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Recap
♥ Convex sets, convex functions, some challenges

♥ Minimizing f (x) via descent x← x + αd (〈∇f , d〉 < 0)
♥ ∇f (x∗) = 0 necessary for optimality; sufficient for convex
♥ Gradient descent ensures f (xk)− f (x∗) ≤ ε in O(1/ε) iterations

(we wrote this as: f (xk)− f (x∗) = O(1/k)).
♥ Lower bound: O(1/k2); attained by Nesterov’s accelerated

gradient method.
♥ Converge as O(e−k) for strongly convex; AGM attains lower-bd.
♥ Constrained optimization: min f (x) s.t. x ∈ X
♥ Optimality condition: 〈∇f (x∗), x− x∗〉 ≥ 0 for all x ∈ X
♥ Frank-Wolfe algorithm, using minz∈X 〈∇f (xk), z〉
♥ Projected gradient, x← PX (x− α∇f (x))
♥ Stochastic programming: minx F(x) := Eξ[f (x, ξ)]
♥ SA/SGD: xk+1 = xk − αkgk, where E[gk] = ∇F(xk)

♥ Finite-sum: 1
n

∑
i fi(x); xk+1 = xk − αk∇fik(x

k), where ik ∼ U([n])
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Example: joint convexity

I Show that f (w,X) := wTX−1w is jointly convex
(in w ∈ Rn and X � 0, i.e., positive definite)

Let us prove via midpoint convexity. So we show that

f
(

w + v
2

,
A + B

2

)
≤ 1

2
f (w,A) +

1
2

f (v,B).

In other words, we show that〈
w + v

2
,

(
A + B

2

)−1 w + v
2

〉
≤ 1

2
f (w,A) +

1
2

f (v,B),

which simplifies to showing that (verify!)
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Example: joint convexity

wTA−1w + vTB−1v ≥ (w + v)T(A + B)−1(w + v). (?)

Recall the Schur complement lemma, i.e.,
[

P Q
QT R

]
� 0 iff

P � QR−1QT (we essentially proved this in Lecture 1).

Thus, since wTA−1w ≥ wTA−1w, we have[
wTA−1w wT

w A

]
� 0, similarly,

[
vTB−1v vT

v B

]
� 0.

Since sum of PD matrices is PD, this implies that[
wTA−1w + vTB−1v wT + vT

w + v A + B

]
� 0.

Taking Schur complements of this matrix, we obtain (?).
Thus, we have proved f (w,X) = wTX−1w is jointly convex.
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Nonsmooth functions
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Power of nonsmooth functions

Write constrained problem as unconstrained

min f (x) s.t. x ∈ X

min f (x) + 1X (x),

where 1X (x) = 0 if x ∈ X and +∞ otherwise.
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Subgradients: global underestimators

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x− y〉

Hence∇f (y) = 0 implies that y is global min.
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Subgradients: global underestimators

y

f(y)

x

g1 g2

g3

f(y)
+ 〈gy,

x− y〉

f(x)

f (x) ≥ f (y) + 〈g, x− y〉

If one of the g = 0, then y a global min.
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Subgradients – basic facts

I f is convex, differentiable: ∇f (y) the unique subgradient at y
I A vector g is a subgradient at a point y if and only if

f (y) + 〈g, x− y〉 is globally smaller than f (x).
I Usually, one subgradient costs approx. as much as f (x)

I Determining all subgradients at a given point — difficult.
I Subgradient calculus—major achievement in convex analysis
I Fenchel-Young inequality: f (x) + f ∗(s) ≥ 〈s, x〉

tight at a subgradient
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Rules for subgradients
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Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):
I Pick any y∗ for which h(x, y∗) = f (x)
I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)
h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y) (because of sup)
f (z) ≥ f (x) + gT(z− x).
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Example

Suppose ai ∈ Rn and bi ∈ R. And

f (x) := max
1≤i≤n

(aT
i x + bi).

This f a max (in fact, over a finite number of terms)

I Suppose f (x) = aT
k x + bk for some index k

I Here f (x; y) = fk(x) = aT
k x + bk, and ∂fk(x) = {∇fk(x)}

I Hence, ak ∈ ∂f (x) works!
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Subgradient of expectation

Suppose f = Ef (x,u), where f is convex in x for each u (an r.v.)

f (x) :=
∫

f (x,u)p(u)du

I For each u choose any g(x,u) ∈ ∂xf (x,u)
I Then, g =

∫
g(x,u)p(u)du = Eg(x,u) ∈ ∂f (x)
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Subgradient of composition

Suppose h : Rn → R cvx and nondecreasing; each fi cvx

f (x) := h(f1(x), f2(x), . . . , fn(x)).

To find a vector g ∈ ∂f (x), we may:
I For i = 1 to n, compute gi ∈ ∂fi(x)
I Compute u ∈ ∂h(f1(x), . . . , fn(x))
I Set g = u1g1 + u2g2 + · · ·+ ungn; this g ∈ ∂f (x)
I Compare with∇f (x) = J∇h(x), where J matrix of∇fi(x)

Exercise: Verify g ∈ ∂f (x) by showing f (z) ≥ f (x) + gT(z− x)
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References for subgradients

1 R. T. Rockafellar. Convex Analysis
2 S. Boyd (Stanford); EE364b Lecture Notes.
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Subdifferential∗
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Subdifferential

Def. The set of all subgradients at y denoted by ∂f (y). This set
is called subdifferential of f at y

If f is convex, ∂f (x) is nice:
♣ If x ∈ relative interior of dom f , then ∂f (x) nonempty
♣ If f differentiable at x, then ∂f (x) = {∇f (x)}
♣ If ∂f (x) = {g}, then f is differentiable and g = ∇f (x)

Exercise: What is ∂f (x) for the ReLU function: max(0, x)?
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Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable
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f1(x)
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Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)

? f1(x) < f2(x): unique subgradient of f is f ′2(x)
? f1(y) = f2(y): subgradients, the segment [f ′1(y), f

′
2(y)]

(imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 17 / 43



Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)
? f1(x) < f2(x): unique subgradient of f is f ′2(x)

? f1(y) = f2(y): subgradients, the segment [f ′1(y), f
′
2(y)]

(imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 17 / 43



Subdifferential – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)
? f1(x) < f2(x): unique subgradient of f is f ′2(x)
? f1(y) = f2(y): subgradients, the segment [f ′1(y), f

′
2(y)]

(imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 17 / 43



Subdifferential for abs value

f (x) = |x|

∂f(x)

−1

+1

x

∂|x| =


−1 x < 0,
+1 x > 0,
[−1, 1] x = 0.
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Subdifferential for Euclidean norm

Example. f (x) = ‖x‖2. Then,

∂f (x) :=

{
x/‖x‖2 x 6= 0,
{z | ‖z‖2 ≤ 1} x = 0.

Proof.

‖z‖2 ≥ ‖x‖2 + 〈g, z− x〉
‖z‖2 ≥ 〈g, z〉

=⇒ ‖g‖2 ≤ 1.
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Example: difficulties

Example. A convex function need not be subdifferentiable ev-
erywhere. Let

f (x) :=

{
−(1− ‖x‖2

2)
1/2 if ‖x‖2 ≤ 1,

+∞ otherwise.

f diff. for all x with ‖x‖2 < 1, but ∂f (x) = ∅whenever ‖x‖2 ≥ 1.
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Subdifferential calculus

♠ Finding one subgradient within ∂f (x)
♠ Determining entire subdifferential ∂f (x) at a point x
♠ Do we have the chain rule?
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Subdifferential calculus∮
If f is differentiable, ∂f (x) = {∇f (x)}∮
Scaling α > 0, ∂(αf )(x) = α∂f (x) = {αg | g ∈ ∂f (x)}∮
Addition∗: ∂(f + k)(x) = ∂f (x) + ∂k(x) (set addition)∮
Chain rule∗: Let A ∈ Rm×n, b ∈ Rm, f : Rm → R, and h : Rn → R be
given by h(x) = f (Ax + b). Then,

∂h(x) = AT∂f (Ax + b).∮
Chain rule∗: h(x) = f ◦ k, where k : X→ Y is diff.

∂h(x) = ∂f (k(x)) ◦Dk(x) = [Dk(x)]T∂f (k(x))∮
Max function∗: If f (x) := max1≤i≤m fi(x), then

∂f (x) = conv
⋃
{∂fi(x) | fi(x) = f (x)} ,

convex hull over subdifferentials of “active” functions at x∮
Conjugation: z ∈ ∂f (x) if and only if x ∈ ∂f ∗(z)

* — can fail to hold without precise assumptions.
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Example: breakdown

It can happen that ∂(f1 + f2) 6= ∂f1 + ∂f2

Example. Define f1 and f2 by

f1(x) :=

{
−2
√

x if x ≥ 0,
+∞ if x < 0,

and f2(x) :=

{
+∞ if x > 0,
−2
√−x if x ≤ 0.

Then, f = max {f1, f2} = 1{0}, whereby ∂f (0) = R
But ∂f1(0) = ∂f2(0) = ∅.

However, ∂f1(x) + ∂f2(x) ⊂ ∂(f1 + f2)(x) always holds.
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Subdifferential – example

Example. f (x) = ‖x‖∞. Then,

∂f (0) = conv {±e1, . . . ,±en} ,

where ei is i-th canonical basis vector.

To prove, notice that f (x) = max1≤i≤n
{
|eT

i x|
}

Then use, chain rule and max rule and ∂| · |
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Subdifferential - example (Boyd)

Example. Let f (x) = max
{

sTx | si ∈ {−1, 1}
}

(2n members)

(−1, 1)

(1,−1)

∂f at x = (0, 0)

−1

+1

1

∂f at x = (1, 0)

−1

+1
(1, 1)

∂f at x = (1, 1)
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Optimality via subdifferentials

Theorem. (Fermat’s rule): Let f : Rn → (−∞,+∞]. Then,

argmin f = zer(∂f ) := {x ∈ Rn | 0 ∈ ∂f (x)} .
Proof: x ∈ argmin f implies that f (x) ≤ f (y) for all y ∈ Rn.
Equivalently, f (y) ≥ f (x) + 〈0, y− x〉 ∀y,

↔ 0 ∈ ∂f (x).
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Example: constrained smooth problem

Constrained smooth problem

min f (x) s.t. x ∈ X
min f (x) + 1X (x).

I Minimizing x must satisfy: 0 ∈ ∂(f + 1X )(x)
I (CQ) Assuming ri(dom f ) ∩ ri(X ) 6= ∅, 0 ∈ ∂f (x) + ∂1X(x)
I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y− x〉 for all y.
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y− x〉 ∀y ∈ X .
I Normal cone:

NX (x) := {g ∈ Rn | 0 ≥ 〈g, y− x〉 ∀y ∈ X}
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Subgradient methods
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Subgradient method

xk+1 = xk − αkgk

where gk ∈ ∂f (xk) is any subgradient

Stepsize αk > 0 must be chosen

I Method generates sequence
{

xk}
k≥0

I Does this sequence converge to an optimal solution x∗?
I If yes, then how fast?
I What if have constraints: x ∈ X ?
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Example: Lasso problem

min 1
2‖Ax− b‖2

2 + λ‖x‖1

xk+1 = xk − αk(AT(Axk − b) + λ sgn(xk))
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1

10
2

Suvrit Sra (suvrit@mit.edu) Optimization for Machine Learning 30 / 43
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2 + λ‖x‖1

xk+1 = xk − αk(AT(Axk − b) + λ sgn(xk))
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(More careful implementation)
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Subgradient method – stepsizes

I Constant Set αk = α > 0, for k ≥ 0
I Scaled constant αk = α/‖gk‖2 (‖xk+1 − xk‖2 = α)

I Square summable but not summable∑
k
α2

k <∞,
∑

k
αk =∞

I Diminishing scalar

lim
k
αk = 0,

∑
k
αk =∞

I Adaptive stepsizes (not covered)

Not a descent method!
Work with best f k so far: f k

min := min0≤i≤k f i
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Convergence analysis

Assumptions
I Min is attained: f ? := infx f (x) > −∞, with f (x∗) = f ?

I Bounded subgradients: ‖g‖2 ≤ G for all g ∈ ∂f
(f (x)− f (y) = 〈gξ, x− y〉; use Cauchy-Schwarz or Hölder)

I Bounded domain: ‖x0 − x∗‖2 ≤ R

Convergence results for: f k
min := min0≤i≤k f i
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Subgradient method – convergence

Lyapunov function: Distance to x∗, not function values

‖xk+1 − x∗‖2
2 = ‖xk − αkgk − x∗‖2

2

= ‖xk − x∗‖2
2 + α2

k‖gk‖2
2 − 2〈αkgk, xk − x∗〉

≤ ‖xk − x∗‖2
2 + α2

k‖gk‖2
2 − 2αk(f (xk)− f ?),

since f ? = f (x∗) ≥ f (xk) + 〈gk, x∗ − xk〉

Apply same argument to ‖xk − x∗‖2
2 recursively

‖xk+1 − x∗‖2
2 ≤ ‖x0 − x∗‖2

2 +
∑k

t=1
α2

t ‖gk‖2
2 − 2

∑k

t=1
αt(f t − f ?).

Now use our convenient assumptions!
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Subgradient method – convergence

‖xk+1 − x∗‖2
2 ≤ R2 + G2

∑k

t=1
α2

t − 2
∑k

t=1
αt(f t − f ?).

I To get a bound on the last term, simply notice (for t ≤ k)
f t ≥ f t

min ≥ f k
min since f t

min := min
0≤i≤t

f (xi)

I Plugging this in yields the bound

2
∑k

t=1
αt(f t − f ?) ≥ 2(f k

min − f ?)
∑k

t=1
αt.

I So that we finally have

0 ≤ ‖xk+1 − x∗‖2 ≤ R2 + G2
∑k

t=1
α2

t − 2(f k
min − f ?)

∑k

t=1
αt

f k
min − f ? ≤ R2+G2∑k

t=1 α
2
t

2
∑k

t=1 αt
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Subgradient method – convergence

f k
min − f ? ≤ R2+G2∑k

t=1 α
2
t

2
∑k

t=1 αt

Exercise: Analyze limk→∞ f k
min − f ? for the different choices of

stepsize that we mentioned.

Constant step: αk = α; We obtain

f k
min − f ? ≤ R2 + G2kα2

2kα
→ G2α

2
as k→∞.

Square summable, not summable:
∑

k α
2
k <∞,

∑
k αk =∞

As k→∞, numerator <∞ but denominator→∞; so f k
min → f ∗

In practice, fair bit of stepsize tuning needed, e.g. αk = a/(b+ k)
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Subgradient method – convergence

I Suppose we want f k
min − f ∗ ≤ ε, how big should k be?

I Optimize the bound for αt

I We want
R2 + G2∑k

t=1 α
2
t

2
∑k

t=1 αt
≤ ε

I Largest possible αt ∝ 1/
√

t
I Number of steps k = (RG/ε)2 = O( 1

ε2 )
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Exercise

Support vector machines

I Let D := {(xi, yi) | xi ∈ Rn, yi ∈ {±1}}
I We wish to find w ∈ Rn and b ∈ R such that

min
w,b

1
2‖w‖2

2 + C
∑m

i=1
max[0, 1− yi(wTxi + b)]

I Derive and implement a subgradient method
I Plot evolution of objective function
I Experiment with different values of C > 0
I Plot and keep track of f k

min := min0≤t≤k f (xt)
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Subgradient method – exercise

• Let a ∈ Rn be a given vector.
• Let f (x) =

∑
i |x− ai|, i.e., f : R→ R+

• Implement different subgradient methods to minimize f
• Also keep track of f k

best := min0≤i<k f (xi)

Exercise: Implement the above in Matlab. Report a plot of f (xk)
values; also try to guess what optimum is being found.
♥ Hint: Here we can use ∂(f (x) + g(x)) = ∂f (x) + ∂g(x)
♥ Hint: |x− c| is not diff. at x = c; there subgrad is [−1, 1]
♥ Hint: It might help to try solving this for an integer valued vector a
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Polyak’s stepsize

I Assume f ? is known (or can be estimated). Then use

αk =
f k − f ?

‖gk‖2
2

I Motivation: recall bound

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk(f k − f ?) + α2
k‖gk‖2

and minimize RHS.
I Let’s plug in αk:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (f k − f ?)2

‖gk‖2
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Polyak’s stepsize

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (f k − f ?)2

‖gk‖2

I Observation 1 ‖xk − x∗‖ decreases
I Recursion:∑K

k=1

(f k − f ?)2

‖gk‖2 ≤ ‖x1 − x∗‖2 ≤ R2

I Now use ‖gk‖ ≤ G∑K

k=1
(f k − f ?)2 ≤ R2G2

I Observation 2 f k → f ?

I for accuracy ε, need K = (RG/ε)2
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Nonsmooth convergence rates

I Let φ(x) = |x| for x ∈ R

I Subgradient method xk+1 = xk − αkgk, where gk ∈ ∂|xk|.
I If x0 = 1 and αk =

1√
k+1

+ 1√
k+2

(this stepsize is known to be

optimal), then |xk| = 1√
k+1

I Thus, O( 1
ε2 ) iterations are needed to obtain ε-accuracy.

I This behavior typical for the subgradient method which
exhibits O(1/

√
k) convergence in general

Can we do better in general?
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Nonsmooth convergence rates

Theorem. (Nesterov.) Let B =
{

x | ‖x− x0‖2 ≤ D
}

. Assume,

x∗ ∈ B. There exists a convex function f in C0
L(B) (with L > 0),

such that for 0 ≤ k ≤ n− 1, the lower-bound

f (xk)− f (x∗) ≥ LD
2(1+

√
k+1)

,

holds for any algorithm that generates xk by linearly combining
the previous iterates and subgradients.

Exercise: So design problems where we can do better!
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