Optimization for Machine Learning

(Lecture 3-A - Convex)

SUVRIT SRA

Massachusetts Institute of Technology

Special thanks: Francis Bach (INRIA, ENS)

(for sharing this material, and permitting its use)

MPI-IS Tübingen Machine Learning Summer School, June 2017

Course materials

- http://suvrit.de/teaching.html
- Some references:
 - *Introductory lectures on convex optimization* Nesterov
 - *Convex optimization* Boyd & Vandenberghe
 - *Nonlinear programming* Bertsekas
 - Convex Analysis Rockafellar
 - Fundamentals of convex analysis Urruty, Lemaréchal
 - Lectures on modern convex optimization Nemirovski
 - Optimization for Machine Learning Sra, Nowozin, Wright
 - NIPS 2016 Optimization Tutorial Bach, Sra
- Some related courses:
 - EE227A, Spring 2013, (Sra, UC Berkeley)
 - 10-801, Spring 2014 (Sra, CMU)
 - EE364a,b (Boyd, Stanford)
 - EE236b,c (Vandenberghe, UCLA)
- Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Lecture Plan

- Introduction
- Recap of convexity, sets, functions
- Recap of duality, optimality, problems
- First-order optimization algorithms and techniques
- Large-scale optimization (SGD and friends)
- Directions in non-convex optimization

- ▶ **Assumption**: f convex and L-smooth on \mathbb{R}^d
- ► Gradient descent: $\theta_t = \theta_{t-1} \gamma_k g'(\theta_{t-1})$

$$g(\theta_t) - g(x^*) \le \frac{O(1/t)}{g(\theta_t) - g(x^*)} \le O(e^{-t(\mu/L)}) = \frac{O(e^{-t/\kappa})}{g(\theta_t)}$$
 if μ -strongly convex

(small
$$\kappa = L/\mu$$
)

(large $\kappa = L/\mu$)

- **Assumption**: f convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_k g'(\theta_{t-1})$

O(1/t) convergence rate for convex functions

$$O(e^{-\frac{f}{\kappa}})$$
 if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\varepsilon})$

- **Assumption**: f convex and L-smooth on \mathbb{R}^d
- **Gradient descent**: $\theta_t = \theta_{t-1} \gamma_k g'(\theta_{t-1})$ O(1/t) convergence rate for convex functions $O(e^{-\frac{t}{\kappa}})$ if strongly-convex \Leftrightarrow complexity $= O(nd \cdot \kappa \log \frac{1}{\epsilon})$
 - ► Key insights for ML (Bottou and Bousquet, 2008)
 - 1 No need to optimize below statistical error

- **Assumption**: f convex and L-smooth on \mathbb{R}^d
- **Gradient descent**: $\theta_t = \theta_{t-1} \gamma_k g'(\theta_{t-1})$ O(1/t) convergence rate for convex functions $O(e^{-\frac{t}{\kappa}})$ if strongly-convex \Leftrightarrow complexity $= O(nd \cdot \kappa \log \frac{1}{\epsilon})$
 - ► Key insights for ML (Bottou and Bousquet, 2008)
 - 1 No need to optimize below statistical error
 - 2 Cost functions are averages

- **Assumption**: f convex and L-smooth on \mathbb{R}^d
- **Gradient descent**: $\theta_t = \theta_{t-1} \gamma_k g'(\theta_{t-1})$ O(1/t) convergence rate for convex functions $O(e^{-\frac{t}{\kappa}})$ if strongly-convex \Leftrightarrow complexity = $O(nd \cdot \kappa \log \frac{1}{\varepsilon})$
 - ► Key insights for ML (Bottou and Bousquet, 2008)
 - 1 No need to optimize below statistical error
 - 2 Cost functions are averages
 - 3 Testing error is more important than training error

Stochastic gradient descent for finite sums

$$\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

- Iteration: $\theta_t = \theta_{t-1} \gamma_k f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: $i(t) \sim \text{Unif}(\{1, ..., n\})$
 - Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^{t} \theta_u$
- **Convergence rate** if each f_i is convex L-smooth and f μ -strongly-convex:

$$\mathbb{E}[g(\bar{\theta}_t) - g(\theta^*)] \leqslant \begin{cases} O(1/\sqrt{k}) & \text{if } \gamma_k = 1/(L\sqrt{k}) \\ O(L/(\mu k)) = O(\kappa/k) & \text{if } \gamma_k = 1/(\mu k) \end{cases}$$

Stochastic vs. deterministic – strongly cvx

- $\blacktriangleright \operatorname{Min} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \operatorname{with} f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$
- ▶ Batch gradient descent:

$$\theta_t = \theta_{t-1} - \gamma_k g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_k}{n} \sum_{i=1}^n f'_i(\theta_{t-1})$$

- Linear (e.g., exponential) convergence rate in $O(e^{-t/\kappa})$
- Iteration complexity is linear in n

Stochastic vs. deterministic – strongly cvx

$$Min g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \text{ with } f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$$

▶ Batch gradient descent:

$$\theta_t = \theta_{t-1} - \gamma_k g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_k}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$$

- Linear (e.g., exponential) convergence rate in $O(e^{-t/\kappa})$
- Iteration complexity is linear in n
- ▶ Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_k f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Convergence rate in $O(\kappa/t)$
 - Iteration complexity is independent of n

Stochastic vs. deterministic – strongly cvx

$$Min g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \text{ with } f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$$

► Batch gradient descent:

$$\theta_t = \theta_{t-1} - \gamma_k g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_k}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$$

- Linear (e.g., exponential) convergence rate in $O(e^{-t/\kappa})$
- Iteration complexity is linear in n
- ▶ Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_k f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Convergence rate in $O(\kappa/t)$
 - Iteration complexity is independent of n

SGD

Stochastic vs. deterministic methods

Goal = best of both worlds: Linear rate with O(d) iteration cost Simple choice of step size

Stochastic vs. deterministic methods

Goal = best of both worlds: Linear rate with O(d) iteration cost Simple choice of step size

Linearly convergent stochastic gradient algorithms

- Many related algorithms
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SDCA (Shalev-Shwartz and Zhang, 2013)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - MISO (Mairal, 2015)
 - Finito (Defazio et al., 2014b)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)
- Similar rates of convergence and iterations

Linearly convergent stochastic gradient algorithms

Many related algorithms

- SAG (Le Roux, Schmidt, and Bach, 2012)
- SDCA (Shalev-Shwartz and Zhang, 2013)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- MISO (Mairal, 2015)
- Finito (Defazio et al., 2014b)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)
- Similar rates of convergence and iterations
- Different interpretations and proofs / proof lengths
 - Lazy gradient evaluations
 - Variance reduction

Running-time comparisons (strongly-convex)

- ► Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth and f is μ -strongly convex

Running-time comparisons (strongly-convex)

- ► Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth and f is μ -strongly convex

Stochastic gradient descent	$d \times$	$\frac{L}{\mu}$	$\times \frac{1}{\varepsilon}$
Gradient descent	$d \times$	$n\frac{L}{\mu}$	$\times \log \frac{1}{\varepsilon}$
Accelerated gradient descent	$d \times$	$n\sqrt{\frac{L}{\mu}}$	$\times \log \frac{1}{\varepsilon}$
SAG/SVRG	$d \times$	$(n + \frac{L}{\mu})$	$\times \log \frac{1}{\varepsilon}$

Running-time comparisons (strongly-convex)

- ► Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth and f is μ -strongly convex

Stochastic gradient descent	$d \times$	$\frac{L}{\mu}$	$\times \frac{1}{\varepsilon}$
Gradient descent	$d \times$	$n\frac{L}{\mu}$	$\times \log \frac{1}{\varepsilon}$
Accelerated gradient descent	$d \times$	$n\sqrt{\frac{L}{\mu}}$	$\times \log \frac{1}{\varepsilon}$
SAG/SVRG	$d \times$	$(n + \frac{L}{\mu})$	$\times \log \frac{1}{\varepsilon}$

- ► **Beating two lower bounds** (Nemirovski and Yudin, 1983; Nesterov, 2004): with additional assumptions
 - (1) stochastic gradient: exponential rate for finite sums
 - (2) full gradient: better exponential rate using the sum structure

Running-time comparisons (non-strongly-convex)

- ► Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth
 - Ill conditioned problems: *f* may not be strongly-convex

Stochastic gradient descent	$d\times$	$1/\varepsilon^2$
Gradient descent	$d\times$	n/ε
Accelerated gradient descent	$d\times$	$n/\sqrt{\varepsilon}$
SAG/SVRG	$d\times$	\sqrt{n}/ε

Running-time comparisons (non-strongly-convex)

- ► Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth
 - Ill conditioned problems: *f* may not be strongly-convex

Stochastic gradient descent	$d\times$	$1/\varepsilon^2$
Gradient descent	$d\times$	n/ε
Accelerated gradient descent	$d\times$	$n/\sqrt{\varepsilon}$
SAG/SVRG	$d\times$	\sqrt{n}/ε

- ► Adaptivity to potentially hidden strong convexity
- ▶ No need to know the local/global strong-convexity constant

Experimental results (logistic regression)

20

Effective Passes

10

40

Experimental results (logistic regression)

rcv1 dataset (n = 697641, d = 47236)

Key Idea: Variance reduction

Principle: reducing variance of sample of *X* by using a sample from another random variable *Y* with known expectation

$$Z_{\alpha} = \alpha(X - Y) + \mathbb{E}Y$$

- $\blacksquare \mathbb{E} Z_{\alpha} = \alpha \mathbb{E} X + (1 \alpha) \mathbb{E} Y$
- $var(Z_{\alpha}) = \alpha^{2} \left[var(X) + var(Y) 2cov(X, Y) \right]$
- $\alpha = 1$: no bias, $\alpha < 1$: potential bias (but reduced variance)
- Useful if *Y* positively correlated with *X*

Key Idea: Variance reduction

Principle: reducing variance of sample of X by using a sample from another random variable Y with known expectation

$$Z_{\alpha} = \alpha(X - Y) + \mathbb{E}Y$$

- $\blacksquare \mathbb{E} Z_{\alpha} = \alpha \mathbb{E} X + (1 \alpha) \mathbb{E} Y$
- $\operatorname{var}(Z_{\alpha}) = \alpha^{2} \left[\operatorname{var}(X) + \operatorname{var}(Y) 2\operatorname{cov}(X, Y) \right]$
- $\alpha = 1$: no bias, $\alpha < 1$: potential bias (but reduced variance)
- Useful if Y positively correlated with X

Application to gradient estimation (Johnson and Zhang, 2013; Zhang, Mahdavi, and Jin, 2013)

- SVRG: $X = f'_{i(t)}(\theta_{t-1})$, $Y = f'_{i(t)}(\tilde{\theta})$, $\alpha = 1$, with $\tilde{\theta}$ stored
- $\blacksquare \mathbb{E} Y = \frac{1}{n} \sum_{i=1}^{n} f'_{i}(\tilde{\theta})$ full gradient at $\tilde{\theta}$; $X - Y = f'_{i(t)}(\theta_{t-1}) - f'_{i(t)}(\theta)$

Stochastic variance reduced gradient (SVRG)

- Initialize $\tilde{\theta} \in \mathbb{R}^d$
- For $i_{\text{epoch}} = 1$ to # of epochs
 - Compute all gradients $f_i'(\tilde{\theta})$; store $g'(\tilde{\theta}) = \frac{1}{n} \sum_{i=1}^n f_i'(\tilde{\theta})$
 - Initialize $x_0 = \tilde{\theta}$
 - For t = 1 to length of epochs

$$\theta_t = \theta_{t-1} - \frac{\gamma}{2} \left[g'(\tilde{\theta}) + \left(f'_{i(t)}(\theta_{t-1}) - f'_{i(t)}(\tilde{\theta}) \right) \right]$$

- Update $\tilde{\theta} = \theta_t$
- lacksquare Output: $\tilde{\theta}$
- two gradient evaluations per inner step; no need to store gradients (SAG needs storage)
- Two parameters: length of epochs + step-size γ
- Same linear convergence rate as SAG, simpler proof

SVRG vs. SAGA

■ SAGA update:

$$\theta_t = \theta_{t-1} - \gamma \left[\frac{1}{n} \sum_{i=1}^n y_i^{t-1} + \left(f'_{i(t)}(\theta_{t-1}) - y_{i(t)}^{t-1} \right) \right]$$

■ SVRG update:

$$\theta_t = \theta_{t-1} - \gamma \left[\frac{1}{n} \sum_{i=1}^n f_i'(\tilde{\theta}) + \left(f_{i(t)}'(\theta_{t-1}) - f_{i(t)}'(\tilde{\theta}) \right) \right]$$

	SAGA	SVRG
Storage of gradients	yes	no
Epoch-based	no	yes
Parameters	step-size	step-size & epoch lengths
Gradient evaluations per step	1	at least 2
Adaptivity to strong-convexity	yes	no
Robustness to ill-conditioning	yes	no

Proximal extensions

- Composite optimization problems: $\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(\theta) + h(\theta)$
 - f_i smooth and convex
 - *h* convex, potentially non-smooth
 - Constrained optimization: *h* an indicator function
 - Sparsity-inducing norms, e.g., $h(\theta) = \|\theta\|_1$
- Proximal methods (a.k.a. splitting methods)
 - Projection / soft-thresholding step after gradient update
 - See, e.g., Combettes and Pesquet (2011); Bach, Jenatton, Mairal, and Obozinski (2012); Parikh and Boyd (2014)
- Directly extends to variance-reduced gradient techniques Same rates of convergence

SGD minimizes the testing cost!

- ▶ Goal: minimize $g(\theta) = \mathbb{E}_{p(x,y)} \ell(y, \theta^{\top} \Phi(x))$
 - Given *n* independent samples $(x_i, y_i)_{i=1}^n$, from p(x, y)
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E}g(\bar{\theta}_n) \inf_{x \in \mathbb{R}^d} g(\theta)$
- ▶ Optimal convergence rates: $O(1/\sqrt{n})$ and $O(1/(n\mu))$
 - Optimal for non-smooth (Nemirovski and Yudin, 1983)
 - Attained by averaged SGD with decaying step-sizes

References

- R. Babanezhad, M. O. Ahmed, A. Virani, M. W. Schmidt, J. Konecný, and S. Sallinen. Stopwasting my gradients: Practical SVRG. In Advances in Neural Information Processing Systems (NIPS), 2015.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4 (1):1-106, 2012.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In *Adv.* NIPS, 2008.
- P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, pages 185-212. Springer, 2011.
- A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems (NIPS), 2014a.
- A. Defazio, J. Domke, and T. S. Caetano. Finito: A faster, permutable incremental gradient method for big data problems. In Proc. ICML, 2014b.

- R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems, 2013.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In Advances in Neural Information Processing Systems (NIPS), 2012.
- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.
- A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley & Sons, 1983.
- Y. Nesterov. *Introductory lectures on convex optimization: a basic course.* Kluwer, 2004.
- N. Parikh and S. P. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127-239, 2014.

- S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Journal of Machine Learning Research, 14 (Feb):567–599, 2013.
- L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of full gradients. In Advances in Neural *Information Processing Systems*, 2013.