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Abstract

This thesis mainly focuses on the sequential labeling problem. Sequential labeling is a

fundamental problem in computer vision and machine learning areas and has been researched

in many applications. The most popular model for sequential labeling is the hidden Markov

model where the sequence of class labels to be predicted is encoded as a Markov chain. In

recent years, other structural models, in particular, the extension of SVM to the classification

of sequences and other structures have benefited from minimum-loss training approaches

which in many cases lead to greater classification accuracy. However, SVM training requires

the choice of a suitable loss function. Common loss functions available for training are

restricted to decomposable cases such as the zero-one loss and the Hamming loss. Other

useful losses such as the F1 loss, average precision (AP) loss, equal error rates and others

are not available for sequential labeling. For the average precision, some results have been

proposed in the past, but our results are more general. On the other hand, classification

accuracy often suffers from the uncertainty of ground truth labeling and traditional structural

SVM only ensures that the ground-truth labeling of each sample receives a score higher than

that of any other labeling. However, no specific score ranking is imposed among the other

labelings.

For the loss functions problem, we propose a training algorithm that can cater for the F1

loss and any other loss function based on the contingency table. In our thesis, we propose

exact solutions for the F1 loss, precision/recall at fixed value of recall/precision, precision for

a fixed value of predicted positives ("precision at k"), precision/recall Break-Even Point and

a formulation of the Average Precision (AP loss). For further experiments, we not only apply

the AP loss in the training, but also in testing.

For the uncertainty in the ground-truth labeling problem, we extend the standard constraint

set of structural SVM with constraints between "almost-correct" labelings and less desirable

ones to obtain a partial ranking structural SVM (PR-SSVM) approach.

We choose different datasets to verify our approaches: human activity datasets including

the challenging TUM Kitchen dataset and CMU-MMAC dataset, and the Ozone Level

Detection dataset. The experimental results show the efficiency of our approaches on

different performance measurements, such as detection rate, false alarm rate and F1 measure,
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compared to the conventional SVM, HMM and structural SVM with decomposable losses

such as the 0-1 loss and Hamming loss.
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Chapter 1

Introduction

Human activity recognition is one of the most important and interesting research areas in

computer vision and pattern recognition. The formal goal of human activity recognition is to

assign the class labels to images and video frames, no matter if they are for online and offline

interactive applications. Multi-class classification is common and human activities are often

performed in a time sequential manner.

One of the most interesting and sophisticated research problems for human activity

recognition is Sequential labeling, also known as tagging or decoding, which assigns a

sequence of class labels to a sequence of measurements. Sequential labeling is a fundamental

problem in many image and video processing applications such as image segmentation,

handwriting recognition, pose estimation, and also in fields as diverse as gene finding, protein

classification, natural language processing and financial analysis [88, 46, 25, 59].

Many research works use support vector machine (SVM) for classification as SVM is

trained by minimising the regularised empirical loss over a given training set and often

achieves a solid reputation for accuracy. However, this kind of approach only considers

the training instances as independent and identically distributed (i.i.d) and totally ignores

the interdependent relations between instances, which are instead important in sequential

labeling or human activity recognition.

For sequential classification, the most popular model is undoubtedly the hidden Markov

model (HMM) [107]. The parameters of HMM have traditionally been learned by maximising

the likelihood function over a set of supervised (or unsupervised) examples [107]. However,

in recent years, other styles of training have become increasingly popular, in particular, the

extension of SVM to the classification of sequences and other structures [127, 134].

However, SVM training requires the choice of a suitable loss function. Common loss

functions include the misclassification rate (also known as the 0-1 loss), the Hamming loss,

the F1 loss, the precision loss at a given value of recall, the recall loss at a given value of
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precision, the precison/recall break-even point, the average precision and several others.

Depending on different applications, certain loss functions are more suitable than others in

providing a desirable classification performance. For instance, in the case of sequences with

very sparse positive labels (such as in event or activity detection), a loss function striking a

balance between precision and recall such as the F1 loss is certainly more meaningful than

the simple misclassification rate. We will address various loss functions later.

The original formulation of the SVM minimises the 0-1 loss [21]. However, Joachims

in [56] has proposed an algorithm for training an SVM under different loss functions including

the F1 loss and all loss functions that can be computed from the classification contingency

table (the table with the counts of true positives, true negatives, false positives and false

negatives). Similarly, [56] has provided an algorithm of linear complexity for training SVM

by minimising the ROC area loss. Yue et al. in [166] have provided an algorithm for training

SVM under a relaxation of the average precision. Mao and Tsang in [82] have presented

an approach for sparse feature selection with SVM under various loss functions. However,

all these approaches have only considered independent and identically distributed (i.i.d.)

data and very little work has been done to date on addressing training under various losses

for sequential labeling and structured prediction. In the original structural SVM (SSVM)

papers [133, 134], Tsochantaridis et al. have hinted at the possibility of training SVM

for sequential labeling under other losses, but they have not provided explicit algorithms.

In [118], Rosenfeld et al. have proposed an algorithm for training SSVM under the average

precision loss. However, the approach requires that all the samples in the training set be

manually ranked in a global order relationship by a ground-truth annotator. Since this

is generally not feasible, the authors treat the ranking as a latent variable and introduce

approximations for both training and inference.

In this thesis, we extend the work from i.i.d. data to sequential data to present an approach

for training SSVM for sequential labeling under a number of loss functions, including the F1

loss, the precision (recall) at a set point of recall (precision), the precision/recall break-even

point and any other function based on the classification contingency table. In addition, we

present an algorithm for training SSVM under a formulation of the average precision, and

we also use this algorithm in inference.

Furthermore, we consider cases such as human activity segmentation where the manual

annotation of the start and end of an activity carries a significant degree of uncertainty. We

wish to ensure that the ground truth labeling receives the highest score, meanwhile labelings

which are close to the ground truth receive a higher score than other less qualified labelings.

In other word, "partial ranking" is needed in our proposed technique. So we refer to the

proposed method as partial-ranking structural SVM.
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All experimental results conducted on different sequential datasets including the chal-

lenging TUM kitchen mocap dataset, the CMU-MMAC video dataset and the Ozone Level

Detection dataset in terms of F1 measure, detection rate and false alarm rate have shown

that our proposed methods outperform other training approaches such as SVM, HMM and

conventional structural SVM with the 0-1 loss and the Hamming loss.

Following this brief introduction, Chapter 2 gives a more formal literature review of

activity recognition, multi-label classification, sequential labeling and SVM, including binary

SVM, multi-class SVM, structural SVM and latent structural SVM. Chapter 3 presents a

training algorithm that can cater for the F1 loss and any other loss function based on the

contingency table. Chapter 4 presents an algorithm for training structured models with

any non-decomposable loss and the average precision loss. Chapter 5 extends the standard

constraint set of structural SVM with constraints between "almost-correct" labelings and less

desirable ones to obtain a partial ranking structural SVM (PR-SSVM) approach. Chapter 6

extends the AP loss not only for training but also for the inference procedure. The conclusion

is given in Chapter 7.

Published work can be found as follows:

• Sequential Labeling With a Binary-state HMM Under the F1 loss. Guopeng Zhang

& Massimo Piccardi. In Proceedings of the 21st IEEE International Conference on

Image Processing (ICIP) 2014, pages 5272-5276.

• Structural SVM With Partial Ranking for Activity Segmentation and Classification.

Guopeng Zhang & Massimo Piccardi. Published in IEEE Signal Processing Letters

(Volume 22, December 2015), pages 2344-2348.

• Sequential Labeling With Structural SVM Under Non-decomposable Losses. Guopeng

Zhang & Massimo Piccardi. Submitted to the IEEE Transactions on Neural Networks

and Learning Systems, August 2015

• Sequential Labeling With Structural SVM Under the Average Precision Loss. Guopeng

Zhang & Massimo Piccardi. Submitted to the joint IAPR International Workshops on

Structural and Syntactic Pattern recognition (SSPR 2016) and Statistical techniques in

Pattern Recognition (SPR 2016).





Chapter 2

Literature Review

In this chapter, we review the fundamental background of human activity segmentation and

classification, including activity recognition and machine learning techniques, multi-label

classification, sequential labeling, support vector machines (binary SVM, multi-class SVM,

structural SVM and latent structural SVM).

2.1 Activity Recognition Review

2.1.1 Taxonomy of Human Activities

The problem of recognizing human activities, such as jogging, boxing, walking, running,

fighting from video sequences has drawn increasing attention in terms of research. Human

activity analysis has become one of the most popular research areas in computer vision and

many other research areas. Many applications for human activity recognition have been found

in areas such as visual surveillance, human performance analysis, computer-human interfaces

(robotic interaction with humans), content-based image retrieval/storage and virtual reality.

The interest in the topic is motivated by the promise of many applications, both online

and offline. Automatic annotation of video enables more efficient searching, for example

finding tackles in soccer matches, handshakes in news footage or typical dance music videos.

Online processing allows for automatic surveillance, for example in shopping malls, but also

in smart homes for the elderly to support aging at home. Interactive applications, for example

in human-computer interaction or games, also benefit from the advances in automatic human

action recognition.

There have been several existing surveys in the area of vision concerning human motion

analysis and recognition. Recent overviews by Forsyth et al [36] and Poppe [103] focus

on the recovery of human poses and motion from image sequences. This problem is actu-
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ally a regression problem, whereas human activity recognition is a classification problem.

However, there are many similarities within these two topics, especially at the level of image

representation. The work on human/pedestrian detection is also related, where the task is to

localise persons within the image.

Bobick proposed a taxonomy of movement recognition, activity recognition and action

recognition. Basically, these three classes correspond with low-level, mid-level and high-level

vision tasks [11]. Aggarwal and Cai [55], and later Wang et al. [80], did research on body

structure analysis, tracking and recognition. Gavrila used taxonomy of 2D approaches, 3D

approaches and recognition [40]. Moeslund et al. used a functional taxonomy in subsequent

phases: initialization, tracking, pose estimation and recognition [129]. Within the recognition

task, different parts such as scene interpretation, holistic approaches, body-part approaches

and action primitives were discussed. Turaga et al. in a recent survey focused on the higher-

level recognition of human activities [106]. Furthermore, Kruger et al. discussed intention

recognition and imitation learning in [142].

2.1.2 Activity Segmentation and Classification

There are two commonly considered problems in human activity recognition. The first one

is called segmentation and the other one is classification. Segmentation is commonly used

in tasks such as image, video and speech segmentation. The problem of segmentation is to

consider the partitioning of a digital image into two or more regions (image segmentation)

or dividing the video sequence into proper segments of frames (video segmentation). The

classification problem is also related to categorization which is the process by which objects

are recognized, differentiated and understood. Each object will be assigned a class labeling

in the classification process.

In human activity recognition, the common approach is to extract image features from

the video and then assign a corresponding class label. The classification algorithm is usually

learned from training data. In this section, we discuss the challenges that influence the choice

of image representation and classification algorithm.

There are many difficulties in terms of this procedure. For many activities, different

instances will differ from each other. For example, walking movements look different

because of the different speed and stride length in different environments. Also, there are

anthropometric differences between individuals. Similar observations can be made for other

activities, especially for non-cyclic activities or activities that are adapted to the environment

(e.g. avoiding obstacles while walking, or pointing towards a certain location). A good

human activity recognition approach should generalise well over variations within one class

and distinguish between activities of different classes. For increasing numbers of actions
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classes, this will be more challenging as the overlap between classes will be higher. In some

domains, a distribution over class labels might be a suitable alternative.

The environment in which the activity performance takes place causes variation in the

recording. Person localisation might prove harder in cluttered or dynamic environments.

Moreover, parts of the person might be occluded in the recording. Lighting conditions

can further influence the appearance of the person. The same activities observed from

different viewpoints can lead to very different image observations. Assuming a known

camera viewpoint restricts the use to static cameras. When multiple cameras are used, the

viewpoint problem is essential, especially when observations from multiple views can be

combined into a consistent representation. Dynamic background makes the complexity of

localising the person in the image increase sharply. When using a moving camera, these

challenges will become even harder. In vision-based human activity recognition, all these

issues should be addressed explicitly.

2.1.3 Commonly Used Datasets in Human Activity Recognition

Many researchers use publicly available datasets that are specifically recorded for training

and evaluation in their work. This provides a sound mechanism for comparison but the

datasets often lack some of the earlier mentioned variations.

In recent years, more realistic datasets have been used for research. These datasets

contain labelled sequences gathered from movies or web videos. Although these datasets

can avoid some specific problems, they are still limited in the number of training and test

sequences. Labeling these sequences is also a challenge. Several automatic approaches have

been proposed, for example using web image search results, video subtitles and subtitle to

movie script matching. Gadison et al. [39] presented an approach to re-rank automatically

extracted and aligned movie samples, but manual verification is usually necessary [43]. Also,

performance of an activity might be perceived differently. Significant disagreement has been

found by a small-scale experiment between human labeling and the assumed ground-truth on

a common dataset [99]. When no labels are available, an unsupervised approach needs to be

used but there is no guarantee that the discovered classes are meaningful.

Amongst the most commonly used dataset, we mention: 1) KTH human motion dataset [121].

The KTH human motion dataset contains six actions (walking, jogging, running, boxing,

hand waving and hand clapping), performed by 25 different actors. There are 2391 video

samples in total. Four different scenarios are used: outdoors, outdoors with zooming, out-

doors with different clothing and indoors. There are a lot of variations in the performance

and duration, and also in the viewpoint (Fig. 2.1). The backgrounds are relatively static.
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Apart from the zooming scenario, there is only slight camera movement. KTH uses average

accuracy over all classes as the performance measure.

Fig. 2.1 Different actions contained by KTH human motion dataset.

2)Weizmann human action dataset [10]. The human action dataset recorded at the

Weizmann institute contains 10 actions (walking, running, jumping, galloping sideways,

bending, one-hand waving, two-hand waving, jumping in place, jumping jack and skipping),

each performed by 10 people (Fig. 2.2). The backgrounds are static and foreground silhouettes

are included in the dataset. The viewpoint is static. In addition to this dataset, two separate

sets of sequences were recorded for robustness evaluation. One set shows walking movement

viewed from different angles. The second set shows fronto-parallel walking actions with

slight variations (carrying objects, different clothing, different styles).

3) UCF sports action dataset [115]. The UCF sports actions dataset contains 150 se-

quences of sport motions (diving, golf swinging, kicking, weightlifting, horseback riding,

running, skating, swinging a baseball bat and walking) (Fig. 2.3). Bounding boxes of the

human figure are provided with the dataset. For most action classes, there is considerable

variation in action performance, human appearance, camera movement, viewpoint, illumina-

tion and background. The evaluation method is leave-one-out. It also uses average accuracy

over all classes as its performance measure.

4) Hollywood human action dataset (HoHA) [71]. The Hollywood human action dataset

contains eight actions (answering phone, getting out of car, handshaking, hugging, kissing,

sitting down, sitting up and standing up), extracted from movies and performed by a variety

of actors (Fig. 2.4). A second version of the dataset (HoHA2) includes four additional actions

(driving car, eating, fighting, running) and an increasing number of samples for each class.

One training set is automatically annotated using scripts of the movies, another is manually
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Fig. 2.2 Human action dataset recorded at the Weizmann institute.

Fig. 2.3 UCF sports action dataset.

labelled. There is a huge variety of performance of the actions, both spatially and temporally.

Occlusions, camera movements and dynamic backgrounds make this dataset challenging.

Most of the samples are at the scale of the upper-body but some show the entire body or a

close-up of the face.

5) INRIA XMAS multi-view dataset [156]. Weinland et al. introduced the IXMAS

dataset that contains actions captured from five viewpoints. A total of 11 people perform 14

actions (checking watch, crossing arms, scratching head, sitting down, getting up, turning

around, walking, waving, punching, kicking, pointing, picking up, throwing over head and

throwing from bottom up). The actions are performed in an arbitrary direction with regard
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Fig. 2.4 Hollywood human action dataset.

to the camera setup (Fig. 2.5). The camera views are fixed, with a static background and

illumination setting. Silhouettes and volumetric voxel representations are part of the dataset.

Fig. 2.5 INRIA XMAS multi-view dataset.

6) TUM Kitchen dataset [130]. The TUM Kitchen dataset is a collection of activity

sequences recorded in a kitchen environment equipped with multiple sensors [130]. In the

kitchen environment, various human subjects were asked to set a table in different ways,

performing 9 actions, namely Reaching, Carrying, TakingSomething, LoweringAnObjec-
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t, ReleasingGrasp, OpeningADoor, ClosingADoor, OpeningADrawer, ClosingADrawer
(Fig. 2.6). The dataset contains multiple, simultaneous types of data: video data from 4 fixed

overhead cameras, motion capture data extracted from the videos, RIFD tag readings from 3

fixed readers embedded in the environment, magnetic sensor readings from objects and the

environment, and their annotated action labels.

Fig. 2.6 TUM kitchen dataset.

7) CMU-MMAC dataset [24]. The CMU-MMAC dataset was collected at Carnegie

Mellon University’s Motion Capture Lab and contains multimodal measurements of the

human activity of 55 subjects preparing 5 different recipes: brownies, salad, pizza, sandwich

and scramble eggs [24] (Fig. 2.7). The recorded modalities include: a) Video: (1) Three high

spatial resolution (1024×768) color video cameras at low temporal resolution (30 Hertz). (2)

Two low spatial resolution (640×480) color video cameras at high temporal resolution (60

Hertz). (3) One wearable low high spatial resolution (800×600/1024×768) camera at low

temporal resolution (30 Hertz). b) Audio: Five balanced microphones. c) Motion Capture: A

Vicon motion capture system with 12 infrared MX-40 cameras. Each camera records images

at 4 megapixel resolution at 120 Hertz. d) Internal Measurement Units (IMUs): (1) Wired
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IMUs (3DMGX). (2) Bluetooth IMUs(6DOF). e) Wearable devices: (1) BodayMedia. (2)

eWatch.

Fig. 2.7 CMU MMAC dataset.

8) Ozone Level Detection dataset [168]. Although the Ozone Level Detection dataset is

not a human activity dataset, it is an event detection sequential dataset that can be used for

sequential labeling. Therefore, we have also used this dataset in our experiments.

The Ozone Level Detection dataset is a sequential binary dataset (ozone day and non

ozone day)that was collected from 1/1/1998 to 31/12/2004 in the Houston, Galveston and

Brazoria areas, containing 2536 instances with 72 features for each instance [168]. The

dataset is sparse (only about 5% positive depending on the criteria of "ozone days") and

evolves over time from year to year containing a large number of irrelevant features. There

are two annotations for the collection, one is the "eight hour" peak and the other is the "one

hour" peak.

2.1.4 Image Representation

Ideally, these should generalize over small variations in personal appearance, background,

viewpoint and activity execution. At the same time, the representations must be sufficiently

rich to allow for robust classification of the activity. The temporal aspect is important in

activity performance. Some of the image representations explicitly take into account the

temporal dimension, others extract image features for each frame in the sequence individually.

In this case, the temporal variations need to be dealt with in the classification step.

Image representations can be divided into two categories: global representations and

local representations. The former encodes this visual observation as a whole. Global

representations are obtained in a top-down fashion: a person is localized first in the image

using background subtraction or tracking. Then, the region of interest is encoded as a whole,

which results in the image descriptor. The representations are powerful since they encode

much of the information. However, they rely on accurate localization, background subtraction
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or tracking. Also, they are more sensitive to viewpoint, noise and occlusions. When the

domain allows for good control of these factors, global representations usually perform well.

Local representation describes the observation as a collection of independent patches.

The calculation of local representations proceeds in a bottom-up fashion: spatio-temporal

interest points are detected first, and local patches are calculated around these points. Finally,

the patches are combined into a final representation. After the initial success of bag-of-

feature approaches, there is currently more focus on the correlations between patches. Local

representations are less sensitive to noise and partial occlusion, and do not strictly require

background subtraction or tracking. However, as they depend on the extraction of a sufficient

amount of relevant interest points, pre-processing is sometimes needed, for example to

compensate for camera movements.

Global Representations

Global representations encode the regions of interest (ROI) of a person as a whole. The

ROI is usually obtained through background subtraction or tracking. Common global

representations are derived from silhouettes, edges or optical flow. They are sensitive to

noise, partial occlusions and variations in viewpoint. To partly overcome these issues, grid-

based approaches spatially divide the observation into cells, each of which encodes part of the

observation locally. Multiple images over time can be stacked, to form a three-dimensional

space-time volume, where time is the third dimension. Such volumes can be used for activity

recognition.

The silhouette of a person in the image can be obtained by using background subtraction.

In general, silhouettes contain some noise due to imperfect extraction. Also, they are

somewhat sensitive to different viewpoints, and implicitly encode the anthropometry of the

person. Still, they encode a great deal of information. When the silhouette is obtained, there

are many different ways to encode either the silhouette area or the contour.

One of the earliest uses of silhouette is by Bobick and Davis [12]. They extract silhouettes

from a single view and aggregate differences between subsequent frames of an activity

sequence. This results in a binary motion energy image (MEI) which indicates where motion

occurs. Also, a motion history image (MHI) is constructed where pixel intensities are a recent

function of the silhouette motion. Two templates are compared using Hu moments. Contours

are used in [16], where the star skeleton describes the angles between a reference line, and

the lines from the center to the gross extremities (head, feet, hands) of the contour. Wang

and Suter [144] use both silhouette and contour descriptors. Given a sequence of frames,

an average silhouette is formed by calculating the mean intensity over all centered frames.

Similarly, the mean shape is formed from the centered contours of all frames. Wenland et al.
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[154] match two silhouettes using Euclidean distance. In later work, silhouette templates are

matched against edges using Chamfer distance, thus eliminating the need for background

subtraction.

When multiple cameras are employed, silhouettes can be obtained from each. Huang and

Xu [161] use two orthogonally placed cameras at approximately a similar height and distance

to the person. Silhouettes from both cameras are aligned at the medial axis, and an envelope

shape is calculated. Cherla et al. [17] also use orthogonally placed cameras and combine

features of both. Such representations are somewhat view-invariant, but fail when the arms

cannot be distinguished from the body. Weinland et al. [155] combine silhouettes from

multiple cameras into a 3D voxel model. Such a representation is informative but requires

accurate camera calibration. They use motion history volumes, which is an extension of

the MHI [12] to 3D. View-invariant matching is performed by aligning the volumes using

Fourier transforms on the cylindrical coordinate system around the medial axis.

Instead of (silhouette) shape, motion information can be used. The observation within

the ROI can be described with optical flow, the pixel-wise oriented difference between

subsequent frames. Flow can be used when background subtraction cannot be performed.

However, dynamic backgrounds can introduce noise in the motion descriptor. Also, camera

movement results in observed motion, which can be compensated for by tracking the person.

Efros et al. [27] calculate optical flow in person-centered images. They use sports footage,

where persons in the image are very small. The result is blurred as optical flow can result in

noisy displacement vectors. To make sure that oppositely directly vectors do not even out,

the horizontal and vertical components are divided into positively and negatively directed,

yielding 4 distinct channels. Ahad et al. [1] use these four flow channels to solve the issue

of self-occlusion in a MHI approach. Ali and Sha [2] derive a number of kinematic features

from the optical flow. These include divergence, vorticist, symmetry and gradient tensor

features. Principal component analysis (PCA) is applied to determine dominant kinematic

modes.

Global Grid-based Representations

By dividing the ROI into a fixed spatial or temporal grid, small variations due to noise, partial

occlusions and changes in view-point can be partly overcome. Each cell in the grid describes

the image observation locally, and the matching function is changed accordingly from global

to local. These grid-based representations resemble local representations, but require a global

representation of the ROI.

Kellokumpu et al. [64] calculate local binary patterns along the temporal dimension and

store a histogram of non-background responses in a spatial grid. Thurau and Hlavac [131]



2.1 Activity Recognition Review 15

use histograms of oriented gradients (HOG) and focus on foreground edges by applying

non-negative matrix factorization. Lu and Little [79] apply PCA after calculating the HOG

descriptor, which greatly reduces the dimensionality. Ikizler et al. [49] first extract human

poses using [109]. Within the obtained outline, oriented rectangles are detected and stored

in a circular histogram. Ragheb et al. [108] transform, for each spatial location, the binary

silhouette response over time into the frequency domain. Each cell in the spatial grid contains

the mean frequency response of the spatial locations it contains.

Optical flow in a grid-based representation is used by Danafar and Gheissari [23]. They

adapt the work of Efros et al. by dividing the ROI into horizontal slices that approximately

contain head, body and legs. Zhang et al. [171] use an adaptation of the shape context, where

each log-polar bin corresponds to a histogram of motion word frequencies. Combinations

of flow and shape descriptors are also common, and overcome the limitations of a single

representation. Tran et al. [132] use rectangular grids of silhouettes and flow. Within each

cell, a circular grid is used to accumulate the responses. Ikizler et al. [48] combine the work

of Efros et al. [27] with histogram of oriented line segments. Flow, in combination with

local binary patterns is used in yang2007learning.

Space-time Volumes

A 3D spatio-temporal volume (STV) is formed by stacking frames over a given sequence.

Accurate localization, alignment and possibly background subtraction are required.

Blank et al. [10] first stack silhouettes over a given sequence to form a STV. Then the

solution of the Poisson equation is used to derive local space-time saliency and orientation

features. Global features for a given temporal range are obtained by calculating weighted

moments over these local features. To deal with performances of different temporal durations,

Achard et al. [1] use a set of space-time volumes for each sequence, each of which covers

only a part of the temporal dimension.

Several works sample the STV surface and extract local descriptors. While this approach

shares many similarities with local approaches, the STV is a global representation. Batra et

al. [6] stack silhouettes, and sample the volume with small 3D binary space-time patches.

Yilmaz and Shah [164] use differential geometric properties on the STV surface, such as

maxima and minima in the space-time domain. An activity sketch is the set of these local

descriptors. The method is sensitive to noise on the surface. The idea is extended by Yan et

al. [162] by first constructing 3D exemplars from multiple views, and then calculating an

activity sketch from the view-based STV and projecting it on to the constructed 3D exemplars.

The activity sketch descriptors encode both shape and motion, and can be matched with

observations from arbitrary viewpoints. Grundmann et al. [42] extend the shape context to
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3D and apply it to STVs. The sampling of interest points is adapted to give more importance

to moving regions.

Jiang and Martin [54] use 3D shape flows over time, calculated at edge points. The

matching can deal with cluttered backgrounds. Ke et al. [61] construct an STV of flow

and sample the horizontal and vertical components in space-time using a 3D variant of the

rectangle features of [140]. Ogata et al. [95] extend this work with [27]. A combination of

STVs of silhouettes and flow is used by Ke et al. [63]. No background subtraction is needed,

as 3D super-pixels are obtained from segmenting the STV. Activity classification is cast

as 3D object matching, where the distance to the segment boundary is used as a similarity

measure. The work is extended in [62] to allow for the matching of parts, thus enabling

recognition of activities under partial occlusion.

Local Representations

Local representations describe the observation as a collection of local descriptors or patched.

Accurate localization and background subtraction are not required and local representations

are somewhat invariant to changes in viewpoint, personal appearance and partial occlusions.

Patches are sampled either densely or at space-time interest points. The latter are locations

that correspond to interesting motions. Local descriptors describe small windows (2D) in an

image or cuboids (3D) in a video volume. Similar to global representations, observations can

be grouped locally within a grid. By exploiting correlations in space and time between the

patches, activities can be modelled more effectively since only the meaningful patches are

retained.

Space-time Interest Points Detectors

Space-time interest points are the locations in space and time where sudden changes of

movement occur in the video. It is assumed that these locations are most informative for the

recognition of human activity. Usually, points that undergo a translational motion in time

will not result in the generation of space-time interest points.

Lapyev and Lindeberg [69] extended the Harris corner detector [45] to 3D. Space-time

interest points are those points where the local neighbourhood has a significant variation in

both the spatial and the temporal domain. The scale of the neighbourhood is automatically

selected for space and time on an individual basis. The work is extended to compensate for

relative camera motions in [70]. Oikonomopoulos et al. [97] extended the work on 2D

salient point detection by Kadir and Brady [60] to 3D. The entropy within each cubiod is
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calculated, and the centers of those with local maximum energy are selected as salient points.

The scale of each salient point is determined by maximizing the entropy values.

One drawback of these method is the relatively small number of stable interest points.

This issue is addressed by Dollar et al. [26], who apply Gabor filtering on the spatial and

temporal dimensions individually. The number of interest points is adjusted by changing the

spatial and temporal size of the neighbourhood in which local minima are selected. Chomat

et al. [19] use the responses after applying spatio-temporal receptive fields. In a similar

fashion, Rapantzikos et al. [112] apply discrete wavelet transforms in each of the three

directions of a video volume. Responses from low-pass and high-pass filtering for each

dimension are used to select salient points in space and time. In addition to intensity and

motion cues, Rapantzikos et al. [113] also incorporate color. They compute saliency as

the solution of an energy minimization process which involves proximity, scale and feature

similarity terms.

Willems et al. [158] identify saliency as the determinant of a 3D Hessian matrix, which

can be calculated efficiently due to the use of integral videos. Another attempt to decrease

the computational complexity is presented by Oshin et al [98], who train randomized ferns

to approximate the behavior of interest point detectors. In a comparison on the task of human

activity recognition, Wang et al. [143] found that dense sampling outperformed the interest

point detectors of Dollar et al. [26], Lapyev and Lindeberg [69], Willems et al. [158].

Instead of detecting interest points over the entire volume, Wong and Cipolla [159] first

detect subspaces of correlated movement. These subspaces correspond to large movements

such as an arm wave. Within these spaces, a sparse set of interest points is detected. In a

similar approach, Bregonzio et al. [14] first calculate the difference between subsequent

frames to estimate the focus of attention. Next, Gabor filtering is used to detect salient points

within these regions.

Local Descriptors

Local descriptors summarize an image or video patch in a representation that is ideally

invariant to background clutter, appearance and occlusions, and possibly to rotation and scale.

The spatial and temporal size of a patch is usually determined by the scale of the interest

point. Schuldt et al. [121] calculate patches of normalized derivatives in space and time.

Niebles et al. [89] take the same approach, but applying smoothing before reducing the

dimensionality using PCA. Dollar et al. [26] experiment with both image gradients and

optical flow.

Patches can also be described by local grid-based descriptors. These summarized the

local observation within grid cells, thus ignoring small spatial and temporal variations. SURF



18 Literature Review

features [7] are extended to 3D by Willems et al. [158]. These eSURF features contain in

each cell the sums of Haar-wavelets. Laptev et al. [71] use local HOG and HOF (histogram

of oriented flow) descriptors. The extension of HOG to 3D is presented by Klaser et al. [67].

3D gradients are binned into regular polyhedrons. They extend the idea of integral images

into 3D which allows rapid dense sampling of the cuboid over multiple scales and locations

in both space and time. In related work by Scovanner et al. [122], the SIFT descriptor [77]

is extended to 3D. Wang et al. [143] compared local descriptors and found that, in general, a

combination of image gradient and flow information resulted in the best performance.

Several approaches combine interest point detection and the calculation of local descrip-

tors in a feed-forward framework. For example, Jhuang et al. [52] use several stages to

ensure invariance to a number of factors. Their approach is motivated by the human visual

system. At the lowest level, Gabor filters are applied to dense flow vectors, followed by

a local max operation. Then the responses are converted to a higher level using stored

prototypes and a global max operation is applied. A second matching stage with prototypes

results in the final representation. The work in [91] is similar in concept, but uses different

window settings. Schindler and Van Gool [120] extend the work by Jhuang et al. [52] by

combining both shape and flow responses. Escobar et al. [29] use motion-sensitive responses

and also consider interactions between cells, which allows them to model more complex

properties such as motion contrasts.

Comparing sets of local descriptors is not straightforward due to the possibly different

number and the usually high dimensionality of the descriptors. Therefore, often a codebook

is generated by clustering patches and selecting either cluster centers or the closest patches as

codewords. A local descriptor is described as a codeword contribution. A frame or sequence

can be represented as a bag-of-words, a histogram of codeword frequencies [89, 121].

Local Grid-based Representations

Similar to holistic approaches, grids can be used to bin the patches spatially or temporally.

Compared to the bag-of-words approach, using a grid ensures that spatial information is

maintained to some degree.

In the spatial domain, Ikizler and Duygulu [50] sample oriented rectangular patches,

which they bin into a grid. Each cell has an associated histogram that represents the distribu-

tion of rectangle orientations. Zhao and Elgammal [173] bin local descriptors around interest

points in a histogram with different levels of granularity. Patches are weighted according to

their temporal distance to the current frame.
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Nowozin et al. [92] use a temporal instead of a spatial grid. The cells overlap, which

allows them to overcome small variations in performance. Observations are described as

PCA-reduced vectors around extracted interest points, mapped onto codebook indices.

Laptev and Perez [72] bin histograms of oriented gradients and flow, extracted at interest

points, into a spatio-temporal grid. This grid spans the volume that is determined based on

the postilion and size of a detected head. The distribution of these histograms is determined

for every spatio-temporal cell in the grid. Three different block types are used to form the

new feature set. These types correspond to a single cell, a concatenation of two temporally

neighboring cells and a concatenation of spatially neighboring cells. A subset of all possible

blocks within the grid is selected using Adaboost. A large number of grid types, with different

spatial and temporal divisions and overlap settings ,is evaluated in [71]. Flow descriptors

from [27] are used by Fathi and Mori [34], who select a discriminative set of low-level

flow features within space-time cells which form an overlapping grid. In a subsequent step,

a set of these mid-level features is selected using the AdaBoost algorithm. In the work by

Bregonzio et al. [14], no local image descriptors are calculated. Rather, they look at the

number of interest points within cells of a spatio-temporal grid with different scales. This

approach is computationally efficient but depends on the number and relevancy of the interest

points.

Correlations Between Local Descriptors

Grid-based representations model spatial and temporal relations between local descriptors

to some extent. However, they are often redundant and contain uninformative features. We

describe approaches that exploit correlations between local descriptors for selection or the

construction of higher-level descriptors.

Scovanner et al. [122] construct a word co-occurrence matrix, and iteratively merge

words with similar co-occurrences until the difference between all pairs of words is above a

specified threshold. This leads to a reduced codebook size and similar activities are likely to

generate similar distributions of codewords. Similar in concept is the work by Liu et al. [74],

who use a combination of the space-time features and spin images, which globally describe

an STV. A co-occurrence matrix of the features and the activity videos is constructed. The

matrix is decomposed into eigenvectors and subsequently projected onto a lower-dimensional

space. This embedding can be seen as feature-level fusion. Instead of determining pairs of

correlated codewords, Patron-Perez and Reid [99] approximate the full joint distribution

of features using first-order dependencies. Features are binary variables that indicate the

presence of a codeword. A maximum spanning tree is formed by analyzing a graph between

all pairs of features. The work by Kim et al. [65] is different in the sense that the correlation
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between two videos is measured. Canonical correlation analysis is extended to handle image

sequences. The approach implicitly deals with affine variations. Discriminative features are

subsequently selected using Adaboost.

In contrast to the above approaches where spatial information is ignored, Savarese et

al. [119] introduce correlations that describe co-occurrences of codewords within spatio-

temporal neighbourhoods. The codebook size strongly influences the classification perfor-

mance. Too few entries do not allow for good discrimination, while too great a codebook

size is likely to introduce noise due to sparsity of the histogram. Liu and Shah [76] solve this

issue and determine the optimal size of the codebook using maximization of mutual informa-

tion. This technique merges two codebook entries if they have comparable distributions. In

addition, they use spatio-temporal pyramid matching to exploit temporal information. Yao

and Zhu [163] introduce an active basis of shape and flow patches, where locations in space

and time are allowed to vary slightly.

Correlations between descriptors can also be obtained by tracking features. Sun et

al. [126] calculate SIFT descriptors around interest points in each frame and use Markov

chaining to determine tracks of these features. Similar work by Messing et al. [85] extracts

trajectories using the KLT tracker. In both cases, tracks are summarized in a log-polar

histogram of track velocities. Oikonomopoulos et al. [96] fit B-splines to the STV boundary

that is formed by a coherent region of saliency responses. Song et al. [125] track points

between frames. They fit a triangulated graph to these points to detect and recognize human

activities. In Fanti et al. [31], additional local appearance cues are used. Global variables

are introduced for scale, viewpoint and translation. These methods assume static background

and motion due to objects in the background generating feature tracks that do not belong to

the person.

This limitation is partly addressed by Niebles and Fei-Fei [94], who model the frame as

a mixture of constellations. Each constellation models the spatial arrangement of codewords

instead of tracked features. Filipovych and Ribeiro [35] include both pose constellations

and dynamics constellations. Star graphs of static and dynamic features are combined into a

tree by conditioning on the landmark vertices of the individual graphs. These models are

trained without supervision. Related work introduces hidden variables that correspond to

activity categories. Probabilistic latent semantic analysis (pLSA) is a generative model used

by Niebles et al. [89]. In an unsupervised way ,the mapping from latent activity labels

to distribution of codewords is learned. Wong et al. [160] extend pLSA by introducing

the location of a person’s centroid. Both works require that the number of activity labels

is determined empirically. Instead, Wang et al. [150] take a supervised approach and use

a semi-latent Dirichlet allocation (s-LDA) model. In Wang and Mori [151], an adapted
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hidden conditional random field (HCRF) model is used to learn constellations of codewords

discriminatively. A more efficient learning algorithm is presented in [152].

A number of works take the approach of extracting and mining a large number of features.

Mikolajczyk and Uemura [86] extract for each frame local shape and motion features. For

each feature, the relative location and orientation to a person’s center of mass are stored

together with the annotated activity label. These features are clustered and represented in

vocabulary trees. By matching features extracted from an observed frame, votes are cast

over a person’s location, orientation and activity label. In Uemura et al. [137], global

motion patterns are detected and compensated for, in order to recognize activity from moving

cameras. In related work, Gilbert et al. [41] find spatio-temporal corners and determine the

relative spatial arrangement of all other corners in the frame. This results in an extremely large

number of features. Data mining technique are features which are used to discriminatively

select those feature combinations that are informative of a class. Liu et al. [75] select

discriminative denatures by applying the PageRank algorithm on the feature co-occurrence

graph.

There are relatively few works that address the effect of viewpoint on the recognition

of human activities. Farhadi and Tabrizi [32] explicitly address the correlations between

activities observed scribe clusters of codewords in each view. The transfer of these splits

between views is learned from multi-view activity sequences. Farhadi et al. [33] model

the view as a latent parameter, and learn features that can discriminate between views and

activities.

2.1.5 Application-specific Representations

In contrast to the more general image representations that have been discussed in the previous

sections, a number of works use representations that are directly motivated by the domain of

human activity recognition.

Joint locations or joint angles are rich representations, but it is challenging to derive them

from video. In 3D, the representations are completely view-invariant, whereas for 2D, there

have been several approaches proposed to address the issue of matching 2D joint trajectories

to activity labels. Since we focus on the recognition of human activities from image and

video, we do not discuss these works here.

Smith et al. [124] use a number of specifically selected features. Some of these are

low-level and deal with color and movement. Others are high-level and are obtained from

head and hand regions. A boosting scheme is used that takes into account the history of the

activity performance. The work by Vitaladevuni et al. [141] is inspired by the observation

that human activities differ in accelerating and decelerating force. They identify reach, yank



22 Literature Review

and throw types. Temporal segmentation into atomic movements described with movement

type, spatial location and direction of movement is performed first.

2.1.6 Activity detection

Activity detection approaches do not explicitly model the image representation of a person in

the image, nor do they model activity dynamics. Rather, they correlate an observed sequence

to labeled video sequences. Such work is aimed at the detection of activities, rather than at

their recognition. However, these works share many similarities to those previously discussed

and we will describe them briefly in this section.

Zelnik-Manor and Irani describe video segments as bag-of-words encoded over different

temporal scales. Each word is the gradient orientation of a local patch. Patches with low

temporal variance are ignored, which focuses the representation on moving areas. This

restricts the approach to detection against non-moving backgrounds. Ning et al. use Gabor

responses instead of gradient orientations. In both works, a histogram distance measure is

used.

Shechtman and Irani consider the spatial dimension by correlating space-time patches

over different locations in space and time. They use patches that locally describe motion. To

avoid calculating the optical flow, a rank-based constraint is used directly on the intensity

information of the cuboid. Matikainen et al. approximate this approach but use motion

words and a look-up table to allow for faster correlation. More recently, Shechtman and Irani,

propose a self-similarity descriptor that correlates local patches. The descriptor is invariant

to color and texture and can deal with small spatial variations. A query template is described

by an ensemble of all descriptors. Seo et al. use space-time local steering kernels, which can

be regarded as a generalization. By applying PCA on a collection of kernels, they obtain the

most salient features.

The above methods require that a window is selected through time and space, which

makes them computationally expensive. This issue is addressed by Hu et al., who describe

a sequence as a collection of windows of different temporal scales and positions and use

multiple-instance learning to learn the binary activity classifier. Yuan et al. detect space-time

interest points and classify whether each is part of the query activity. An efficient branch-

and-bound approach is taken to search for the subvolume that has the maximum of positively

labeled points.

Junejo et al. observe that the temporal self-similarity matrix of an activity seen from

different viewpoints is very similar. They describe a sequence as a histogram of local

descriptors, calculated from the self-similarity matrix. Boiman and Irani take a different

approach by describing a sequence as an ensemble of local spatial or spatio-temporal patches.
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A similarity score is based on the composition of a query sequence from these patches.

Similar sequences require less but larger patches.

Some work assumes motion periodicity, which allows for temporal segmentation by ana-

lyzing the self-similarity matrix. Seitz and Dyer introduce a periodicity detection algorithm

that is able to cope with small variations in the temporal extent of a motion. They track

markers and use an affine distance function. Cluter and Davis perform a frequency transform

on the self-similarity matrix of a tracked object. Peaks in the spectrum correspond to the

frequency of the motion. The type of activity is determined by analyzing the matrix structure.

Polana and Nelson also use Fourier transforms to find the periodicity and temporally segment

the video. They match motion features to labeled 2D motion templates.

2.1.7 Summary of Image Representation

Global image representations have proven to yield good results, and they can usually be

extracted at low cost. However, their applicability is limited to scenarios where ROIs can

be determined reliably. Moreover, they cannot deal with occlusions. Local representations

address these issues. Initial work used bag-of-feature representations but more recent work

takes into account spatial and temporal correlations between patches. Still, the question of

how to deal with more severe occlusions has largely been ignored.

Most of the reported work is restricted to fixed and known viewpoints, which severely

limits its applicability. The use of multiple view-dependent activity models solves this issue

but at the cost of increased training complexity. Recently, researchers have begun to address

the recognition of activities from viewpoints for which there is no corresponding training

data.

Regarding classification, we discussed direct classification and temporal stat-space mod-

els. In the former, temporal variations are not explicitly modelled, which proved to be a

reasonable approach in many cases. For more complex motions, it is questionable whether

this approach is suitable. Generative state-space models such as HMMs can model temporal

variations but have difficulty distinguishing between related activities (e.g. jogging and

walking). In this respect, discriminative graphical approaches are more suitable. In future

work, the flexibility of the classifier with respect to adding or removing activity classes from

the repertoire will play a more important role.

Many approaches assume that the video has been readily segmented into sequences that

contain one instance of a known set of activity labels. The problem can be depicted by

Fig. 2.9. Often, it is also assumed that the location and approximate scale of the person in the

video is known or can easily be estimated. The activity detection task is thus ignored, which

limits the applicability to situations where segmentation in space and time is possible. While
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several works have addressed this topic, it remains a challenge to perform activity detection

for online applications.

Another aspect of human activity recognition is the current evaluation practice. Publicly

available datasets have shaped the domain by allowing for objective comparison between

approaches on common training and test data. They also allow for better understanding of

methods since researchers are aware of the challenge of each set. However, algorithms may

be biased to a particular dataset. This may lead to complex approaches that perform better on

a specific dataset but may be less generally applicable.

Also, given the increasing level of sophistication of activity recognition algorithms,

larger and more complex datasets should direct research efforts to realistic settings. Initial-

ly, datasets were not focused on an application domain. However, activity recognition in

surveillance, human-computer interactivity and video retrieval poses different challenges.

Human-computer interactivity applications require real-time processing, missed detections

in surveillance are unacceptable and video retrieval applications often cannot benefit from a

controlled setting and require a query interface. Currently, there is a shift towards a diver-

sification in datasets. Such a diversification is beneficial as it allows for realistic recording

settings while focusing on relevant activity classes. Moreover, the use of application-specific

datasets allows for the use of evaluation metrics that go beyond precision and recall, such

as speed of processing or detection accuracy. Still, the compilation or recording of datasets

that contain sufficient variation in movements, recording setting and environmental settings

remains challenging and should continue to be a topic of discussion.

Related is the issue of labeling data. For increasingly large and complex datasets, manual

labeling will become prohibitive. Automatic labeling using video subtitles and movie scripts

is possible in some domains, but still requires manual verification. When using an incremental

approach to image harvesting, the initial set will largely affect the final variety of activity

performances.

We discuss vision-based human activity recognition in this survey but a multi-modal

approach could improve recognition in some domains, for example in movie analysis. Also,

context such as background, camera motion, interactivity between persons and person identity

provides informative cues.

Given the current state of the art and motivated by the broad range of applications that can

benefit from robust human activity recognition, it is expected that many of these challenges

will be in the near future. This would be a big step towards the fulfillment of the longstanding

promise to achieve robust automatic recognition and interpretation of human activity.
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2.2 Machine Learning Review

2.2.1 Direct classification

When an image representation is available for an observed frame or sequence, human activity

recognition becomes a classification problem. An activity label or distribution over labels is

given for each frame or sequence.

The approaches that we describe in this section do not pay special attention to the temporal

domain. They summarize all frames of an observed sequence into a single representation or

perform activity recognition for each frame individually. While both of these approaches can

deal with variations in executing and recording rate, the temporal order is neglected. Later

we will discuss nearest neighbour classification where an observed sequence is compared

to labeled sequences or activity class prototypes. A second class of approach is that of the

discriminative classifiers. These learn a function that discriminates between two or more

classes by directly operating on the image representation. Dimensionality reduction is a

common step before the actual classification and is discussed first.

2.2.2 Dimensionality reduction

In many cases, image representations are high-dimensional. This makes matching computa-

tionally more expensive. Also, the representation might contain noisy features. It is expected

that a more compact, robust feature representation is obtained by embedding the space of

image representations onto a lower dimensional space. This embedding can be learned from

training data.

PCA is a common linear dimensionality reduction method that has been used by Masoud

[83] and Papanikolopoulos [117]. Often, the mapping between full and lower dimensional

image representation is better described as a non-linear function. Chin et al. [18] learn

manifolds using local linear embedding (LLE). They experiment with different projection

functions. Wang and Suter [146] use locality preserving projections (LPP). Isomap is used

by Blackburn and Ribeiro [9].

The above dimensionality reduction methods learn the embedding in an unsupervised

manner, which does not guarantee good discrimination between classes. Poppe and Poel

[104] address this issue and learn discriminative feature transforms between pairs of classes.

Jia and Yeung [53] use an embedding that is discriminative both in a spatial and temporal

sense. They propose local spatio-temporal discriminant embedding (LSTDE), which maps

silouettes of the same class close in the manifold and model temporal relations in subspaces

of the manifold.
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2.2.3 Nearest neighbor classification

k-Nearest neighbor (NN) classifiers use the distance between the image representation of an

observed sequence and those in a training set. The most common label among the k closest

training sequences is chosen as the classification. For a large training set, such comparisons

can be computationally expensive. Alternatively, for each class, an activity prototype can

be calculated by taking the mean of all corresponding sequences. The ability to cope with

variations in spatial and temporal performance, viewpoint and image appearance depends on

the training set, the type of image representation and the distance metric.

NN classification can be either performed at the frame level, or for whole sequences.

In the latter case, issues with different frame lengths need to be resolved, for example

by using majority voting over all frames in a sequence. 1-NN with Euclidean distance

are used by Blank et al. [10] for global features and Batra et al. [6] for histograms of

codewords. Euclidean distance might not be the most suitable choice given the type of image

representation. Bobick and Davis [12] use Hu moments of different orders of magnitude.

Mahalanobis distance is used to take into account the variance of each dimension. Rodriguez

et al. [115] describe a method to generate spatio-temporal templates that effectively capture

the intra-class variance into a single prototype.

Several authors have used NN classification in combination with dimensionality reduction.

Wang and Suter [145] either use the minimum mean frame-wise distance in an embedded

space, or a frame-order preserving variant. Turage et al. [136] focus on parametric and

non-parametric manifold density functions and describe distance functions for Grassmann

and Stiefel manifold embedding. Tran et al. [132] and Poppe and Poel [104] use a learned

discriminative distance metric in the NN classification.

It has been observed that many activities can be represented by key poses or prototypes.

Sullivan and Carlsson [36] recognize forehand and backhand tennis strokes by matching

edge representations to labeled key poses. Wang et al. [149] also use edge representations

but learn activity clusters in an unsupervised fashion. They manually provide activity class

labels after the clustering. Weinland et al. [156] learn a set of activity key poses as a 3D voxel

representations. These methods use only a single frame for activity classification. As many

poses are only weakly informative for the activity class, considering a sequence of poses over

time is likely to reduce ambiguities. Weinland and Boyer [153] use the minimum distance

of each key pose for the frames in the sequences. The set of key poses is discriminatively

selected. Lin et al. [73] store prototypes in a tree to allow for efficient matching.
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2.2.4 Discriminative classifiers

Discriminative classifiers focus on separating two or more classes, rather than modeling

them. Support vector machine (SVM) learn a hyperplane in feature space that is described

by a weighted combination of support vectors. SVMs have been used in combination with

local representations of fixed lengths, such as histograms of codewords in [70]. Relevance

vector machines (RVM) can be regarded as the probabilistic variant of the SVM. Training

an RVM usually results in a sparser set of support vectors. They have been used for activity

recognition by Oikonomopoulos et al. [97].

In a boosting framework, a final strong classifier is formed by a set of weak classifiers,

each of which usually uses only a single dimension of the image representation. Boosting is

used in many works, either as a discriminative feature selection step or as the actual classifier.

AdaBoost has been used by [95]. LPBoost yields sparser coefficients and is reported to

converge faster, and is used in [92]. Smith et al. [124] introduce a variant that uses history

information in the boosting scheme.

2.2.5 Temporal state-space models

State-space models consist of states connected by edges. These edges model probabilities

between states, and between states and observations. In the models that we discuss in this

section, each state summarizes the activity performance at a certain moment in time. An

observation corresponds to the image representation at a given time. Temporal state-space

models are either generative or discriminative. While they share many characteristics, they are

conceptually different. Generative models learn a joint distribution over both observations

and activity labels. They thus learn to model a certain class, with all its variations. In

contrast, discriminative models learn probabilities of the activity classes conditioned on the

observations. They do not model a class but rather focus on differences between classes. We

discuss generative and discriminative models respectively. Dynamic Time Warping (DTW)

can be regarded as a generative model, but it is used between pairs of sequences. Due to this

rather different use, we discuss DTW separately later.

2.2.6 Dynamic time warping

Dynamic time warping is a distance measure between two sequences, possibly with different

lengths. It simultaneously takes into account a pair-wise distance between corresponding

frames and the sequence alignment cost. For a low alignment cost, two sequences need

to be segmented similarly in time and performed at similar rates. Dynamic programming
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is used to calculate the optimal alignment. Veeraraghavan et al. use DTW for sequences

of normalized shape features. As these lie on a spherical manifold, the distance function

between shapes is adapted. They also address the alignment by considering the space of

temporal warping functions for a given activity. Yao et al. introduce dynamic space-time

warping where, in addition to the temporal dimension, sequences are also aligned on image

position and scale. A related distance is longest common subsequence (LCS). It only takes

into account similar elements of both sequences and results in an increased distance when

more inserts or deletions are necessary.

2.3 Joint Activity Segmentation and Classification

Activities are often assumed to be readily segmented in time sequences. This assumption

moves the burden of the segmentation from the recognition task, but requires a separate

segmentation procedure to have been completed previously. This might not always be

realistic. Recent work on action detection addresses this issue.

Also, there can be substantial variation in the rate of performance of an activity. The rate

at which the activity records has an important effect on the temporal extent of an activity,

especially when motion features are used. A robust human activity recognition algorithm

should be invariant to different rates of execution.

Actually, in activity sequence classification, we should first extract features from images

or video and decide action on labels based on these features. The process can be depicted by

Fig. 2.8.

Fig. 2.8 Action sequence with features.

The approaches can be divided into two categories: 1) non-sequential classifiers (direct

classifiers) and 2) sequential classifiers. Direct classifiers do not pay special attention to

the temporal domain. They summarise all frames of an observed sequence into a single

representation or perform activity recognition for each frame individually. Although both
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of these approaches can deal with variations, the temporal order is neglected. In direct

classification, dimensionality reduction is a common step before actual classification. In many

cases, image representations are high-dimensional which makes matching computationally

more expensive. Also, the representation might contain noisy features. It is expected that a

more compact, robust feature representation is obtained by embedding the space of image

representation onto a lower dimensional space. This embedding can be learned from training

data. Commonly used dimensionality reduction methods are principal component analysis

(PCA), local linear embedding (LLE), locality preserving projections (LPP), Isomap [102].

These methods are all unsupervised which does not guarantee good discrimination between

classes. Jia and Yeung proposed local spatio-temporal discriminant embedding (LSTDE)

which mapped silhouettes of the same class close in the manifold and model temporal

relations in subspaces of the manifold [53]. K-nearest neighbour (KNN) classification is

usually combined with dimensionality reduction. Wang and Suter either used the minimum

mean frame-order preserving variant [147]. Turaga et al. focused on parametric manifold

density functions and described distance functions for Grassmann and Stiefel manifold

embedding [105]. Tran et al. and Poppe and Poel used a learned discriminative distance

metric in the KNN classification [132, 102]. Another useful method is called K-means which

is an unsupervised clustering method. K-means clustering of descriptors in the training set

gives a vocabulary of primitive event, hi, i = 1, . . . ,N. The number of features with labels

hi in a particular sequence define a feature histogram H = (hi, . . . ,hN). This histogram

can be used as an alternative representation when recognizing actions in sequences. The

feature histograms can then be sent to SVM or other classifiers for classification. Choosing a

proper kernel function and parameters, different actions will finally be separated. Sequential

classifiers include the famous hidden Markov model (HMM), hidden conditional random

field (HCRF), latent structural SVM. We will discuss these methods in a later section.

Fig. 2.9 Time sequence which has been segmented and assigned with labels a1, . . . ,aT .
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The baseline approach of this problem is using window slice with N frames in the time

sequence such as in a video (N is the size of the window). We assign the stride as M frames

(M and N can be the same or different). There is one classifier for each window and we

decide which label it belongs to. The approach can be depicted by Fig. 2.10.

Fig. 2.10 Baseline approach of segmentation and classification jointly.

Our approach for segmentation and classification jointly is similar to HMM, depicted by

Fig. 2.11. The main difference is the link between successive activities.

Fig. 2.11 Our approach for segmentation and classification jointly.

We want to find the probability of a1, . . . ,aT based on the measurements o1, . . . ,oT , which

can be formulated as p(a1:T |o1:T ) ∝ p(o1:T |a1:T ) · p(a1:T ) using Bayesian theory. The most

probable labels are a∗1:T = argmaxa1:T
p(a1:T |o1:T ) = argmaxa1:T

p(o1:T |a1:T ) · p(a1:T ). And

it is easy to see that p(o1:T |a1:T ) · p(a1:T ) = p(a1) ·∏T
t=1 p(ot)|at ∏T

t=2 p(at |at−1).
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2.4 Multi-label Classification

Multi-label Classification (MLC) deals with learning a model that outputs a set of labels out

of a set of disjoint labels based on a given instance. We can group the existing methods for

multi-label classification into two main categories: 1) problem transformation methods, and

2) algorithm adaptation methods. The first group of methods is algorithm independent. They

transform the multi-label classification problem into one or more single-label classification

problems. The second group of methods extends specific learning algorithms in order to

handle multi-label problems directly.

2.4.1 Problem Transformation

We give an example for problem transformation methods through the multi-label dataset of

Fig. 2.12. It consists of four examples which are annotated with one or more labels out of

four labels: λ1,λ2,λ3,λ4.

Fig. 2.12 Example of a multi-label dataset.

There exist several simple transformations that can be used to convert a multi-label

dataset to a single-label dataset with the same set of labels. The trivial approach is to expand

the problem from multi-label over q classes to simple-label over 2q classes, where q is the

total number of classes in the training set. However, this is not feasible when q is significant.

A single-label classifier that outputs probability distributions over all classes can then be

used to learn a ranking. The class with the highest probability will be ranked the first; the

class with the second best probability will be ranked the second, and so on.

The copy transformation replaces each multi-label example (xi,Yi) with |Yi| examples

(xi,λ j), for every λ j ∈ |Yi|, j = 1, . . . ,q. A variation of this transformation, called copy-weight,
associates a weight of 1

Yi
to each of the produced examples. The select methods replace
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Fig. 2.13 Transformation of the dataset using (a) copy, (b) copy-weight, (c) select-max, (d)

select-min, (e) select-random (one of the possible) and (f) ignore.

|Yi| with one of its members. The label could be the most (select-max) or least (select-min)

frequent among all examples. It could also be randomly selected (select-random). Finally,

the ignore transformation simply discards every multi-label example and just keeps the non

multi-labels. Fig. 2.13 shows the transformed datasets using these simple transformations.

Label powerset (LP) is a simple but effective problem transformation method that works

as follows: It considers each unique set of labels that exist in a multi-label training set as one

class of a new single-label classification task. Fig. 2.14 shows the result of transforming the

data of Fig. 2.12 using LP.

Fig. 2.14 Transformed data using label powerset method.

Given a new instance, the single-label classifier of LP outputs the most probable class,

which is actually a set of labels.
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Fig. 2.15 Dataset produced by the BR method.

The computational complexity of LP with respect to q depends on the complexity of the

basic classifier with respect to the number of classes, which equals to the number of distinct

label sets in the training set. This number is upper bounded by min(m,2q), where m is the

total number of instances. Although it is much smaller, it still faces an important complexity

problem, especially for large value of m and q. The large number of classes, many of which

are associated with very few examples, makes the learning process difficult as well.

The pruned problem transformation (PPT) method extends LP to deal with the afore-

mentioned problems [114]. It prunes away label sets that occur less times than a small

user-defined threshold (e.g. 2 or 3) and optionally replaces their information by introducing

disjoint subsets that exist more times than the threshold.

The random K-labelsets (RAKEL) method constructs an ensemble of LP classifiers [135].

Each LP classifier is trained using a different small random subset of the set of labels.

RAKEL manages to take labels correlations into account by this method and in the meantime

it can avoid LP’s problems. A ranking of the labels is produced by averaging the zero-one

predictions of each model.

Binary relevance (BR) is a popular problem transformation method that learns q binary

classifiers, one for each different label in L. It transforms the original dataset into q datasets

Dλ j , j = 1, . . . ,q that contain all the examples of the original dataset, labeled positive if the

label set of the original example contains λ j and negative otherwise. For the classification of

a new instance, BR outputs the union of the labels λ j that are positively predicted by the q
classifiers. Fig. 2.15 shows the four datasets that are constructed by BR when applied to the

dataset of Fig. 2.12. The limitation of the BR method is that it predicts labels independently

rather than jointly.

Ranking by pairwise comparison (RPC) transforms the multi-label dataset into q(q−1)/2

binary label datasets [47], one of each pair of labels (λi,λ j),1 ≤ i < j ≤ q. Each dataset

contains those examples of D that are annotated by at least one of the two corresponding
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Fig. 2.16 Dataset produced by the RPC method.

labels, but not both. A binary classifier that learns to discriminate between the two labels is

trained from each of these datasets. Given a new instance, all binary classifiers are invoked,

and a ranking is obtained by counting the votes received by each label. Fig. 2.16 shows the

datasets that are constructed by RPC when applied to the dataset of Fig. 2.12. The multi-label

pairwise perceptron (MLPP) algorithm is an instantiation of RPC using perceptrons for the

binary classification tasks [78].

Calibrated label ranking (CLR) extends RPC by introducing an additional virtual label,

which acts as a natural breaking point of the ranking into relevant and irrelevant sets of

labels [38]. CLR manages to solve the complete MLR task. The binary models that learn to

discriminate between the virtual label and each of the other labels correspond to the models

of BR. Each of the examples is annotated with a given label that is considered as positive

for this label and negative for the virtual label, while each example is not annotated with a

label that is considered for it and positive for the virtual label. When applied to the data of

Fig. 2.12, CLR would construct both the datasets of Fig. 2.16 and Fig. 2.15.

The INSDIF algorithm computes a prototype vector for each label, by averaging all

instances of the training set that belongs to this label [169]. After that, every instance is

transformed to a bag of q instances, each equals to the difference between the initial instance

and one of the prototypes to learn from the transformed dataset.

In the following work, we adopt the binary relevance (BR) method for its appealing

simplicity.

2.5 Sequential Labeling

The previous discussion on multi-label classification mainly refers to classes whose data

are assumed to be independent and identically distributed (i.i.d.). For many applications,
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however, the i.i.d. assumption will be a poor one. Here we consider a particularly important

class of such datasets, namely sequential data. These often arise through measurement of

time series, for example the rainfall measurements on successive days at a particular location,

or the daily values of a currency exchange rate, or the acoustic feature at successive time

frames used for speech recognition [8].

Given a data sequence O, we want to assign it to the best class c∗ out of C classes. Like

in any other classification problems, one can learn a discriminant function c∗ = f (O), or

a posterior probability p(c|O) and find c∗ as argmaxc p(c|O). Alternatively, we can use a

generative approach and Bayes’ inversion rule c∗ = argmaxc(p(O|c) · p(c)).

2.5.1 Discrete Markov Models

The easiest way to treat sequential data would be simply to ignore the sequential aspects

and treat the observations as i.i.d.. Such an approach, however, would fail to exploit the

sequential patterns in the data, such as correlations between observations that are close in the

sequence. Suppose, for instance, that we observe a binary variable denoting whether on a

particular day it rained or not. Given a time series of recent observations of this variable, we

wish to predict whether it will rain the next day. If we treat the data as i.i.d., then the only

information we can collect from the data is the relative frequency of rainy days. However, in

practice we know that the weather often stays the same for several days. Observing whether

or not it rains today is very helpful in predicting if it will rain tomorrow.

A model to describe the evolution of a system can be described as follows: 1) at any

time frame t, the system is in a state qt , which can be in one of N possible values, S =

{s1,s2, . . . ,sN}. 2) at regularly spaced times, the system undergoes a transition to a new

state qt+1. 3) transition between states can be described probabilistically. By discrete we

mean both time-discrete and with a finite number of states. For the special case of a discrete,

first-order Markov chain, this probabilistic description can be formulated as:

p(qt = s j|qt−1 = si,qt−2 = sk, . . .) = p(qt = s j|qt−1 = si) (2.1)

Joint probability of the state over T frames is p(Q) = p(q1, . . . ,qt , . . . ,qT ). The general

case (chain rule) is
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p(q1, . . . ,qt , . . . ,qT )

= p(qT |q1, . . . ,qT−1) · p(q1, . . . ,qT−1)

= p(qT |q1, . . . ,qT−1) · p(qT−1|q1, . . . ,qT−2) · p(q1, . . . ,qT−2)

= . . .

(2.2)

With the Markov hypothesis, we have:

p(q1, . . . ,qt , . . . ,qT )

= p(qT |qT−1) · p(q1, . . . ,qT−1)

= p(qT |qT−1) · p(qT−1|qT−2) · p(q1, . . . ,qT−2)

= . . .

= p(q1) ·
T

∏
t−2

p(qt |qt−1)

(2.3)

2.5.2 Hidden Markov Models

So far we consider that each state for the Markov model can be observed already. In many

case of interest, the state of a system cannot be directly observed but rather inferred through

measurements of other variables or observation as a probabilistic function of the state. This

implies that the state of a system at any given time can be treated as a hidden random variable

while a set of measurements which we can acquire from the system are treated as observed

variables.

A hidden Markov Model (HMM) [107] is a probabilistic model for a sequence of obser-

vations O = o1, . . . ,ot , . . . ,oT and the corresponding hidden states Q = q1, . . . ,qt , . . . ,qT . In

HMM, the probability of the observation is obtained as marginal of joint probability of obser-

vations and states p(O) = ∑Q p(O,Q). The states are discrete and symbolic in value: each

state qt takes value in a finite set of N symbols, S = s1,s2, . . . ,sN , sometimes for simplicity

we just note S = 1,2, . . . ,N, yet with exactly the same symbolic meaning. For the moment,

we assume that the observations are also discrete, K is the number of distinct observation

symbols per state. The observation symbols correspond to the output of the system being

modeled. We denote the individual symbols as V = v1, . . . ,vK .

Given appropriate values of N,K,A,B and π , the HMM can be regarded as a generator

to give an observation sequence O = o1,o2, . . . ,oT (where each observation ot is one of the

symbols from V , and T is the number of observations in the sequence) as follows:
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1) Choose an initial state q1 = Si, according to the initial state distribution π .

2) Set t = 1.

3) Choose ot = vk according to the symbol probability distribution in state Si, i.e., bi(k).
4) Transit to a new state qt+1 = s j according to the state transition probability distribution

for state Si, i.e. ai j.

5) Set t = t +1; return to step 3 if t < T ; otherwise terminate the procedure.

The above procedure can be used as both a generator of measurements and as a model

for how a given measurements sequence is generated by an appropriate HMM.

We can see that a complete HMM requires specification of two model parameters (N and

K), specification of observation symbols, and specification of the three probability measures

A, B and π .

Modeling P(O) or p(O,Q) directly can be challenging because of the high dimensionality

of such joint probabilities. On the other hand, assuming that p(O) = p(o1) · . . . · p(oT ) would

dismiss the sequential nature of these data.

There are two fundamental hypotheses in an HMM: 1) Markov state transition. More pre-

cisely, qt given qt−1 is independent of the other previous variables, p(qt)|qt−1,ot−1, . . . ,q1,o1 =

p(qt |qt−1). 2) independent of each observation given its state, p(ot |qT ,oT , . . . ,qt+1,ot+1,qt ,ot ,qt−1,ot−1, . . .

p(ot |qt).

An HMM can be depicted rolled-out in time as a graphical model, the absence of links

means conditional independence.

Fig. 2.17 Hidden Markov Model

The generative model is described as Marginal and Joint models and defined as follows:

p(O) = ∑
Q

p(O,Q) (2.4)
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p(O,Q) = p(o1, . . . ,ot , . . . ,oT ,q1, . . . ,qt , . . . ,qT )

= p(oT |qT ) · p(qT |qT−1) . . . p(ot |qt) · p(qt |qt−1) . . .

= p(q1) · (
T

∏
t=2

p(qt |qt−1)) · (
T

∏
t−1

p(ot |qt))

(2.5)

The HMM parameters are collectively noted as λ , where λ = A,B,π . A is the state

transition probability which is an N ∗N matrix ai j = p(qt = s j|qt−1 = si), 1 ≤ i, j ≤ N. B
is the observation probability which is an N ∗K matrix b j(k) = p(ot = vk|qt = s j), 1≤ j ≤
N, 1≤ k≤K. π is the initial state probability which is N ∗1 vector π = p(q1 = si), 1≤ i≤N.

Three Canonical Problems of HMM

Given the form of HMM in the previous section, there are three canonical problems of

interest about HMM that must be solved for the model before it can be used in the real-world

applications, each of which have well-worked solutions:

1) Given the observation sequence O = o1,o2, . . . ,oT and the modelλ = (A,B,π), how

do we efficiently compute likelihood p(O|λ ) (the probability of the observation sequence

given the model), which is also called evaluation. O is basically our samples, and p(O|λ ) is

its probability in the model. Being able to compute p(O|λ ) allows us to perform Maximum

Likelihood (ML) or Maximum A Posteriori (MAP) classification.

2) Given the observation sequence O = o1,o2, . . . ,oT and the model λ = (A,B,π), how

do we find the best corresponding state sequence Q = q1,q2, . . . ,qT which is also known as

decoding or inference. In certain scenarios, states may have a physical interpretation (i.e. the

digit of a phone number), observations are treated as noisy measurements of the states, and

state decoding is equivalent to filtering out the noise.

3) Given O = o1,o2, . . . ,oT , find λ = (A,B,π) maximizing p(O|λ ) which is also called

likelihood estimation or learning/training. This is equivalent to density estimation. Typically,

we need to learn a model from a set of samples before we can use it for 1) and 2).

For 1), this is the evaluation problem, namely given a model and a sequence of observa-

tions, how to compute the probability that the observed sequence is produced by the model.

This problem can also be regarded as scoring how well a given model matches a given

observation sequence, which is much more meaningful. For example, if we consider the

case in which we are trying to choose among several competing models, the solution to this

problem allows us to choose the model which best matches the observation sequence.
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For 2), this is the one in which we try to uncover the hidden part of the model, i.e. to

find the "correct" state sequence. It should be clear that only the "optimal" state sequence

could be found for practical situations. We usually use an optimality criterion to solve this

problem. As we will see, there are several reasonable optimality criteria that can be imposed,

and hence the choice of criterion is a strong function of the intended use for the uncovered

state sequence. Typical uses might be to learn about the structure of the model, to find the

optimal state sequence for sequential labeling , or continuous speech recognition, etc.

For 3), this is the one in which we try to optimise the model parameters in order to best

describe how a given observation sequence comes out. The observation sequence used to

adjust the model parameters is called a learning/training sequence since it is used to train

the HMM. The training problem is the crucial one for most applications of HMM, since it

allows us to optimally adapt model parameters to observed training data, i.e. to create the

best models for real-world problems.

Let’s consider the following simple word speech recognition problem. For each word

of a W word vocabulary, we want to design a separate N-state HMM. We represent the

speech signal of a given word as a time sequence of coded spectral vectors. We assume that

the coding is done using a spectral codebook with K unique spectral vectors, hence each

observation is the index of the spectral vector closest to the original speech signal. Therefore,

for each vocabulary word, we have a training sequence consisting of a number of repetitions

of sequences of codebook indices of the word. The first task is to build individual word

models. This task is done by using the solution to Problem 3 to optimally estimate model

parameters for each word model. To develop an understanding of the physical meaning of

the model states, we use the solution to Problem 2 to segment each of the word training

sequences into states, and then study the properties of the spectral vectors that lead to the

observations occurring in each state. The goal here is to make refinements on the model (e.g.

more states, different codebook size, etc.) in order to improve its capability of modeling the

spoken word sequences. Finally, once the set of W HMMs have been designed, optimized

and thoroughly studied, recognition of an unknown word is performed using the solution

to Problem 1 to score each word model based on the given test observation sequence, and

selecting the word whose model score is the highest (i.e. the highest likelihood).

Solution to problem 1: We want to calculate the probability of the observation sequence

O = o1,o2, . . . ,oT , given the model π , i.e. p(O|λ ). The most straightforward way of

doing this is through enumerating every possible state sequence of length T (the number

of observation). Consider one such fixed state sequence Q = q1,q2, . . . ,qT , where q1 is the

initial state. The probability of the observation sequence O for the state sequence is
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p(O|Q,λ ) =
T

∑
t=1

p(ot |qt ,λ ) (2.6)

where we have assumed statistical independence of observations. Thus we get

p(O|Q,λ ) = bq1
(o1) ·bq2

(o2) . . .bqT (oT ) (2.7)

The probability of such a state sequence Q can be written as

p(Q|λ ) = πq1
·aq1,q2

·aq2,q3
. . .aqT−1,qT (2.8)

The joint probability of O and Q, i.e. the probability that O and Q occur simultaneously

is simply the product of the above two terms, i.e.

p(O,Q|λ ) = p(O|Q,λ ) · p(Q,λ ) (2.9)

The probability of O (given the model) is obtained by summing this joint probability over

all possible state sequences q giving

p(O|λ ) = ∑
∀Q=q1,q2,...,qT

πq1
·aq1,q2

·bq1
(o1) ·aq2,q3

·bq2
(o2) . . .aqT−1,qT ·bqT (oT ) (2.10)

The interpretation of the computation in the above equation is the following. Initially at

time t = 1 we are in state qt with probability πqt , and generate the symbol ot in this state with

probability bqt (o1). The clock changes from time t to t +1 (t=2) and we make a transition to

state q2 from state q1 with probability aq1q2
, and generate symbol o2 with probability bq2

(o2).

This process continues in this manner until we make the list transition at time T from state

qT−1 to state qT with probability aqT−1qT and generate symbol oT with probability bqT (oT ).

Unfortunately, its direct definition is in the order of 2T ·NT calculations, since at every

t = 1,2, . . . ,T , there are N possible states which can be reached, i.e. there are NT different

possible assignments for Q. This makes naive evaluation impractical, even for small values

of N and T : e.g., for N = 5 and T = 100, there are in the order of 2 · 100 · 5100 = 1072

computations. Luckily, the complexity can be reduced from exponential to linear in T . The

algorithm is known as the forward procedure (or backward procedure).

The forward procedure: Consider the forward variable αt(i) defined as

αt(i) = p(o1,o2, . . . ,ot ,qt = Si|λ ) (2.11)
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i.e. the probability of the partial observation sequence o1,o2, . . . ,ot (until time t) and

state si at time t, given the model λ . We can solve for αt(i) inductively, as follows:

Step 1: Initialization:

α1(i) = πibi(o1), 1≤ i≤ N (2.12)

Step 2: Induction:

αt+1( j) =
N

∑
j=1

αt(i)ai jb j(ot+1), 1≤ t ≤ T −1, 1≤ j ≤ N (2.13)

Step 3: Termination:

p(O|λ ) =
N

∑
i=1

αT (i) (2.14)

In a similar manner, we can consider a backward variable βt(i) defined as

βt(i) = p(ot+1,ot+2, . . . ,oT |qt = Si,λ ) (2.15)

i.e. the probability of the partial observation sequence from t +1 to the end, given state si

at time t and the model λ . Again we can solve for βt(i) inductively, as follows:

Step 1: Initialization:

βT (i) = 1, 1≤ i≤ N (2.16)

Step 2: Induction:

βt(i) =
N

∑
j+1

ai jb j(ot+1)βt+1( j), t = T −1,T −2, . . . ,1,1≤ i≤ N (2.17)

Solution to problem 2: our hypothesis is that qt conditioned on qt−1 is independent of the

other previous variables. Yet, this does not apply to the future ones. This means that one needs

to use the entire observation sequence O to optimally estimate qt as q∗t = argmax p(qt |O),

estimating qt based on observations up to Ot only.

Assume now that we are after not just the optimal qt , but the optimal state sequence

q∗1 . . .q
∗
T , i.e. Q∗= argmaxQ p(Q|O): the maximum of the joint Q is not the same as the union

of the maxima over each marginal qt . Note also that argmaxQ p(Q,O) = argmaxQ p(Q|O)

since p(O) plays no role in the maximization. Normally, p(Q|O) is simpler than p(Q,O)

since it doesn’t contain a model for p(O). However, in HMM, p(Q,O) is the obvious quantity

and p(Q|O) is obtained as p(Q,O)/p(O). The solution is provided by the Viterbi algorithm.
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Viterbi Algorithm: To find the single best state sequence Q = q1,q2, . . . ,qT , for the given

observation sequence O = o1,o2, . . . ,oT , we need to define the quantity

δt(i) = max
q1,q2,...,qt−1

p(q1,q2, . . . ,qt = i,o1,o2, . . . ,ot |λ ) (2.18)

i.e. δt(i)best score (highest probability) along a single path, at time t, which accounts for

the first t observations and ends in state si. By induction we have

δt+1( j) = max
j

δt(i)ai j ·b j(ot+1) (2.19)

To actually retrieve the state sequence, we need to keep track of the argument which

maximises Eq. (2.19), for each t and j. We do this via the array ψt(i). The complete

procedure for finding the best state sequence can now be stated as follows:

Step 1: Initialization:

δ1(i) = πibi(o1), ψ1(i) = 0, 1≤ i≤ N (2.20)

Step 2: Recursion:

δt( j) = max
1≤i≤N

δt−1(i)ai jb j(ot), 2≤ t ≤ T, 1≤ j ≤ N (2.21)

ψt( j) = argmax
1≤i≤N

δt−1(i)ai j, 2≤ t ≤ T, 1≤ j ≤ N (2.22)

Step 3: Termination:

q∗T = argmax
1≤i≤N

δT (i), P∗ = max
1≤ j≤N

δT (i) (2.23)

Step 4: Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1), t = T −1,T −2, . . . ,1 (2.24)

Solution to problem 3: So far the most difficult problem of HMM is to determine a

method to adjust the model parameters λ = (A,B,π) to maximise the probability of the

observation sequence given the model. There is no known way to analytically solve how

the model maximizes the probability of the observation sequence. In fact, given any finite

observation sequence as training data, there is no optimal way of estimating the model

parameters. However, we can choose λ = (A,B,π) so that p(O|λ ) is locally maximised
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using an iterative procedure such as the Baum-Welch method, or equivalently through the

EM (expectation-modification) method, or by using gradient techniques.

Although use of HMM technology has contributed greatly to recent advances in ap-

plications such as speech recognition, handwriting recognition and so on, there are some

inherent limitations of this type of statistical model. A major limitation is the assumption

that successive observations are independent, and therefore the probability of a sequence

of observations p(o1,o2, . . . ,oT ) can be written as a product of probabilities of individual

observations, i.e. p(o1,o2, . . . ,oT ) = ∑T
t=1 p(ot). Another limitation is the assumption that

the distributions of individual observation parameters can be well represented as a mixture

of Gaussian or autoregressive densities. Finally the Markov assumption itself, i.e. that the

probability of being in a given state at time t only depends on the state at time t−1 is clearly

inappropriate where dependencies often extend through several states. However, this type of

statistical model has been tested very well for certain applications in spite of these limitations.

2.6 Support Vector Machine

2.6.1 Binary SVM

The support vector machine (SVM) was originally proposed by Vapnik and Cortes around

1995 (soft-margin version) in order to deal with binary classification problems [21]. SVM

implements the following idea: it maps the input vectors into some high dimensional feature

space through some non-linear mapping chosen a priori. One needs to construct a linear

decision hyperplane in this feature space with special properties in order to ensure that SVM

has a high generalization ability.

The limitation of maximum likelihood estimation and minimum risk estimation is that

training samples should be infinite. If given limited samples, the empirical risk minimization

(ERM) rule performs badly in classification. Traditional learning introduces generalization

bound, including two parts: empirical risk and trust risk. Empirical risk stands for error on

given samples and trust risk stands for how much we can trust the classifier on samples which

are not given. SVM aims to minimize the sum of empirical risk and trust risk together.

It is normally thought that SVM has two advantages: the first is that SVM needs fewer

samples. It doesn’t mean the absolute value of a number of samples but SVM requires

relatively fewer samples if we consider the complexity of the problem. The second one is its

non-linear feature. SVM is good at dealing with non-linear separated data thanks mainly to

the use of kernels.
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There is one conceptual and one technical problem arising in SVM. The conceptual

problem is how to find a separating hyperplane that has a good generalisation ability: the

dimensionality of the feature space is large and there is no guarantee that all hyperplanes

separating the training data have good generalisation ability. The technical problem is how

to compute such high dimensional spaces efficiently, for example, to construct polynomials

of degree 4 or 5 in a 200 dimensional space. It may be that we need to construct hyperplanes

in a billion dimensional feature space.

The conceptual problem was solved by Vapnik in 1965 for the case of optimal hyperplanes

for separable classes. The optimal hyperplane is defined as the linear decision function with

maximum margin between the vectors of the two classes. Vapnik has shown that to construct

such optimal hyperplanes one does not need to take into account all training data, but instead

just a small subset. This set of training data is called support vectors, which determine the

margin. The reason why we are so interested in the support vector is that if the training

vectors are separated correctly with an optimal hyperplane, the expectation value of the

probability to commit an error on a test sample is bounded by the ratio between the expected

value of the number of support vectors and the number of training vectors.

E[pr(error)]≤ E[numbero f supportvectors]
numbero f trainingvectors

(2.25)

This bound does not explicitly indicate the dimensionality of the separation space. From

this bound , we can easily see that if there is an optimal hyperplane which can be constructed

from only a subset of the training data (the support vectors), it usually generalises well, even

in an infinite dimensional space.

To start with, we assume that the training dataset is linearly separable in feature space, so

that by definition there exists at least one choice of the parameters of a vector w and a scalar

b such that a function satisfies

w · xi +b≥ 1 i f yi = 1

w · xi +b≤−1 i f yi =−1
(2.26)

So the inequalities satisfy all elements of the training set. Below we write the inequalities

in the form

yi(w · xi +b)≥ 1, i = 1,2, . . . ,n (2.27)

The optimal hyperplane
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w0 · x+b0 = 0 (2.28)

is the unique one which separates the training data with a maximal margin: it determines

the direction w/|w| where the distance between the projections of the training vectors of two

different classes is maximal.

We can use Fig. 2.18 to indicate this situation.

Fig. 2.18 Binary classification problem

There are two classes, indicated by squares and circles separately. The line between

two classes is called hyperplane (decision boundary). It is a linear function that classifies

different data sets. We can easily see that there exist multiple solutions, and we should try

to find the one that will give the smallest generalization error. The support vector machine

approaches this problem through the concept of margin, which is defined to be the smallest

distance between the decision boundary and any of the samples.

However, although the conceptual problem has been solved and the optimal hyperplane

has a good generalization, we still face the problem of the technical problem of how to treat

the high dimensional feature space. In 1992, it was shown that one can consider changing

the step of constructing a decision function in operation: instead of making a non-linear

transformation of the input space vectors followed by support vectors using dot-product in

feature space, one can first compare two vectors in input space, for example taking their

dot-product, and then making a non-linear transformation of the value of the dot-product (see

Fig. 2.19). By doing this, one enables the construction of rich classes of decision functions,

for example polynomial decision function of arbitrary degree.

The technique of SVM was originally developed to handle the separable case, which

means the restricted training data with non error. However, SVM has been extended for non
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Fig. 2.19 Classification of an unknown pattern by an SVM. The pattern is in input space

compared to support vectors. The resulting values are non-linearly transformed. A linear

function of these transformed values determines the output of the classifier

separable cases because many real problems cannot be separated without error. Considering

this, some researchers treat SVM as a new class of learning machine, as powerful and

universal as the neural network.

To construct the optimal hyperplane

w0 · x+b0 = 0 (2.29)

which separates a set of training examples (y1,x1),(y2,x2), . . . ,(yn,xn), we have to minimise

a functional 1
2‖w‖2, subject to the constraints

yi(w · xi +b)≥ 1, i = 1,2, . . . ,n (2.30)

In the following, we show how this constrained minimum can be found, mainly following

[21]
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It has been shown that we can construct a Lagrangian function to use a standard optimisa-

tion technique

L(w,b,Λ) =
1

2
‖w‖2−

n

∑
i=1

αi[yi(w · xi +b)−1] (2.31)

where ΛT = (α1,α2, . . . ,αn),αi ≥ 0, i = 1, . . . ,n is the vector of Lagrangian multipliers

corresponding to the constraints Eq. (2.30).

It is known that the solution to the optimisation problem is determined by the saddle

point of this Lagrangian in the 2n+1 dimensional space of w,Λ and b, where the minimum

should be taken with respect to the parameters w and b, and the maximum should be taken

with respect to the Lagrangian multipliers Λ.

At the point of the minimum with respect to w and b, we can obtain:

∂L(w,b,Λ)
∂w

|w=w0
= w0−

n

∑
i=1

αiyixi = 0 (2.32)

∂L(w,b,Λ)
∂w

|b=b0
= ∑

αi

yiαi = 0 (2.33)

We can also get from equality Eq. (2.32)

w0 =
n

∑
i=1

αiyixi (2.34)

This equation indicates that the solution to the optimal hyperplane can be written as a

linear combination of training samples. From w0 we can find that only training samples xi

with Lagrangian multipliers αi > 0 take effect in the sum Eq. (2.34), all training samples with

αi = 0 play no role since the combination of the training sample and Lagrangian multiplier

is zero.

Substituting Eq. (2.34) and Eq. (2.33) into Eq. (2.31) we can get

W (Λ) =
n

∑
i=1

αi− 1

2
w0 ·w0

=
n

∑
i=1

αi− 1

2

n

∑
i=1

n

∑
j=1

αiα jyiy jxix j

(2.35)

We can also write this equation in vector notation as

W (Λ) = ΛT ·n− 1

2
ΛT DΛ (2.36)



48 Literature Review

where n is an n dimensional unit vector, and D is a symmetric n×n matrix with elements

Di j = yiy jxix j (2.37)

To find the desired saddle point we need to locate the maximum of Eq. (2.36) under the

constraints Eq. (2.32) and Eq. (2.33) with ΛT ·Y = 0, where Λ≥ 0 and Y T = (y1,y2, . . . ,yn).

The Kuhn-Tucker theorem plays an important role in the theory of optimisation. Accord-

ing to this theorem, at the saddle point in w0,b0,Λ0, any Lagrangian multiplier α0
i and its

corresponding constraint are connected by an equality

αi[yi(w0 · xi +b0)−1] = 0, i = 1,2, . . . ,n (2.38)

From this equality we find that non-zero value αi are only achieved in cases where

yi(w0 · xi +b0)−1 = 0 (2.39)

In other words, αi �= 0 only stands for cases where the inequality is met as an equality. We

call vectors xi for which yi(w0 ·xi+b0) = 1 for support vectors. Note that in this terminology

the Eq. (2.34) states that the solution vector w0 can be expanded on support vectors.

Another observation based on the Kuhn-Tucker Eq. (2.32) and Eq. (2.33) for the optimal

solution, is the relationship between the maximal value W (Λ0) and the separation distance

ρ0:

w0 ·w0 =
n

∑
i=1

α0
i yiw0 · xi =

n

∑
i=1

α0
i (1− yib0) =

n

∑
i=1

α0
i (2.40)

Substituting this equality into the expression for W (Λ0) we obtain

W (Λ0) =
n

∑
i=1

α0
i −

1

2
w0 ·w0 =

1

2
‖w0‖2 (2.41)

The algorithm described previously constructs hyperplane in the input space. To construct

a hyperplane in a feature space, one must first transform the n dimensional input vector x
into an N dimensional feature vector through a choice of an N dimensional vector function

φ : ℜn →ℜN .

An N dimensional linear separator w and a bias b is then constructed for the set of

transformed vectors

φ(xi) = φ1(xi),φ2(xi), . . . ,φN(xi), i = 1,2, . . . ,n (2.42)
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Classification of an unknown vector x is done by first transforming the vector to the

separating space x→ φ(x) and then taking the sign of the function

g(x) = w ·φ(x)+b (2.43)

According to the properties of the soft margin classifier method, the vector w can be

written as a linear combination of support vectors in the feature space. That means

w =
n

∑
i=1

yiαiφ(xi) (2.44)

The linearity of the dot product implies that the classification function g in Eq. (2.43) for

an unknown vector x only depends on the dot product

g(x) = w ·φ(x)+b =
n

∑
i=1

yiαiφ(x)φ(xi)+b (2.45)

The idea of constructing support vector networks comes from considering general forms

of the dot product in a Hilbert space

φ(u) ·φ(v)≡ K(u,v) (2.46)

According to the Hilbert-Schmidt Theory, any symmetric function K(u,v) ∈ L2, can be

expanded in the form

K(u,v) =
∞

∑
i=1

λiφi(u) ·φi(v) (2.47)

where λi ∈ℜ and φi are eigenvalues and eigenfunctions

∫
K(u,v)φi(u)du = λiφi(v) (2.48)

of the integral operator defined by the kernel K(u,v). A sufficient condition to ensure that

Eq. (2.46) defines a dot product in a feature space is that all the eigenvalues in the expansion

Eq. (2.47) are positive. To guarantee that these coefficients are positive, it is necessary and

sufficient that the condition

∫ ∫
K(u,v)g(u)g(v)dudv > 0 (2.49)

is satisfied for all g so that

∫
g2(u)du < ∞ (2.50)
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Therefore, functions that satisfy Mercer’s theorem can be used as dot product. Aizerman,

Braverman and Rozonoer considered a convolution of the dot product in the feature space

given by function of the form

K(u,v) = exp(−|u− v|
σ

) (2.51)

which they call Potential Functions [13].

However, the convolution of the dot product in feature space can be given by any function

satisfying Mercer’s condition, in particular, to construct a polynomial classifier of degree d
in n dimensional input space one can use the following function

K(u,v) = (u · v+1)d (2.52)

Using different dot products K(u,v), one can construct different learning machines with

arbitrary types of decision surfaces. The decision surface of these machines has a form

g(x) =
n

∑
i=1

yiαiK(x,xi) (2.53)

where xi is the image of a support vector in input space and αi is the weight of a support

vector in the feature space.

To find the vectors xi and weights αi, one follows the same solution scheme as for the

original optimal margin classifier or soft margin classifier. The only difference is that instead

of matrix D, one uses the matrix

Di j = yiy jK(xi,x j), i, j = 1,2, . . . ,n (2.54)

Thereafter, we give the definition of geometric margin as δi =
1
‖w‖ |g(x)|, that we can see

clearly in Fig. 2.20. H is the hyperplane we want to find, H1 and H2 are two parallel lines

going through samples that are the nearest to H, and the distance between H and H1 or H2 is

the geometric margin.

The reason why we should choose the maximum margin is that in statistical learning, there

is a relationship between geometric margin and misclassification: Misclassi f ication Rate≤
(2R

δ ), where δ means distance between samples and hyperplane. R = max‖xi‖ means max

length of samples xi, in other words, how wide the samples spread.

From the formula we can see that the upper bound is determined by geometric margin.

The larger the geometric margin is, the smaller the upper bound is.

If we want to find the maximum of the geometric margin, it is equal to finding the

minimum of ‖w‖. So now we have our objective function as min 1
2‖w‖2 (the 1

2 and square
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Fig. 2.20 Geometric margin and hyperplane

are both for later convenience). We can see the direct solution is that ‖w‖= 0 which makes

no sense. We get this result only because we haven’t thought about the constraints that

the data must not lie between H1 and H2. So the real expression of binary SVM will be

min 1
2‖w‖2,s.t. yi · (wT φ(xi)+b)≥ 1.

We usually see the kernel function defined as

k(xi,x j) = φ(xi)
T φ(x j) (2.55)

which takes the form of a quadratic programming problem in which we optimise a quadratic

function subject to a set of inequality constraints.

Some commonly used kernel functions are: Linear kernel K(xi,x j) = xT
i x j; Polynomial

kernel K(xi,x j) = (γxT
i x j + r)d, γ > 0; RBF kernel K(xi,x j) = exp(−γ‖xi− x j‖2), γ > 0;

Sigmoid tanh kernel K(xi,x j) = tanh(γxT
i x j + r), γ > 0.

There are two problems now: the first is which kernel function would we choose for

specific problems. The second is what if the problem is still non-linearly separated after

using the kernel trick? There is no criterion for choosing the kernel function. Basically, the

RBF kernel function usually gives good performance. For the second problem, we will use

slack variables to modify this approach so that data points are allowed to be on the wrong

side of the margin boundary, but with a penalty that increases with the distance from the

boundary.

Assume we have another sample on one side of the boundary stated in Fig. 2.21, and the

yellow square is on the wrong side. It means the framework is sensitive to outliers. To allow

some samples not to satisfy the "hard margin" in the training set, we introduce slack variable
and propose to optimize a soft-margin criterion. This version of SVM is called "soft-margin"

SVM.

Consider the case where the training data cannot be separated without error. In this case

one may want to separate the training data with a minimal number of errors. Let us introduce

some non-negative variables ξi ≥ 0, i = 1,2, . . . ,n to express this formally.
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Fig. 2.21 Margin with outlier

We can now minimise the functional

Φ(ξ ) =
n

∑
i=1

ξ σ
i (2.56)

for small σ > 0, subject to the constraints

yi(w · xi +b)≥ 1−ξi, i = 1,2, . . . ,n, ξi ≥ 0 (2.57)

For sufficiently small σ , Eq. (2.56) describes the amount of training error.

There are at least two ways of introducing slack variables. One may introduce a single

slack variable ξi for violations of the non-linear constraints (i.e. every instance xi) [22] or

one may penalize margin violations for every linear constraint (i.e. every instance xi and

output y �= yi) [44]. Since the former will result in a tighter upper bound on the empirical

risk and offers some advantages in the proposed optimization scheme, we have focused on

this formulation. Adding a penalty term that is linear in the slack variables to the objective,

results in the quadratic program:

min
w,ξ

1

2
‖w‖2 +

C
n

n

∑
i=1

ξi

s.t.∀i,∀y ∈ Y\yi : 〈w,δφi(y)〉 ≥ 1−ξi,ξi ≥ 0

(2.58)

Alternatively, we can also penalize margin violations by a quadratic term, leading to the

following optimization problem:
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min
w,ξ

1

2
‖w‖2 +

C
2n

n

∑
i=1

ξ 2
i

s.t.∀i,∀y ∈ Y\yi : 〈w,δφi(y)〉 ≥ 1−ξi

(2.59)

In both cases, C > 0 is a constant that controls the trade-off between training error

minimization and margin maximization.

2.6.2 Multi-class SVM

SVM is fundamentally a binary classifier. In practice, however, we often have to tackle

problems involving K > 2 classes, which are also called multi-class SVM. How to effectively

extend the binary SVM for multi-class classification is still an on-going research problem.

While some authors have proposed methods that consider all classes at once, the dominant

approach for solving multi-class SVM is to reduce a single multi-class SVM problem into

multiple binary SVM problems.

The formulation to solve the multi-class SVM problem in one step has variables pro-

portional to the number of classes. Therefore, for multi-class SVM methods, either several

binary classifiers have to be constructed or a larger optimisation problem is necessary. In

general it is computationally more expensive to solve a multi-class problem than a binary

problem with the same number of data.

One-versus-the-rest Approach

One commonly used approach, probably the earliest one for SVM multi-class classification,

is to construct k separate SVM models, where k is the number of classes, in which the ith
model yi(x) is trained using the data from class Ci as the positive examples and the data from

the remaining k−1 classes as the negative examples. This is known as the one-versus-the-rest
approach [13].

Therefore, given n training data (x1,y1),(x2,y2), . . . ,(xn,yn), where xi ∈ℜn, i= 1,2, . . . ,n
and yi ∈ 1,2, . . . ,k is the class of xi. The ith SVM solves the following problem:
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min
wi,bi,ξ i

1

2
‖wi‖2 +

C
n

n

∑
j=1

ξ i
js.t.

(wi)T φ(x j)+bi ≥ 1−ξ i
j, i f y j = i

(wi)T φ(x j)+bi ≤−1+ξ i
j, i f y j �= i

ξ i
j ≥ 0, j = 1,2, . . . ,n

(2.60)

where the training data xi are mapped to a higher dimensional space by the function φ .

Minimising 1
2‖wi‖2 means that we would like to maximise 2

‖wi‖ , the margin between two

groups of data. When data are not linearly separable, there is a penalty term C
n ∑n

j=1 ξ i
j which

can reduce the number of training errors. The basic concept behind SVM is to search for a

balance between the regularisation term 1
2‖wi‖2 and the training errors.

After solving Eq. (2.60), there are k decision functions:

(w1)T φ(x)+b1

...

(wk)T φ(x)+bk

(2.61)

We say x is in the class which has the highest value of the decision function:

class o f x≡ argmax
i=1,2,...,k

((wi)T φ(x)+bi) (2.62)

In practice, we solve the dual problem of Eq. (2.60) whose number of variables is the

same as the number of data in Eq. (2.60). Hence k of n-variable quadratic programming

problems are solved.

The disadvantage of one-versus-the-rest SVM is that the individual classifiers can lead

to inconsistent results in which an input is assigned to multiple classes simultaneously,

or none. This problem is sometimes addressed by making predictions for new inputs x
using y(x) = maxk yk(x). Unfortunately, this heuristic approach suffers the problem that

the different classifiers were trained on different tasks, and there is no guarantee that the

real-valued quantities yk(x) for different classifiers will have appropriate scales.

The other problem with the one-versus-the-rest approach is that the training sets are not

balanced. For instance, if we have ten classes each with equal numbers of training data

points, then the individual classifiers are trained on data sets comprised of 90% negative

examples and only 10% positive examples, and the symmetry of the original problem is lost.
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One-versus-one Approach

Another major approach is to train k(k−1)/2 different binary class SVMs on all possible

pairs of classes, and then to classify test points according to which class has the highest

number of "votes", an approach that is sometimes called one-versus-one [37]. For training

data from the ith and the jth classes, we solve the following binary classification problem:

min
wi j,bi j,ξ i j

1

2
‖wi j‖2 +

C
n ∑

t
ξ i j

t s.t.

(wi j)T φ(xt)+bi j ≥ 1−ξ i j
t , i f yt = i

(wi j)T φ(xt)+bi j ≤−1+ξ i j
t , i f yt = j

ξ i j
t ≥ 0

(2.63)

There are different methods for doing the future testing after all k(k−1)/2 classifiers are

constructed. The "voting" strategy is the most commonly used method whereby if there is a

sign((wi j)T φ(x)+bi j) say x is in the ith class, then the vote for the ith class is added by one.

Otherwise, the jth class is increased by one. Then we predict that x is in the class with the

largest vote. The voting strategy described above is also called the "Max Wins" approach. In

case that two classes have the same votes, though it may not be a good strategy, we simply

select the one with the smaller index.

In practice, we solve the dual of Eq. (2.63) whose number of variables is the same as the

number of data in two classes. Hence if on average each class has n/k data points, we have

to solve k(k−1)/2 quadratic programming problems where each of them has about 2n/k
variables.

This can lead to ambiguities in the resulting classification. Also, for large k this approach

requires significantly more training time than the one-versus-the-rest approach. Similarly, to

evaluate test points, much more computation is required.

DAGSVM Approach

The other commonly used method for multi-class SVM is called the Directed Acyclic Graph

SVM (DAGSVM) [101]. A DAG is a graph whose edges have an orientation and no cycles.

A rooted DAG has a unique node that is the only node which has no arcs pointing to it.

To evaluate a particular DAG on input x, starting at the root node, the binary function

at a node is evaluated. The node is then exited via the left edge or right depending on the

output value. The next node’s binary function is then evaluated. The value of the decision

function is the value associated with the final leaf node (see Fig. 2.22 for an example of 4
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classes DAG). The path taken through the DAG is known as the evaluation path. The input

x reaches a node of the graph, if that node is on the evaluation path for x. We refer to the

decision node distinguishing classes i and j as i j-node. Assuming that the number of a leaf

is its class, this node is the ith node in the (n− j+ i)th layer provided i < j. Similarly the

j-nodes are those nodes involving class j, that is, the internal nodes on the two diagonals

containing the leaf labeled by j.

Fig. 2.22 (a) The decision DAG for finding the best class out of 4 classes. The equivalent list

state for each node is shown next to that node. (b) A diagram of the input space of a 4-class

problem. A one-versus-one SVM can only exclude one class from consideration.

The DAG is equivalent to operating on a list, where each node eliminates one class form

the list. The list is initialised with a list of all classes. A test point is evaluated against the

decision node that corresponds to the first and last elements of the list. If the node prefers one

of the two classes, the other class is eliminated from the list, and DAG proceeds to test the

first and last elements for the new list. The DAG terminates when only one class remains in

the list. For a problem with k classes, k−1 decision nodes will be evaluated in order to derive

an answer. In total, the DAGSVM will contain k(k−1)/2 nodes, each with an associated

one-versus-one classifier.

An advantage of using a DAG is that [101] some analysis of generalisation can be

established. There are still no similar theoretical results for one-versus-the-rest and one-

versus-one methods yet. In addition, its testing time is less than the one-versus-one method.

Since the number of classifiers of DAGSVM is the same as the it of one-versus-one approach,

they share the same disadvantages as well.
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One Single Optimisation SVM

Weston proposed an approach for multi-class problems by solving one single optimization

problem [157]. The idea is similar to the one-versus-the-rest approach. k models where the

mth function wT
mφ(x)+b which assigns a score to each class are constructed. Given that the

models are jointly built, their scales are consistent. This approach solves an optimization

problem formulated as:

min
w,b,ξ

1

2

k

∑
m=1

‖wm‖2 +
C
n

n

∑
i=1

∑
m�=yi

ξ m
i s.t.

wT
yi

φ(xi)+byi ≥ wT
mφ(xi)+bm +2−ξ m

i ,

ξ m
i ≥ 0, ∀i = 1, . . . ,n, m ∈ {1, . . . ,k}\yi

(2.64)

The decision function is

argmax
m=1,...,k

(wT
mφ(x)+bm) (2.65)

which is the one-versus-the-rest method. Yet, this time the scale of the models is consistent.

Also, Crammer and Singer proposed an approach for multi-class problems by solving

one single optimization problem [22]. The Crammer and Singer’s multi-class SVM is the

one sometimes denoted as simply M-SVM. This approach solves an optimization problem

formulated as:

min
w,ξ

1

2

k

∑
m=1

‖wm‖2 +
C
n

n

∑
i=1

ξi s.t.

wT
yi

φ(xi)+byi− (wT
mφ(xi)+bm)≥ em

i −ξi,

∀i = 1, . . . ,n

(2.66)

where em
i = 1−δyi,m and δ is the Kronecker delta function. The decision function is again

argmax
m=1,...,k

(wT
mφ(x)+bm) (2.67)

2.6.3 Structural SVM

We only consider the input and output data as i.i.d. in the previous section, however, in reality,

we often encounter problems that the output is structured models such as sequences, strings,



58 Literature Review

trees, lattices or graphs. Such problems arise in a variety of applications, ranging from

multi-label classification and classification with class taxonomies, to label sequence learning,

sequence alignment learning, and supervised grammar learning, natural language parsing, to

name just a few. The general problem is to learn a mapping from input vector or patterns

x ∈ X to discrete response variables y ∈ Y , based on a training sample of input-output pairs

(x1,y1),(x2,y2), . . . ,(xn,yn) drawn from some fixed but unknown probability distribution.

Unlike multi-class classification, where the output space consists of an arbitrary finite set of

labels or class identifiers Y = 1,2, . . . ,k, we now consider the case where elements of Y are

structured objects.

Tsochantaridis et al. proposed an approach designing a classification algorithm that can

deal with more complex outputs [134]. More generally, they consider problems involving

multiple dependent output variables, structured output spaces by generalising large margin

methods, more specifically multi-class SVM [22, 157], to the broader problem of learning

structured response. The naive approach of treating each structure as a separate class is often

intractable, since it leads to a multi-class problem with a very large number of classes. They

overcome this problem by specifying discriminant functions that exploit the structure and

dependencies within Y .

The general problem is to learn functions f : X →Y between input spaces X and arbitrary

discrete output spaces Y based on a training sample of input-output pairs. Consider the case

of natural language parsing, where the function f maps a given sentence x to a parse tree y.

This is depicted graphically in Fig. 2.23.

Fig. 2.23 Illustration of natural language parsing model

The approach is to learn a discriminant function F : X ×Y → ℜ over input-out pairs

from which a prediction by maximizing F over the response variable for a specific given

input x. Hence, the general form of hypotheses f is
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f (x;w) = argmax
y∈Y

F(x,y;w) (2.68)

where w denotes a parameter vector.

Assume F to be linear in some combined feature representation of inputs and outputs

φ(x,y), i.e.

F(x,y;w) = 〈w,φ(x,y)〉 (2.69)

The specific form of ψ depends on the nature of the problem and special cases will be

discussed subsequently. For instance, in the case of multi-class SVM, 〈w,φ(x,y)〉=wT
y φ(x)+

by.

Using the natural language parsing as an illustrative example, we can choose F such

that we get a model that is isomorphic to a probabilistic context free grammar. Each node

in a parse tree y for a sentence x corresponds to grammar rule g j, which in turn has a score

w j. All valid parse trees y (i.e. trees with a designated start symbol S as the root and the

words in the sentence x as the leaves) for a sentence x are scored by the sum of the w j of

their nodes. This score can thus be written in the form of Eq. (2.69), with φ(x,y) denoting a

histogram vector of counts (how often each grammar rule g j occurs in the tree y). f (x;w)
can be efficiently computed by finding the structure y ∈ Y that maximizes F(x,y;w) via the

CKY algorithm [81].

Using the natural language parsing as an illustrative example, we can choose F such

that we get a model that is isomorphic context free grammar. Each node in a parse tree y
for a sentence x corresponds to grammar rule g j, which in turn has a score w j. All valid

parse tree y (i.e. trees with a designated start symbol S as the root and the words in the

sentence x as the leaves) for a sentence x are scores by the sum of the w j of their nodes.

This score can thus be written in the form of F(x,y;w) = 〈w,ψ(x,y)〉 with ψ(x,y) denoting

a histogram vector of counts (how often each grammar rule g j occurs in the tree y). f (x;w)
can be efficiently computed by finding the structure y ∈ Y that maximizes F(x,y;w) via the

CKY algorithm [20].

The standard 0-1 loss function typically used in classification is not proper for most

structured responses. Take natural language parsing as an example, a parse tree that is almost

correct and has only one or a few different nodes from the correct parse should be given a

much less loss from a parse tree that is completely different.

In order to quantify the accuracy of a prediction, consider learning with arbitrary loss

function Δ(y, ȳ) quantifying the loss associated with a prediction ȳ, if the ground truth output

value is y. Here Δ(y,y) = 0 and Δ(y, ȳ > 0), ∀y �= ȳ.
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The goal is to find a function f in a given hypothesis class such that the risk R
P ( f ) =∫
X×Y Δ(y, f (x))dP(x,y) is minimized. P is unknown and following the supervised learning

paradigm.

Margin Maximisation

First, consider the case where there exists a function f parameterized by w such that the

empirical risk is zero. The condition of zero training error can then be compactly written as a

set of non-linear constraints.

∀i ∈ {1, . . . ,n} : maxy∈Y\yi{〈w,φ(xi,y)〉}< 〈w,φ(xi,yi)〉 (2.70)

Every one of the non-linear inequalities can be equivalently replaced by |Y |−1 linear

inequalities, resulting in a total of n · |Y |−n linear constraints,

∀i ∈ {1, . . . ,n}, ∀ ∈ Y\yi, 〈w,φ(xi,yi)〉−〈w,φ(xi,y)〉 ≥ 0 (2.71)

Here we also define δφi(y) ≡ φ(xi,yi)− φ(xi,y), so that the constraints can be more

compactly written as 〈w,δφi(y)〉 ≥ 0.

If the set of inequalities of the former is feasible, there will typically be more than

one solution w∗. To specify a unique solution, w is selected with ‖w‖ ≤ 1 for which

the score of the correct label yi is uniformly most different from the closest runner-up

ȳi(w) = argmaxy�=yi
〈w,φ(xi,y)〉. This generalizes the maximum margin principle employed

in SVM to the more general case considered in our research. The resulting hard margin

optimization problem can be expressed as a convex quadratic program in the form:

SV M0 : min
w

1

2
‖w‖2

∀i,∀y ∈ Y\yi : 〈w,δφi(y)〉 ≥ 1

(2.72)

To allow errors in the training set, introduce slack variables and propose to optimize a soft

margin criterion. Adding a penalty term that is linear in the slack variables to the objective

results in the quadratic program:

SV M1 : min
w,ξ

1

2
‖w‖2 +

C
n

n

∑
i=1

ξi

s.t. ∀i,∀y ∈ Y\yi : 〈w,δφi(y)〉 ≥ 1−ξi,ξi ≥ 0

(2.73)
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Alternatively, penalize margin violations by a quadratic term C
2n ∑i ξ 2

i , giving another

soft-margin solution:

SV M2 : min
w,ξ

1

2
‖w‖2 +

C
2n

n

∑
i=1

ξ 2
i

s.t. ∀i,∀y ∈ Y\yi : 〈w,δφi(y)〉 ≥ 1−ξi,ξi ≥ 0

(2.74)

For the case of arbitrary loss functions, re-scale the slack variables according to the loss

incurred in each of the linear constraints. Intuitively, violating a margin constraint involving

a y �= yi with hinge loss Δ(y,yi) should be penalized more severely than a violation involving

an output value with smaller loss. This can be accomplished by multiplying the margin

violation by the loss, or equivalently by scaling the slack variable with the inverse loss, which

gives a justification of soft margin as:

SV MΔs
1 : min

w,ξ

1

2
‖w‖2 +

C
n

n

∑
i=1

ξi

s.t. ∀i,∀y ∈ Y\yi : 〈w,δφi(y)〉 ≥ 1− ξi

Δ(yi,y)

(2.75)

where we have given that Δ(yi,y)> 0 for yi �= y and Δ(y,y) = 0.

The optimization problem SV MΔs
2 can be derived where Δ(yi,y) is replaced by

√
Δ(yi,y).

In addition to the slack re-scaling approach, a second way to include loss functions is to

re-scale the margin. This method was first proposed by Taskar et al. [116] for the special case

of the Hamming loss, but can be straightforward to general loss functions. The quadratic

problem is expressed as:

SV MΔm
1 : min

w,ξ

1

2
‖w‖2 +

C
n

n

∑
i=1

ξi

s.t. ∀i,∀y ∈ Y : 〈w,δφi(y)〉 ≥ Δ(yi,y)−ξi

(2.76)

Similarly, replace Δ(yi,y) by
√

Δ(yi,y) then we can get SV MΔm
2 .

Tsochantaridis et al. have also shown the advantages and disadvantages of the two

formulations. An appealing property of the slack re-scaling approach is its scaling invariance.

On the other hand, the margin re-scaling formulation is not invariant under scaling of the

loss function. For example, one needs to re-scale the feature map φ by a corresponding

scale factor as well. This seems to indicate that one has to calibrate the scaling of the loss
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and the scaling of the feature map more carefully in the SV MΔm
1 formulation. The SV MΔs

1

formulation however, represents the loss scale exactly in terms of the constant C.

In practice, in the literature the margin-rescaling formulation has proved the most popular,

and we will follow it in our experiments.

Given a set of N training instances {xi,yi}, i = 1, . . . ,N, structural SVM finds the optimal

model’s parameter vector w by solving the following convex optimisation problem:

min
w,ξ

1

2
‖w‖2 +C

N

∑
i=1

ξ i s.t.

w�φ(xi,yi)−w�φ(xi,y)≥ Δ(yi,y)−ξ i,

i = 1 . . .N, ∀y ∈ Y

(2.77)

As usual, term ∑N
i=1 ξ i places an upper bound over the total training error, while term

‖w‖2 regularises the solution to encourage generalisation. Parameter C is an arbitrary,

positive coefficient that balances these two terms. In the constraints, function φ(x,y) is a

feature function that computes structured features from the pair {x,y} such that w�φ(x,y)
can assign a score to the pair. The constraint for labeling y = yi guarantees that ξ i ≥ 0.

Eventually, Δ(yi,y) is the chosen, arbitrary loss function.

The problem with Eq. (2.77) is that the size of the constraint set, Y , is exponential in the

number of of the output variables and it is therefore impossible to satisfy the full constraint

set. However, [134] has shown that it is possible to find ε-correct solutions with a constraint

subset of polynomial size, consisting of only the “most violated” constraint for each sample,

i.e. the labeling with the highest sum of score and loss:

ξ i = max
y

(−w�φ(xi,yi)+w�φ(xi,y)+Δ(yi,y))

→ ȳi = argmax
y

(w�φ(xi,y)+Δ(yi,y))
(2.78)

This problem is commonly referred to as “loss-augmented inference” due to its resem-

blance to the usual inference of Eq. (3.5) and is the main step of structural SVM.

Algorithm for Structural SVM

Now the key challenge is that the size of each quadratic problem is intractable, since there

will be n|Y |−n margin inequalities. In many cases, |Y | may be extremely large. Suppose a

simple case in sequential labeling, each state can be chosen from 5 classes, and the length
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of the sequence is 100. The value of |Y | is 5100 ≈ 1069. Many other cases have shown that

the cardinality may grow exponentially in the description length of y, which makes standard

quadratic programming solvers unsuitable for this type of problem.

In [134], the authors have proposed an algorithm that exploits the special structure of

the maximum margin problem, so that only a much smaller subset of constraints needs to be

explicitly examined. The algorithm can compute arbitrary close approximation in polynomial

time for a large range of structures and loss functions. This is a valid strategy, since there

always exists a polynomial sized subset of constraints so that the solution of the relaxed

problem from the original optimization problem is up to a precision of ε . This means that

most constraints are guaranteed to be violated by not more than ε , without the need to add

all constraints to the optimization problem. Since we will also use this algorithm later in the

research, we hereby give a detailed description.

The algorithm maintains working set Si for each training example and proceeds by finding

the "most violated" constraints for xi, involving some output value ȳ through iterating the

training examples (xi,yi). If the margin violation of this constraint exceeds the current value

of ξi by more than ε , the dual variable corresponding to ȳ is added to the working set. Once

a constraint has been added, the solution is re-computed with respect to S. Notice that all

variables that are not included in the respective working set are treated as 0. The algorithm

stops if no constraint is violated by more than ε . Pseudo-code of the algorithm can be found

in Algorithm 3.

A convenient property of the cutting plane algorithm is that it has a general and well-

defined interface independent of the choice of φ and Δ. To apply the algorithm, it is sufficient

to implement the feature mapping φ(x,y), the loss function Δ(yi,y) and the maximisation

step in the algorithm. While the modeling of φ(x,y) and Δ(yi,y) is typically straightforward,

solving the maximisation problem for the "most violated" constraint only requires exploiting

the structure of φ for output spaces which cannot be dealt with by exhaustive search.

Replace the loss function with a piecewise linear convex upper bound, Δ(yi,y′(w)) ≤
maxy′∈Y [Δ(yi,y′)+wT φ(xi,y′)]−wT φ(xi,yi), where y′(w) = argmaxy∈Y wT φ(xi,y).

Instead of minimizing the true empirical risk with the margin maximization, structural

SVM solves a convex optimization problem. This problem can be formulated as

min
w

1

2
‖w‖2 +

C
n

n

∑
i=1

max
y′∈Y

[Δ(yi,y′)+wT ψ(xi,y′)−wT ψ(xi,yi)] (2.80)
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Algorithm 1 Algorithm for computing SV M0 and the loss re-scaling formulations SV M∗
1 and SV M∗

2 .

Input: (x1,y1),(x2,y2), . . . ,(xn,yn),C,ε
Si ← /0 for all i = 1,2, . . . ,n
repeat

for i = 1,2, . . . ,n do
/∗prepare loss function for optimisation*/
set up loss function

H(y)≡

⎧⎪⎨
⎪⎩

1−〈w,δφi(y)〉 (SV M0)

(1−〈w,δφi(y)〉)Δ(yi,y) (SV MΔs
1 )

Δ(yi,y)−〈w,δφi(y)〉 (SV MΔm
1 )

(2.79)

where w≡ ∑ j ∑y′∈S j α jy′δφ j(y′)
/∗find cutting plane∗/
compute ȳ = argmaxy∈Y H(y)
/∗determine value of current slack variable∗/
compute ξi = max{0,maxy∈Si H(y)}
if H(ȳ)> ξi + ε then
/∗add constraint to the working set∗/
Si ← Si∪{ȳ}
end if

end for
until no Si has changed during iteration
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2.6.4 Multi-label Classification with Arbitrary Loss Function

All minimum empirical risk classifiers like SVM aim to minimise a loss function over the

training set. For the i.i.d. case, this function is typically the 0-1 loss, but it could be in other

cases. Assume we have a known loss function Δ which assigns a non-negative number to

every possible pair of outputs. This loss function represents how much we want to penalize a

prediction ȳ when the ground truth label is y. For example, if we want to use F1 loss, since

F1 is a score of alignment between y and ȳ, our choice for the loss is Δ(y, ȳ) = 1−F1(y, ȳ),
which is by definition Δ(y, ȳ) = 1− 2∗yT ∗ȳ

Y T ∗y+ȳT ∗ȳ .

The next assumption is that the prediction for a given input x returns the maximization

of a linear score of the model parameter vector θ , i.e. a prediction is given by ȳ such that

ȳ = argmaxy∈Y 〈w,φ(x,y)〉. Here we assume that φ(x,y) is linearly composed of features of

the instances encoded in each ν , i.e. φ(x,y) = ∑V
ν=1 yν(ψν ⊗ x). The vector ϕν is the feature

representation for the instance ν . The map φ(x,y) will be zero vector whenever yν = 0, i.e.

when instance ν doesn’t have label x.

The next step is to formulate the estimator. An initial, ideal estimator will take the form

w∗ = argminw[(
1
n ∑n

i=1 Δ(ȳi(xi;w),yi))+ λ
2 ‖w‖2]. In other words, we want to find a model

that minimizes the average prediction loss in the training set plus a quadratic regularizer that

penalizes complex solutions (the parameter λ determines the trade-off between data fitting

and good generalization).

Note the above problem is non-convex. More critically, the loss is a piecewise constant

function of w. Here we use an analogous approach, proposed by Tsochantaridis, which

optimizes a convex upper bound on the structured loss. The resulting optimization prob-

lem is [w∗,ξ ∗] = argminw,ξ [
1
n ∑n

i=1 ξn +
λ
2 ‖w‖2], the constraints would be 〈w,φ(xi,yi)〉 −

〈w,φ(xi,y)〉 ≥ Δ(y,yi)− ξ i, ξ i ≥ 0. It is easy to see that ξ ∗ upper bounds Δ(ȳi∗,yi). Here

ȳi∗
.
= argmaxy〈w∗,φ(xi,y)〉. First note that since the constraint hold for all y, they also hold

for ȳi∗. Second, the left hand side of the inequality for y = ȳi must be non-positive from the

definition of ȳ. It then follows that ξ ∗i ≥ Δ(ȳi∗,yi).

The constraints basically mean a loss sensitive margin. θ is learned so that mispredictions

y will end up with a score 〈w,φ(xi,y)〉 that is smaller than the score 〈w,φ(xi,yi)〉 of the

correct prediction yi by a margin equal to that loss minus slack variables ξ . The formulation

is a generalization of support vector machines for the case in which there are an exponential

number of classes y.

The optimization problem has n · |Y |= n ·2V constraints. Naturally, this number is too

large to allow for a practical solution of the quadratic program. So we have to construct a

constraint generation strategy for selecting a polynomial number of constraints. This method

can approximate the original problem particularly well. The constraint generation algorithm
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consists of starting with no constraints and iteratively adding the most violated constraints

for the current solution of the optimization problem. Such an approach is assumed to find

an ε-close approximation of the solution after including only O(ε−2) constraints. The key

problem that needs to be solved at each iteration is constraint generation which is to find

the maximization of the violation margin ξ ∗i , y∗i = argmaxy∈Y [Δ(y,yi)+ 〈w,φ(xi,y)〉]. The

difficulty in solving the above optimization problem depends on the choice of φ(x,y) and Δ.

We summarise the most commonly used loss functions in the following subsection.

2.6.5 Loss Functions

A loss function, Δ(yi,y), quantifies the loss, or cost, carried by a misclassification. In the case

of structured labels, a loss function is said to be decomposable if Δ(yi,y) = f (δ (yi
t ,yt)), t =

1 . . .T , where δ (yi
t ,yt) notes the loss over an individual label. We have mentioned this in

Chapter 2 for the 0-1 loss and the Hamming loss, but there are many other loss functions that

can be used in different applications. In the following, we review the main loss functions for

both the decomposable and non-decomposable cases.

Zero-one loss

The simplest and most commonly used loss function in classification is the zero-one loss,

assigning a unit loss to every misclassification and a zero loss to every correct classification:

Δ0−1(yi,y) =

⎧⎨
⎩

1 for y �= yi

0 for y = yi
(2.81)

In the case of structured labeling, Δ0−1(yi,y) = 1 if at least one of the individual labels

is mispredicted. This shows that the zero-one loss can be evaluated frame by frame and is

therefore decomposable.

Hamming loss

Although the zero-one loss is the most common in conventional classification, it is not the

most suited for structured prediction since we seek to differentiate the loss for mispredictions

with different amounts of wrongly-predicted individual labels. The most common loss

function for structured prediction is the Hamming loss that accounts for a loss “unit” for

every incorrect individual label [100]:
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ΔHamming(yi,y) =
1

T

T

∑
t=1

yi
t⊕ yt (2.82)

where operator⊕ is the modulo-2 sum or XOR boolean operator. Based on this definition,

the Hamming loss is also clearly a decomposable case.

Precision at k and at r

Although the Hamming loss is suited for structured prediction since it considers graded losses,

it does not reflect desirable performance in some important cases. Consider a simple example:

the ground truth, yi, having 3 positive labels and 97 negative labels. In this case, a dummy

classifier with constant negative output would carry a loss of only 3%. This asymmetric

situation is especially common in detection where positive labels are far less frequent than

negative ones. Therefore, performance evaluations must account for positive and negative

errors separately. Two useful accuracy measures are the precision and recall:

p =
T P

T P+FP
; r =

T P
T P+FN

(2.83)

where T P, FP and FN are the number of true positives, the number of false negatives

and the number of false positives, respectively, computed from the classification contingency

table of the individual labels of yi and y. Therefore, the recall assesses the fraction of positive

labels correctly predicted by the classifier while the precision measures the amount of true

positives amongst all the predicted positives.

In applications where the classifier also produces a ranking of the samples such as in

search engines, a user is typically only interested in the top predictions. Therefore, a common

performance figure is the precision measured over the top k predictions, known as precision
at k (p@k):

p@k =
T P

T P+FP
s.t. T P+FP = k (2.84)

A similar figure is the precision at a chosen value of recall, p@r:

p@r =
T P

T P+FP
s.t.

T P
T P+FN

= r (2.85)
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For figures like the precision at k and the precision at r, the predicted labeling, y, must

abide by a constraint. Therefore, the domain is restricted and we note it as Yk and Yr,

respectively, in the rest of the thesis.

Since the precision’s denominator depends on the entire prediction, the precision is

certainly not a decomposable function of the individual labels. Given that it ranges between

0 and 1, the corresponding loss can be conveniently defined as Δp(yi,y) = 1− p.

Precision/recall break-even point

Assuming that the precision behaves as a non-increasing function of the recall, one can

explore the entire recall range between 0 and 1 to search for the value where p = r. This

value is known as the precision/recall break-even point and can be defined as:

pPRBEP =
T P

T P+FP
s.t. p =

T P
T P+FN

↔ FP = FN (2.86)

Clearly, the higher the value, the better is the combined performance over the two figures.

As before, the corresponding loss is defined as ΔpPRBEP(y
i,y) = 1− pPRBEP.

F1 loss

Precision and recall effectively describe the labeling performance. However, for performance

comparison purposes it would be desirable to have them combined into a single figure. To

this end, the F1 measure is introduced as:

F1(yi,y) =
2pr
p+ r

=
2 T P

2 T P+FN +FP
(2.87)

with corresponding loss ΔF1
(yi,y) = 1−F1(yi,y). Given that it incorporates the precision,

the F1 loss is also non-decomposable. It is, however, certainly more suited than the Hamming

loss to represent performance in asymmetric cases: for instance, in the example above, the

F1 loss of the dummy classifier would be 1 (i.e., complete loss). For this reason, we report

and compare performance in this paper using the F1 measure as the main figure.

Average precision

Another popular accuracy measure is the average precision (AP) that is the average of the

precision at various levels of recall. This measure is useful since it can assess the labeling

performance at different trade offs between false positives and false negatives. Assuming R
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represents different levels of recall (typically, all levels between 0 and 1 in 0.1 steps), the

average precision is defined as:

AP =
1

R ∑
r

p@r (2.88)

Everingham et al. in [30] have provided an alternative definition for the AP ensuring that

the precision behaves as a monotonically non-increasing function of the recall:

AP =
1

R ∑
r

max
l=0...r

p@l (2.89)

This way of computing the average precision has become dominant in computer vision

and is therefore adopted in this paper for the experimental evaluation.

For conventional classification, the computation of the average precision can be simplified

if the classifier not only provides a prediction, but also ranks all the samples in score order.

Unfortunately, in the case of structured prediction, the measurements are scored jointly and

cannot be ranked individually. Therefore, the computation of the average precision requires

the classifier to explicitly provide the set of predictions at the required recall levels.

As usual, the corresponding loss can be defined as the complement to the measure,

ΔAP = 1−AP. Such a loss is not only non-decomposable, but it also cannot be expressed as

a function of the classification contingency table.





Chapter 3

Sequential Labeling With Structural
SVM Under the Average Precision Loss

In this chapter, we propose a structural SVM learning algorithm for sequential labeling

that maximises an average precision measure. A further contribution is an algorithm that

computes the average precision of a sequential classifier at test time, making it possible to

assess sequential labeling under this measure. Experimental results over challenging datasets

which depict human actions in kitchen scenarios (i.e., TUM Kitchen and CMU Multimodal

Activity) show that the proposed approach leads to a significant improvement of average

precision.

3.1 Introduction and Related Work

Choosing appropriate performance measures plays an important role in developing effective

information retrieval and classification systems. Common figures include the false positive

and false negative rates, the precision and recall, and the F-measure which can all assess the

accuracy of a prediction by comparing the predicted labels with the given ground-truth labels.

However, in applications such as information retrieval, it is often important to assess not

only the accuracy of the predicted labels, but also that of a complete ranking of the samples.

In classification, too, it is often preferable to evaluate the prediction accuracy at various

trade-offs of precision and recall, to ensure coverage of multiple operating points. For both

these needs, the average precision (a discretised version of the area under the precision-recall

curve) offers a very informative performance measure.

Amongst the various flavours of classification, sequential labeling, or tagging, refers to

the classification of each of the measurements in a sequence. It is a very important task in a
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variety of fields including video analysis, bioinformatics, financial time series and natural

language processing [107]. Unlike the classification of independent samples, the typical

sequential labeling algorithms such as Viterbi (including their n-best versions [90]) do not

provide multiple predictions at varying trade-offs of precision and recall, and therefore the

computation of their average precision is not trivial.

In the literature, a number of papers have addressed the average precision as a performance

measure in the case of independent samples. For instance, [66] has studied the statistical

behaviour of the average precision in the presence of relevance judgements. Yilmaz and

Aslam in [165] have proposed an approximation of the average precision in retrieval systems

with incomplete and imperfect judgements. Morgan et al. in [87] have proposed an algorithm

for learning the weights of a search query with maximum average precision. Notably,

Joachims et al. in [166] have proposed a learning algorithm that can efficiently train a

support vector machine (SVM) under an average precision loss. Mani Ranjbar et al has

proposed a max-margin parameter learning approach for structured prediction problems

with non-decomposable performance measures in [111, 110]. However, all this work only

considers independent and identically distributed (i.i.d.) samples, while very little work to

date has addressed the average precision in sequential labeling and structured prediction.

In [118], Rosenfeld et al. have proposed an algorithm for training structural SVM under the

average precision loss. However, their algorithm assumes that the structured output variables

can be ranked in a total order relationship which is generally restrictive.

For the above reasons, we propose a training algorithm that can train structural SVM for

sequential labeling under an average precision loss. Our assumptions are very general and do

not require ranking of the output space. The core component of our training algorithm is an

inference procedure that returns sequential predictions at multiple levels of recall. The same

inference procedure can also be used at test time, making it possible to evaluate the average

precision of sequential labeling algorithms and to compare it with that of i.i.d. classifiers.

Experiments have been conducted over two challenging sequential datasets: the TUM

Kitchen and the CMU-MMAC activity datasets [130, 24]. The results, reported in terms of

average precision, show that the proposed method remarkably outperforms other performing

classifiers such as standard SVM and structural SVM trained with conventional losses.
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3.2 Background

3.2.1 Average Precision

The average precision (AP) is a de-facto standard evaluation in the computer vision com-

munity since the popular PASCAL VOC challenges [30]. It is defined as the average of

the precision at various levels of recall and is a discretised version of the area under the

precision-recall curve (AUC). The AP is a very informative measure since it assesses the

classification performance at different trade-offs of precision and recall, reflecting a variety

of operating conditions. Its formal definition is:

AP =
1

R ∑
r

p@r (3.1)

where p@r is the precision at level of recall r, and R is the number of levels. The recall

ranges between 0 and 1, typically in 0.1 steps. At its turn, the precision at a chosen value of

recall, p@r, is defined as:

p@r =
T P

T P+FP
s.t.

T P
T P+FN

= r (3.2)

where T P, FP and FN are the number of true positives, the number of false negatives

and the number of false positives, respectively, computed from the classification contingency

table of the predicted and ground-truth labels.

In general, the precision tends to decrease as r grows. However, as defined above, the AP

is not a monotonically non-increasing function of r. To ensure monotonicity, Everingham et
al. in [30] modified its definition as:

AP =
1

R ∑
r

max
l=0...r

p@l (3.3)

This way of computing the average precision has become commonplace in the computer

vision and machine learning communities and it is therefore adopted in our experiments.

However, the algorithm we describe in Section 3.3 can be used interchangeably for either

(3.1) or (3.3). Given that the AP is bounded between 0 and 1, a natural definition for an

AP-based loss is ΔAP = 1−AP.

Sequential labeling predicts a sequence of class labels, y = (y1, . . . ,yt , . . . ,yT ), from a

given measurement sequence, x = (x1, . . . ,xt , . . . ,xT ), where xt is a feature vector at sequence

position t and yt is a corresponding discrete label, yt ∈ 1 . . .M. In many cases, it is not

restrictive to assume that yt is a binary label (1: positive class; 0: negative class), obtaining

multi-class classification from a combination of binary classifiers. Therefore, in the following
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we focus on the binary case. The most widespread model for sequential labeling is the

hidden Markov model (HMM) which is a probabilistic graphical model factorising the joint

probability of the labels and the measurements. By restricting the model to the exponential

family of distributions and expressing the probability in a logarithmic scale, the score of an

HMM can be represented as a generalised linear model:

ln p(x,y) ∝ w�φ(x,y) = w�init f (y1)+

+
T

∑
t=2

w�tran f (yt ,yt−1)+
T

∑
t=1

w�em f (xt ,yt)
(3.4)

where winit are the first-frame parameters, wtran are the transition parameters, and wem

are the emission parameters. The inference problem for this model consists of determining

the best class sequence for a given measurement sequence:

ȳ = argmax
y

w�φ(x,y)) (3.5)

This problem can be efficiently solved in O(T ) time by the well-known Viterbi algorithm

operating in a logarithmic scale. Viterbi is an instance of dynamic programming where the

sequence is scanned in a left-to-right manner and partial solutions are built at every frame.

The final solution is guaranteed to be the global optimum [107].

3.3 Training and Testing Sequential Labeling with the AP
Loss

The loss functions used for training structural SVM commonly include the 0-1 loss and the

Hamming loss. Under these losses, the loss-augmented inference can still be computed by

a conventional Viterbi algorithm with adjusted weights. Instead, training with the average

precision cannot be approached in the same way since it requires predicting either a ranking

or multiple labelings. For this reason, we propose a different formulation of the structural

SVM primal problem:
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min
w,ξ

1

2
‖w‖2 +C

N

∑
i=1

ξ i s.t.

w�φ(xi,yi)− 1

R ∑
r

w�φ(xi,y[r])

≥ ΔAP(yi,y[0], . . .y[1])−ξ i,ξ i ≥ 0, i = 1 . . .N,

r = 0,0.1, . . .1, ∀y[0] . . .y[1] ∈ Y0× . . .×Y1

(3.6)

The constraints in Eq. (3.6) state that the score assigned to the ground-truth labeling, yi,

must be greater than or equal to the average score of any set of R labelings at the appropriate

levels of recall by at least their average precision loss. In this way, we retain the structural

SVM principle of imposing a margin between the ground truth and the prediction that is

equal to the chosen loss, while we constrain all the predictions at the prescribed levels of

recall.

For Eq. (3.6), the loss-augmented inference becomes:

ȳ[0] . . . ȳ[1] = argmax
y[0]...y[1]

(
1

R ∑
r

w�φ(xi,y[r])+ΔAP(yi,y[0], . . .y[1])
)

= argmax
y[0]...y[1]

(
1

R ∑
r

w�φ(xi,y[r])+
1

R ∑
r

Δp@r(y
i,y[r])

)

= argmax
y[0]

(w�φ(xi,y[0])+Δp@0
(yi,y[0])), . . .argmax

y[1]
(w�φ(xi,y[1])+Δp@1

(yi,y[1])

(3.7)

where we have made use of the definition of average precision from Eq. (3.1). Eq. (3.7)

shows an important property: that the R most violating labelings can be found independently

of each other using the precision loss at the required level of recall. This is the key property

for the algorithm we propose in the following sub-section.

3.3.1 Inference and loss-augmented inference

Once the model is trained, testing it to report its AP requires, once again, the ability to

produce a set of R predictions at the required levels of recall. Therefore, the key problems

for both training and testing can be summed up, respectively, as:
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argmax
y[r]

(w�φ(xi,y[r])+Δp@r(y
i,y[r])) (3.8)

argmax
y[r]

w�φ(xi,y[r]) (3.9)

The algorithm we propose hereafter works interchangeably for both Eqs. (3.8) and (3.9),

and also for the modified AP loss of Eq. (3.3). Given any ground-truth label sequence, yi,

the degrees of freedom of the precision loss are only the number of false positives, FP, and

false negatives, FN. By making a prediction in left-to-right order along the sequence, the

running values of FP and FN can only increment or remain unchanged. We can thus still

approach the solution of Eq. (3.8) by dynamic programming, extending the state of a partial

solution to include: a) the ground-truth label of the current frame, yt , as in conventional

Viterbi; b) the number of false positives, FP, in sub-sequence y1:t ; and c) the number of

false negatives, FN, in sub-sequence y1:t . We use notation ψ(FP,FN,yt) to indicate the

y1:t sub-sequence with the highest score for the given extended state, and s(ψ) for its score.

The generic induction step is as follows: at any time step, t, a partial solution is obtained

by extending two of the partial solutions of time t−1 with the current prediction, yt , and

correspondingly incrementing either FP or FN if the prediction is incorrect, or neither if

correct. After the final time step, T , Eq. (3.8) is computed over the stored sequences and the

argmax returned. Algorithm 3 describes the solution formally.

3.4 Experiments

The proposed approach has been evaluated on two challenging datasets of human activities,

TUM Kitchen and CMU Multimodal Activity (CMU-MMAC). Descriptions and results for

these two datasets are reported in the following sub-sections. The compared algorithms

include: a) the proposed method based on the AP loss; b) structural SVM using the common

0-1 loss and Hamming loss, and c) a baseline offered by a standard SVM that classifies each

frame separately. For SVM training, we have used constant C = 0.1 (based on a preliminary

cross-validation), the RBF kernel (for non-linearity), and, for SSVM, convergence threshold

ε = 0.01 (default). For the AP loss, given the greater computational complexity of the

loss-augmented inference (approximately quadratic for sequences with sparse positives), we

decode each sequence in sub-sequences of 300 frames each. To develop the software, we

have used the SV Mstruct package and its MATLAB wrapper [57, 138]. All experiments have

been performed on a PC with an Intel i7 2.4GHz CPU with 8 GB RAM.
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Algorithm 2 Algorithm for computing the loss-augmented inference of Eq. (3.8).

Input: w, x = (x1, . . . ,xT ), yg = (yg
1, . . . ,y

g
T ) (ground-truth labels), r

Output: ȳ[r]

Initialize: FPmax = FNmax = 0

// FP, FN: running variables for the number of false positives and false negatives
// pos, neg: number of positives and negatives in yg

// ψ(invalidarg) = NULL,s(NULL) =−∞, [ ] = string concatenation operator

ψ = FindHighestScoringSequences(w, x, yg);

ȳ[r] = FindMostViolatingLabeling(ψ , r);

return ȳ[r]

function FindHighestScoringSequences(w, x, yg)

// Finds all highest-scoring sequences for any combinations of FP and FN:

if yg
t = 0

FPmax = FPmax +1

for FP = 0 : FPmax, FN = 0 : FNmax, t = 1 : T
ψ(FP,FN,yt = 0) =
argmax(s([ψ(FP,FN,yt−1 = 0),0]),s([ψ(FP,FN,yt−1 = 1),0]))

ψ(FP,FN,yt = 1) =
argmax(s([ψ(FP−1,FN,yt−1 = 0),1]),s([ψ(FP−1,FN,yt−1 = 1),1]))

else
FNmax = FNmax +1

for FP = 0 : FPmax, FN = 0 : FNmax, t = 1 : T
ψ(FP,FN,yt = 0) =
argmax(s([ψ(FP,FN−1,yt−1 = 0),0]),s([ψ(FP,FN−1,yt−1 = 1),0]))

ψ(FP,FN,yt = 1) =
argmax(s([ψ(FP,FN,yt−1 = 0),1]),s([ψ(FP,FN,yt−1 = 1),1]))

return ψ

end function

function FindMostViolatingLabeling(ψ , r)

// Finds the labeling maximising the sum of score and loss:

FN∗ = round(pos (1− r)) // sets the desired recall level

find argmaxȳ[r] s(ȳ
[r]) over FP = 0 : neg, FN = FN∗

ȳ[r] = argmaxψ
[s(ψ(FP,FN,yT = 0))+Δp@r(pos,FP,FN),
s(ψ(FP,FN,yT = 1))+Δp@r(pos,FP,FN)]

// for Eq. (3.9), just remove Δp@r

// for the modified AP loss of Eq. (3.3), set FN = 0 : FN∗

[r]
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Table 3.1 Comparison of the average precision over the TUM Kitchen dataset. SVM: standard

SVM baseline; 0-1 loss and Hamming loss: structural SVM with conventional loss functions;

AP loss: proposed technique.

Average precision (%)

Left hand sequences SVM 0-1 loss Hamming loss AP loss

Reaching 24.5 44.8 18.5 50.1
TakingSomething 31.1 79.7 20.0 80.7

LoweringAnObject 19.3 44.6 16.9 49.9
ReleasingGrasp 18.1 53.2 25.0 54.4
OpeningADoor 10.9 9.1 9.1 15.5
ClosingADoor 9.2 9.1 9.1 11.5

OpeningADrawer 10.5 14.8 11.8 20.6
ClosingADrawer 10.9 9.1 9.1 15.5

Carrying 62.3 75.6 51.9 80.2
Mean 21.9 37.8 19.0 42.0

Right hand sequences SVM 0-1 loss Hamming loss AP loss

Reaching 18.0 65.5 18.3 68.9
TakingSomething 12.8 91.6 14.1 90.9

LoweringAnObject 13.7 43.1 15.1 47.7
ReleasingGrasp 17.9 40.8 18.8 45.4
OpeningADoor 29.1 68.5 16.3 73.9
ClosingADoor 13.2 36.4 15.6 41.3

OpeningADrawer 14.7 26.8 13.8 30.2
ClosingADrawer 12.3 30.7 13.0 38.0

Carrying 58.7 85.4 63.1 89.9
Mean 21.3 54.3 20.8 58.5

3.4.1 Results on the TUM Kitchen dataset

The TUM Kitchen dataset is a collection of activity sequences recorded in a kitchen equipped

with multiple sensors [130]. In the kitchen environment, various subjects were asked to

set a table in different ways, performing 9 actions, Reaching, TakingSomething, Carrying,

LoweringAnObject, ReleasingGrasp, OpeningADoor, ClosingADoor, OpeningADrawer and

ClosingADrawer. For our experiments, we have chosen to use the motion capture (mocap)

data from the left and right hands. These data consist of 19 sequences for each hand, each

ranging in length between 1,000 and 6,000 measurements. Each measurement is a 45-D

vector of 3D body joint locations.

Table 3.1 reports the results for activity recognition from the left and right hand sequences.

The table shows that the mean of the AP over the nine classes is the highest for the proposed

technique, with an improvement of 4.2 percentage points over the runner-up for both the left

and right hand sequences. In addition, the proposed technique reports the highest average

precision in all the classes with the left hand sequences, and in 8 classes out of 9 with the

right hand sequences. In addition, the average precision of the proposed technique is about

double that of the standard SVM baseline that does not leverage sequentiality.
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Table 3.2 Comparison of the average precision over the CMU-MMAC dataset. SVM: standard

SVM baseline; 0-1 loss and Hamming loss: structural SVM with conventional loss functions;

AP loss: proposed technique.

Average Precision (%)

SVM 0-1 loss Hamming loss AP loss

Close 9.9 16.8 9.0 16.2
Crack 11.4 23.1 8.3 28.5
None 30.9 46.6 29.8 54.1
Open 15.8 33.3 16.1 29.0
Pour 30.6 50.0 27.4 61.4
Put 13.1 27.8 11.4 34.3

Read 9.1 10.9 11.8 16.5
Spray 14.8 25.6 10.2 28.4
Stir 28.0 39.4 23.5 45.5

Switch-on 11.3 27.6 9.9 32.9
Take 22.5 47.1 19.8 60.8

Twist-off 10.1 25.5 7.9 30.0
Twist-on 9.8 19.0 8.1 27.6

Walk 10.4 23.2 9.6 29.7
Mean 16.3 29.7 14.5 35.4

3.4.2 Results on the CMU Multimodal Activity dataset

The CMU Multimodal Activity (CMU-MMAC) dataset contains multimodal measurements

of the activities of 55 subjects preparing 5 different recipes: “brownies”, a salad, a pizza, a

sandwich and scrambled eggs [24]. For our experiments, we have chosen to use the video

clips of the 12 subjects preparing brownies from a dry mix box. The actions performed by

the subjects are very realistic and are divided over 14 basic activities. The length of the 12

video clips ranges from 8,000 to 20,000 frames. For the experiments, we have used the first

8 videos for training and the remaining 4 for testing. For the feature vector of each frame,

we have first extracted dense SIFT features at a 32-pixel step and used k-means with 32

clusters to generate a codebook. Then, the descriptors of each frame have been encoded into

a 4,096-D VLAD vector [139].

Table 3.2 reports the results for activity recognition over this dataset. The table shows

that the mean of the AP is the highest for the proposed technique, with an improvement of

5.7 percentage points over the runner-up. In addition, the proposed technique reports the

highest average precision for 12 classes out of 14, and more than doubles the SVM baseline.
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3.5 Conclusion

The average precision has become a reference evaluation measure for its ability to assess

performance at multiple operating points. However, the typical sequential labeling algorithms

such as Viterbi do not allow the computation of the average precision. For this reason, in

this chapter, we have proposed an inference procedure that infers a set of predictions at

multiple levels of recall and allows measuring the average precision of a sequential classifier.

In addition, we have proposed a structural SVM training algorithm for sequential labeling

that minimises an average precision loss. Experiments conducted over two challenging

activity datasets - TUM Kitchen and CMU-MMAC - have shown that the proposed approach

significantly outperforms all of the other compared techniques and more than doubles the

performance of a baseline. Moreover, while we have only focused on sequential labeling

in this paper, the proposed approach could readily be employed for more general structures

such as trees and graphs.



Chapter 4

Sequential Labeling With Structural
SVM Under Non-decomposable Losses

In this chapter, we further the consideration of loss functions used for training structural

SVM in the sequential labeling problem. We present a training algorithm for structural SVM

that can minimise any other loss based on the classification contingency table, including

the F1 loss, precision/recall at fixed value of recall/precision, precision for a fixed value of

positive predictions, precision/recall break-even point. Experimental results over a set of

diverse and challenging datasets (TUM Kitchen, CMU-MMAC and Ozone Level Detection)

are reported in terms of F1 measure, detection rate and false alarm rate, showing that the

proposed method outperforms other training approaches such as conventional SSVM and

maximum likelihood.

4.1 Augmented inference for sequential labeling under loss
functions of the classification contingency table

The solution of Eq. (2.78) is the crux of structural SVM for sequential labeling. Since the

losses addressed in this paper do not decompose frame by frame, substantial changes to

the conventional Viterbi algorithm are required. Here we consider all the loss functions

that depend on the classification contingency table, i.e., the values of T P, FN, T N and FP.

Given that the number of positives (pos = T P+FN) and negatives (neg = T N +FP) is

known given a ground-truth sequence, yg, the number of free parameters in the loss reduces

to two. Correspondingly, we choose to parametrise loss Δ(yg,y) using only FP and FN. As

an example, we re-write the F1 loss herewith as:
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Algorithm 3 Algorithm for computing the loss-augmented inference (Eq. (2.78)) - part I.

Input: model w,

sequence of measurements x = (x1, . . . ,xT ),
sequence of ground-truth labels yg = (yg

1, . . . ,y
g
T )

Output: sequence of predicted labels ȳ = (ȳ1, . . . , ȳT )
Initialize: FPmax = FNmax = 0

// Notations:

// FP, FN: running variables for the number of false positives and false negatives
// pos, neg: macros returning the number of positives and negatives in yg

// ψ(FP,FN,yt): highest-scoring sequence up to frame t for given FP, FN and state yt
// s(ψ): score of sequence ψ (uses arguments w and x)
// ψ(invalidarg) = NULL,s(NULL) =−∞
// [ ]: string concatenation operator
// Δ ∈ {F1, p@r, p@k, pPRBEP}: choice of loss function

ψ = FindHighestScoringSequences(w, x, yg);

ȳ = FindMostViolatingLabeling(ψ , Δ);

return ȳ

function FindHighestScoringSequences(w, x, yg)

// Finds all highest-scoring sequences for any combinations of FP and FN:

for t = 1 : T do
if yg

t = 0 then FPmax = FPmax +1

else FNmax = FNmax +1

end if
for FP = 0 : FPmax do
for FN = 0 : FNmax do
if yg

t = 0 then
ψ(FP,FN,yt = 0) = argmax(s([ψ(FP,FN,yt−1 = 0),0]),s([ψ(FP,FN,yt−1 = 1),0]))

ψ(FP,FN,yt = 1) = argmax(s([ψ(FP−1,FN,yt−1 = 0),1]),s([ψ(FP−1,FN,yt−1 = 1),1]))

else
ψ(FP,FN,yt = 0) = argmax(s([ψ(FP,FN−1,yt−1 = 0),0]),s([ψ(FP,FN−1,yt−1 = 1),0]))

ψ(FP,FN,yt = 1) = argmax(s([ψ(FP,FN,yt−1 = 0),1]),s([ψ(FP,FN,yt−1 = 1),1]))

end if
end for

end for
end for

return ψ

end function

(continues)
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Algorithm 4 Algorithm for computing the loss-augmented inference (Eq. (2.78)) - part II.

function FindMostViolatingLabeling(ψ , Δ)

// Finds the labeling maximising the sum of score and loss:
best =−∞

1. if Δ == F1 then
for FP = 0 : neg do
for FN = 0 : pos do
temp = max(s(ψ(FP,FN,yT = 0)),s(ψ(FP,FN,yT = 1)))+ΔF1

(pos,FP,FN)

if temp > best then
best = temp
ȳ = argmax(s(ψ(FP,FN,yT = 0)),s(ψ(FP,FN,yT = 1)))

end if
end for

end for

2. else ifΔ == p@r then
FN∗ = round(pos (1− r)) // sets FN to desired recall level
for FP = 0 : neg do
temp = max(s(ψ(FP,FN∗,yT = 0)),s(ψ(FP,FN∗,yT = 1)))+Δp@r(pos,FP,FN∗)
if temp > best then
best = temp
ȳ = argmax(s(ψ(FP,FN∗,yT = 0)),s(ψ(FP,FN∗,yT = 1)))

end if
end for

3. else ifΔ == p@k then
for FP = 0 : k do
FN∗ = round(pos+FP− k) // sets FN to get desired k for given FP
temp = max(s(ψ(FP,FN∗,yT = 0)),s(ψ(FP,FN∗,yT = 1)))+Δp@k(pos,FP,FN∗)
if temp > best then
best = temp
ȳ = argmax(s(ψ(FP,FN∗,yT = 0)),s(ψ(FP,FN∗,yT = 1)))

end if
end for

4. else ifΔ == pPRBEP then
for FP = 0 : min(pos,neg) do
FN∗ = FP // sets FN equal to FP
temp = max(s(ψ(FP,FN∗,yT = 0)),s(ψ(FP,FN∗,yT = 1)))+ΔpPRBEP(pos,FP,FN∗)
if temp > best then
best = temp
ȳ = argmax(s(ψ(FP,FN∗,yT = 0)),s(ψ(FP,FN∗,yT = 1)))

end if
end for
end if
return ȳ
end function
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ΔF1
(yi,y) = 1− 2(pos−FN)

2 pos+FP−FN
(4.1)

Our algorithm operates as follows: by making prediction y in left-to-right order along the

sequence, the values of FP and FN can only increment or remain unchanged. Accordingly,

we can still approach the solution of Eq. (2.78) by an extended Viterbi algorithm where the

state of the solution up to frame t includes:

• the label of the state at time t, yt , as in conventional Viterbi;

• the number of false positives, FP, in sequence y1:t ; and

• the number of false negatives, FN, in sequence y1:t .

At any frame t, all the sequences built up to that frame ending with the same label and

having the same values of FP and FN are equivalent in terms of the score that they can

accumulate during the following frames. We therefore only need to retain the best of these

equivalent sequences for future propagation. We use notation ψ(FP,FN,yt) to indicate the

y1:t sequence with the highest score for the given extended state, and s(ψ) for its score.

The generic induction step is as follows: let us arbitrarily assume for convenience that the

ground-truth label for frame t, yg
t , is 0 and that we have determined the best sequences up

to frame t− 1. Let us now construct the best sequence up to frame t containing FP false

positives, FN false negatives and ending in state yt = 1. Such a sequence can only be:

• either the best sequence up to frame t−1 containing FP−1 false positives, FN false

negatives and ending in state yt−1 = 0, appended with yt = 1

• or the best sequence up to frame t− 1 containing FP− 1 false positives, FN false

negatives and ending in state yt−1 = 1, appended with yt = 1

since prediction yt = 1 causes FP to increase by a unit and FN to remain unvaried.

Analogous steps can be defined for the other three combinations of yg
t and yt . Algorithm 3

(part I) shows the detailed steps in pseudo-code, while a proof of correctness is provided in

Appendix 1.

During the computation of Algorithm 3, the number of stored sequences increases at

every time step and reaches its maximum at the last time step, T . Given that FP and FN are

bound by the number of negative and positive labels, neg and pos, respectively, the number

of stored sequences is upper bound by 2(neg+1)(pos+1).
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The final stage of the algorithm searches over the best sequences for the sequence

attaining the maximum of the sum of score and loss (Algorithm 3, part II). This loop can be

adjusted to search for the maximum over any combinations of FP and FN. For instance:

• in the case of the F1 loss, the loop searches over all values of FP and FN;

• in the case of the precision loss at r, it searches over all values of FP for a fixed value

of FN;

• in the case of the precision loss at k, it searches over all values of FP for a correspond-

ing, varying value of FN;

• in the case of the precision/recall break-even point loss, it searches over all equal values

of FP and FN.

In general, the final stage can be easily adjusted to compute the loss-augmented inference

for any loss that is a function of the contingency table.

4.2 Experiments

We have evaluated the proposed approach over a diverse set of datasets including two

challenging datasets of human activities, TUM Kitchen and CMU Multimodal Activity

(CMU-MMAC), and the Ozone Level Detection dataset. Descriptions and results for each of

these datasets are reported in the following sub-sections. The compared algorithms include:

a) the proposed method with the F1 loss and AP loss as loss functions; b) structural SVM with

the conventional zero-one loss and Hamming loss, and c) two baselines offered by a standard

SVM that classifies each frame separately and an HMM trained with supervised maximum

likelihood. The SVM provides a baseline for frame by frame classification which does not

take sequentiality into account, and the HMM is a baseline for sequential models. For SVM

training, we have used trade off constant C = 0.1, convergence threshold ε = 0.01, and RBF

kernels. For the F1 losses, given the greater computational complexity of the loss-augmented

inference (approximately quadratic for sequences with sparse positives), we decode each

sequence in sub-sequences of B = 300 frames each. For the HMM model, we have used

Gaussian emission densities. To report performance, we use the detection rate (DR), the false

alarm rate (FAR) and the F1 measure. The detection and false alarm rates provide a break-

down of the accuracy over positive and negative samples, respectively, while the F1 measure

combines performance to allow for direct performance ranking. To develop the software,

we have used MATLAB 2011 with the SV Mstruct package from Thorsten Joachims and its
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MATLAB wrapper from Andrea Vedaldi [57, 138]. All experiments have been performed on

a PC with an Intel i7 2.4GHz CPU with 8 GB RAM.

4.2.1 TUM Kitchen dataset

The TUM Kitchen dataset is a collection of activity sequences recorded in a kitchen environ-

ment equipped with multiple sensors [130]. In this scenario, various subjects were asked to

set the table using 9 types of basic activities, namely Reaching, Carrying, TakingSomething,

LoweringAnObject, ReleasingGrasp, OpeningADoor, ClosingADoor, OpeningADrawer,

ClosingADrawer. For our experiments, we have used the motion capture data (3-D body joint

locations arranged in a 45-D vector) from the left and right hand, respectively. For each hand,

there are 19 sequences ranging in length between 1,000 and 6,000 frames that we have split

into a training set with 6 sequences and a test set with the remaining 13. For detection, we

have trained a binary classifier per activity class.

Table 4.1 reports the results for the left hand, showing that training under the F1 loss

achieves the best F1 measure, on average and for 7 actions out of 9. The average value is

40.3%, with the values varying significantly amongst the classes from a minimum of only

0.3% to a maximum of 72.1%. The reason for the lowest values is that some of the classes

have a very small number of positive frames, and even moderate amounts of false positives

result in the precision dropping drastically. Standard SVM reports a satisfactory average

of 31.3%, but lower than that of SSVM with the same loss (Hamming). This shows that

sequential classification can outperform an equivalent frame-by-frame classifier. The lowest

average is achieved by HMM with only 4.3%. Table 4.2 reports the results for the right hand,

showing an equivalent ranking amongst the classifiers (F1 first and Hamming second).

To illustrate the behaviour of the different classifiers in a more immediate way, in Fig. 4.1

we show a result from action OpeningADrawer. In the sequence, the subject opens a drawer

twice starting at frames 712 and 940, respectively. Fig. 4.1.a shows that SSVM with the

Hamming loss, HMM and standard SVM do not detect either occurrence. SSVM with the

0-1 loss combines both occurrences into a single event, with major over-detection. Fig. 4.1.b

shows that structural SVM with the F1 loss manages to detect both occurrences rather

accurately.

4.2.2 CMU Multimodal Activity dataset

The CMU Multimodal Activity (CMU-MMAC) dataset contains multimodal measurements

of the activities of 55 subjects preparing 5 different recipes: “brownies”, salad, pizza, a

sandwich and scrambled eggs [24]. For our experiments, we have chosen the video clips
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Table 4.1 Comparison of F1 measure, DR and FAR over the TUM Kitchen dataset (left hand sequences). F1 loss, AP loss: proposed

techniques; 0-1 loss and Hamming loss: structural SVM with conventional loss functions; HMM: hidden Markov model baseline;

SVM: frame-by-frame SVM baseline

Accuracy and F1 measure(%)

0-1 loss Hamming loss F1 loss HMM SVM

F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR

Reaching 9.6 37.3 82.5 29.2 29.5 7.6 28.3 84.4 51.4 8.1 6.9 8.2 42.1 52.9 12.7

TakingSomething 2.8 11.1 78.4 28.8 81.1 29.8 29.2 93.0 51.9 6.2 5.4 7.9 1.0 0.5 0.2

LoweringAnObject 4.5 13.3 59.7 38.5 67.7 17.7 34.0 85.0 39.9 7.6 6.6 8.3 35.7 30.2 4.9

ReleasingGrasp 12.2 55.3 82.3 21.4 36.4 11.8 27.3 75.4 41.4 5.6 5.1 8.4 7.8 4.3 0.6

OpeningADoor 0.3 100 86.8 0.2 30.3 32.2 0.4 68.6 46.7 0 0 0.1 0 0 0

ClosingADoor 0.3 100 83.4 0 0 20.2 0.3 66.3 49.7 0 0 0.1 0 0 0

OpeningADrawer 1.2 33.5 78.4 0 0 12.8 3.0 59.8 56.6 0 0 0 0 0 0

ClosingADrawer 1.2 48.9 90.1 1.1 12.5 23.5 2.1 58.2 58.2 0 0 0 0 0 0

Carrying 40.7 37.1 52.7 51.6 69.5 19.1 72.1 74.6 51.9 1.0 0.5 3.1 70.4 85.6 22.6

Average 8.8 48.5 77.1 33.5 36.3 19.4 40.3 73.9 49.7 4.3 2.7 4.0 31.3 19.3 4.6

Table 4.2 Comparison of F1 measure, DR and FAR over the TUM Kitchen dataset (right hand sequences).

Accuracy and F1 measure(%)

0-1 loss Hamming loss F1 loss HMM SVM

F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR

Reaching 7.5 31.3 77.4 23.7 60.9 38.2 12.9 60.4 41.6 0.9 0.4 3.4 2.5 1.3 0.1

TakingSomething 4.1 16.7 81.9 1.5 3.8 15.9 6.5 15.0 13.3 0.6 0.3 0.4 20.5 13.0 0.6

LoweringAnObject 5.3 46.7 86.7 5.3 10.3 14.9 12.1 66.6 50.4 0 0 0.4 20.5 12.3 0.4

ReleasingGrasp 14.0 60.6 73.6 13.1 16.7 14.4 19.5 5.3 46.8 0 0 0.4 2.9 1.5 0

OpeningADoor 1.4 8.9 79.6 32.7 60.0 13.7 22.2 100 46.4 0 0 0 7.3 3.9 0.2

ClosingADoor 4.0 39.7 86.6 8.8 16.7 12.4 16.5 100 47.9 0 0 0 31.9 23.3 1.1

OpeningADrawer 3.5 25.9 67.2 19.9 58.9 21.7 15.7 100 53.8 0 0 0 0 0 0

ClosingADrawer 5.3 69.2 89.5 11.5 29.4 11.8 11.8 100 54.5 0 0 0 0 0 0

Carrying 30.8 30.7 75.7 61.3 54.2 32.0 72.8 69.2 19.9 0 0.0 0 64.2 93.0 31.0

Average 9.1 36.6 79.8 27.4 34.5 19.4 31.3 68.5 43.5 0.1 0.1 0.5 21.3 16.5 3.7
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Table 4.3 Comparison of F1 measure, DR and FAR over the CMU-MMAC dataset.

Accuracy and F1 measure(%)

0-1 loss Hamming loss F1 loss HMM SVM

F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR

Close 0.6 100 93.4 0.6 45.5 44.2 1.5 100 36.2 0 0 39.7 0 0 12.2

Crack 4.5 87.0 80.1 3.5 26.6 30.5 11.6 88.8 29.7 5.2 25.9 41.3 6.4 30.7 18.3

None 17.2 13.3 12.6 19.5 16.8 16.7 29.9 39.7 37.6 7.0 10.1 28.2 7.7 5.4 10.0

Open 8.4 80.5 94.1 12.4 43.1 30.0 23.3 75.5 25.6 8.5 11.2 28.6 9.6 17.9 14.5

Pour 12.6 13.3 17.6 26.6 75.4 70.2 19.6 29.4 29.8 11.2 18.6 37.6 13.6 17.5 25.1

Put 9.8 55.8 50.5 7.9 47.6 54.7 24.7 83.0 25.1 9.1 27.9 29.2 8.8 21.6 18.9

Read 3.6 100 67.8 0.8 19.4 62.5 8.1 98.2 27.9 0 0 19.4 0 0 8.3

Spray 2.2 100 98.9 1.3 3.5 10.2 17.3 100 23.0 2.9 14.6 43.1 1.5 8.7 26.0

Stir 33.4 51.0 61.5 14.8 10.1 10.2 43.2 77.4 71.8 31.8 70.6 63.4 34.2 71.5 74.4

Switch-on 6.4 97.4 95.6 4.3 24.1 33.1 8.9 69.8 46.7 4.5 20.4 34.8 3.0 13.4 26.4

Take 10.9 15.3 24.4 19.5 39.0 35.1 48.4 82.9 21.4 7.0 11.0 29.8 7.5 11.6 26.2

Twist-off 1.5 93.8 95.2 2.4 77.5 47.6 3.5 77.7 32.5 0 0 28.4 0 0 20.2

Twist-on 1.1 82.5 97.9 2.0 46.4 29.3 6.8 100 18.0 0 0 33.6 0 0 18.3

Walk 1.7 100 93.4 0 0 9.6 5.2 87.3 27.0 0 0 37.5 0.4 5.6 20.8

Average 7.0 70.7 70.0 8.7 33.9 34.6 22.1 79.3 32.3 10.0 15.0 35.3 10.3 14.6 22.8

Table 4.4 Comparison of F1 measure, DR and FAR over the Ozone Level Detection dataset.

Accuracy and F1 measure(%)

0-1 loss Hamming loss F1 loss HMM SVM

F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR F1 measure DR FAR

Eighthr 6.5 79.3 94.3 0 0 0.2 21.3 34.5 7.8 8.7 51.7 43.1 4.9 3.5 1.6

Onehr 2.3 80 95.6 0 0 0 9.5 10 1.4 2.1 60 78.3 0 0 2.8
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Fig. 4.1 An example of results from TUM Kitchen sequence 16, left hand, for action

OpeningADrawer: a) structural SVM with the 0-1 loss and Hamming losses, HMM and

standard SVM versus the ground truth; b) structural SVM with the F1 loss versus the ground

truth. This figure is better viewed in colour.

of the 12 subjects preparing brownies from a dry mix box. The subjects were given the

recipe, but they were left to prepare the food in a spontaneous way without receiving any

instructions on how to perform the task. Therefore, the sequence of actions and the overall

video length vary greatly across subjects, making the dataset very realistic. The actions

performed by the subjects are divided into 14 classes including Pouring, Stirring, Reading
and others. As the video source, we have used static camera 7151062 which offers a side

view of the scene. As ground truth, we have utilised the only available annotation which

was provided for the head-mounted camera. Given that the side and head views differ, the

annotation is moderately inaccurate and may be by itself a source of error. The length of

these 12 videos ranges from 8,000 to 20,000 frames. As split, we have used the first 8 videos

for training and the remaining 4 for testing. To form a feature vector for each frame, we

have first extracted dense SIFT features at a 32-pixel step and used k-means with 32 clusters

to generate the codebook. Then, the descriptors of each frame have been encoded into a

4,096-D Vector of Linearly Aggregated Descriptors (VLAD) [139].

Table 4.3 reports the results, showing that the best average F1 measure is achieved, again,

by training under the F1 loss. The lower value of 22.1% compared to the TUM Kitchen

dataset shows that CMU-MMAC is a more probing scenario. Training under the F1 loss also

achieves the best F1 measure for 13 classes out of 14. The second best average is achieved,

again, by the baselines, SVM and HMM, with 10.3% and 10.0%, respectively.
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4.2.3 Ozone Level Detection dataset

The Ozone Level Detection dataset is a time series containing daily atmospheric measure-

ments (collected from 1 January 1998 to 31 December 2004 at Houston, Galveston and

the Brazoria area) and corresponding binary annotations i.e. “ozone/non-ozone day”. The

time series contains a total of 2,536 frames of 72-D dimensionality. There are two distinct

annotations, one from direct ozone measurements at eight-hour intervals (eight-hour) and the

other at one-hour intervals (one-hour). Given that some of the measurements are missing, we

have retained only the frames with complete dimensions, reducing the total data to a training

set of 1,629 frames and a test set of 730.

Table 4.4 reports the results for both annotations, showing once more that training under

the F1 loss obtains the highest F1 measure thanks to the best trade off between positive

and negative samples. The second best is the zero-one loss and HMM. The ranking of

the classifiers is similar to those over the activity recognition datasets, showing that the

performance is stable over data of varying kinds.

4.3 Conclusion

In this chapter, we have proposed algorithms for training structural SVM for sequential

labeling under non-decomposable loss functions. In contrast to the more conventional

zero-one and Hamming losses, such loss functions are more suited when specific levels

of precision and recall are sought and are particularly useful in detection scenarios where

the number of positive samples is significantly lower than that of negative samples. The

loss functions covered include the precision at k, the precision at a given level of recall,

the precision/recall break-even point, the F1 loss and any other loss that is a function of

the classification contingency table. Experiments conducted over sequential datasets for

detection including the challenging TUM Kitchen and CMU-MMAC activity datasets and

the Ozone Level Detection dataset have shown that the proposed technique systematically

outperforms other techniques in terms of the F1 measure and achieves the most interesting

performance trade-offs between positive and negative samples. While this paper focuses on

the sequential case, the proposed technique is more general and can be employed with other

structures such as trees and forests.



Chapter 5

Structural SVM With Partial Ranking
for Activity Segmentation and
Classification

In this chapter, we consider the problem of training structural SVM under multiple ground-

truth labelings with different levels of correctness. While the margin constraint guarantees

that the ground truth labeling receives a higher score than any other labelings, it does not

ensure that the other labelings are ranked in correctness order. In order to ensure that labelings

which are close to the ground truth receive a higher score than other, less qualified labelings,

we propose partial-ranking structural SVM (PR-SSVM) and test the proposed approach over

two challenging activity datasets: the TUM Kitchen dataset and the CMU-MMAC dataset.

The experimental results show that the proposed method achieves an accuracy level higher

than that of conventional structural SVM and one that is remarkably higher than previous

results.

5.1 Introduction and related work

Structured prediction addresses the joint assignment of a set of class labels from a set of

measurements in the presence of dependencies between the labels. This is a frequent situation

with examples ranging from classification of web pages, prediction of protein structure, and

natural language parsing to segmentation and classification of human activities[4, 93, 123].

Compared to the separate assignment of single labels, the structured approach is expected

to be more accurate by leveraging the relationships among the labels. The structure is
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commonly represented in terms of a graphical model, and training and inference algorithms

are employed to provide the parametrization of the model and label prediction.

Among the possible training approaches, structural SVM was proposed to extend the

large-margin concept of the support vector machine (SVM) to the structured case [128,

134]. It has been applied to a variety of structured tasks with remarkable experimental

accuracy [148, 3, 170, 58, 28]. Training of structural SVM is performed by imposing a

pre-determined margin between the score granted to the ground-truth labels and the score

granted to any other labeling. Since a predicted labeling may differ from the ground truth

to a different extent (from almost correct to completely incorrect), a graded margin such as

the Hamming distance is often used. However, while the margin constraint guarantees that

the ground-truth labeling receives a higher score than all other labelings, it does not ensure

that the other labelings are ranked in correctness order. This may affect applications such

as, for instance, human activity segmentation where the manual annotation of the start and

end of an activity has a significant degree of uncertainty. In this case, we may wish to ensure

that also labelings which are close to the ground truth receive a score higher than other, less

qualified labelings. Therefore, the idea proposed in this paper is to augment the constrained

optimization of structural SVM with an additional set of constraints ensuring proper scoring

of additional, selected labelings. To this aim, we define a modified Hamming loss to measure

the distance between an arbitrary labeling and a predicted labeling. We refer to the proposed

technique as partial-ranking structural SVM (PR-SSVM) hereafter.

The task tackled in this paper is the joint segmentation and classification of human

activities. In formal terms, we aim to optimally infer a sequence of class labels, y =

{y1, . . . ,yt , . . . ,yT} ∈ Y , from a given sequence of measurements, x = {x1, . . . ,xT}. We

perform classification by detection where yt ∈ {0,1}, yt = 1 means the presence of an

assigned action, and yt = 0 its absence. Following a common model, we assume that the

labels are connected in a first-order Markov chain and that each label is connected to the

measurement with the same time index. Optimal inference for this model is efficiently

provided by dynamic programming algorithms while training is performed by the method

described in the following sections. The proposed approach has been tested over two

challenging activity sequence datasets: the TUM Kitchen mocap dataset [130] and the CMU-

Multimodal Activity video dataset (CMU-MMAC) [24]. The experimental results show that

the proposed method achieves an accuracy higher than that of conventional structural SVM

and it is also remarkably higher than previous results.
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5.2 Loss Function and Partial Ranking Training

5.2.1 Loss function

In structural SVM, the margin imposed between the ground-truth labeling, yg, and a predicted

labeling, y, varies according to a chosen loss function, Δ(yg,y), which quantifies the loss

carried by a misprediction. The choice of loss function is typically restricted to functions that

decompose over the single labels of a labeling since this facilitates efficient training. The

most common choice is the Hamming loss:

ΔH(yg,y) =
1

T

T

∑
t=1

δ (yg
t �= yt) (5.1)

where δ (true) = 1,δ (false) = 0 and yg
t ,yt , t = 1 . . .T , are the individual labels in labelings

yg and y, respectively.

In order to augment structural SVM with an additional set of constraints, a loss function

is needed between a reference labeling (other than the ground truth) and a prediction. We

note such a labeling as ỹg and the new loss function as Δ′(yg, ỹg,y). A natural way to define

it is as difference of losses with respect to the ground truth:

Δ′(yg, ỹg,y) = ΔH(yg,y)−ΔH(yg, ỹg)

=
1

T

T

∑
t=1

(
δ (yg

t �= yt)−δ (yg
t �= ỹg

t )
) (5.2)

In this way, also this loss function remains decomposable over single labels and retains

efficient training. Its minimum is a negative value occurring at Δ′(yg, ỹg,y = yg), that is,

when the prediction is equal to the ground truth. In fact, function Δ′(yg, ỹg,y) as defined in

(5.2) is a hybrid loss/gain function still rewarding similarity to the ground truth.

5.2.2 Training by partial ranking

Given a loss function and a ground-truth labeling, all labelings can be ranked in loss order to

form a totally ordered set. In principle, any scoring classifier can be trained not only to assign

the highest score to the ground truth, but also to score all labelings in loss order. However,

in the structured case the number of distinct labelings is exponential and such an approach

would prove infeasible. Therefore, in this work we propose to impose only a partial order

relation amongst the labelings by selecting a sub-set to be scored in loss order. We refer to

this approach as partial ranking for short. While the sub-set can be chosen in any arbitrary
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way, we argue that selecting labelings which are small perturbations of the ground truth may

improve the classifier’s accuracy, especially in cases where the ground truth has a degree of

uncertainty. In this work, we deal with sequences of binary labels and choose to add only

one labeling per sample, ỹg, obtained by modifying the ground truth by setting to 1 any 0

labels preceding and following the ground truth’ 1 labels:

ỹg
t = 1 if yg

t = 1 or yg
t−1 = 1 or yg

t+1 = 1 (5.3)

so as to accommodate annotation uncertainty about both the start and the end of a run of

positive samples.

For more general cases with multi-valued labels or non-sequential structures, one can

build ground-truth perturbations either randomly or manually. For instance, individual labels

can be set to the values that are semantically most similar to the ground truth (such as “orange”

for “red” or “adverb” for “adjective”): in general, labelings with small loss with respect to

the given ground truth.

5.3 Extended Primal Problem

The extension provided by PR-SSVM to the objective function of Eq. (2.77) consists of the

introduction of additional constraints ensuring the score ranking of labelings other than the

ground truth. The extended problem is expressed as:

argmin
w,ξ ,ξ̃

‖w‖2 +C
N

∑
i=1

(ξ i + ξ̃ i) s.t.

wT φ(xi,yi)−wT φ(xi,y)≥ Δ(yi,y)−ξ i,

wT φ(xi, ỹi)−wT φ(xi,y)≥ Δ′(yi, ỹi,y)− ξ̃ i,

i = 1 . . .N, ∀y ∈ Y

(5.4)

Adding the new constraints brings their total number to 2N |Y |. However, the working-set

approach still applies and the loss-augmented inference becomes:

ỹ∗i = argmax
y

(wT φ(xi,y)+Δ′(yi, ỹi,y))

= argmax
y

(wT φ(xi,y)+Δ(yi,y)−Δ(yi, ỹi))

= argmax
y

(wT φ(xi,y)+Δ(yi,y))

(5.5)
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One can see that Eq. (5.5) is formally identical to Eq. (2.78) and returns the same labeling,

i.e. ỹ∗i ≡ y∗i. However, variable ξ̃ i is set by the different loss:

ξ̃ i =−wT φ(xi, ỹi)+wT φ(xi,y∗i)+Δ′(yi, ỹi,y∗i) (5.6)

The combination of both ξ and ξ̃ in the objective eventually leads to the extended

solution.

5.4 Experimental Results and Discussion

In this section, we evaluate the proposed method on two challenging human activity datasets:

the TUM Kitchen dataset and the CMU Multimodal Activity (CMU-MMAC) dataset [130,

24]. The TUM Kitchen dataset is a collection of activity sequences recorded in a kitchen

equipped with multiple sensors [130]. Four human subjects were asked to set a table using 9

actions, namely Reaching, Carrying, TakingSomething, LoweringAnObject, ReleasingGrasp,

OpeningADoor, ClosingADoor, OpeningADrawer, ClosingADrawer. For our experiments,

we have used the data from the motion capture sensor for the right and left hands which

encode the relevant 3D joints as a 45-D vector. The total number of sequences is 19, each

ranging in length between 1,000 and 6,000 frames. The CMU-MMAC dataset contains

activity sequences from 55 subjects preparing food from various recipes [24]. For our

experiments, we have selected the 12 subjects preparing brownies from a dry-mix box, with

the activities labeled in 14 classes (see Table 5.4 for the complete list). The videos are from

side-view camera 7151062, with a duration ranging between 8,000 and 20,000 frames each.

For performance comparison, we have selected the following classifiers: a) as baseline, a

standard support vector machine assigning each frame to an activity (Baseline); b) a structural

SVM classifier using the conventional constraints over the ground-truth labelings (SSVM);

c) the proposed technique with the augmented set of constraints (PR-SSVM). All classifiers

were implemented in detector style as a set of binary classifiers, one per activity class. For

evaluation, we have recorded performance in terms of detection rate (DR), false alarm rate

(FAR) and F1 score. While the detection and false alarm rates describe the trade-off between

sensitivity and robustness, the F1 score summarizes the performance in a single figure. As

parameters, we have set C = 0.1 and ε = 0.01 and used a linear kernel for all classifiers.

The software for PR-SSVM ans SSVM was developed using the SV Mstruct package and its

MATLAB wrapper [57, 138], while libsvm was used for the baseline [15].
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Table 5.1 Comparison of detection rate, false alarm rate and F1 score on the TUM Kitchen

dataset (right hand).

DR (%) FAR (%) F1 score (%)

Activity Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM

Reaching 0 60.9 40.2 0 38.2 24.6 0 23.7 21.9

TakingSomething 13.2 3.8 10.3 0.3 15.9 10.3 22.2 1.5 5.4

LoweringAnObject 0 10.3 27.8 0 14.9 15.1 0 5.3 13.6
ReleasingGrasp 0 16.7 18.0 0 14.4 13.4 0 13.1 17.9
OpeningADoor 33.9 60.0 64.3 0.6 13.7 6.4 47.4 32.7 49.2
ClosingADoor 0 16.7 48.9 0 12.4 5.4 0 8.8 37.2

OpeningADrawer 0 58.9 67.1 0 21.7 13.1 0 19.9 31.3
ClosingADrawer 0 29.4 17.5 0 11.8 8.4 0 11.5 10.1

Carrying 98.0 54.2 57.9 38.7 32.0 24.7 84.2 61.3 64.3

Average 16.1 45.2 48.0 4.4 18.6 23.7 21.3 27.4 39.0

5.4.1 Results on the TUM Kitchen dataset

For TUM Kitchen, we have split the data into a training set with 6 sequences (namely,

episodes 1-1 to 1-4, 0-2 and 0-12) and a test set with the remaining 13. Tables 5.1 and 5.2

report the accuracy results at frame level for each class and as average over the classes. These

tables show that the tested classifiers achieve very different trade-offs between detection and

false alarm rates:

• the baseline reports the lowest DR and FAR, implying that most activities will simply

go undetected and that its training is biased by the most frequent class (negative);

• structural SVM has a much higher detection rate than the baseline, yet with a rather

high FAR (on average, 18.6% for the right hand and 16.8% for the left);

• the proposed technique, PR-SSVM, achieves the best trade-off as it obtains a higher

DR than SSVM (on average, 48.0% vs. 45.2% for the right hand, and 37.1% vs. 36.3%

for the left hand), together with a lower FAR (12.7% vs. 18.6% for the right hand, and

9.7% vs. 16.8% for the left hand).

Since it is difficult to rank classifiers based on two rates, we use the F1 score for direct

comparison. Tables 5.1 and 5.2 show that PR-SSVM reports the highest F1 score on average

and for 5 classes out of 9 for the right hand, and on average and for 7 classes out of 9 for

the left one. The average improvement ranges from 11.6 to 19.4 percentage points over

SSVM and from 17.8 to 21.8 percentage points over the baseline. Fig. 5.1 shows a typical

behavior where a) the baseline misses the activity altogether, (b) SSVM over-segments the

activity, while (c) PR-SSVM detects the entire activity as a single segment. Eventually,

Table 5.3 compares the frame-level accuracy with previous results: although these results

cannot be compared directly as the training and test sets differ, the proposed technique shows

a remarkable improvement of over 14 percentage points over the closest result.
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Fig. 5.1 Example of detection (video 21, right hand, action ClosingADoor): a) Baseline; b)

Structural SVM (SSVM); c) Partial-ranking structural SVM (PR-SSVM).

Table 5.2 Comparison of detection rate, false alarm rate and F1 score on the TUM Kitchen

dataset (left hand).

DR (%) FAR (%) F1 score (%)

Activity Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM

Reaching 0.2 29.5 28.9 0.0 7.6 5.9 0.4 29.2 33.4
TakingSomething 50.2 81.1 68.7 0.7 29.8 10.7 9.2 28.8 52.8

LoweringAnObject 53.5 67.7 78.0 6.3 17.7 15.9 52.6 38.5 51.3

ReleasingGrasp 0 36.4 22.5 0 11.8 5.2 0 21.4 26.5
OpeningADoor 0 30.3 0 0 32.2 14.1 0 0.2 0

ClosingADoor 0 0 18.5 0 20.2 16.2 0 0 2.4
OpeningADrawer 0 0 7.8 0 12.8 2.1 0 0 6.2
ClosingADrawer 0 12.5 37.3 0 23.5 4.9 0 1.1 17.0

Carrying 90.5 69.5 72.1 26.1 19.1 14.1 85.0 51.6 78.1

Average 21.8 36.3 37.1 3.7 16.8 9.7 23.7 33.5 52.9

Table 5.3 Comparison of frame-level accuracy with previous results for the TUM Kitchen

dataset.

Method Average accuracy

CRF [130] 62.8
Switching model [5] 70.1

Proposed method 85.0

5.4.2 Results on the CMU-MMAC dataset

For CMU-MMAC, we have divided the 12 sequences into a training set with the first eight

and a test set with the remaining four. As features, we have extracted a dense set of SIFT

features from each frame and encoded them as a vector of linearly aggregated descriptors

(VLAD) using k-means with 32 clusters [51]. Each measurement results in a 4,096-D vector.
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Table 5.4 Comparison of detection rate, false alarm rate and F1 score on the CMU-MMAC

dataset (“brownies”).

DR (%) FAR (%) F1 score (%)

Activity Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM

Closing 0 45.5 54.5 12.5 44.2 40.0 0 0.6 1.0
Cracking 32.5 26.6 73.4 18.2 30.5 31.2 6.5 3.5 5.3

None 5.8 16.8 28.4 10.3 16.7 29.4 7.5 19.5 25.1
Opening 16.9 43.1 45.1 13.3 30.0 33.7 9.8 12.4 15.2
Pouring 18.8 75.4 70.2 25.0 70.2 59.6 14.0 26.6 27.6
Putting 25.4 47.6 52.4 19.2 54.7 33.2 8.7 7.9 12.1
Reading 0 19.4 15.6 8.0 62.5 53.1 0 0.8 3.7
Spraying 7.8 3.5 14.9 24.1 10.2 22.0 1.6 1.3 1.6
Stirring 71.5 10.1 29.8 70.2 10.2 29.1 35.2 14.8 29.4

Switching on 15.6 24.1 44.6 25.8 33.1 23.6 3.8 4.3 4.2

Taking 21.6 39.0 15.3 28.7 35.1 14.1 7.5 19.5 13.9

Twisting off 0 77.5 65.9 19.5 47.6 40.0 0 2.4 3.6
Twisting on 0 46.4 49.8 17.3 29.3 20.2 0 2.0 2.5

Walking 8.8 0 19.5 18.4 9.6 21.0 0.5 0 8.3
Average 16.1 30.0 40.5 22.2 41.2 26.9 7.4 8.7 19.6

Table 5.4 reports the accuracy results, showing that the relative ranking of the classifiers

is unvaried:

• the baseline reports, again, both the lowest DR and FAR, with a DR of only 14.6% on

average;

• the proposed technique, PR-SSVM, achieves both a higher average DR (40.5% vs.

30.0%) and lower FAR (26.9% vs. 41.2%) than standard structural SVM;

• PR-SSVM reports the highest F1 score on average and for 10 classes out of 14, with

an average improvement of 10.9 points over SSVM and 9.3 points over the baseline.

Table 5.5 Comparison of frame-level accuracy with previous results for the CMU-MMAC

dataset.

Method Average accuracy

HMM-MIO [167] 38.4
CRF [172] 38.8

Proposed method 69.8

Again, Table 5.5 compares the frame-level accuracy with existing results, showing a

remarkable improvement of over 31 percentage points over the closest value.

5.5 Conclusion

In this letter, we have proposed a novel technique for structured prediction enforcing a partial

ranking among predicted labelings. This technique is an extension of the versatile structural

SVM which joins maximum-margin training with the ability to predict co-dependent labels.



5.5 Conclusion 99

The proposed technique, named partial ranking structural SVM (PR-SSVM), imposes a score

margin between additional labelings other than the ground truth. In particular, in this paper

we have enforced a margin between “almost-correct” labelings and the remaining labelings

for sequential classification of activities. The results over two contemporary and challenging

datasets (TUM Kitchen and CMU-MMAC) show that:

• compared with a baseline classifier providing single-frame classification and standard

structural SVM, the proposed PR-SSVM always achieves the highest average F1

scores, with improvements ranging between 9 and 11 percentage points (Tables 5.1,

5.2 and 5.4);

• compared with the other two classifiers, PR-SSVM achieves the most appealing trade-

off between DR and FAR, with averages always above standard structural SVM;

• compared with previous results, PR-SSVM obtains an improvement of over 14 per-

centage points on TUM Kitchen and 31 points on CMU-MMAC (Tables 5.3 and

5.5).

In addition, the proposed partial ranking extension is not restricted to sequential classi-

fication, but can be applied to any label structure and any sub-set of constraints. Since the

proposed loss decomposes over single labels, the efficient loss-augmented inference proper

of structural SVM is retained.





Chapter 6

Conclusion

This PhD thesis mainly deals with sequential labeling models for human activity segmentation

and classification. While there already exists significant research work on this topic, including

the hidden Markov model (HMM), conditional random fields and structural SVM, it is still

an ongoing research issue.

We have first reviewed the literature and related work in Chapter 2 including human

activity taxonomies, joint activity segmentation and classification, sequential labeling, HMM,

SVM, multi-label classification and so on. Training an HMM by likelihood maximization

does not always achieve satisfactory run-time accuracy. SVM, on the other hand, is trained

by minimising the empirical loss over the set of examples instead of the likelihood function

and often leads to better performance. Conventional SVM treats the training instances as

independent and identically distributed (i.i.d.) which just ignores the sequential feature

between instances. Furthermore, the original formulation of the SVM uses only the 0-1 loss

as loss function.

Joachims in [56] had proposed an algorithm for training SVM under different loss

functions. However, they didn’t consider the case of sequential labeling. Tsochantaridis et
al. have hinted at the possibility of training SVM for sequential labeling under various loss

functions but didn’t give explicit algorithms.

For this reason, and considering that loss functions available for training structural

SVM are restricted to decomposable cases such as the 0-1 loss and the Hamming loss, we

have presented an approach for training SVM for sequential labeling under the F1 loss, the

precision (recall) at a set point of recall (precision), the precision for a fixed number of

positive predictions, the precision/recall break-even point and any non decomposable loss

based on the classification contingency table in Chapter 3. Such losses are more appropriate

than the decomposable cases for many real-world problems, especially when specific levels

of precision and recall are sought and applied to particular useful in detection scenarios
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where the number of positive samples is significantly lower than that of negative samples.

In addition, we have presented an algorithm for training SSVM under a formulation of the

average precision loss, and we have also proposed an algorithm for evaluating the average

precision of the sequential inference in Chapter 4.

Furthermore, we have proposed a novel technique for structured prediction with a "partial

ranking" among predicted labelings which we have called PR-SSVM. We ensure that the

score of the "almost correct" ground truth labeling is lower than that of the ground truth

labeling, but higher than any other remaining labeling for sequential classification of activities

in Chapter 5. This is done in order to modify the uncertainty of the ground truth.

All experimental results are conducted over three challenging sequential datasets, namely

the TUM Kitchen dataset, the CMU-MMAC activity dataset and the Ozone Level Detection

dataset. We choose multiple performance metrics (the F1 measure, the Detection Rate and

the False Alarm Rate) to show that our proposed approaches outperform the state-of-the-

art methods for structural SVM and lead to significant improvement. For example, our

proposed approach of non decomposable loss functions always achieves the highest value of

F1 measure on average and for most actions out of all, leading to an improvement of up to

13.4% of the F1 measure compared to that of the conventional structural SVM and also 4.3%

improvement of classification for the left hand sequences of the TUM Kitchen dataset. For

the approach of training algorithm that maximizes an approximation of the average precision,

it achieves up to 2.6% on the TUM Kitchen dataset and 6.6% on the CMU-MMAC dataset of

the F1 measure. For the PRSSVM, it achieves improvements ranging between 9% to 11% of

F1 measure. And compared with previous results, PRSSVM obtains an improvement of over

14% on the TUM Kitchen dataset and 31% on the CMU-MMAC dataset. Besides, they all

achieve the best performance trade-offs between the Detection Rate and False Alarm Rate.

While this thesis has focused on the sequential case, the proposed techniques are more

general and can straightforwardly be employed with other structures such as trees and forests.

On the other hand, our proposed partial ranking extension is not restricted to sequential

classification, but can be applied to any label structure and any sub-set of constraints. Since

the proposed loss is decomposable over single labels, the efficient loss-augmented inference

of structural SVM is retained. Another interesting objective could be to extend the proposed

techniques to the increasingly growing area of deep learning, in particular to recurrent neural

networks such as the Elman and Jordan networks and the long short-term memory [84, 68].

These are our future goals, and we will keep researching them.
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Appendix A

Algorithm Correctness

Proposition. Given ground-truth label at frame t yg
t = 0, the best predicted sequence y1:t with

FP false positives, FN false negatives, and ending in yt = 0, noted as ψ(FP,FN,yt = 0), is

given by argmax(s([ψ(FP,FN,yt−1 = 0),0]),s([ψ(FP,FN,yt−1 = 1),0])).

Proof. The proof is a simple argument by contradiction. Let us note ψ(FP,FN,yt = 0)

as [y∗1:t−1,0]. Since yg
t and yt concur, sequence y∗1:t−1 must contain FP false positives and

FN false negatives.

Now, if ψ(FP,FN,yt = 0) �= argmax(s([ψ(FP,FN,yt−1 = 0),0]),s([ψ(FP,FN,yt−1 =

1),0])), then y∗1:t−1 must differ from both ψ(FP,FN,yt−1 = 0) and ψ(FP,FN,yt−1 = 1).

This conflicts with the definition of ψ(FP,FN,yt−1).

The proof for the other three combinations of yg
t and yt is analogous �.
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