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Course materials

m http:/ /suvrit.de/teaching.html

m Some references:

"
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"
"
"
S
"
"
"
"

Introductory lectures on convex optimization — Nesterov
Convex optimization — Boyd & Vandenberghe

Nonlinear programming — Bertsekas

Convex Analysis — Rockafellar

Fundamentals of convex analysis — Urruty, Lemaréchal
Lectures on modern convex optimization — Nemirovski
Optimization for Machine Learning — Sra, Nowozin, Wright
NIPS 2016 Optimization Tutorial — Bach, Sra

ome related courses:

EE227A, Spring 2013, (Sra, UC Berkeley)
10-801, Spring 2014 (Sra, CMU)
EE364a,b (Boyd, Stanford)

EE236b,c (Vandenberghe, UCLA)

m Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.
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http://suvrit.de/teaching.html
http://suvrit.de/teach/ee227a/
http://www.cs.cmu.edu/~suvrit/teach/aopt.html

Lecture Plan

Introduction

Recap of convexity, sets, functions

Recap of duality, optimality, problems

First-order optimization algorithms and techniques
— Large-scale optimization (SGD and friends)

— Directions in non-convex optimization
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Iteration complexity: smooth problems

» Assumption: f convex and L-smooth on R?
» Gradient descent: 0; = 6;_1 — v’ (0;-1)

g(0) — g(x*) < O(1/t)
g(0:) — g(x*) < O(e~ /L)y = O(e~"/*) if p-strongly convex

/

(small k = L/p) (large k = L/p)
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Iteration complexity: smooth problems

— Assumption: f convex and L-smooth on R?
— Gradient descent: 6; = 0;_1 — 7 ¢’ (6;-1)
O(1/t) convergence rate for convex functions
O(e™ x) if strongly-convex < complexity = O(nd - 1 log Ly
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Iteration complexity: smooth problems

— Assumption: f convex and L-smooth on R?

— Gradient descent: 6; = 0;_1 — 7 ¢’ (6;-1)
O(1/t) convergence rate for convex functions
O(e™ x) if strongly-convex < complexity = O(nd - 1 log Ly
» Key insights for ML (Bottou and Bousquet, 2008)

No need to optimize below statistical error
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O(1/t) convergence rate for convex functions
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» Key insights for ML (Bottou and Bousquet, 2008)
No need to optimize below statistical error

Cost functions are averages
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Iteration complexity: smooth problems

— Assumption: f convex and L-smooth on R?
— Gradient descent: 6; = 0;_1 — 7 ¢’ (6;-1)
O(1/t) convergence rate for convex functions
O(e x) if strongly-convex <> complexity = O(nd - xlog 1)
» Key insights for ML (Bottou and Bousquet, 2008)
No need to optimize below statistical error
Cost functions are averages

Testing error is more important than training error
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Stochastic gradient descent for finite sums

min $(6) = - > fi(6)
i=1

HeRd

— Iteration: 6; = 0;_1 — fykfz./(t)(Qt_l)

e Sampling with replacement: i(t) ~ Unif({1,...,n})
e Polyak-Ruppert averaging: 0; = t%l Zi[zo Ou

— Convergence rate if each f; is convex L-smooth and f
p-strongly-convex:

i ) O(1/vk) if 7 = 1/(LVk)
Elg(0:) —&(67)] < { O(L/(yk)) = O(x/k) 1&; = 1/(uk)
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Stochastic vs. deterministic — strongly cvx

» Min g(6) Zﬁ ) with £(0) = £(y;, h(x;,0)) + AQ(0)

» Batch gradlent descent

Or =011 — g (01-1) = 1 — — Zﬁ (0r-1)

- Linear (e.g., exponential) Convergence rate in O(e™"/*)
— Iteration complexity is linear in n
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Stochastic vs. deterministic — strongly cvx

» Min g(6) Zﬁ ) with £(0) = £(y;, h(x;,0)) + AQ(0)

» Batch gradlent descent

Or =011 — g (01-1) = 1 — — Zﬁ (0r-1)

- Linear (e.g., exponential) Convergence rate in O(e™"/*)
— Iteration complexity is linear in n
» Stochastic gradient descent: 6; = 6;_1 — fykﬁ(t)(ﬁt_l)
— Sampling with replacement: i(f) random element of {1, ..., n}
— Convergence rate in O(x/t)
— Iteration complexity is independent of n
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Stochastic vs. deterministic — strongly cvx

» Min g(6) Zﬁ ) with £(0) = £(y;, h(x;,0)) + AQ(0)

» Batch gradlent descent

Or =011 — g (01-1) = 1 — — Zﬁ (0r-1)

- Linear (e.g., exponential) Convergence rate in O(e™"/*)
— Iteration complexity is linear in n
» Stochastic gradient descent: 6; = 6;_1 — fykﬁ(t)(ﬁt_l)
— Sampling with replacement: i(f) random element of {1, ..., n}
— Convergence rate in O(x/t)
— Iteration complexity is independent of n
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Stochastic vs. deterministic methods

Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Stochastic vs. deterministic methods

Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Linearly convergent stochastic gradient algorithms

® Many related algorithms
B SAG (Le Roux, Schmidt, and Bach, 2012)
SDCA (Shalev-Shwartz and Zhang, 2013)
SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
MISO (Mairal, 2015)
Finito (Defazio et al., 2014b)
SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

m Similar rates of convergence and iterations
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Linearly convergent stochastic gradient algorithms

® Many related algorithms
B SAG (Le Roux, Schmidt, and Bach, 2012)
SDCA (Shalev-Shwartz and Zhang, 2013)
SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
MISO (Mairal, 2015)
Finito (Defazio et al., 2014b)
SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

u
m Similar rates of convergence and iterations

— Different interpretations and proofs / proof lengths

— Lazy gradient evaluations
— Variance reduction
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Running-time comparisons (strongly-convex)

» Assumptions: g(0) = 2 3" | £(0)
— Each f; convex L-smooth and f is p-strongly convex
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Running-time comparisons (strongly-convex)

» Assumptions: g(0) = 2 3" | £(0)
— Each f; convex L-smooth and f is p-strongly convex

Stochastic gradient descent | dx % X %

: L 1
Gradient descent dx |nz x log -
Accelerated gradient descent | dx |n ﬁ x log !
SAG/SVRG dx |(n+1%) xlogl
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Running-time comparisons (strongly-convex)

» Assumptions: g(0) = 2 3" | £(0)
— Each f; convex L-smooth and f is p-strongly convex

Stochastic gradient descent | dx % X %

: L 1
Gradient descent dx |nz x log -
Accelerated gradient descent | dx |n ﬁ x log !
SAG/SVRG dx |(n+1%) xlogl

» Beating two lower bounds (Nemirovski and Yudin, 1983;
Nesterov, 2004): with additional assumptions
(1) stochastic gradient: exponential rate for finite sums
(2) full gradient: better exponential rate using the sum
structure
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Running-time comparisons (non-strongly-convex)

» Assumptions: g(0) = 1 S0 £(6)
— Each f; convex L-smooth
— Ill conditioned problems: f may not be strongly-convex

Stochastic gradient descent | dx  |1/&

Gradient descent dx |nje

Accelerated gradient descent | dx |n/\/e

SAG/SVRG dx  |vn/e
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Running-time comparisons (non-strongly-convex)

» Assumptions: g(0) = 1 S0 £(6)
— Each f; convex L-smooth

— Ill conditioned problems: f may not be strongly-convex

Stochastic gradient descent | dx  |1/&
Gradient descent dx |nje
Accelerated gradient descent | dx |n/\/e
SAG/SVRG dx |vVn/e

» Adaptivity to potentially hidden strong convexity

» No need to know the local/global strong-convexity constant
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Experimental results (logistic regression)

quantum dataset rcvl dataset
(n =50000,d =78) (n =697 641, d = 47 236)

Objective minus Optimum

Effective Passes Effective Passes
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Experimental results (logistic regression)

quantum dataset rcvl dataset
(n =50000,d =78) (n =697 641, d = 47 236)

Objective minus Optimum
Objective minus Optimum

T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes
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Key Idea: Variance reduction

Principle: reducing variance of sample of X by using a sample
from another random variable Y with known expectation

Zo=a(X—=Y)+EY

mEZ,=aEX+ (1 -a)EY
m var(Z,) = o?[var(X) + var(Y) — 2cov(X, Y)]
m o = 1: no bias, a < 1: potential bias (but reduced variance)

m Useful if Y positively correlated with X
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Key Idea: Variance reduction

Principle: reducing variance of sample of X by using a sample
from another random variable Y with known expectation

Zo=a(X—=Y)+EY
mEZ,=aEX+ (1 -a)EY
m var(Z,) = o?[var(X) + var(Y) — 2cov(X, Y)]
m o = 1: no bias, a < 1: potential bias (but reduced variance)
m Useful if Y positively correlated with X

Application to gradient estimation (Johnson and Zhang, 2013;
Zhang, Mahdavi, and Jin, 2013)

m SVRG: X = fly(0:-1), Y = fj(0), @ = 1, with  stored
mEY =157 £(0) full gra~dient at 6;

X =Y = i (0i-1) =
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Stochastic variance reduced gradient (SVRG)

m Initialize 6 € RY

m For iepoch = 1 to # of epochs
m Compute all gradients f/(6) ; store g'(f) = LSS (6)
m Initialize xo = 6
m Fort =1 to length of epochs

01 = 01 =7 [8/(0) + () (01-1) —Fi (0) |

» Update 0 = 6,
= Output: ¢

— two gradient evaluations per inner step; no need to store
gradients (SAG needs storage)

— Two parameters: length of epochs + step-size ¢
— Same linear convergence rate as SAG, simpler proof

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning i [RN————— ]



SVRG vs. SAGA

m SAGA update:

Op =01 — [* Sy (f (0r-1) yf(;)l)]
m SVRG update:

0 =01 — 7| L L F10) + (Fy(B1) — F ()]

SAGA SVRG
Storage of gradients yes no
Epoch-based no yes
Parameters step-size | step-size & epoch lengths
Gradient evaluations per step | 1 at least 2
Adaptivity to strong-convexity | yes no
Robustness to ill-conditioning | yes no
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Proximal extensions

n
— Composite optimization problems: min 1 Z fi(0)+h(0)
xeR? N =1
e fi smooth and convex
e /i convex, potentially non-smooth
e Constrained optimization: h an indicator function
e Sparsity-inducing norms, e.g., h(6) = |61
— Proximal methods (a.k.a. splitting methods)
e Projection / soft-thresholding step after gradient update
o See, e.g., Combettes and Pesquet (2011); Bach, Jenatton,
Mairal, and Obozinski (2012); Parikh and Boyd (2014)

— Directly extends to variance-reduced gradient techniques
Same rates of convergence
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SGD minimizes the testing cost!

» Goal: minimize g(6) = E ) (Y, 07 d(x))
¢ Given n independent samples (x;,v;)?_, from p(x,y)
¢ Given a single pass of stochastic gradient descent

e Bounds on the excess testing cost Eg(6,,) — inf, g g(0)

» Optimal convergence rates: O(1/y/n) and O(1/(nu))

¢ Optimal for non-smooth (Nemirovski and Yudin, 1983)
e Attained by averaged SGD with decaying step-sizes
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