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Course materials

My website (Teaching)
Some references:
� Introductory lectures on convex optimization – Nesterov
� Convex optimization – Boyd & Vandenberghe
� Nonlinear programming – Bertsekas
� Convex Analysis – Rockafellar
� Fundamentals of convex analysis – Urruty, Lemaréchal
� Lectures on modern convex optimization – Nemirovski
� Optimization for Machine Learning – Sra, Nowozin, Wright
� NIPS 2016 Optimization Tutorial – Bach, Sra

Some related courses:
� EE227A, Spring 2013, (Sra, UC Berkeley)
� 10-801, Spring 2014 (Sra, CMU)
� EE364a,b (Boyd, Stanford)
� EE236b,c (Vandenberghe, UCLA)

Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.
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http://suvrit.de/teaching.html
http://suvrit.de/teach/ee227a/
http://www.cs.cmu.edu/~suvrit/teach/aopt.html


Lecture Plan

– Introduction
– Recap of convexity, sets, functions
– Recap of duality, optimality, problems
– First-order optimization algorithms and techniques
– Large-scale optimization (SGD and friends)
– Directions in non-convex optimization
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Introduction

Supervised machine learning

I Data: n observations (xi, yi)
n
i=1 ∈ X × Y

I Prediction function: h(x, θ) ∈ R parameterized by θ ∈ Rd

I Motivating examples:

• Linear predictions: h(x, θ) = θ>Φ(x) using features Φ(x)

• Neural networks: h(x, θ) = θ>mσ(θ>m−1σ(· · · θ>2 σ(θ>1 x))

I Estimating θ parameters is an optimization problem

Unsupervised and other ML setups

I Different formulations, but ultimately optimization at heart
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The Problem!

min
θ∈S

f (θ)
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Convex analysis
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Convex sets
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Convex sets

Def. Set C ⊂ Rn called convex, if for any x, y ∈ C, the line-
segment λx + (1− λ)y, where λ ∈ [0, 1], also lies in C.

Combinations of points

I Convex: λ1x + λ2y ∈ C, where λ1, λ2 ≥ 0 and λ1 + λ2 = 1.
I Linear: if restrictions on λ1, λ2 are dropped
I Conic: if restriction λ1 + λ2 = 1 is dropped

Different restrictions lead to different “algebra”
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Recognizing / constructing convex sets

Theorem. (Intersection).
Let C1, C2 be convex sets. Then, C1 ∩ C2 is also convex.

Proof.
→ If C1 ∩ C2 = ∅, then true vacuously.
→ Let x, y ∈ C1 ∩ C2. Then, x, y ∈ C1 and x, y ∈ C2.
→ But C1, C2 are convex, hence θx + (1− θ)y ∈ C1, and also in C2.

Thus, θx + (1− θ)y ∈ C1 ∩ C2.
→ Inductively follows that

⋂m
i=1 Ci is also convex.
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Convex sets

(psdcone image from convexoptimization.com, Dattorro)
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Convex sets

♥ Let x1, x2, . . . , xm ∈ Rn. Their convex hull is

co(x1, . . . , xm) :=
{∑

i
θixi | θi ≥ 0,

∑
i
θi = 1

}
.

♥ Let A ∈ Rm×n, and b ∈ Rm. The set {x | Ax = b} is convex (it is
an affine space over subspace of solutions of Ax = 0).

♥ halfspace
{

x | aTx ≤ b
}

.
♥ polyhedron {x | Ax ≤ b,Cx = d}.
♥ ellipsoid

{
x | (x− x0)TA(x− x0) ≤ 1

}
, (A: semidefinite)

♥ convex cone x ∈ K =⇒ αx ∈ K for α ≥ 0 (and K convex)

◦

Exercise: Verify that these sets are convex.
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Challenge 1

Let A, B ∈ Rn×n be symmetric. Prove that

R(A,B) :=
{

(xTAx, xTBx) | xTx = 1
}

is a compact convex set for n ≥ 3.
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Convex functions

Def. A function f : Rd → R is convex if and only if its epigraph{
(x, t) ⊆ Rd+1 | x ∈ Rd, t ∈ R, f (x) ≤ t

}
is a convex set.

Def. A function f : Rn → R is called convex if its domain dom(f )
is a convex set and for any x, y ∈ dom(f ) and λ ≥ 0,

f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y).

These functions also known as Jensen convex; named after
J.L.W.V. Jensen (after his influential 1905 paper).

Exercise: Why are we focusing on these functions?
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Convex functions: Jensen’s inequality

x y

f (x)

f (y)

λf (x)
+ (1− λ)f (y

)

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
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Convex functions: affine lower bounds

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x− y〉
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Convex functions: increasing slopes

x y

P

Q

R

z = λx+ (1− λ)y

slope PQ ≤ slope PR ≤ slope QR
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Recognizing convex functions

♠ If f is continuous and midpoint convex, then it is convex.
♠ If f is differentiable, then f is convex if and only if dom f is

convex and f (x) ≥ f (y) + 〈∇f (y), x− y〉 for all x, y ∈ dom f .
♠ If f is twice differentiable, then f is convex if and only if dom f

is convex and∇2f (x) � 0 at every x ∈ dom f .

♠ By showing f : dom(f )→ R is convex if and only if its
restriction to any line that intersects dom(f ) is convex. That
is, for any x ∈ dom(f ) and any v, the function g(t) = f (x + tv)
is convex (on its domain {t | x + tv ∈ dom(f )}).

♠ By showing f to be a pointwise max of convex functions
♠ See exercises (Ch. 3) in Boyd & Vandenberghe for more!
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Operations preserving convexity

Example. Let f : Rn → R be convex. Let A ∈ Rm×n, and b ∈ Rm.
Prove that g(x) = f (Ax + b) is convex.

Exercise: Verify!

Theorem. Let f : I1 → R and g : I2 → R, where range(f ) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

g(f (λx + (1− λ)y)) ≤ g
(
λf (x) + (1− λ)f (y)

)
≤ λg

(
f (x)

)
+ (1− λ)g

(
f (y)

)
.

I Do not miss out on several other important examples in BV!
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Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions
is convex. That is, if f (x; y) is a convex function of x for every y
in an arbitrary “index set” Y , then

f (x) := sup
y∈Y

f (x; y)

is a convex function of x.

Exercise: Verify!
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Constructing convex functions: joint inf

Theorem. Let Y be a nonempty convex set. Suppose L(x, y) is
convex in both (x, y), then,

f (x) := inf
y∈Y

L(x, y)

is a convex function of x, provided f (x) > −∞.

Proof. Let u, v ∈ dom f . Since f (u) = infy L(u, y), for each ε > 0, there is a
y1 ∈ Y , s.t. f (u) + ε

2 is not the infimum. Thus, L(u, y1) ≤ f (u) + ε
2 .

Similarly, there is y2 ∈ Y , such that L(v, y2) ≤ f (v) + ε
2 .

Now we prove that f (λu + (1− λ)v) ≤ λf (u) + (1− λ)f (v) directly.

f (λu + (1− λ)v) = inf
y∈Y

L(λu + (1− λ)v, y)

≤ L(λu + (1− λ)v, λy1 + (1− λ)y2)

≤ λL(u, y1) + (1− λ)L(v, y2)

≤ λf (u) + (1− λ)f (v) + ε.

Since ε > 0 is arbitrary, claim follows.
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Convex functions – norms

Let Ω : Rd → R be a function that satisfies
1 Ω(x) ≥ 0, and Ω(x) = 0 if and only if x = 0 (definiteness)
2 Ω(λx) = |λ|Ω(x) for any λ ∈ R (positive homogeneity)
3 Ω(x + y) ≤ Ω(x) + Ω(y) (subadditivity)

Such function called norms—usually denoted ‖x‖.
Theorem. Norms are convex.

Often used in “regularized” ML problems

min
θ

f (θ) + µΩ(θ).
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Norms: important examples

Example. (`2-norm): ‖x‖2 =
(∑

i x2
i
)1/2

Example. (`p-norm): Let p ≥ 1. ‖x‖p =
(∑

i |xi|p
)1/p

Example. (`∞-norm): ‖x‖∞ = max1≤i≤n |xi|

Example. (Frobenius-norm): Let A ∈ Rm×n. ‖A‖F :=
√∑

ij |aij|2

Example. Let A be any matrix. Then, the operator norm of A is

‖A‖ := sup
‖x‖2 6=0

‖Ax‖2

‖x‖2
= σmax(A).

Exercise: Verify that above functions are actually norms!
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Convex functions – Indicator

Let 1X be the indicator function for X defined as:

1X (x) :=

{
0 if x ∈ X ,
∞ otherwise.

Note: 1X (x) is convex if and only if X is convex.

I Also called “extended value” convex function.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f ∗(z) := sup
x∈dom f

xTz− f (x).

Note: f ∗ is pointwise (over x) sup of linear functions of z. Hence,
it is always convex (even if f is not convex).

Example. +∞ and −∞ conjugate to each other.

Example. Let f (x) = ‖x‖. We have f ∗(z) = 1‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

Proof. f ∗(z) = supx zTx− ‖x‖. If ‖z‖∗ > 1, by defn. of the dual norm, ∃u such
that ‖u‖ ≤ 1 and uTz > 1. Now select x = αu and let α→∞. Then,
zTx− ‖x‖ = α(zTu− ‖u‖)→∞. If ‖z‖∗ ≤ 1, then zTx ≤ ‖x‖‖z‖∗, which
implies the sup must be zero.
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Fenchel conjugate: examples

Example. f (x) = 1
2 xTAx, where A � 0. Then, f ∗(z) = 1

2 zTA−1z.

Example. f (x) = max(0, 1− x). Verify: dom f ∗ = [−1, 0], and on
this domain, f ∗(z) = z.

Example. f (x) = 1X (x): f ∗(z) = supx∈X 〈x, z〉 (aka support func)

Example. If f ∗∗ = f , we say f is a closed convex function.

Exercise: Suppose f (x) = (
∑

i |xi|1/2)2. What is f ∗∗?

Exercise: Suppose f (x) = xTAx + bTx but A � 0; what is f ∗?
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Challenge 2

Consider the following functions on strictly positive variables:

h1(x) :=
1
x

h2(x, y) :=
1
x
+

1
y
− 1

x + y

h3(x, y, z) :=
1
x
+

1
y
+

1
z
− 1

x + y
− 1

y + z
− 1

x + z
+

1
x + y + z

♥ Prove that hn(x) > 0 (easy)
♥ Prove that h1, h2, h3, and in general hn are convex (hard)
♥ Prove that in fact each 1/hn is concave (harder).
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Optimization
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Optimization problems

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

Henceforth, we drop condition on domains for brevity.

• If fi are differentiable — smooth optimization
• If any fi is non-differentiable — nonsmooth optimization
• If all fi are convex — convex optimization
• If m = 0, i.e., only f0 is there — unconstrained minimization
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Convex optimization

Let X be feasible set and p∗ the optimal value

p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible
I By convention, we set p∗ = +∞ for infeasible problems
I If p∗ = −∞, we say problem is unbounded below.
I Example, min x on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)
I Say f0(x) = 0, problem is called convex feasibility
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Optimality

Def. A point x∗ ∈ X is locally optimal if f (x∗) ≤ f (x) for all x in
a neighborhood of x∗. Global if f (x∗) ≤ f (x) for all x ∈ X .

Theorem. For convex problems, local =⇒ global!

Exercise: Prove this theorem (Hint: try contradiction)

Theorem. Let f : Rn → R be continuously differentiable in an
open set S containing x∗, a local min of f . Then,∇f (x∗) = 0.

If f is convex, then∇f (x∗) = 0 sufficient for global optimality.
(This property makes convex optimization special!)
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Optimality – constrained

♠ For every x, y ∈ dom f , we have f (y) ≥ f (x) + 〈∇f (x), y− x〉.

♠ Thus, x∗ is optimal if and only if

〈∇f (x∗), y− x∗〉 ≥ 0, for all y ∈ X .
♠ If X = Rn, this reduces to∇f (x∗) = 0

x∗

∇f(x∗)x
f(x

)

X

♠ If∇f (x∗) 6= 0, it defines supporting hyperplane to X at x∗
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Optimization:
via subgradients
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Subgradients: global underestimators

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x− y〉

Hence∇f (y) = 0 implies that y is global min.
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Subgradients: global underestimators

y

f(y)

x

g1 g2

g3

f(y)
+ 〈gy,

x− y〉

f(x)

f (x) ≥ f (y) + 〈g, x− y〉

If one of the g = 0, then y a global min.
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Subgradients – basic facts

I f is convex, differentiable: ∇f (y) the unique subgradient at y
I A vector g is a subgradient at a point y if and only if

f (y) + 〈g, x− y〉 is globally smaller than f (x).
I Usually, one subgradient costs approx. as much as f (x)

I Determining all subgradients at a given point — difficult.
I Subgradient calculus—major achievement in convex analysis
I Fenchel-Young inequality: f (x) + f ∗(s) ≥ 〈s, x〉 (tight at a

subgradient)
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Example: computing subgradients

f (x) := sup
y∈Y

h(x, y)

Simple way to obtain some g ∈ ∂f (x):

I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

Proof:

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y) (because of sup)

f (z) ≥ f (x) + gT(z− x).
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Computing subgradients

Several other simple rules can be proved; see Boyd’s lecture
notes (or my EE227A lecture slides)

Subgradient from max
Subgradient from expectation
Subgradient of composition
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Subdifferential∗
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Subdifferential

Def. The set of all subgradients at y denoted by ∂f (y). This set
is called subdifferential of f at y

If f is convex, ∂f (x) is nice:
♣ If x ∈ relative interior of dom f , then ∂f (x) nonempty
♣ If f differentiable at x, then ∂f (x) = {∇f (x)}
♣ If ∂f (x) = {g}, then f is differentiable and g = ∇f (x)

Exercise: What is ∂f (x) for the ReLU function: max(0, x)?
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Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable
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f1(x)
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Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)

? f1(x) < f2(x): unique subgradient of f is f ′2(x)

? f1(y) = f2(y): subgradients, the segment [f ′1(y), f ′2(y)]
(imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 38 / 64



Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)

? f1(x) < f2(x): unique subgradient of f is f ′2(x)

? f1(y) = f2(y): subgradients, the segment [f ′1(y), f ′2(y)]
(imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 38 / 64



Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)

? f1(x) < f2(x): unique subgradient of f is f ′2(x)

? f1(y) = f2(y): subgradients, the segment [f ′1(y), f ′2(y)]
(imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 38 / 64



Subdifferential for abs value

f (x) = |x|

∂f(x)

−1

+1

x

∂|x| =


−1 x < 0,
+1 x > 0,
[−1, 1] x = 0.
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Subdifferential for Euclidean norm

Example. f (x) = ‖x‖2. Then,

∂f (x) :=

{
x/‖x‖2 x 6= 0,
{z | ‖z‖2 ≤ 1} x = 0.

Proof.

‖z‖2 ≥ ‖x‖2 + 〈g, z− x〉
‖z‖2 ≥ 〈g, z〉

=⇒ ‖g‖2 ≤ 1.
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Example: difficulties

Example. A convex function need not be subdifferentiable ev-
erywhere. Let

f (x) :=

{
−(1− ‖x‖2

2)1/2 if ‖x‖2 ≤ 1,
+∞ otherwise.

f diff. for all x with ‖x‖2 < 1, but ∂f (x) = ∅whenever ‖x‖2 ≥ 1.
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Subdifferential calculus

♠ Finding one subgradient within ∂f (x)

♠ Determining entire subdifferential ∂f (x) at a point x
♠ Do we have the chain rule?
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Subdifferential calculus∮
If f is differentiable, ∂f (x) = {∇f (x)}∮
Scaling α > 0, ∂(αf )(x) = α∂f (x) = {αg | g ∈ ∂f (x)}∮
Addition∗: ∂(f + k)(x) = ∂f (x) + ∂k(x) (set addition)∮
Chain rule∗: Let A ∈ Rm×n, b ∈ Rm, f : Rm → R, and h : Rn → R be
given by h(x) = f (Ax + b). Then,

∂h(x) = AT∂f (Ax + b).∮
Chain rule∗: h(x) = f ◦ k, where k : X→ Y is diff.

∂h(x) = ∂f (k(x)) ◦Dk(x) = [Dk(x)]T∂f (k(x))∮
Max function∗: If f (x) := max1≤i≤m fi(x), then

∂f (x) = conv
⋃
{∂fi(x) | fi(x) = f (x)} ,

convex hull over subdifferentials of “active” functions at x∮
Conjugation: z ∈ ∂f (x) if and only if x ∈ ∂f ∗(z)

* — can fail to hold without precise assumptions.
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Example: breakdown

It can happen that ∂(f1 + f2) 6= ∂f1 + ∂f2

Example. Define f1 and f2 by

f1(x) :=

{
−2
√

x if x ≥ 0,
+∞ if x < 0,

and f2(x) :=

{
+∞ if x > 0,
−2
√−x if x ≤ 0.

Then, f = max {f1, f2} = 1{0}, whereby ∂f (0) = R
But ∂f1(0) = ∂f2(0) = ∅.

However, ∂f1(x) + ∂f2(x) ⊂ ∂(f1 + f2)(x) always holds.
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Subdifferential – example

Example. f (x) = ‖x‖∞. Then,

∂f (0) = conv {±e1, . . . ,±en} ,

where ei is i-th canonical basis vector.

To prove, notice that f (x) = max1≤i≤n
{
|eT

i x|
}

Then use, chain rule and max rule and ∂| · |
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Subdifferential - example (Boyd)

Example. Let f (x) = max
{

sTx | si ∈ {−1, 1}
}

(2n members)

(−1, 1)

(1,−1)

∂f at x = (0, 0)

−1

+1

1

∂f at x = (1, 0)

−1

+1
(1, 1)

∂f at x = (1, 1)
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Optimality via subdifferentials

Theorem. (Fermat’s rule): Let f : Rn → (−∞,+∞]. Then,

argmin f = zer(∂f ) := {x ∈ Rn | 0 ∈ ∂f (x)} .

Proof: x ∈ argmin f implies that f (x) ≤ f (y) for all y ∈ Rn.
Equivalently, f (y) ≥ f (x) + 〈0, y− x〉 ∀y,↔ 0 ∈ ∂f (x).

Nonsmooth optimality

min f (x) s.t. x ∈ X
min f (x) + 1X (x).
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Optimality via subdifferentials: application

I Minimizing x must satisfy: 0 ∈ ∂(f + 1X )(x)

I (CQ) Assuming ri(dom f ) ∩ ri(X ) 6= ∅, 0 ∈ ∂f (x) + ∂1X(x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y− x〉 for all y.
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y− x〉 ∀y ∈ X .
I Normal cone:

NX (x) := {g ∈ Rn | 0 ≥ 〈g, y− x〉 ∀y ∈ X}

Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)

♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y− x∗〉 ≥ 0 for all y ∈ X .
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Duality

min
θ∈S

f (θ)
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Primal problem

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

(P)

Def. Domain: The set D := {dom f0 ∩ dom f1 · · · ∩ dom fm}

I We call (P) the primal problem
I The variable x is the primal variable
I We will attach to (P) a dual problem
I In our initial derivation: no restriction to convexity.
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Lagrangian

To the primal problem, associate Lagrangian L : Rn × Rm → R,

L(x, λ) := f0(x) +
∑m

i=1
λifi(x).

♠ Variables λ ∈ Rm called Lagrange multipliers

♠ Suppose x is feasible, and λ ≥ 0. Then, we get the
lower-bound:

f0(x) ≥ L(x, λ) ∀x ∈ X , λ ∈ Rm
+.

♠ Lagrangian helps write problem in unconstrained form
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Lagrange dual function

Def. We define the Lagrangian dual as

g(λ) := infx L(x, λ).

Observations:
I g is pointwise inf of affine functions of λ
I Thus, g is concave; it may take value −∞
I Recall: f0(x) ≥ L(x, λ) ∀x ∈ X , λ ≥ 0; thus
I ∀x ∈ X , f0(x) ≥ infx′ L(x′, λ) =: g(λ)

I Now minimize over x on lhs, to obtain

∀ λ ∈ Rm
+ p∗ ≥ g(λ).
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Lagrange dual problem

sup
λ

g(λ) s.t. λ ≥ 0.

I dual feasible: if λ ≥ 0 and g(λ) > −∞
I dual optimal: λ∗ if sup is achieved
I Lagrange dual is always concave, regardless of original
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Weak duality

Def. Denote dual optimal value by d∗, i.e.,

d∗ := sup
λ≥0

g(λ).

Theorem. (Weak-duality): For problem (P), we have p∗ ≥ d∗.

Proof: We showed that for all λ ∈ Rm
+, p∗ ≥ g(λ).

Thus, it follows that p∗ ≥ sup g(λ) = d∗.
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Duality gap

p∗ − d∗ ≥ 0

Strong duality if duality gap is zero: p∗ = d∗

Notice: both p∗ and d∗ may be +∞

Several sufficient conditions known, especially for
convex optimization.

“Easy” necessary and sufficient conditions: unknown
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Example: Slater’s sufficient conditions

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

Constraint qualification: There exists x ∈ riD s.t.

fi(x) < 0, Ax = b.

That is, there is a strictly feasible point.

Theorem. Let the primal problem be convex. If there is a feasible
point such that is strictly feasible for the non-affine constraints
(and merely feasible for affine, linear ones), then strong duality
holds. Moreover, the dual optimal is attained (i.e., d∗ > −∞).

Reading: Read BV §5.3.2 for a proof.

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 56 / 64



Example: Slater’s sufficient conditions

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

Constraint qualification: There exists x ∈ riD s.t.

fi(x) < 0, Ax = b.

That is, there is a strictly feasible point.

Theorem. Let the primal problem be convex. If there is a feasible
point such that is strictly feasible for the non-affine constraints
(and merely feasible for affine, linear ones), then strong duality
holds. Moreover, the dual optimal is attained (i.e., d∗ > −∞).

Reading: Read BV §5.3.2 for a proof.

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 56 / 64



Example: failure of strong duality

min
x,y

e−x x2/y ≤ 0,

over the domain D = {(x, y) | y > 0}.

Clearly, only feasible x = 0. So p∗ = 1

L(x, y, λ) = e−x + λx2/y,

so dual function is
g(λ) = inf

x,y>0
e−x + λx2y =

{
0 λ ≥ 0
−∞ λ < 0.

Dual problem

d∗ = max
λ

0 s.t. λ ≥ 0.

Thus, d∗ = 0, and gap is p∗ − d∗ = 1.
Here, we had no strictly feasible solution.
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Zero duality gap: nonconvex example

Trust region subproblem (TRS)

min xTAx + 2bTx xTx ≤ 1.

A is symmetric but not necessarily semidefinite!

Theorem. TRS always has zero duality gap.

Remark: Above theorem extremely important result; part of a
family of related results on strong duality for certain quadratic
nonconvex problems.
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Example: dual for Support Vector Machine

min
x,ξ

1
2‖x‖2

2 + C
∑

i
ξi

s.t. Ax ≥ 1− ξ, ξ ≥ 0.

L(x, ξ, λ, ν) = 1
2‖x‖2

2 + C1Tξ − λT(Ax− 1 + ξ)− νTξ

g(λ, ν) := inf L(x, ξ, λ, ν)

=

{
λT1− 1

2‖ATλ‖2
2 λ+ ν = C1

+∞ otherwise

d∗ = max
λ≥0,ν≥0

g(λ, ν)

Exercise: Using ν ≥ 0, eliminate ν from above problem.
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Example: norm regularized problems

min f (x) + ‖Ax‖

Dual problem

min
y

f ∗(−ATy) s.t. ‖y‖∗ ≤ 1.

Say ‖ȳ‖∗ < 1, such that ATȳ ∈ ri(dom f ∗), then we have strong
duality (e.g., for instance 0 ∈ ri(dom f ∗))
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Example: Lasso-like problem

p∗ := minx ‖Ax− b‖2 + λ‖x‖1.

‖x‖1 = max
{

xTv | ‖v‖∞ ≤ 1
}

‖x‖2 = max
{

xTu | ‖u‖2 ≤ 1
}
.

Saddle-point formulation

p∗ = min
x

max
u,v

{
uT(b− Ax) + vTx | ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

}
= max

u,v
min

x

{
uT(b− Ax) + xTv | ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

}
= max

u,v
uTb ATu = v, ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

= max
u

uTb ‖u‖2 ≤ 1, ‖ATv‖∞ ≤ λ.
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Example: KKT conditions

min f0(x) fi(x) ≤ 0, i = 1, . . . ,m.

I Recall: 〈∇f0(x∗), x− x∗〉 ≥ 0 for all feasible x ∈ X
I Can we simplify this using Lagrangian?
I g(λ) = infx L(x, λ) := f0(x) +

∑
i λifi(x)

Assume strong duality; and both p∗ and d∗ attained!

Thus, there exists a pair (x∗, λ∗) such that

p∗ = f0(x∗) = d∗ = g(λ∗) = min
x
L(x, λ∗) ≤ L(x∗, λ∗) ≤ f0(x∗) = p∗

I Thus, equalities hold in above chain.

x∗ ∈ argminxL(x, λ∗).
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Example: KKT conditions

x∗ ∈ argminxL(x, λ∗).

If f0, f1, . . . , fm are differentiable, this implies

∇xL(x, λ∗)|x=x∗ = ∇f0(x∗) +
∑

i
λ∗i∇fi(x∗) = 0.

Moreover, since L(x∗, λ∗) = f0(x∗), we also have∑
i
λ∗i fi(x∗) = 0.

But λ∗i ≥ 0 and fi(x∗) ≤ 0, so complementary slackness

λ∗i fi(x∗) = 0, i = 1, . . . ,m.
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KKT conditions

fi(x∗) ≤ 0, i = 1, . . . ,m (primal feasibility)
λ∗i ≥ 0, i = 1, . . . ,m (dual feasibility)

λ∗i fi(x∗) = 0, i = 1, . . . ,m (compl. slackness)
∇xL(x, λ∗)|x=x∗ = 0 (Lagrangian stationarity)

I We showed: if strong duality holds, and (x∗, λ∗) exist, then
KKT conditions are necessary for pair (x∗, λ∗) to be optimal

I If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. Hint: Use that
L(x, λ∗) is convex, and conclude from KKT conditions that
g(λ∗) = f0(x∗), so that (x∗, λ∗) optimal primal-dual pair.
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