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Course materials

m My website (Teaching)

m Some references:

"
"
"
"
"
"
"
S
"
"
"
"

Introductory lectures on convex optimization — Nesterov
Convex optimization — Boyd & Vandenberghe

Nonlinear programming — Bertsekas

Convex Analysis — Rockafellar

Fundamentals of convex analysis — Urruty, Lemaréchal
Lectures on modern convex optimization — Nemirovski
Optimization for Machine Learning — Sra, Nowozin, Wright
NIPS 2016 Optimization Tutorial — Bach, Sra

ome related courses:

EE227A, Spring 2013, (Sra, UC Berkeley)
10-801, Spring 2014 (Sra, CMU)
EE364a,b (Boyd, Stanford)

EE236b,c (Vandenberghe, UCLA)

m Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.
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http://suvrit.de/teaching.html
http://suvrit.de/teach/ee227a/
http://www.cs.cmu.edu/~suvrit/teach/aopt.html

Lecture Plan

Introduction

Recap of convexity, sets, functions

Recap of duality, optimality, problems

First-order optimization algorithms and techniques
— Large-scale optimization (SGD and friends)

— Directions in non-convex optimization
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Introduction

Supervised machine learning

» Data: n observations (x;,y;)’, € X x Y
» Prediction function: h(x,0) € R parameterized by 6 € R

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning nir PRI——— A Y



Introduction

Supervised machine learning
» Data: n observations (x;,y;)’, € X x Y
» Prediction function: h(x,0) € R parameterized by 6 € R
» Motivating examples:
e Linear predictions: i(x,0) = 0" ®(x) using features ®(x)
e Neural networks: h(x,0) = 0,,0(0] o(---6, o(6] x))

» Estimating 6 parameters is an optimization problem
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Introduction

Supervised machine learning

» Data: n observations (x;,y;)’, € X x Y
» Prediction function: h(x,0) € R parameterized by 6 € R

v

Motivating examples:

e Linear predictions: i(x,0) = 0" ®(x) using features ®(x)
e Neural networks: h(x,0) = 0,,0(0] o(---6, o(6] x))

» Estimating 6 parameters is an optimization problem
Unsupervised and other ML setups

» Different formulations, but ultimately optimization at heart

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning | L [T / 64



The Problem!

min - f(0)

| L [T



The Problem!

i 6
min (0)
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Convex analysis
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Convex sets

T — E—
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Convex sets

Def. Set C C R" called convex, if for any x,y € C, the line-
segment \x + (1 — \)y, where \ € [0, 1], also lies in C.
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Convex sets

Def. Set C C R" called convex, if for any x,y € C, the line-
segment \x + (1 — \)y, where \ € [0, 1], also lies in C.

Combinations of points

» Convex: \ix + Ay € C,where \;,\» > 0and A\ + X = 1.
» Linear: if restrictions on A, Ay are dropped
» Conic: if restriction A\ + Ao = 1 is dropped

Different restrictions lead to different “algebra”
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Recognizing / constructing convex sets

Theorem. (Intersection).
Let Cq, C; be convex sets. Then, C; N C; is also convex.

Proof.
— If C; N C; = 0, then true vacuously.
— Letx,y € C;NCy. Then, x,y € C; and x,y € Cs.
— But Cy, C; are convex, hence 6x + (1 — 0)y € Cy, and also in C,.
Thus, 6x + (1 — 0)y € C; N Cy.
— Inductively follows that (-, C; is also convex.
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Convex sets

(psdcone image from convexoptimization.com, Dattorro)
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Convex sets

QO Letxq,x2,...,x,; € R". Their convex hull is

3

Let A € R™*", and b € R™. The set {x | Ax = b} is convex (it is
an affine space over subspace of solutions of Ax = 0).

halfspace {x | a’x < b}.

polyhedron {x | Ax < b,Cx =d}.

ellipsoid {x | (x — x0)TA(x — x9) < 1}, (A: semidefinite)
convex cone x € K = ax € K for a > 0 (and K convex)

CERCERCIREC

o

Exercise: Verify that these sets are convex.
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Challenge 1

Let A, B € R"*" be symmetric. Prove that
R(A,B) := {(xTAx,xTBx) | xTx = 1}

is a compact convex set for n > 3.
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Convex functions

Def. A function f : RY — R is convex if and only if its epigraph
{(x,t) CR¥! | x e Rt € R,f(x) < t} is a convex set.
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Convex functions

Def. A function f : RY — R is convex if and only if its epigraph
{(x,t) CR¥! | x e Rt € R,f(x) < t} is a convex set.

Def. A functionf : R" — Ris called convex if its domain dom(f)
is a convex set and for any x,y € dom(f) and A > 0,

SO =Nx+Ay) < (1= Nf () + M (Y)-

These functions also known as Jensen convex; named after
J.L.W.V. Jensen (after his influential 1905 paper).
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Convex functions

Def. A function f : RY — R is convex if and only if its epigraph
{(x,t) CR¥! | x e Rt € R,f(x) < t} is a convex set.

Def. A functionf : R" — Ris called convex if its domain dom(f)
is a convex set and for any x,y € dom(f) and A > 0,

SO =Nx+Ay) < (1= Nf () + M (Y)-

These functions also known as Jensen convex; named after
J.L.W.V. Jensen (after his influential 1905 paper).

Exercise: Why are we focusing on these functions?
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Convex functions: Jensen’s inequality

fOx+ 1 =Ny) <M (x) + (1= Mf(y)
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Convex functions: affine lower bounds

fx) = fy) +{(Vf(y),x —y)
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Convex functions: increasing slopes

T z=Xx+(1=MNy y

slope PQ < slope PR < slope QR
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex zf and only if domf is
convex and f(x) > f(y) + (Vf(y), x —y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V?f(x) = 0 at every x € domf.
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Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex zf and only if domf is
convex and f(x) > f(y) + (Vf(y), x —y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V?f(x) = 0 at every x € domf.

& By showing f : dom(f) — Ris convex if and only if its
restriction to any line that intersects dom(f) is convex. That
is, for any x € dom(f) and any v, the function g(t) = f(x + tv)
is convex (on its domain {t | x + fv € dom(f)}).

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning L [T p—— w16 / 64



Recognizing convex functions

& If f is continuous and midpoint convex, then it is convex.

& If f is differentiable, then f is convex zf and only if domf is
convex and f(x) > f(y) + (Vf(y), x —y) for all x,y € domf.

& If f is twice differentiable, then f is convex if and only if dom f
is convex and V?f(x) = 0 at every x € domf.

& By showing f : dom(f) — Ris convex if and only if its
restriction to any line that intersects dom(f) is convex. That
is, for any x € dom(f) and any v, the function g(t) = f(x + tv)
is convex (on its domain {t | x + fv € dom(f)}).

& By showing f to be a pointwise max of convex functions

& See exercises (Ch. 3) in Boyd & Vandenberghe for more!
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Operations preserving convexity

Example. Let f : R" — R be convex. Let A € R"*",and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!
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Operations preserving convexity

Example. Letf : R” — R be convex. Let A € R"*", and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Letf : I; - Rand g : [, — R, where range(f) C L. If
f and g are convex, and g is increasing, then g o f is convex on I
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Operations preserving convexity

Example. Letf : R” — R be convex. Let A € R"*", and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Letf : I; - Rand g : [, — R, where range(f) C L. If
f and g are convex, and g is increasing, then g o f is convex on I

Proof. Letx,y € I, and let A € (0,1).

fOx+(1=Ny) < M)+ (1 -Nf(y)
S+ (1=Ny) < g(M(x)+ ( )f(y))
< () + 1 - Ng(fy)-
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Operations preserving convexity

Example. Letf : R” — R be convex. Let A € R"*", and b € R™.
Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Letf : I; - Rand g : [, — R, where range(f) C L. If
f and g are convex, and g is increasing, then g o f is convex on I

Proof. Letx,y € I, and let A € (0,1).

fOx+(1=Ny) < M)+ (1 -Nf(y)
S+ (1=Ny) < g(M(x)+ ( )f(y))
< () + 1 - Ng(fy)-

» Do not miss out on several other important examples in BV!
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Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions
is convex. That is, if f(x;y) is a convex function of x for every y
in an arbitrary “index set” ), then

f(x) :=sup f(x;y)

yeY

is a convex function of x.

Exercise: Verify!
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Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions
is convex. That is, if f(x;y) is a convex function of x for every y
in an arbitrary “index set” ), then

f(x) :=sup f(x;y)

yeY

is a convex function of x.

Exercise: Verify!
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Constructing convex functions: joint inf

Theorem. Let ) be a nonempty convex set. Suppose L(x,y) is
convex in both (x,y), then,

f@) = inf - L(x.y)

is a convex function of x, provided f(x) > —oo.
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Constructing convex functions: joint inf

Theorem. Let ) be a nonempty convex set. Suppose L(x,y) is
convex in both (x,y), then,

f@) = inf - L(x.y)

is a convex function of x, provided f(x) > —oo.

Proof. Let u,v € domf. Since f(u) = inf, L(u, y), for each € > 0, there is a
y1 € Y, s.t. f(u) + 5 is not the infimum. Thus, L(u,y1) < f(u) + 5.
Similarly, there is y» € ), such that L(v, y2) < f(v) + 5.

Now we prove that f(Au + (1 — X\)v) < M (1) + (1 — X)f(v) directly.

fOu+1-Nov) = yig)f}L()\u +(1-=Xv,y)

Lwu+ (1 — X))o, Ay + (1 — Ny2)
)‘L(u7.1/1) + (1 - )‘)L(vaz)
M)+ (1= N)f(v) + e

Since € > 0 is arbitrary, claim follows.

ININIA
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Convex functions — norms

Let Q : R? — R be a function that satisfies
Q(x) > 0, and Q(x) = 0if and only if x = 0 (definiteness)
Q(Ax) = [A|Q(x) for any A € R (positive homogeneity)
Qx+y) < Q(x) + Qy) (subadditivity)

Such function called norms—usually denoted ||x||.

’ Theorem. Norms are convex. ‘
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Convex functions — norms

Let Q : R? — R be a function that satisfies
Q(x) > 0, and Q(x) = 0if and only if x = 0 (definiteness)
Q(Ax) = [A|Q(x) for any A € R (positive homogeneity)
Qx+y) < Q(x) + Qy) (subadditivity)

Such function called norms—usually denoted ||x||.

’ Theorem. Norms are convex. ‘

Often used in “regularized” ML problems

nbin £(0) + u$2(6).
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Norms: important examples

Example. ({,-norm): ||x|> = ( ixzz)l/z

Example. ({,-norm): Letp > 1. [|x[|, = (3, |x,-\p)1/p

Example. ({so-norm): ||x||oc = maxj<i<, |x;|

Example. (Frobenius-norm): Let A € R™*". ||Al|r := Zi]- |a;|?

Example. Let A be any matrix. Then, the operator norm of A is

Ax
|A|| :== sup |Ax> = omax(A).

Il [1¥1l2

Exercise: Verify that above functions are actually norms!
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Convex functions — Indicator

Let 1x be the indicator function for X defined as:

Ly(x) = 0 ifxeX,
v " loo otherwise.

Note: 1x(x) is convex if and only if X is convex.

» Also called “extended value” convex function.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup xTz —f(x).

xedomf
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup xTz —f(x).

xedomf

Note: f* is pointwise (over x) sup of linear functions of z. Hence,
it is always convex (even if f is not convex).

’ Example. 400 and —oo conjugate to each other.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup xTz —f(x).

xedomf

Note: f* is pointwise (over x) sup of linear functions of z. Hence,
it is always convex (even if f is not convex).

’ Example. 400 and —oo conjugate to each other.

Example. Let f(x) = |x||. We have f*(z) = 1).j,<1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

Proof. f*(z) = sup, z'x — ||x||. If ||z|| > 1, by defn. of the dual norm, 3u such
that ||u|| < 1and u"z > 1. Now select x = au and let & — co. Then,

2 — ||¥)| = a(z"u — ||lu|]) = oco. If ||z||« < 1, then z"x < ||x||||z|+, which
implies the sup must be zero.
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Fenchel conjugate: examples

Example. f(x) = 3xT Ax, where A > 0. Then, f*(z) = 3zTA"1z.

Example. f(x) = max(0,1 — x). Verify: domf* = [-1,0], and on
this domain, f*(z) = z.

Example. f(x) = 1x(x): f*(z) = sup,,(x, z) (aka support func)

Example. If f** = f, we say f is a closed convex function. ‘

Exercise: Suppose f(x) = (3, |x;|"/?)%. What is f**?
Exercise: Suppose f(x) = xT Ax + bTx but A = 0; what is f*?
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Challenge 2

Consider the following functions on strictly positive variables:

1
hl(x) = ;
1 1 1
hz(X,]/) = ;+g*x+y
h3(x,y,z) = 1—&-1—%1— r 1t 1 !
Y, T x y z x+ty y+z x+z x+ytz

O Prove that h,(x) > 0 (easy)
O Prove that Iy, hy, h3, and in general &, are convex (hard)
O Prove that in fact each 1/h, is concave (harder).
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Optimization
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Optimization problems

Letf; : R" — R (0 <i < m). Generic nonlinear program

min  fp(x)
s.t.fi(x) <0, 1<i<m,
x € {domfy Ndomf; ---Ndomf,,} .

Henceforth, we drop condition on domains for brevity.
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Optimization problems

Letf; : R" — R (0 <i < m). Generic nonlinear program

min  fp(x)
s.t.fi(x) <0, 1<i<m,
x € {domfy Ndomf; ---Ndomf,,} .

Henceforth, we drop condition on domains for brevity.

If f; are differentiable — smooth optimization

If any f; is non-differentiable — nonsmooth optimization

If all f; are convex — convex optimization

o If m =0, 1i.e., only fj is there — unconstrained minimization
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Convex optimization

Let X be feasible set and p* the optimal value

p*=inf{fo(x) | x € X}
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Convex optimization

Let X be feasible set and p* the optimal value
p*=inf{fo(x) | x € X}

If X is empty, we say problem is infeasible

By convention, we set p* = 400 for infeasible problems
If p* = —o0, we say problem is unbounded below.
Example, minx on R, or min —logx on R

Sometimes minimum doesn’t exist (as x — +00)

vVvyyvyVvyypy

Say fo(x) = 0, problem is called convex feasibility
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global!

Exercise: Prove this theorem (Hint: try contradiction)
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Optimality

Def. A point x* € X is locally optimal if f(x*) < f(x) for all x in
a neighborhood of x*. Global if f (x*) < f(x) forall x € X.

Theorem. For convex problems, local = global! ‘

Exercise: Prove this theorem (Hint: try contradiction)

Theorem. Let f : R" — R be continuously differentiable in an
open set S containing x*, a local min of f. Then, Vf(x*) = 0.

If f is convex, then Vf(x*) = 0 sufficient for global optimality.
(This property makes convex optimization special!)
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Optimality — constrained

@& For every x,y € domf, we have f(y) > f(x) + (Vf(x), y — x).
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Optimality — constrained

@& For every x,y € domf, we have f(y) > f(x) + (Vf(x), y — x).
& Thus, x* is optimal if and only if

(VF(x*),y—x") >0, forall y e X.
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Optimality — constrained

@& For every x,y € domf, we have f(y) > f(x) + (Vf(x), y — x).
& Thus, x* is optimal if and only if

(VF(x*),y—x") >0, forall y e X.
& If X = R", this reduces to Vf(x*) =0

& If Vf(x*) # 0, it defines supporting hyperplane to X" at x*
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Optimization:
via subgradients
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Subgradients: global underestimators

A

f) = fy) +{(Vf(y),x —y)
Hence Vf(y) = 0 implies that y is global min.
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Subgradients: global underestimators

A

f) 2 fy) +igx—y)
If one of the ¢ = 0, then y a global min.
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Subgradients — basic facts

» f is convex, differentiable: Vf(y) the unique subgradient at y

» A vector g is a subgradient at a point y if and only if
f(y) + (g, x — y) is globally smaller than f(x).

» Usually, one subgradient costs approx. as much as f (x)
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Subgradients — basic facts

» f is convex, differentiable: Vf(y) the unique subgradient at y

» A vector g is a subgradient at a point y if and only if
f(y) + (g, x — y) is globally smaller than f(x).

» Usually, one subgradient costs approx. as much as f (x)

» Determining all subgradients at a given point — difficult.

» Subgradient calculus—major achievement in convex analysis

» Fenchel-Young inequality: f(x) 4+ f*(s) > (s, x) (tight ata
subgradient)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning i [PRRS————



Example: computing subgradients

f(x):=sup  h(x,y)
yey

Simple way to obtain some g € 9f(x):

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning IHT e 34 / 64



Example: computing subgradients

f(x):=sup  h(x,y)
yey

Simple way to obtain some g € 9f(x):
» Pick any y* for which h(x,y*) = f(x)
» Pick any subgradient g € dh(x,y*)
» This g € 0f (x)

Proof:
h(z.y") = h(x,y")+g'(z—x)
hzy") = f(x)+g'(z—x)
f(z) > h(z,y) (because of sup)
f@) = f@)+g8"(z-x)
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Computing subgradients

Several other simple rules can be proved; see Boyd’s lecture
notes (or my EE227A lecture slides)

m Subgradient from max
m Subgradient from expectation

m Subgradient of composition
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Subdifferential®
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Subdifferential

Def. The set of all subgradients at y denoted by 0f(y). This set
is called subdifferential of f aty
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Subdifferential

Def. The set of all subgradients at y denoted by 0f(y). This set
is called subdifferential of f at y

If f is convex, df (x) is nice:
& If x € relative interior of domf, then 9f (x) nonempty
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Subdifferential

Def. The set of all subgradients at y denoted by 0f(y). This set
is called subdifferential of f at y

If f is convex, df (x) is nice:
& If x € relative interior of domf, then 9f (x) nonempty
& If f differentiable at x, then Of (x) = {Vf(x)}

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning L [T p—— w37 / 64



Subdifferential

Def. The set of all subgradients at y denoted by 0f(y). This set
is called subdifferential of f at y

If f is convex, df (x) is nice:
& If x € relative interior of domf, then 9f (x) nonempty
& If f differentiable at x, then Of (x) = {Vf(x)}
& If Of (x) = {g}, then f is differentiable and g = Vf(x)
Exercise: What is 0f (x) for the ReLU function: max (0, x)?
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Subdifferential — example

‘ f(x) := max(fi(x).f>(x)); both f1, fo convex, differentiable
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Subdifferential — example

‘ f(x) := max(fi(x).f>(x)); both f1, fo convex, differentiable

fi()
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Subdifferential — example

‘ f(x) := max(fi(x).f>(x)); both f1, fo convex, differentiable

fi()

faz

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning I s 38 / 64



Subdifferential — example

’ f(x) :=max(fi(x), f2(x)); both f1, fo convex, differentiable
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Subdifferential — example

’ f(x) :=max(fi(x), f2(x)); both f1, fo convex, differentiable
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Subdifferential — example

’ f(x) :=max(fi(x), f2(x)); both f1, fo convex, differentiable

* f1(x) > fo(x): unique subgradient of f is f{(x)
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Subdifferential — example

’ f(x) :=max(fi(x), f2(x)); both f1, fo convex, differentiable

* f1(x) > fo(x): unique subgradient of f is f{(x)
* f1(x) < fo(x): unique subgradient of f is f;(x)
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Subdifferential — example

’ f(x) :=max(fi(x), f2(x)); both f1, fo convex, differentiable

* filx) > folx
* fi(x) < fo(x
* f1(y) = fo(y): subgradients, the segment [f] (v),f; (V)]

(imagine all supporting lines turning about point y)

unique subgradient of f is f{ (x)

)
)

unique subgradient of f is ] (x)
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Subdifferential for abs value

f(x) = x|
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Subdifferential for abs value

f(x) = x|

LA Of(x)

+1
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Subdifferential for abs value

| ) = |

A 0f(x)
A
+1
x=
—1
-1 x <0,
x| = ¢ +1 x>0,
[-1,1] x=0.
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Subdifferential for Euclidean norm

Example. f(x) = ||x||2. Then,

[/l x40,
¥ = {{z el <1} x=o.
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Subdifferential for Euclidean norm

Example. f(x) = ||x||2. Then,

[/l x40,
¥ = {{z el <1} x=o.

Proof.

Izl = 2 + {8, 2= %)
Izl > (& 2)
= gl <1
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Example: difficulties

Example. A convex function need not be subdifferentiable ev-
erywhere. Let

f) = {—ﬂ B2 e <1,

400 otherwise.

f diff. for all x with ||x||2 < 1, but 9f (x) = @ whenever ||x|2 > 1.
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Subdifferential calculus

#& Finding one subgradient within of (x)
& Determining entire subdifferential df (x) at a point x

& Do we have the chain rule?
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Subdifferential calculus

¢ 1If f is differentiable, 9f (x) = {Vf(x)}

¢ Scaling a > 0, d(af ) (x) = adf (x) = {ag | g € Of (x)}

¢ Addition*: 9(f + k)(x) = 9f (x) + Ok(x) (set addition)

¢ Chainrule*: Let A € R"™*", b e R",f: R" - R,and h : R" — Rbe
given by h(x) = f(Ax + b). Then,

Oh(x) = ATOf (Ax +b).
¢ Chain rule*: h(x) = f ok, where k : X — Y is diff.
Oh(x) = 0f (k(x)) o Dk(x) = [Dk(x)]" of (k(x))
¢ Max function®: If f(x) := maxj<j<u fi(x), then
Of (x) = conv | J {0fi(x) | filx) = f(0)},

convex hull over subdifferentials of “active” functions at x
¢ Conjugation: z € 9f (x) if and only if x € 9f*(z)
* — can fail to hold without precise assumptions.
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Example: breakdown

’ It can happen that 0(f; + f2) # 0f1 + 0f2

Example. Define f; and f, by

400 if x > 0,

—2v/—x ifx<0.

Then, f = max {f1,f2} = 1o}, whereby Jf(0) =R
But 0f1(0) = 9f2(0) = 0.

) = {—2\& if x >0,

400 ifx <0,

and fo(x) == {

However, 0f1(x) + 0f2(x) C 9(f1 + f2)(x) always holds.
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Subdifferential — example

Example. f(x) = ||x||co- Then,

Jf(0) = conv {teq,...,+e,},

where ¢; is i-th canonical basis vector.

To prove, notice that f(x) = maxj<j<y {[e] x|}

Then use, chain rule and max rule and 0| - |
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Subdifferential - example (Boyd)

Example. Let f(x) = max {s’x | s; € {—1,1}} (2" members)

e il Woa
1
1) it ‘ —1
Of at x = (0,0) Of at x = (1,0) of atx = (1,1)
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Optimality via subdifferentials

Theorem. (Fermat'’s rule): Let f : R" — (—o00, +00]. Then,

argminf = zer(df) :== {x e R" | 0 € 9f (x)} .
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Optimality via subdifferentials

Theorem. (Fermat’s rule): Let f : R* — (—o0, +00]. Then,

argminf = zer(df) :== {x e R" | 0 € 9f (x)} .

Proof: x € argminf implies that f(x) < f(y) for ally € R".
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Optimality via subdifferentials

Theorem. (Fermat’s rule): Let f : R* — (—o0, +00]. Then,

argminf = zer(df) :== {x e R" | 0 € 9f (x)} .

Proof: x € argminf implies that f(x) < f(y) for ally € R".
Equivalently, f(y) > f(x) + (0, y — x) Yy,
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Optimality via subdifferentials

Theorem. (Fermat’s rule): Let f : R* — (—o0, +00]. Then,

argminf = zer(df) :== {x e R" | 0 € 9f (x)} .

Proof: x € argminf implies that f(x) < f(y) for ally € R".
Equivalently, f(y) > f(x) + (0, y —x) Yy, <> 0 € Of (x).
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Optimality via subdifferentials

Theorem. (Fermat’s rule): Let f : R* — (—o0, +00]. Then,

argminf = zer(df) :== {x e R" | 0 € 9f (x)} .

Proof: x € argminf implies that f(x) < f(y) for ally € R".
Equivalently, f(y) > f(x) + (0, y —x) Yy, <> 0 € Of (x).

Nonsmooth optimality

min f(x) st.xe X
min f(x) +1x(x).
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Optimality via subdifferentials: application

» Minimizing x must satisfy: 0 € 9(f + 1x)(x)

» (CQ) Assuming ri(domf) Nri(X) # 0, 0 € 9f (x) + d1x(x)
» Recall, g € 01y (x)iff 1y (y) > 1x(x) + (g. y — x) for all y.
» Soge€ dly(x) meansx € XYand 0 > (g, y —x) Vy € X.

» Normal cone:

Nx(x) ={geR"[0>(g,y—x) Vyex}

Application. minf(x) s.t. x € X:
O If f is diff., we get 0 € Vf(x*) + Ny (x*)
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Optimality via subdifferentials: application

» Minimizing x must satisfy: 0 € 9(f + 1x)(x)

» (CQ) Assuming ri(domf) Nri(X) # 0, 0 € 9f (x) + d1x(x)
» Recall, g € 01y (x)iff 1y (y) > 1x(x) + (g. y — x) for all y.
» Soge€ dly(x) meansx € XYand 0 > (g, y —x) Vy € X.

» Normal cone:

Nx(x) ={geR"[0>(g,y—x) Vyex}

Application. minf(x) s.t. x € X:
O If f is diff., we get 0 € Vf(x*) + Ny (x*)
O =Vf(x*) € Ny (x*) <= (Vf(x*),y —x*) > 0forally € X.
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Duality

i i
min - f(0)
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Primal problem

Letf; : R" — R (0 <i < m). Generic nonlinear program

min  fp(x)
s.t.fi(x) <0, 1<i<m, (P)
x € {domfy Ndomf; ---Ndomf,,} .

Def. Domain: The set D := {domfy N domf; - -- N domf, }

» We call (P) the primal problem
» The variable x is the primal variable
» We will attach to (P) a dual problem

» In our initial derivation: no restriction to convexity.
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Lagrangian

To the primal problem, associate Lagrangian £ : R" x R" — R,

L(x, )Y Afilx)

& Variables A € R™ called Lagrange multipliers
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Lagrangian

To the primal problem, associate Lagrangian £ : R" x R" — R,

L(x, )Y Afilx)

& Variables A € R™ called Lagrange multipliers

& Suppose x is feasible, and A > 0. Then, we get the
lower-bound:

fo(x) > L(x, ) Vxe X, AeRL.
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Lagrangian

To the primal problem, associate Lagrangian £ : R" x R" — R,

L(x, )Y Afilx)

& Variables A € R™ called Lagrange multipliers

& Suppose x is feasible, and A > 0. Then, we get the
lower-bound:

fo(x) > L(x, ) Vxe X, AeRL.

& Lagrangian helps write problem in unconstrained form
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Lagrange dual function

Def. We define the Lagrangian dual as

g(A) ==inf, L(x,\).
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Lagrange dual function

Def. We define the Lagrangian dual as

g(A) ==inf, L(x,\).

Observations:
» g is pointwise inf of affine functions of A

» Thus, g is concave; it may take value —oco
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Lagrange dual function

Def. We define the Lagrangian dual as

g(A) ==inf, L(x,\).

Observations:

» ¢ is pointwise inf of affine functions of A

» Thus, g is concave; it may take value —oco
» Recall: fo(x) > L(x,\) Vxe X, A >0; thus
> Vxe X, fo(x)>infy L(x/,N) =: g(N)

» Now minimize over x on lhs, to obtain

VAeRY p* > g(N).
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Lagrange dual problem

sup g(A) st. A >0.
)
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Lagrange dual problem

sup g(A) st. A >0.
)

» dual feasible: if A > 0 and g(\) > —oc0
» dual optimal: \* if sup is achieved

» Lagrange dual is always concave, regardless of original
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Weak duality

Def. Denote dual optimal value by 4%, i.e.,
d* :=sup g(A).

A>0
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Weak duality

Def. Denote dual optimal value by 4%, i.e.,
d*:=sup g(\).

A>0

Theorem. (Weak-duality): For problem (P), we have p* > d*.
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Weak duality

Def. Denote dual optimal value by 4%, i.e.,
d*:=sup g(\).

A>0

’ Theorem. (Weak-duality): For problem (P), we have p* > d*.

Proof: We showed that for all A € R, p* > g(\).
Thus, it follows that p* > sup g(\) = d*.
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Duality gap

p*—d* >0
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Duality gap

p*—d >0

Strong duality if duality gap is zero: p* = d*
Notice: both p* and d* may be +o0
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Duality gap

p*—d >0

Strong duality if duality gap is zero: p* = d*
Notice: both p* and d* may be +o0

Several sufficient conditions known, especially for
convex optimization.

“Easy” necessary and sufficient conditions: unknown
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Example: Slater’s sufficient conditions

min  fy(x)
st fi() <0, 1<i<m,
Ax=1D
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Example: Slater’s sufficient conditions

Constraint qualification: There exists x € riD s.t.
fi(x) <0, Ax =Db.

That is, there is a strictly feasible point.

Theorem. Let the primal problem be convex. If there is a feasible
point such that is strictly feasible for the non-affine constraints
(and merely feasible for affine, linear ones), then strong duality
holds. Moreover, the dual optimal is attained (i.e., d* > —o0).

Reading: Read BV §5.3.2 for a proof.

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning i [P ——



Example: failure of strong duality

. —X 2
mine X <0
i /[y <0,

over the domain D = {(x,y) | y > 0}.
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Example: failure of strong duality

. —X 2
mine X <0
i /[y <0,

over the domain D = {(x,y) | y > 0}.
Clearly, only feasible x = 0. Sop* =1
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Example: failure of strong duality

s X 2
mine X <0
i [y <0,

over the domain D = {(x,y) | y > 0}.
Clearly, only feasible x = 0. Sop* =1

L(x,y,\) =e*+ )\xz/y,

s0 dual function is

>
g(\) = inf e + M2y = {O A20
x,y>0

—00 A<O.
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Example: failure of strong duality

s X 2
mine X <0
i [y <0,

over the domain D = {(x,y) | y > 0}.
Clearly, only feasible x = 0. Sop* =1

L(x,y,\) =e*+ )\xz/y,

s0 dual function is

>
g(\) = inf e + M2y = {O A20
x,y>0

—00 A<O.

Dual problem
d* = mflxo s.t.A>0.

Thus, d* =0,and gapisp* —d* = 1.
Here, we had no strictly feasible solution.
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Zero duality gap: nonconvex example

Trust region subproblem (TRS)

min  xTAx +2bTx xTx<1.

‘ A is symmetric but not necessarily semidefinite! ‘

’ Theorem. TRS always has zero duality gap. ‘

Remark: Above theorem extremely important result; part of a
family of related results on strong duality for certain quadratic
nonconvex problems.
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Example: dual for Support Vector Machine

Tgign 3llxl3 + Czi &i

st. Ax>1-¢ ¢>0.
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Example: dual for Support Vector Machine

min 3 +CY 6
st. Ax>1-¢, £>0.

L(x7£7 A: V) = %HXH% + ClTﬁ - /\T(Ax -1+ é.) - VTg
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Example: dual for Support Vector Machine

min 33 +CY &

st. Ax>1-¢, ¢&>0.
L(x, &\ v) = x5+ C1T¢ = N (Ax — 1+ &) —v'¢

g\, v) = iInfL(x,& A\ v)
AT =FATAR A+v=C1
B 400 otherwise
7 A
\max g\ v)

Exercise: Using v > 0, eliminate v from above problem.
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Example: norm regularized problems

min - f(x) + [|Ax]|
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Example: norm regularized problems

min - f(x) + [|Ax]|
Dual problem

min  f*(-ATy) st |y[. <1.
¥
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Example: norm regularized problems

min - f(x) + [|Ax]|
Dual problem

min  f*(-ATy) st |y[. <1.
¥

Say |||« < 1, such that ATy € ri(dom f*), then we have strong
duality (e.g., for instance 0 € ri(domf*))
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Example: Lasso-like problem

p*i=min, ||Ax — b||z 4+ Al|x[1.
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Example: Lasso-like problem

p*i=miny |[[Ax — b|2 + Al|x]];.

Il = max {x"o | [[ofloc <1}

Jllz = max {xu | flull2 <1}
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Example: Lasso-like problem

p*i=min, [JAx —b|j2 + Al|x||1.
Il = max {x"o | [[ofloc <1}
Ill2 = max {x"u | |jufl2 <1}
Saddle-point formulation

p* = minmax {uT(b —AX) +0Tx | ulla €1, o)l < )\}

X uo
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Example: Lasso-like problem

p*i=miny |[[Ax — b|2 + Al|x]];.

Il = max {x"o | o] <1}
Ill2 = max {x"u | |jufl2 <1}
Saddle-point formulation
p- = minmax {u"(b— Ax) +0"x | ula <1, o <A}

= maxmin {u”(b— Ax) + x"0 | [lul2 <1, [olloc < A}

uoy X
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Example: Lasso-like problem

p*i=miny |[[Ax — b|2 + Al|x]];.

Il = max {x"o | [[ofloc <1}

Jllz = max {xu | flull2 <1}

Saddle-point formulation

p* = minmax {uT(b —AX) +0Tx | ulla €1, o)l < )\}

X uo

= maxmin {u”(b— Ax) + x"0 | [lul2 <1, [olloc < A}

uoy X

= maxulb ATy =0, Jull2 <1, 9]l <A
w0
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Example: Lasso-like problem

p*i=miny |[[Ax — b|2 + Al|x]];.

Il = max {x"o | [[ofloc <1}

Jllz = max {xu | flull2 <1}

Saddle-point formulation

p* = minmax {uT(b —AX) +0Tx | ulla €1, o)l < )\}

X uo

= maxmin {u”(b— Ax) + x"0 | [lul2 <1, [olloc < A}

uoy X

= maxulb ATy =0, Jull2 <1, 9]l <A
w0

= maxud  fulp <1, [|ATo|l < A.
u
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.
» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.

» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X
» Can we simplify this using Lagrangian?

> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.

» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X’
» Can we simplify this using Lagrangian?

> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)

‘ Assume strong duality; and both p* and 4* attained!
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.

» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X’
» Can we simplify this using Lagrangian?

> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)

‘ Assume strong duality; and both p* and 4* attained!

Thus, there exists a pair (x*, \*) such that

P =folx?)
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.

» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X’
» Can we simplify this using Lagrangian?

> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)

‘ Assume strong duality; and both p* and 4* attained!

Thus, there exists a pair (x*, \*) such that

pr=/fo(x") =d” =g(\")
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.

» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X’
» Can we simplify this using Lagrangian?

> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)

‘ Assume strong duality; and both p* and 4* attained!

Thus, there exists a pair (x*, \*) such that

pr=fo(x") =d" = g(A") = min L(x, \")
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.

» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X’
» Can we simplify this using Lagrangian?

> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)

‘ Assume strong duality; and both p* and 4* attained! ‘

Thus, there exists a pair (x*, \*) such that

pr=fo(x") = d" = g(X") = min L(x, \) < L(x", A7)
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.

» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X’
» Can we simplify this using Lagrangian?

> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)

‘ Assume strong duality; and both p* and 4* attained! ‘

Thus, there exists a pair (x*, \*) such that
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> g(N) = infy £(x. ) = fox) + T, M)

‘ Assume strong duality; and both p* and 4* attained! ‘

Thus, there exists a pair (x*, \*) such that
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» Thus, equalities hold in above chain.
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Example: KKT conditions

min fo(x)  fi(x) <0, i=1,...,m.
» Recall: (Vfy(x*), x — x*) > 0 for all feasible x € X’
» Can we simplify this using Lagrangian?
> g(A\) =infy L(x, ) :=fo(x) + D, Afi(x)

‘ Assume strong duality; and both p* and 4* attained! ‘

Thus, there exists a pair (x*, \*) such that

pr=fo(x") =d" =g(X) = min L(x, ") < L(x",A") < fo(x") = p”

» Thus, equalities hold in above chain.

x* € argmin, £(x, \*).
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Example: KKT conditions

x* € argmin, L(x, \*).

If fo.f1, . .., fm are differentiable, this implies
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Example: KKT conditions

x* € argmin, L(x, \*).

If fo.f1, . .., fm are differentiable, this implies

Vx‘c(x A*)’x =x* = va +Z A*vfl -
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Example: KKT conditions

x* € argmin, L(x, \*).

If fo.f1, . .., fm are differentiable, this implies
VL (X, A) e = Vo (x* +Z ASVF(x*) =

Moreover, since L(x*, \*) = fo(x*), we also have
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Moreover, since L(x*, \*) = fo(x*), we also have

S Afilx) =0
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Example: KKT conditions

x* € argmin, L(x, \*).

If fo.f1, . .., fm are differentiable, this implies
VL (X, A) e = Vo (x* +Z ASVF(x*) =

Moreover, since L(x*, \*) = fo(x*), we also have

S Afilx) =0

But A > 0and f;(x*) <0,
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Example: KKT conditions

x* € argmin, L(x, \*).

If fo.f1, . .., fm are differentiable, this implies
VL, A e = V() + D N Vfi(x") =
Moreover, since L(x*, \*) = fo(x*), we also have

S Afilx) =0

But A\ > 0 and f;(x*) < 0, so complementary slackness

Nfilx') =0, i=1,...,m.
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KKT conditions

filx*) < 0, i=1,...,m (primal feasibility)

AX> 0, i=1,....m (dual feasibility)

XNfix*) = 0, i=1,...,m (compl. slackness)

VaL(x, A )[x=x= = 0 (Lagrangian stationarity)
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AX> 0, i=1,....m (dual feasibility)

XNfix*) = 0, i=1,...,m (compl. slackness)

VaL(x, A )[x=x= = 0 (Lagrangian stationarity)

» We showed: if strong duality holds, and (x*, \*) exist, then
KKT conditions are necessary for pair (x*, A*) to be optimal
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KKT conditions

filx*) < 0, i=1,...,m (primal feasibility)

AX> 0, i=1,....m (dual feasibility)

XNfix*) = 0, i=1,...,m (compl. slackness)

VaL(x, A )[x=x= = 0 (Lagrangian stationarity)

» We showed: if strong duality holds, and (x*, \*) exist, then
KKT conditions are necessary for pair (x*, \*) to be optimal

» If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. Hint: Use that
L(x,\*) is convex, and conclude from KKT conditions that
g(A*) = fo(x*), so that (x*, \*) optimal primal-dual pair.
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