ∈ Rd,
and returns the pair (fi(x),∇fi(x)).
To our knowledge, this paper presents the first analysis
of fast convergence for an incremental aggregated gradient
method for nonconvex problems. The attained rates improve
over both SGD and GRADDESCENT, a benefit that is also
corroborated by experiments. Before presenting our new
analysis, let us briefly recall some items of related work.

A. Related work

A concise survey of incremental gradient methods is [5].
An accessible analysis of stochastic convex optimization
(minEz[F (x, z)]) is [13]. Classically, SGD stems from the
seminal work [19], and has since witnessed many develop-
ments [12], including parallel and distributed variants [2],
[4], [17], though non-asymptotic convergence analysis is
limited to convex setups. Faster rates for convex problems in
Fn are attained by variance reduced stochastic methods, e.g.,
[6], [11], [18], [20], [22]. Linear convergence of stochastic
dual coordinate ascent when fi (i ∈ [n]) may be nonconvex
but f is strongly convex is studied in [21]. Lower bounds
for convex finite-sum problems are studied in [1].
For nonconvex nonsmooth problems the first incremental
proximal-splitting methods is in [24], though only asymptotic
convergence is studied. Hong [9] studies convergence of a
distributed nonconvex incremental ADMM algorithm. The
first work to present non-asymptotic convergence rates for
SGD is [8]; this work presents an O(1/ε2) iteration bound

for SGD to satisfy approximate stationarity ‖∇f(x)‖2 ≤ ε,
and their convergence criterion is motivated by the gradient
descent analysis of Nesterov [14]. The first analysis for non-
convex variance reduced stochastic gradient is due to [23],
who apply it to the specific problem of principal component
analysis (PCA).

II. PRELIMINARIES

In this section, we further explain our assumptions and goals.
We say f is L-smooth if there is a constant L such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Rd.

Throughout, we assume that all fi in (1) are L-smooth, i.e.,
‖∇fi(x) − ∇fi(y)‖ ≤ L‖x − y‖ for all i ∈ [n]. Such an
assumption is common in the analysis of first-order methods.
For ease of exposition, we assume the Lipschitz constant L
to be independent of n. For our analysis, we also discuss the
class of τ -gradient dominated [15], [16] functions, namely
functions for which

f(x)− f(x∗) ≤ τ‖∇f(x)‖2, (3)

where x∗ is a global minimizer of f . This class of functions
was originally introduced by Polyak in [16]. Observe that
such functions need not be convex. Also notice that gradient
dominance (3) is a restriction on the overall function f , but
not on the individual functions fi (i ∈ [n]).
Following [8], [14] we use ‖∇f(x)‖2 ≤ ε to judge approx-
imate stationarity of x. Contrast this with SGD for convex
f , where one uses [f(x) − f(x∗)] or ‖x − x∗‖2 as criteria
for convergence analysis. Such criteria cannot be used for
nonconvex functions due to the intractability of the problem.
While the quantities ‖∇f(x)‖2, [f(x)−f(x∗)], or ‖x−x∗‖2
are not comparable in general, they are typically assumed to
be of similar magnitude (see [8]). We note that our analysis
does not assume n to be a constant, so we report dependence
on it in our results. Furthermore, while stating our complexity
results, we assume that the initial point of the algorithms is
constant, i.e., f(x0) − f(x∗) and ‖x0 − x∗‖ are constants.
For our analysis, we will need the following definition.
Definition 1: A point x is called ε-accurate if ‖∇f(x)‖2 ≤
ε. A stochastic iterative algorithm is said to achieve ε-
accuracy in t iterations if E[‖∇f(xt)‖2] ≤ ε, where the
expectation is taken over its stochasticity.
We start our discussion of algorithms by recalling SGD,
which performs the following update in its tth iteration:

xt+1 = xt − ηt∇fit(x), (4)

where it is a random index chosen from [n], and the gradient
∇fit(xt) approximates the gradient of f at xt, ∇f(xt). It
can be seen that the update is unbiased, i.e., E[∇fit(xt)] =
∇f(xt) since the index it is chosen uniformly at random.
Though the SGD update is unbiased, it suffers from variance
due to the aforementioned stochasticity in the chosen index.
To control the variance one has to decrease the step size
ηt in (4), which in turn leads to slow convergence. The
following is a well-known result on SGD in the context of
nonconvex optimization [8].

Algorithm 1 SAGA
(
x0, T, η

)
1: Input: x0 ∈ Rd, α0

i = x0 for i ∈ [n], number of iterations T ,
step size η > 0

2: g0 = 1
n

∑n
i=1∇fi(α

0
i)

3: for t = 0 to T − 1 do
4: Uniformly randomly pick it, jt from [n]
5: vt = ∇fit(xt)−∇fit(αt

it) + gt

6: xt+1 = xt − ηvt
7: αt+1

jt
= xt and αt+1

j = αt
j for j 6= jt

8: gt+1 = gt − 1
n
(∇fjt(αt

jt)−∇fjt(α
t+1
jt

))
9: end for

10: Output: Iterate xa chosen uniformly random from {xt}T−1
t=0 .

Theorem 1: Suppose ‖∇fi‖ ≤ σ i.e., gradient of function fi
is bounded for all i ∈ [n], then the IFO complexity of SGD
to obtain an ε-accurate solution is O(1/ε2).
It is instructive to compare the above result with the con-
vergence rate of GRADDESCENT. The IFO complexity of
GRADDESCENT is O(n/ε). Thus, while SGD eliminates the
dependence on n, the convergence rate worsens to O(1/ε2)
from O(1/ε) in GRADDESCENT. In the next section, we
investigate an incremental method with faster convergence.

III. ALGORITHM

We describe below the SAGA algorithm and prove its fast
convergence for nonconvex optimization. SAGA is a popular
incremental method in machine learning and optimization
communities. It is very effective in reducing the variance
introduced due to stochasticity in SGD. Algorithm 1 presents
pseudocode for SAGA. Note that the update vt (Line 5) is
unbiased, i.e., E[vt] = ∇f(xt). This is due to the uniform
random selection of index it. It can be seen in Algorithm 1
that SAGA maintains gradients at αi for i ∈ [n]. This
additional set is critical to reducing the variance of the update
vt. At each iteration of the algorithm, one of the αi is updated
to the current iterate. An implementation of SAGA requires
storage and updating of gradients ∇fi(αi); the storage cost
of the algorithm is nd. While this leads to higher storage in
comparison to SGD, this cost is often reasonable for many
applications. Furthermore, this cost can be reduced in the
case of specific models; refer to [6] for more details.
For ease of exposition, we introduce the following quantity:

Γt =
(
η − ct+1η

β − η2L− 2ct+1η
2
)
, (5)

where the parameters ct+1, β and η will be defined shortly.
We start with the following set of key results that provide
convergence rate of Algorithm 1.
Lemma 1: For ct, ct+1, β > 0, suppose we have

ct = ct+1(1− 1
n + ηβ + 2η2L2) + η2L3.

Also let η, β and ct+1 be chosen such that Γt > 0. Then,
the iterates {xt} of Algorithm 1 satisfy the bound

E[‖∇f(xt)‖2] ≤ Rt −Rt+1

Γt
,

where Rt := E[f(xt) + (ct/n)
∑n
i=1 ‖xt − αti‖2].

The proof of this lemma is given in Section IX. Using this
lemma we prove the following result on the iterates of SAGA.
Theorem 2: Let f ∈ Fn. Let cT = 0, β > 0, and ct =
ct+1(1− 1

n + ηβ + 2η2L2) + η2L3 be such that Γt > 0 for
0 ≤ t ≤ T − 1. Define the quantity γn := min0≤t≤T−1 Γt.
Then the output xa of Algorithm 1 satisfies the bound

E[‖∇f(xa)‖2] ≤ f(x0)− f(x∗)

Tγn
,

where x∗ is an optimal solution to (1).
Proof: We apply telescoping sums to the result of

Lemma 1 to obtain

γn
∑T−1

t=0
E[‖∇f(xt)‖2] ≤

∑T−1

t=0
ΓtE[‖∇f(xt)‖2]

≤ R0 −RT .

The first inequality follows from the definition of γn. This
inequality in turn implies the bound∑T−1

t=0
E[‖∇f(xt)‖2] ≤ E[f(x0)− f(xT)]

γn
, (6)

where we used that RT = E[f(xT)] (since cT = 0), and
that R0 = E[f(x0)] (since α0

i = x0 for i ∈ [n]). Using
inequality (6), the optimality of x∗, and the definition of xa
in Algorithm 1, we obtain the desired result.
Note that the notation γn involves n, since this quantity can
depend on n. To obtain an explicit dependence on n, we
have to use an appropriate choice of β and η. This is made
precise by the following main result of the paper.
Theorem 3: Suppose f ∈ Fn. Let η = 1/(3Ln2/3) and β =
L/n1/3. Then, γn ≥ 1

12Ln2/3 and we have the bound

E[‖∇f(xa)‖2] ≤ 12Ln2/3[f(x0)− f(x∗)]

T
,

where x∗ is an optimal solution to the problem in (1) and
xa is the output of Algorithm 1.

Proof: With the values of η and β, let us first establish
an upper bound on ct. Let θ denote 1

n−ηβ−2η2L2. Observe
that θ < 1 and θ ≥ 4/(9n). This is due to the specific
values of η and β stated in the theorem. Also, we have ct =
ct+1(1− θ) + η2L3. Using this relationship, it is easy to see
that ct = η2L3 1−(1−θ)T−t

θ . Therefore, we obtain the bound

ct = η2L3 1−(1−θ)T−t

θ ≤ η2L3

θ
≤ L

4n1/3
, (7)

for all 0 ≤ t ≤ T , where the inequality follows from the
definition of η and the fact that θ ≥ 4/(9n). Using the above
upper bound on ct we can conclude that

γn = min
t

(
η − ct+1η

β − η2L− 2ct+1η
2
)
≥ 1

12Ln2/3
,

upon using the following inequalities: (i) ct+1η/β ≤ η/4,
(ii) η2L ≤ η/3 and (iii) 2ct+1η

2 ≤ η/6, which hold due to
the upper bound on ct in (7). Substituting this bound on γn
in Theorem 2, we obtain the desired result.
A more general result with step size η < 1/(3Ln2/3) can
be proved, but it will only lead to a theoretically suboptimal
convergence result. Recall that each iteration of Algorithm 1

requires O(1) IFO calls. Using this fact, we can rewrite
Theorem 3 in terms of its IFO complexity as follows.
Corollary 1: If f ∈ Fn, then the IFO complexity of Al-
gorithm 1 (with parameters from Theorem 3) to obtain an
ε-accurate solution is O(n+ n2/3/ε).
This corollary follows from the O(1) per iteration cost of
Algorithm 1 and because n IFO calls are required to calculate
g0 at the start of the algorithm. In special cases, the initial
O(n) IFO calls can be avoided (refer to [6], [20] for details).
By comparing the IFO complexity of SAGA (O(n+n2/3/ε))
with that of GRADDESCENT (O(n/ε)), we see that SAGA is
faster than GRADDESCENT by a factor of n1/3.

IV. FINITE SUMS WITH REGULARIZATION

In this section, we study the problem of finite-sum problems
with additional regularization. More specifically, we consider
problems of the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x) + r(x), (8)

where r : Rd → R is an L-smooth (possibly nonconvex)
function. Problems of this nature arise in machine learn-
ing where the functions fi are loss functions and r is a
regularizer. Since we assumed r to be smooth, (8) can
be reformulated as (1) by simply encapsulating r into the
functions fi. However, as we will see, it is beneficial to
handle the regularization separately. We call the variant of
SAGA with the additional regularization as REG-SAGA. The
key difference between REG-SAGA and SAGA lies in Line
6 of Algorithm 1. In particular, for REG-SAGA, Line 6 of
Algorithm 1 is replaced with the following update:

xt+1 = xt − η(vt +∇r(xt)). (9)

Note that the primary difference is that the part of gradient
based on function r is updated at each iteration of the
algorithm. The convergence of REG-SAGA can be proved
along the lines of our analysis of SAGA. Hence, we omit the
details for brevity and directly state the following key result
stating the IFO complexity of REG-SAGA.
Theorem 4: If function f is of the form in (8), then the IFO
complexity of REG-SAGA to obtain an ε-accurate solution is
O(n+ n2/3/ε).
The proof essentially follows along the lines of the proof of
Theorem 3. The difference, however, being that the update
corresponding to function r(x) is handled explicitly at each
iteration. Note that the above IFO complexity is not different
from that in Corollary 1. However, its main benefit comes
in the form of storage efficiency in problems with more
structure. To understand this, consider the problems of form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

l(x>zi) + r(x), (10)

where zi ∈ Rd for i ∈ [n] while l : R → R≥0 is a
differentiable loss function. Here, l and r can be in general
nonconvex. Such problems are popularly known as (reg-
ularized) empirical risk minimization in machine learning

Algorithm 2 GD-SAGA
(
x0,K, T, η

)
Input: x0 ∈ Rd, K, epoch length m, step sizes η > 0
for k = 0 to K do
xk = SAGA(xk−1, T, η)

end for
Output: xK

literature. We can directly apply SAGA to (10) by casting
it in the form (1). However, recall that the storage cost of
SAGA is O(nd) due to the cost of storing the gradient at αti.
This storage cost can be avoided in REG-SAGA by handling
the function r separately. Indeed, for REG-SAGA we need to
store just ∇l(x>zi) for all i ∈ [n] (as ∇r(x) is updated at
each iteration). By observing that ∇l(x>zi) = l′(x>zi)zi,
where l′ represents the derivative of l, it is apparent that we
need to store only the scalars l′(x>zi) for REG-SAGA. This
reduces the storage O(n) instead of O(nd) in SAGA.

V. LINEAR CONVERGENCE RATES FOR GRADIENT
DOMINATED FUNCTIONS

Until now the only assumption we used was Lipschitz
continuity of gradients. An immediate question is whether
the IFO complexity can be further improved under stronger
assumptions. We provide an affirmative answer to this ques-
tion by showing that for gradient dominated functions, a
variant of SAGA attains linear convergence rate. Recall that
a function f is called τ -gradient dominated if around an
optimal point x∗, f satisfies the following growth condition:

f(x)− f(x∗) ≤ τ‖∇f(x)‖2, ∀x ∈ Rd.

For such functions, we use the variant of SAGA shown in
Algorithm 2. Observe that Algorithm 2 uses SAGA as a
subroutine. Alternatively, one can rewrite Algorithm 2 in the
form of KT iterations of Algorithm 1 where one updates
{αi} after every T iterations and then selects a random iterate
amongst the last T iterates. For this variant of SAGA, we can
prove the following linear convergence result.
Theorem 5: If f is τ -gradient dominated, then with η =
1/(3Ln2/3) and T = d24Lτn2/3e, the iterates of Algo-
rithm 2 satisfy E[‖f(xk)‖2] ≤ 2−k‖f(x0)‖2, where x∗ is
an optimal solution of (1).

Proof: The iterates of Algorithm 2 satisfy the bound

E[‖∇f(xk)‖2] ≤ E[f(xk−1)− f(x∗)]

2τ
, (11)

which holds due to Theorem 3 given the choices of η
and T assumed in the statement. However, f is τ -gradient
dominated, so E[‖∇f(xk−1)‖2] ≥ E[f(xk−1) − f(x∗)]/τ ,
which combined with (11) concludes the proof.
An immediate consequence of this theorem is the following.

Corollary 2: If f is τ -gradient dominated, the IFO complex-
ity of Algorithm 2 (with parameters from Theorem 5) to
compute an ε-accurate solution is O((n+ τn2/3) log(1/ε)).
While we state the result in terms of ‖∇f(x)‖2, it is not hard
to see that for gradient dominated functions a similar result
holds for the convergence criterion being [f(x)− f(x∗)].

Theorem 6: If f is τ -gradient dominated, with η =
1/(3Ln2/3) and T = d24Lτn2/3e, the iterates {xk} of
Algorithm 2 satisfy

E[f(xk)− f(x∗)] ≤ 2−k[f(x0)− f(x∗)],

where x∗ is an optimal solution to (1).
A noteworthy aspect of the above result is the linear conver-
gence rate to a global optimum. Therefore, the above result is
stronger than Theorem 3. Note that throughout our analysis
of gradient dominated functions, no assumptions other than
Lipschitz smoothness are placed on the individual set of
functions fi. We emphasize here that these results can be
further improved with additional assumptions (e.g., strong
convexity) on the individual functions fi and on f . Also
note that GRADDESCENT can achieve linear convergence
rate for gradient dominated functions [16]. However, the IFO
complexity of GRADDESCENT is O(τn log(1/ε)), which
is strictly worse than IFO complexity of GD-SAGA (see
Corollary 2).

VI. MINIBATCH VARIANT

A common variant of incremental methods is to sample a set
of indices It instead of single index it when approximating
the gradient. Such a variant is generally referred to as a
“minibatch” version of the algorithm. Minibatch variants
are of great practical significance since they reduce the
variance of incremental methods and promote parallelism.
Algorithm 3 lists the pseudocode for a minibatch variant
of SAGA. Algorithm 3 uses a set It of size |It| = b for
calculating the update vt instead of a single index it used in
Algorithm 1. By using a larger b, one can reduce the variance
due to the stochasticity in the algorithm. Such a procedure
is also beneficial in parallel settings since the calculation of
the update vt can be parallelized. For this algorithm, we can
prove the following convergence result.
Theorem 7: Suppose f ∈ Fn. Let η = b/(3Ln2/3) and β =
L/n1/3. Then for the output xa of Algorithm 3 (with b <
n2/3) we have γn ≥ b

12Ln2/3 and

E[‖∇f(xa)‖2] ≤ 12Ln2/3[f(x0)− f(x∗)]

bT
,

where x∗ is an optimal solution to (1).
We omit the details of the proof since it is similar to the proof
of Theorem 3. Note that the key difference in comparison
to Theorem 1 is that we can now use a more aggressive
step size η = b/(3Ln2/3) due to a larger minibatch size b.
An interesting aspect of the result is the O(1/b) dependence
on the minibatch size b. As long as this size is not large
(b < n2/3), one can significantly improve the convergence
rate to a stationary point. A restatement of aforementioned
result in terms of IFO complexity is provided below.
Corollary 3: If f ∈ Fn, then the IFO complexity of Algo-
rithm 3 (with parameters from Theorem 7 and minibatch size
b < n2/3) to obtain an ε-accurate solution is O(n+n2/3/ε).
By comparing the above result with Corollary 1, we can
see that the IFO complexity of minibatch-SAGA is the same
SAGA. However, since the b gradients can be computed in

Algorithm 3 Minibatch-SAGA
(
x0, b, T, η

)
1: Input: x0 ∈ Rd, α0

i = x0 for i ∈ [n], minibatch size b, number
of iterations T , step size η > 0

2: g0 = 1
n

∑n
i=1∇fi(α

0
i)

3: for t = 0 to T − 1 do
4: Uniformly randomly pick (with replacement) indices sets

It, Jt of size b from [n]
5: vt = 1

|It|
∑

i∈It(∇fi(x
t)−∇fi(αt

it)) + gt

6: xt+1 = xt − ηvt
7: αt+1

j = xt for j ∈ Jt and αt+1
j = αt

j for j /∈ Jt
8: gt+1 = gt − 1

n

∑
j∈Jt

(∇fj(αt
j)−∇fj(αt+1

j))
9: end for

10: Output: Iterate xa chosen uniformly random from {xt}T−1
t=0 .

parallel, one can achieve (theoretical) b times speedup in
multicore and distributed settings. In contrast, the perfor-
mance SGD degrades with minibatch size b since the im-
provement in convergence rate for SGD is typically O(1/

√
b)

but b IFO calls are required at each iteration of minibatch-
SGD. Thus, SAGA has a much more efficient minibatch
version in comparison to SGD.

Discussion of Convergence Rates

Before ending our discussion on convergence rates, it is
important to compare and contrast different convergence
rates obtained in the paper. For general smooth nonconvex
problems, we observed that SAGA has a low IFO complexity
of O(n + n2/3/ε) in comparison to SGD (O(1/ε2)) and
GRADDESCENT (O(n/ε)). This difference in the conver-
gence is especially significant if one requires a medium to
high accuracy solution, i.e., ε is small.
Furthermore, for gradient dominated functions, where SGD
obtains a sublinear convergence rate of O(1/ε2)1 as opposed
to fast linear convergence rate of a variant of SAGA (see
Theorem 2). It is an interesting future work to explore other
setups where we can achieve stronger convergence rates.
From our analysis of minibatch-SAGA in Section VI, we
observe that SAGA profits from mini-batching much more
than SGD. In particular, one can achieve a (theoretical) linear
speedup using mini-batching in SAGA in parallel settings.
On the other hand, the performance of SGD typically de-
grades with minibatching. In summary, SAGA enjoys all the
benefits of GRADDESCENT like constant step size, efficient
minibatching with much weaker dependence on n.
Notably, SAGA, unlike SGD, does not use any additional
assumption of bounded gradients (see Theorem 1 and Corol-
lary 1). Moreover, if one uses a constant step size for
SGD, we need to have an advance knowledge of the total
number of iterations T in order to obtain the convergence
rate mentioned in Theorem 1.

VII. EXPERIMENTS

We present our empirical results in this section. For our
experiments, we study the problem of binary classification
using nonconvex regularizers. The input consists of tuples

1For SGD, we are not aware of any better convergence rates for gradient
dominated functions.

{(zi, yi)}ni=1 where zi ∈ Rd (commonly referred to as
features) and yi ∈ {−1, 1} (class labels). We are interested
in the empirical loss minimization setup described in Sec-
tion IV. Recall that problem of finite sum with regularization
takes the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x) + r(x). (12)

For our experiments, we use logistic function for fi, i.e.,
fi(x) = log(1 + exp(−yix>zi)) for all i ∈ [n]. All zi are
normalized such that ‖zi‖ = 1. We observe that the loss
function has Lipschitz continuous gradients. The function
r(x) = λ

∑d
i=1 αx

2
i /(1 + αx2i) is chosen as the regularizer

(see [3]). Note that the regularizer is nonconvex and smooth.
In our experiments, we use the parameter settings of λ =
0.001 and α = 1 for all the datasets.
We compare the performance of SGD (the de facto incre-
mental method for nonconvex optimization) with nonconvex
REG-SAGA in our experiments. The comparison is based on
the following criteria: (i) the objective function value (also
called training loss in this context), which is the main goal of
the paper; and (ii) the stationarity gap ‖∇f(x)‖2, the criteria
used for our theoretical analysis. For the step size of SGD, we
use the popular t−inverse schedule ηt = η0(1 +η′bt/nc)−1,
where η0 and η′ are tuned so that SGD gives the best
performance on the training loss. In our experiments, we
also use η′ = 0; this results in a fixed step size for SGD.
For REG-SAGA, a fixed step size is chosen (as suggested
by our analysis) so that it gives the best performance on
the objective function value, i.e., training loss. Note that
due to the structure of the problem in (12), as discussed
in Section IV, the storage cost of REG-SAGA is just O(n).
Initialization is critical to many of the incremental methods
like REG-SAGA. This is due to the stronger dependence
of the convergence on the initial point (see Theorem 3).
Furthermore, one has to obtain ∇fi(α0

i) for all i ∈ [n] in
REG-SAGA algorithm (see Algorithm 1). For initialization
of both SGD and REG-SAGA, we make one pass (without
replacement) through the dataset and perform the updates of
SGD during this pass. Doing so not only allows us to also
obtain a good initial point x0 but also to compute the initial
values of ∇f(α0

i) for i ∈ [n]. Note that this choice results in
a variant of REG-SAGA where α0

i are different for various
i (unlike the pseudocode in Algorithm 1). The convergence
rates of this variant can be shown to be similar to that of
Algorithm 1.
Figure 1 shows the results of our experiments. The results
are on two standard UCI datasets, ‘rcv1’ and ‘realsim’2.
The plots compare the criteria mentioned earlier against the
number of IFO calls made by the corresponding algorithm.
For the objective function, we look at the difference between
the objective function (f(xt)) and the best objective function
value obtained by running GRADDESCENT for a very large
number of iterations using multiple initializations (denoted

2The datasets can be downloaded from https://www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

grad/n
0 20 40 60 80 100

f
(x

t)
!

f
(x̂

)

10-5

10-4

10-3

10-2

10-1

REG-SAGA
SGD

grad/n
0 20 40 60 80 100

kr
f
(x

t)
k2

10-10

10-8

10-6

10-4

REG-SAGA
SGD

grad/n
0 20 40 60 80 100

f
(x

t)
!

f
(x̂

)

10-4

10-3

10-2

10-1

REG-SAGA
SGD

grad/n
0 20 40 60 80 100

kr
f
(x

t)
k2

10-10

10-8

10-6

10-4

REG-SAGA
SGD

Fig. 1. Results for nonconvex regularized generalized linear models (see Equation (12)). The first and last two figures correspond to rcv1 and realsim
datasets respectively. The results compare the performance of REG-SAGA and SGD algorithms. Here x̂ corresponds to the solution obtained by running
GRADDESCENT for a very long time and using multiple restarts. As seen in the figure, REG-SAGA converges much faster than SGD in terms of objective
function value and the stationarity gap ‖∇f(x)‖2.

by f(x̂)). As shown in the figure, REG-SAGA converges
much faster than SGD in terms of objective value. Further-
more, as supported by the theory, the stationarity gap for
REG-SAGA is very small in comparison to SGD. Also, in our
experiments, the selection of step size was much easier for
REG-SAGA when compared to SGD. Overall the empirical
results for nonconvex regularized problems are promising. It
will be interesting to apply the approach for other smooth
nonconvex problems.

VIII. CONCLUSION

In this paper, we investigated a fast incremental method
(SAGA) for nonconvex optimization. Our main contribution
in this paper to show that SAGA can provably perform
better than both SGD and GRADDESCENT in the context of
nonconvex optimization. We also showed that with additional
assumptions on function f in (1) like gradient dominance,
SAGA has linear convergence to the global minimum as
opposed to sublinear convergence of SGD. Furthermore,
for large scale parallel settings, we proposed a minibatch
variant of SAGA with stronger theoretical convergence rates
than SGD by attaining linear speedups in the size of the
minibatches. One of the biggest advantages of SAGA is the
ability to use fixed step size. Such a property is important in
practice since selection of step size (learning rate) for SGD
is typically difficult and is one of its biggest drawbacks.

REFERENCES

[1] Alekh Agarwal and Leon Bottou. A lower bound for the optimization
of finite sums. arXiv:1410.0723, 2014.

[2] Alekh Agarwal and John C Duchi. Distributed delayed stochastic
optimization. In Advances in Neural Information Processing Systems,
pages 873–881, 2011.

[3] Anestis Antoniadis, Irène Gijbels, and Mila Nikolova. Penalized
likelihood regression for generalized linear models with non-quadratic
penalties. Annals of the Institute of Statistical Mathematics, 63(3):585–
615, June 2009.

[4] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall, 1989.

[5] Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal
methods for convex optimization: A survey. In S. Wright S. Sra,
S. Nowozin, editor, Optimization for Machine Learning. MIT Press,
2011.

[6] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A
fast incremental gradient method with support for non-strongly convex
composite objectives. In NIPS 27, pages 1646–1654, 2014.

[7] Li Deng and Dong Yu. Deep learning: Methods and applications.
Foundations and Trends Signal Processing, 7:197–387, 2014.

[8] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM Journal on
Optimization, 23(4):2341–2368, 2013.

[9] Mingyi Hong. A distributed, asynchronous and incremental algorithm
for nonconvex optimization: An admm based approach. arXiv preprint
arXiv:1412.6058, 2014.

[10] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction
to Statistical Learning: with Applications in R. Springer Texts in
Statistics. Springer, 2013.

[11] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent
using predictive variance reduction. In NIPS 26, pages 315–323, 2013.

[12] Harold Joseph Kushner and Dean S Clark. Stochastic approximation
methods for constrained and unconstrained systems, volume 26.
Springer Science & Business Media, 2012.

[13] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on
Optimization, 19(4):1574–1609, 2009.

[14] Yurii Nesterov. Introductory Lectures On Convex Optimization: A
Basic Course. Springer, 2003.

[15] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton
method and its global performance. Mathematical Programming,
108(1):177–205, 2006.

[16] B.T. Polyak. Gradient methods for the minimisation of function-
als. USSR Computational Mathematics and Mathematical Physics,
3(4):864–878, January 1963.

[17] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu.
Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent. In NIPS 24, pages 693–701, 2011.

[18] Sashank Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and
Alex J Smola. On variance reduction in stochastic gradient descent
and its asynchronous variants. In NIPS 28, pages 2629–2637, 2015.

[19] H. Robbins and S. Monro. A stochastic approximation method. Annals
of Mathematical Statistics, 22:400–407, 1951.

[20] Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing
Finite Sums with the Stochastic Average Gradient. arXiv:1309.2388,
2013.

[21] Shai Shalev-Shwartz. SDCA without duality. CoRR, abs/1502.06177,
2015.

[22] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate
ascent methods for regularized loss. The Journal of Machine Learning
Research, 14(1):567–599, 2013.

[23] Ohad Shamir. A stochastic PCA and SVD algorithm with an
exponential convergence rate. arXiv:1409.2848, 2014.

[24] Suvrit Sra. Scalable nonconvex inexact proximal splitting. In NIPS,
pages 530–538, 2012.

APPENDIX

IX. PROOF OF LEMMA 1

Proof: Since f is L-smooth, from Lemma 3, we have

E[f(xt+1)] ≤ E[f(xt) + 〈∇f(xt), xt+1 − xt〉
+ L

2 ‖x
t+1 − xt‖2].

We first note that the update in Algorithm 1 is unbiased i.e.,
E[vt] = ∇f(xt). By using this property of the update on the

right hand side of the inequality above, we get the following:

E[f(xt+1)] ≤ E[f(xt)− ηt‖∇f(xt)‖2 + Lη2

2 ‖v
t‖2]. (13)

Here we used the fact that xt+1 − xt = −ηvt (see Algo-
rithm 1). Consider now the Lyapunov function

Rt := E[f(xt) + ct
n

n∑
i=1

‖xt − αti‖2].

For bounding Rt+1 we need the following:

1

n

n∑
i=1

E[‖xt+1 − αt+1
i ‖

2]

=
1

n

n∑
i=1

 1

n
E‖xt+1 − xt‖2 +

n− 1

n
E‖xt+1 − αti‖2︸ ︷︷ ︸

T1

 .
(14)

The above equality from the definition of αt+1
i and the

uniform randomness of index jt in Algorithm 1. The term
T1 in (14) can be bounded as follows

T1 = E[‖xt+1 − xt + xt − αti‖2]

= E[‖xt+1 − xt‖2 + ‖xt − αti‖2 + 2〈xt+1 − xt, xt − αti〉]
= E[‖xt+1 − xt‖2 + ‖xt − αti‖2]− 2ηE[〈∇f(xt), xt − αti〉]
≤ E[‖xt+1 − xt‖2 + ‖xt − αti‖2]

+ 2ηE
[

1
2β ‖∇f(xt)‖2 + 1

2β‖x
t − αti‖2

]
. (15)

The second equality again follows from the unbiasedness of
the update of SAGA. The last inequality follows from a sim-
ple application of Cauchy-Schwarz and Young’s inequality.
Plugging (13) and (15) into Rt+1, we obtain the following
bound:

Rt+1 ≤ E[f(xt)− η‖∇f(xt)‖2 + Lη2

2 ‖v
t‖2]

+ E[ct+1‖xt+1 − xt‖2 + ct+1
n− 1

n2

n∑
i=1

‖xt − αti‖2]

+
2(n− 1)ct+1η

n2

n∑
i=1

E
[

1
2β ‖∇f(xt)‖2 + 1

2β‖x
t − αti‖2

]
≤ E[f(xt)−

(
η − ct+1η

β

)
‖∇f(xt)‖2

+
(
Lη2

2 + ct+1η
2
)
E[‖vt‖2]

+

(
n− 1

n
ct+1 + ct+1ηβ

)
1

n

n∑
i=1

E
[
‖xt − αti‖2

]
.

(16)

To further bound the quantity in (16), we use Lemma 2 to
bound E[‖vt‖2], so that upon substituting it into (16), we
obtain

Rt+1 ≤ E[f(xt)]

−
(
η − ct+1η

β − η2L− 2ct+1η
2
)
E[‖∇f(xt)‖2]

+
[
ct+1

(
1− 1

n + ηβ + 2η2L2
)

+ η2L3
]

1
n

n∑
i=1

E
[
‖xt − αti‖2

]
≤ Rt −

(
η − ct+1η

β − η2L− 2ct+1η
2
)
E[‖∇f(xt)‖2].

The second inequality follows from the definition of ct i.e.,
ct = ct+1(1− 1

n + ηβ + 2η2L2) + η2L3 and Rt specified in
the statement, thus concluding the proof.

X. OTHER LEMMAS

The following lemma provides a bound on the variance of the
update used in SAGA algorithm. More specifically, it bounds
the quantity E[‖vt‖2]. A more general result for bounding
the variance of the minibatch scheme in Algorithm 3 can be
proved along similar lines.
Lemma 2: Let vt be computed by Algorithm 1. Then,

E[‖vt‖2] ≤ 2E[‖∇f(xt)‖2] +
2L2

n

n∑
i=1

E[‖xt − αti‖2].

Proof: For ease of exposition, we use the notation

ζt =
(
∇fit(xt)−∇fit(αtit)

)
Using the convexity of ‖·‖2 and the definition of vt we get

E[‖vt‖2] = E[‖ζt + 1
n

n∑
i=1

∇f(αti)‖2]

= E[‖ζt + 1
n

n∑
i=1

∇f(αti)−∇f(xt) +∇f(xt)‖2]

≤ 2E[‖∇f(xt)‖2] + 2E[‖ζt − E[ζt]‖2]

≤ 2E[‖∇f(xt)‖2] + 2E[‖ζt‖2].

The first inequality follows from the fact that ‖a + b‖2 ≤
2(‖a‖2 +‖b‖2) and that E[ζt] = ∇f(xt)− 1

n

∑n
i=1∇f(αti).

The second inequality is obtained by noting that for a
random variable ζ, E[‖ζ−E[ζ]‖2] ≤ E[‖ζ‖2]. Using Jensen’s
inequality in the inequality above, we get

E[‖vt‖2]

≤ 2E[‖∇f(xt)‖2] +
2

n

n∑
i=1

E[‖∇fit(xt)−∇fit(αti)‖2]

≤ 2E[‖∇f(xt)‖2] +
2L2

n

n∑
i=1

E[‖xt − αti‖2].

The last inequality follows from L-smoothness of fit , thus
concluding the proof.
The following result provides a bound on the function value
of functions with Lipschitz continuous gradients.
Lemma 3: Suppose the function f : Rd → R is L-smooth,
then the following holds

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2,

for all x, y ∈ Rd.

	INTRODUCTION
	Related work

	Preliminaries
	Algorithm
	Finite Sums with Regularization
	Linear convergence rates for gradient dominated functions
	Minibatch Variant
	Experiments
	Conclusion
	References
	Proof of Lemma 1
	Other Lemmas

