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Abstract 

This paper presents a comprehensive study on clustering: exiting methods and developments made at various 

times. Clustering is defined as an unsupervised learning where the objects are grouped on the basis of some 

similarity inherent among them. There are different methods for clustering the objects such as hierarchical, 

partitional, grid, density based and model based. The approaches used in these methods are discussed with their 

respective states of art and applicability. The measures of similarity as well as the evaluation criteria, which are 

the central components of clustering are also presented in the paper. The applications of clustering in some 

fields like image segmentation, object and character recognition and data mining are highlighted. 
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1 Introduction 

Grouping of objects is required for various purposes in different areas of engineering, science and 

technology, humanities, medical science and our daily life. Take for an instance, people suffering from 

a particular disease have some symptoms in common and are placed in a group tagged with some label 

usually the name of the disease. Evidently, the people not possessing those symptoms (and hence the 

disease) will not be placed in that group. The patients grouped for that disease will be treated 

accordingly while patients not belonging to that group should be handled differently. It is therefore so 

essential for a medical expert to diagnose the symptoms of a patient correctly such that he/she is not 

placed in a wrong group. Whenever we find a labeled object, we will place it into the group with same 

label. It is rather a trivial task as the labels are given in advance. However, on many occasions, no 

such labeling information is provided in advance and we group objects on the basis of some similarity.  

Both of these instances represent a wide range of problems occurring in analysis of data. In generic 

terms, these cases are dealt under the scope of classification [1]. Precisely, the first case when the class 

(label) of an object is given in advance is termed as supervised classification whereas the other case 

when the class label is not tagged to an object in advance is termed as unsupervised classification. 

There has been a tremendous amount of work in supervised classification and evidently has been 

reported in the literature widely [2-9]. The main purpose behind the study of classification is to 

develop a tool or an algorithm, which can be used to predict the class of an unknown object, which is 

not labeled. This tool or algorithm is called a classifier. The objects in the classification process are 

more commonly represented by instances or patterns. A pattern consists of a number of features (also 

called attributes). The classification accuracy of a classifier is judged by the fact as how many testing 

patterns it has classified correctly. There has been a rich amount of work in supervised classification, 

some of the pioneer supervised classification algorithms  can be found in neural networks [10, 11], 

fuzzy sets [12, 13], PSO [14, 15], rough sets [16-18] , decision tree [19], Bayes classifiers [20] etc. 

Contrary to supervised classification, where we are given labeled patterns; the unsupervised 

classification differs in the manner that there is no label assigned to any pattern. The unsupervised 

classification is commonly known as clustering. As learning operation is central to the process of 



classification (supervised or unsupervised), it is used in this paper interchangeably with the same 

spirit. Clustering is a very essential component of various data analysis or machine learning based 

applications like, regression,  prediction, data mining [21] etc. According to Rokach [22] clustering 

divides data patterns into subsets in such a way that similar patterns are clustered together. The 

patterns are thereby managed into a well-formed evaluation that designates the population being 

sampled. Formally and conventionally, the clustering structure can be represented as a set S of subsets 

S1, S2, …, Sk , such that: 

1 2 3...... kS S S S 
                                                              (1) 

This means obviously that any instance in S (S1... Sk) belongs to exactly one subset and does not 

belong to any other subset. Clustering of objects is also applicable for charactering the key features of 

people in recognizing them on the basis of some similarity. In general, we may divide people in 

different clusters on the basis of gender, height, weight, color, vocal and some other physical 

appearances. Hence, clustering embraces several interdisciplinary areas such as: from mathematics 

and statistics to biology and genetics, where all of these use various terminology to explain the 

topologies formed using this clustering analysis technique. For example, from biological 

“taxonomies”, to medical “syndromes” and genetic “genotypes” to manufacturing” group technology”, 

each of these topics has same identical problem: create groups of instances and assign each instance to 

the appropriate groups. 

Clustering is considered to be more difficult than supervised classification as there is no label 

attached to the patterns in clustering. The given label in the case of supervised classification becomes 

a clue to grouping data objects as a whole. Whereas in the case of clustering, it becomes difficult to 

decide, to which group a pattern will belong to, in the absence of a label. There can be several 

parameters or features which could be considered fit for clustering. The curse of dimensionality can 

add to the crisis. High dimensionality not only leads to high computational cost but also affects the 

consistency of algorithms. There are although feature selection methods reported as a solution [23]. 

The sizes of the databases (e.g. small, large or very large) can also guide the clustering criteria.  

Jain [24] illustrated that the main aim of data clustering is to search the real grouping(s) of a set of 

instances, points, or objects. Webster (Merriam-Webster Online Dictionary) [25] explains clustering as 

‘‘a statistical classification method for finding whether each of patterns comes into various groups by 

making quantitative comparisons of different features". It is evident from the above discussion that 

similarity is the central factor to a cluster and hence clustering process. The natural grouping of data 

based on some inherent similarity is to be discovered in clustering. In most of the cases, the number of 

clusters to be formed is specified by the user. As there is only numeric type data available to represent 

features of the patterns in a group, the only way to extract any information pertaining to the 

relationship among patterns is to make use of numeric arithmetic. The features of the objects are 

represented by numeric values. The most common approach to define similarity is taken as a measure 

of distance among the patterns, lower the distance (e.g. Euclidean distance) between the two objects, 

higher the similarity and vice versa.  

The overall paper is organized as follows. Various clustering techniques will be discussed in 

Section 2. Section 3 presents measures of similarity for differentiating the patterns. In Section 4, the 

variants of clustering methods have been presented. The evaluation criteria of the clustering 

techniques applied for different problems are provided in Section 5. Section 6 highlights some 

emerging applications of clustering. Section 7 describes which clustering method to select under 

different applications followed by conclusions in Section 8. Due to a wide range of topics in the 

subject, the omission or the unbalancing of certain topics presented in the paper cannot be denied. The 

objective of the paper is however to present a comprehensive timeline study of clustering with its 

concepts, comparisons, existing techniques and few important applications. 



2 Clustering Techniques 

In this section, we will discuss various clustering approaches with inherent techniques. The reason 

for having different clustering approaches towards various techniques is due to the fact that there is no 

such precise definition to the notion of “cluster” [22, 26]. That is why, different clustering approaches 

have been proposed, each of which uses a different inclusion principle. Fraley and Raftery [27] 

suggested dividing the clustering approaches into two different groups: hierarchical and partitioning 

techniques. Han and Kamber [21] suggested the following three additional categories for applying 

clustering techniques: density-based methods, model-based methods and grid-based methods. An 

alternative categorization based on the induction principle of different clustering approaches is 

presented in Castro et al [26]. However, the number of clusters into which available dataset to be 

divided, is decided by the users judiciously by using some of the approaches including heuristic, trial 

and error or evolutionary. If the user decides suitable number, the accuracy judged by intra-cluster 

distance will be high otherwise the accuracy can become low. Fig. 1 shows the taxonomy of clustering 

approaches [27].  

 

Fig. 1 Taxonomy of clustering approaches [27] 

2.1 Hierarchical Clustering (HC) Methods 

In hierarchical clustering methods, clusters are formed by iteratively dividing the patterns using 

top-down or bottom up approach. There are two forms of hierarchical method namely agglomerative 

and divisive hierarchical clustering [32]. The agglomerative follows the bottom-up approach, which 

builds up clusters starting with single object and then merging these atomic clusters into larger and 

larger clusters, until all of the objects are finally lying in a single cluster or otherwise until certain 

termination conditions are satisfied. The divisive hierarchical clustering follows the top-down 

approach, which breaks up cluster containing all objects into smaller clusters, until each object forms a 

cluster on its own or until it satisfies certain termination conditions. The hierarchical methods usually 

lead to formation of dendrograms as shown in Fig. 2 below.  



 

Fig. 2 Hierarchical clustering dendrogram 

The hierarchical clustering methods could be further grouped in three categories based on similarity 

measures or linkages [28] as summarized in following sections. 

2.1.1 Single-linkage Clustering 

This type of clustering is often called as the connectedness, the minimum method or the nearest 

neighbour method. In single-linkage clustering, the link between two clusters is made by a single 

element pair, namely those two elements (one in each cluster) that are closest to each other. In this 

clustering, the distance between two clusters is determined by nearest distance from any member of 

one cluster to any member of the other cluster, this also defines similarity. If the data is equipped with 

similarities, the similarity between a pair of clusters is considered to be equal to the greatest similarity 

from any member of one cluster to any member of the other cluster [29]. Fig. 3 shows the mapping of 

single linkage clustering. The criteria between two sets of clusters A and B is as follow: 

 min ( , ) : ,d a b a A b B 
                                                      (2) 

 

Fig. 3 Mapping of single linkage clustering 

2.1.2 Complete-linkage Clustering   

In complete-linkage clustering also called the diameter, the maximum method or the furthest 

neighbour method; the distance between two clusters is determined by longest distance from any 

member of one cluster to any member of the other cluster [30]. Fig. 4 shows the mapping of complete 

linkage clustering. The criteria between two sets of clusters A and B is as follow: 

 max ( , ) : ,d a b a A b B 
                                                (3) 



 

Fig. 4 Mapping of complete linkage clustering 

2.1.3 Average-linkage Clustering  

In average linkage clustering also known as minimum variance method; the distance between two 

clusters is determined by the average distance from any member of one cluster to any member of the 

other cluster [31]. Fig. 5 shows the mapping of average linkage clustering. The criteria between two 

sets of clusters A and B is as follow: 

1
( , )

| || |a A b B

d a b
A B  


                                                             (4) 

 

Fig. 5 Mapping of average linkage clustering 

2.1.4 Steps of Agglomerative and Divisive Clustering 

(i) Steps of agglomerative clustering 

 

 

  

 

(ii) Steps of divisive clustering 

 

 

 

 

1. Make each point a separate cluster 

2. Until the clustering is satisfactory 

3. Merge the two clusters with the smallest inter-cluster distance 

4. End 

 

1. Construct a single cluster containing all points 

2. Until the clustering is satisfactory 

3. Split the cluster that yields the two components with the largest inter-cluster distance 

4. End 

 



The common criticism for classical HC algorithms is that they lack robustness and are, hence, 

sensitive to noise and outliers. Once an object is assigned to a cluster, it will not be considered again, 

which means that HC algorithms are not capable of correcting possible previous misclassification. The 

computational complexity for most of HC algorithms is at least O(N2) and this high cost limits their 

application in large-scale data sets. Other disadvantages of HC include the tendency to form spherical 

shapes and reversal phenomenon, in which the normal hierarchical structure is, distorted [50]. With 

the requirement of large-scale datasets in recent years, the HC algorithms are also enriched with some 

new techniques as modifications to classical HC methods presented in following section.  

2.1.5 Enhanced Hierarchical Clustering 

The main deficiency of hierarchical clustering [33] is that after the two points of the clusters are 

linked to each other, they cannot move in other clusters in a hierarchy. Few algorithms, which use 

hierarchical clustering with some enhancements, are given below:  

(i) Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH) 

BIRCH [131] contains the idea of cluster features (CF). CF is the triple (n, LS, SS) where n is 

the number of data objects in the cluster, LS is the linear sum of the attribute values of the 

objects in the cluster and SS is the sum of squares of the attribute values of the objects in the 

cluster. These are stored in a CF-tree form, so no need to keep all tuples or all clusters in main 

memory, but only, their tuples [34]. The main motivations of BIRCH lie in two aspects, the 

ability to deal with large data sets and the robustness to outliers [131]. Also the BIRCH can 

achieve a comutational complexity of O(N). 

(ii) Clustering Using Representatives (CURE) 

CURE [35] is a clustering technique for dealing with large-scale databases, which is robust 

towards outliers and accepts clusters of various shapes and sizes. Its performance is good with 

2-D data sets. BIRCH and CURE both handle outliers well but CURE clustering quality is 

better than that of BIRCH [35]. On the reverse, in terms of time complexity, BIRCH is better 

than CURE as it attains computational complexity of O(N) compared to CURE O(N2logN).  

(iii) ROCK 

ROCK [130] is applied for categorical data sets which follows the agglomerative hierarchical 

clustering algorithm. It is based on the number of links between two records; links capture the 

number of other records, which are very similar to each other. This algorithm does not use 

any distance function. CURE [35] also proposed ROCK, which uses a random sample 

strategy to handle large datasets. 

(iv) CHAMELEON 

CHAMELEON [36] is a hierarchical clustering algorithm, where clusters are merged only if 

the interconnectivity and closeness (proximity) between two clusters are high relative to the 

internal interconnectivity of the clusters and closeness of items within the clusters. One 

limitation of CHAMELEON is that it is known for low dimensional spaces, and was not 

applied to high dimensions.  

Table1 Features of hierarchical clustering-based enhanced methods 

Name Type of data Complexity Ability to handle high 

dimensional data 

BIRCH Numerical O(N) No 

CURE Numerical O(N2logN) Yes 

ROCK Categorical O(N2+Nmmma+N2logN)* No 

CHEMELEON Numerical/ Categorical O(Nm + NlogN + m2logN)** No 

*mm is the maximum number of neighbours for a point ma is the average number of 

neighbours for a point. 

**m is the number of initial sub-clusters produced by the graph partitioning algorithm. 



2.2 Partition Clustering Methods 

Partitional clustering is opposite to hierarchical clustering; here data are assigned into K clusters 

without any hierarchical structure by optimizing some criterion function [37]. The most commonly 

used criterion is the Euclidean distance, which finds the minimum distance between points with each 

of the available clusters and assigning the point to the cluster. The algorithms [33] studied in this 

category include: k-means [38], PAM [173], CLARA [173], CLARANS [174], Fuzzy C-means, 

DBSCAN etc. Fig. 6 shows the partitional clustering approach.  

 

Data points Partitional clusters 

Fig. 6 Partitional clustering approaches 

2.2.1 K-means Clustering 

K-means algorithm is one of the best-known, bench marked and simplest clustering algorithms 

[37, 38], which is mostly applied to solve the clustering problems. In this procedure the given data set 

is classified through a user defined number of clusters, k. The main idea is to define k centroids, one 

for each cluster. The objective function J is given as follows: 

Minimize 

2
( )

1 1

k n
j

i j

j i

J x c
 

 
                                                          (5) 

where 

2
( )j

i jx c
 is a chosen distance measure between a data point 

( )j

ix
and the cluster centre jc

, Fig. 

7 shows the flow diagram of K-means algorithm. 

An algorithm similar to k-means, known as the Linde-Buzo-Gray (LBG) algorithm, was 

suggested for vector quantization (VQ) [39] for signal compression. In this context, prototype vectors 

are called code words, which constitute a code book. VQ aims to represent the data with a reduced 

number of elements while minimizing information loss. Although K- Means clustering is still one of 

the most popular clustering algorithms yet few limitation are associated with K Means clustering 

include: (a) There is no efficient and universal method for identifying the initial partitions and the 

number of clusters K and (b) K-means is sensitive to outliers and noise. Even if an object is quite far 

away from the cluster centroid, it is still forced into a cluster and, thus, distorts the cluster shapes [50]. 

 

Fig. 7 Flow diagram of K -means algorithm 



The procedure of K-means algorithm is composed of the following steps: 

1. Initialization: Suppose we decide to form K clusters of the given dataset. Now take K 

distinct points (patterns) randomly. These points represent initial group centroids. As 

these centroids will be changing after each iteration before clusters are fixed, there is 

no need to spend time in decision of choosing the centroids.  

2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation 

of the objects into groups from which the metric to be minimized can be calculated.  

2.2.2 Fuzzy C-means Clustering 

Fuzzy c-means (FCM) is a clustering method which allows one point to belong to two or more 

clusters unlike K-means where only one cluster is assigned to each point. This method was developed 

by Dunn in 1973 [40] and improved by Bezdek in 1981 [41]. The procedure of fuzzy c-means [50] is 

similar to that of K-means. It is based on minimization of the following objective function: 
2

1 1

|| || ;1
N c

m

m ij i j

i j

J u x v m
 

     
                                                     (6)  

where m is fuzzy partition matrix exponent for controlling the degree of fuzzy overlap, with m > 1. 

Fuzzy overlap refers to how fuzzy the boundaries between clusters are, that is the number of data 

points that have significant membership in more than one cluster, uij is the degree of membership of xi 

in the cluster j, xi is the i-th pattern of d-dimension data, vj is j-th cluster center of the d-dimension and 
*

  is any norm expressing the similarity between any measured data and the center. 

Procedure for FCM 

 

 

 

 

 

 

 

 

 

 

 

 

FCM suffers from initial partition dependence, as well as noise and outliers like k-means. Yager 

and Filev [42] proposed the mountain method to estimate the cluster centers as an initial partition. 

Gath and Geva [43] addressed the initialization problem by dynamically adding cluster prototypes, 

which are located in the space that is not represented well by the previously generated centers. 

1. Set up a value of c (number of cluster); 

2. Select initial cluster prototype 1 2, , , cV V V  from iX  , 1,2, ,i N  ; 

3. Compute the distance i jX V
 between objects and prototypes; 

4. Computer the elements of the fuzzy partition matrix 
( 1,2, ,i N ; 1,2, ,j c  ) 1

1

c i j

ij l
i l

x v
u

x v





  
  

  
  


 

5. Compute the cluster prototypes ( 1,2, ,j c  ) 
2

1

2

1

N

ij ii

j N

iji

u x
V

u








  

6. Stop if the convergence is attained or the number of iterations exceeds a 
given limit. Otherwise, go to step 3. 

 

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html#dunn#dunn
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html#bezdek#bezdek


Changing the proximity distance can improve the performance of FCM in relation to outliers [44]. In 

another approach for reducing the effect of noise and outliers, Keller [45] interpreted memberships as 

“the compatibility of the points with the class prototype” rather than as the degree of membership. 

This relaxes uij = 1 to uij > 0 and results in a possibilistic K-means clustering algorithm. 

The conditions for a possibilistic fuzzy partition matrix are: 

 0,1 ,1 , 1iju i N j C    
                                                  (7) 

, 0,j iju i  
                                                                    (8) 

1

0 , 1
N

ij

i

u N j C


   
                                                          (9) 

Table 2 Features of partition clustering based techniques 

Name Type of data complexity Ability to handle high 

dimensional data 

K-Mean Numerical O(N) No 

PAM Numerical O(K(N-K)2)* No 

CLARA Numerical O(K(40+K)2+K(N-K)) No 

CLARANS Numerical O(KN2) No 

Fuzzy C-Means Numerical O(N) No 

*N is the number of points in the dataset and K is the number of clusters defined.  

The k-means algorithms have problems like defining the number of clusters initially, susceptibility to 

local optima, and sensitivity to outliers, memory space and unknown number of iteration steps that are 

required to cluster.  The fuzzy C means clustering are really suitable for handling the issues related to 

understand ability of patterns, incomplete/noisy data, mixed media information, human interaction and 

it can provide approximate solutions faster. They have been mainly used for discovering association 

rules and functional dependencies as well as image retrieval. However the time complexity of K 

means is much less than that of FCM thus K means works faster than FCM [191]. 

Some of the advantages of partition based algorithms includes that they are (i) relatively scalable and 

simple and (ii) suitable for datasets with compact spherical clusters that are well-separated. However, 

disadvantages with these algorithms include poor (i) cluster descriptors (ii) reliance on the user to 

specify the number of clusters in advance (iii) high sensitivity to initialization phase, noise and outliers 

and (iv) inability to deal with non-convex clusters of varying size and density [175]. 

3 Measures of Similarities 

Similarity of objects within a cluster plays the most important role in clustering process. A good 

cluster finds maximum similarity among its objects. The measure of similarity in cluster is mainly 

decided by the distance among its members. In a conventional cluster (non-fuzzy), a member either 

belongs to a cluster wholly or not at all. Many clustering methods use distance measures to determine 

the similarity or dissimilarity between any pair of objects [22]. It is useful to denote the distance 

between two instances xi and xj as: d(xi, xj). A valid distance measure should be symmetric i.e d(xi, xj) 

= d(xj, xi) and obtain its minimum value (ideally zero) in case of identical vectors. The distance 

measure is called a metric distance measure if it also satisfies the following properties: 

Triangle inequality   
( , ) ( , ) ( , ) , ,i k i j j k i j kd x x d x x d x x x x x S   

                              (10) 

( , ) 0 ,i j i j i jd x x x x x x S    
                                                (11) 



3.1 Minkowski: Distance Measures for Numeric Attributes 

A measurement of distance is a fundamental operation in the unsupervised learning process [91]. 

Smaller is the distance between any two objects; closer these objects are assumed on the basis of 

similarity. A family of distance measures is the Minkowski metrics [29], where the distance is 

measured by following equation  r
d

k

r

jkikr
xxij

/1

1 






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                                                  (12) 

where xik is the value of the k-th variable for entity i, xjk is the value of the k-th variable for entity j. The 

most popular and common distance measure is the Euclidean or L2 norm (r =2). More details on 

unsupervised classification for various non-Euclidean distances can be seen in Saxena et al. [160].   

3.2 Cosine Measure 

Cosine Measure [153] is a popular similarity score in text mining and information retrieval [152]. 

The normalized inner product for Cosine measure is defined as:  

( , )

T

i j

i j

i j

x x
d x x

x x





                                                                 (13) 

3.3 Pearson Correlation Measure  

Correlation coefficient is first discovered by Bravais [154] and later shown by Person [155]. The 

normalized Pearson correlation for two vectors xi and xj is defined as:    
( , )

T

i i j j

i j

i i j j

x x x x
d x x

x x x x

  


  
                                                      (14) 

where ix
 denotes the average feature value of x over all dimensions. 

3.4 Extended Jaccard Measure 

Strehl and Ghosh [107] represented the extended Jaccard measure as follows: 
22
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                                                          (15) 

3.5 Dice Coefficient Measure 

It was independently developed by the Thorvald Sørensen[156] and Raymond Dice [157] The 

dice coefficient measure is similar to the extended Jaccard measure and it is defined as: 
22
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i j
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x x
d x x

x x


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
                                                                  (16) 

3.6  Choice of Suitable Similarity Measure 

The measures of similarities have been applied on millions of applications in clustering. In fact every 

clustering problem applies one of the similarity measures. The Euclidean distance is mostly applied to 

find similarity between two objects, which are expressed numerically. Euclidean distance is highly 

sensitive to noise and usually not applied to data with hundreds of attributes also features with high 

values tend to dominate others [50] so it may be applied when translations of non-numeric objects to 

numeric values are almost nil or minimum. Jaccard similarity coefficient is suitable sufficiently to be 

employed in the documents or word similarity measurement. In efficiency measurement, the program 

performance can deal appropriately with high stability when failure and mistake spelling occurred. 

Nevertheless, this method is not able to detect the over-type words in the data sets [192]. Pearson 

correlation is usually unable to detect the difference between two variables [50]. Cosine similarity is 

http://en.wikipedia.org/wiki/Thorvald_S%C3%B8rensen
http://en.wikipedia.org/w/index.php?title=Lee_Raymond_Dice&action=edit&redlink=1


also a good choice for document clustering, it is invariant to rotation but not to linear transformations 

[50].  

4 Variants of Clustering Methods 

4.1 Graph (Theoretic) Clustering  

The graph theoretic clustering is a method that represents clusters via graphs. The edges of the 

graph connect the instances represented as nodes. A well-known graph-theoretic algorithm is based on 

the minimal spanning tree (MST) [46]. Inconsistent edges are edges whose weight (in the case of 

clustering length) is significantly larger than the average of nearby edge lengths. Another graph 

theoretic approach constructs graphs based on limited neighbourhood sets [47]. The graph theoretic 

clustering is convenient to represent clusters via graphs but is weak in handling outliers especially in 

MST as well as detecting overlapping of clusters [176]. 

      The graph clustering [177] involves the task of dividing nodes into clusters, so that the edge 

density is higher within clusters as opposed to across clusters. A natural, classic and popular statistical 

setting for evaluating solutions to this problem is the stochastic block model, also referred to as the 

planted partition model. The general graph l-partition problem is to partition the nodes of an 

undirected graph into l equal-sized groups so as to minimize the total number of edges that cross 

between groups. Condon [178] presented a simple, linear-time algorithm for the graph l-partition 

problem and analyzed it on a random “planted l-partition” model. In this model, the n nodes of a graph 

are partitioned into l groups, each of size n/l; two nodes in the same group are connected by an edge 

with some probability p, and two nodes in different groups are connected by an edge with some 

probability r<p. They showed that if p−r≥n−1/2+ϵ for some constant ϵ, then the algorithm finds the 

optimal partition with probability 1− exp(−nΘ(ε)). Graph clustering decomposes a network into sub 

networks based on some topological properties. In general we look for dense sub networks as shown 

in Fig. 8. 

 

Fig. 8 Sub-network clustering of graph 

      Spectral Clustering, proposed by Donath and Hoffman [179], is an emerging technique under 

graph clustering which consists of algorithms cluster points using eigenvectors of matrices derived 

from the data. In the machine learning community, spectral clustering has been made popular by the 

works of Shi and Malik [180]. A useful tutorial is available on spectral clustering by Luxburg [181]. 

The success of spectral clustering is mainly based on the fact that it does not make strong assumptions 

on the form of the clusters. As opposed to k-means, where the resulting clusters form convex sets (or, 

to be precise, lie in disjoint convex sets of the underlying space), spectral clustering can solve very 



general problems like intertwined spirals. Moreover, spectral clustering can be implemented 

efficiently even for large data sets, as long as we make sure that the similarity graph is sparse. Once 

the similarity graph is chosen, we just have to solve a linear problem, and there are no issues of getting 

stuck in local minima or restarting the algorithm for several times with different initializations. 

However, we have already mentioned that choosing a good similarity graph is not trivial, and spectral 

clustering can be quite unstable under different choices of the parameters for the neighborhood graphs. 

So spectral clustering cannot serve as a “black box algorithm” which automatically detects the correct 

clusters in any given data set. But it can be considered as a powerful tool which can produce good 

results if applied with care [181]. More literature (partially) on graph and spectral clustering can be 

seen in [182-190]. 

4.2 Spectral Clustering Algorithms [181] 

Now we would like to state the most common spectral clustering algorithms. We assume that our 

data consists of n “points” x1, . . . , xn, which can be arbitrary objects. We measure their pair wise 

similarities sij = s(xi , xj ) by some similarity function which is symmetric and non-negative, and we 

denote the corresponding similarity matrix by S = (sij )I, j=1, ..., n. 

4.2.1 Un-normalized Spectral Clustering 

 

 

 

 

 

 

 

 

4.2.2 Normalized Spectral Clustering According to Shi and Malik (2000)[180] 

 

 

 

 

 

 

 

 

 

1. Input: Similarity matrix S ∈ R n×n, number k of clusters to construct. 

2. Construct a similarity graph by one of the ways described in Section 2 [181]. Let W be its 

weighted adjacency matrix. 

3. Compute the un-normalized Laplacian L. 

4. Compute the first k eigenvectors u1, . . . , uk of L. 

5. Let U ∈ R n×k be the matrix containing the vectors u1, . . . , uk as columns. 

6. For i = 1, . . . , n, let yi ∈ R k be the vector corresponding to the i-th row of U. 

7. Cluster the points (yi)i=1,...,n  in R k with the k-means algorithm into clusters C1, . . . , Ck. 

8. Output: Clusters A1, . . . , Ak with Ai = {j| yj ∈ Ci}. 

 

1. Input: Similarity matrix S ∈ R n×n, number k of clusters to construct.  

2. Construct a similarity graph by one of the ways described in Section 2 [181]. Let W be its 

weighted adjacency matrix.  

3. Compute the unnormalized Laplacian L. 

4. Compute the first k generalized eigenvectors u1, . . . , uk of the generalized eigen problem 

Lu = λDu. 

5. Let U ∈ R n×k be the matrix containing the vectors u1, . . . , uk as columns.  

6. For i = 1, . . . , n, let yi ∈ R k be the vector corresponding to the i-th row of U.  

7. Cluster the points (yi)i=1,...,n in R k with the k-means algorithm into clusters C1, . . . , Ck.  

8. Output: Clusters A1, . . . , Ak with Ai = {j| yj ∈ Ci}. 



4.3 Model Based Clustering Methods 

Model based clustering methods optimize as well as find the suitability of given data with some 

mathematical models. Similar to conventional clustering; model-based clustering methods also detect 

feature details for each cluster, where each cluster represents a concept or class. Decision trees and 

neural networks are two most frequently used induction methods. 

(i) Decision Trees 

The representation of data in decision tree [19] is modelled by a hierarchical tree, in which 

each leaf denotes a concept and implies a probabilistic description of that concept. There are 

many algorithms, which produce classification trees for defining the unlabelled data. Number 

of algorithms that have been proposed for conceptual clustering are follows: CLUSTER/2 by 

Michalski and Stepp [93], COBWEB by Fisher [48], CYRUS by Kolodner [95], GALOIS by 

Carpineto and Romano [96], GCF by Talavera and Béjar [97], INC by Hadzikadic and Yun 

[98], ITERATE by Biswas, Weinberg and Fisher [99], LABYRINTH by Thompson and 

Langley [100], SUBDUE by Jonyer, Cook and Holder [101], UNIMEM by Lebowitz [102] 

and WITT by Hanson and Bauer [103]. COBWEB is one of the best known algorithms, where 

each concept defines a set of objects and each object defined as a binary values property list. 

Its aim is to achieve high predictability of nominal variable values, given a cluster. This 

algorithm is not suitable for clustering large database data [48].  

(ii) Neural Networks 

 Neural networks [49] represent each cluster by a neuron, whereas input data is also 

represented by neurons, which are connected to the prototype neurons. Each connection is 

attributed by some weight, which is initialized randomly before learning of these weights 

adaptively. A very popular neural algorithm for clustering is the self-organizing map (SOM) 

[104, 105]. SOM is commonly used for vector quantization, feature extraction and data 

visualization along with clustering analysis. This algorithm constructs a single-layered 

network as shown in Fig. 9. The learning process takes place in a “winner-takes-all” fashion: 

The prototype neurons compete for the current instance. The winner is the neuron whose 

weight vector is closest to the instance currently presented. The winner and its neighbours 

learn by having their weights adjusted. While SOFMs has the merits of input space density 

approximation and independence of the order of input patterns, a number of user dependent 

parameters cause problems when applied in real practice. Like the K-means algorithm,SOFM 

need to predefine the size of the lattice, i.e., the number of clusters, which is unknown for 

most circumstances. Additionally, trained SOFM may be suffering from input space density 

mis representation [49], where areas of low pattern density may be over represented and areas 

of high density under represented [50]. 

 

Fig. 9 Model of a single layered network 

4.4 Mixture Density-Based Clustering  

Xu and Wunsch [50, 51] described clustering in the perspective of probability that data objects are 

drawn from a specific probability distribution and the overall distribution of the data is assumed to be 

a mixture of several distributions [53]. Data points [117] can be derived from different types of density 

http://en.wikipedia.org/wiki/Cobweb_(clustering)


functions (e.g., multivariate Gaussian or t-distribution), or from the same families but with different 

parameters. The aim of these methods is to identify the clusters and their distribution. Cheeseman and 

Stutz introduced an algorithm named AUTOCLASS [55], which is widely used and covers a broad 

variety of distributions, including Gaussian, Bernoulli, Poisson, and log-normal distributions. Ester et 

al. [54] demonstrated an algorithm called DBSCAN (density-based spatial clustering of applications 

with noise), which discovers clusters of arbitrary shapes and is efficient for large spatial databases.  

Other well-known density-based techniques are: SNOB proposed by Wallace and Dowe in 1994 

[56] and MCLUST introduced by Fraley and Raftery in 1998 [27]. Among these methods, the 

expectation-maximization (EM) algorithm is the most popular [52, 56]. For EM algorithm, the log 

likelihood function to maximize is as follows: 
ln ( | ) ln ( , | )

Y

p X p X Y  
                                                            (17) 

where X denotes the set of all observed data 
  1,..., NX x x

, and Y denotes the set of all latent 

variables 
  1,..., NY y y

. The complete data set is formed as 
    , ,i iX Y x y

 and the joint 

distribution 
 , |p x y 

 is ruled by a set of parameters.  The major disadvantages for EM algorithm are 

the sensitivity to the selection of initial parameters, the effect of a singular co-variance matrix, the 

possibility of convergence to a local optimum, and the slow convergence rate [50] [52]. 

Procedure of EM algorithm 

 

 

 

 

 

 

4.5 Grid-Based Clustering Methods  

These methods partition the space into a finite number of cells that form a grid structure on which 

all of the operations for clustering are performed. The main advantage of the approach is its fast 

processing time [122], no need of distance computations and easy to determine which clusters are 

neighbouring.  

The basic steps of Grid based algorithm 

 

 

 

 

 

 

There are many others interesting grid based techniques including: STING (statistical information 

grid approach) by Wang, Yang and Muntz [57] in 1997, one of the highly scalable algorithm and has 

the ability to decompose the data set into various levels of detail. STING retrieves spatial data and 

divides into rectangular cells corresponding to different levels of resolution as shown in Fig. 10. 

 

1. Initialize the parameters 
old   

2. E step: evaluate ( | , )oldp Y X   

3. M step: re-estimate the parameters 
arg max ( )new L  

 

4. Check for convergence. If the convergence criterion is not 

satisfied, let 
old new  and return to step 2.  

 

1. Define a set of grid cells 

2. Assign objects to the appropriate grid cell and compute 

the density of each cell 

3. Eliminate cells, whose density is below a certain 

threshold 

4. Form clusters from contiguous groups of dense cells 

 



 

Fig. 10 Rectangular cells corresponding to different levels of resolution 

Each cell at a higher level is partitioned into a number of smaller cells in the next lower level. Then 

mean, variance, minimum, maximum of each cell is computed by using the normal and uniform 

distribution. Statistical information of each cell is calculated and stored in advance and it uses a top 

down approach to answer spatial data queries. Wave Cluster [58] introduced by Sheikholeslami et al. 

[58] uses multi-resolution approach like STING and allows natural clustering to become more 

distinguishable. It uses a signal processing technique that decomposes a signal into different frequency 

sub-band and data are transformed to preserve relative distance between objects at different levels of 

resolution. It is highly scalable and can handle outliers well. It is not suitable for high dimensional data 

set. It can be considered as both grid-based and density-based. CLIQUE is developed by Agrawal et 

al. [59] in 1998, which can be considered as both density-based and grid based clustering methods. It 

automatically finds subspaces of high dimensional data space that allow better clustering than original 

space. The accuracy of the clustering result may be degraded at the expense of simplicity of the 

method CLIQUE. 

4.6 Evolutionary Approaches Based Clustering Methods 

The famous evolutionary approaches [60] include evolution strategies (ES) [61], evolutionary 

programming (EP) [62], genetic algorithm (GA) [63, 64], particle swarm optimization (PSO) [65-66], 

ant colony optimization (ACO) [67] etc. 

The common approach of evolutionary techniques to data clustering is as follows: 

 

 

 

 

 

 

 

 

 

 

Out of these approaches, GA has been most frequently used in clustering, where solutions are in 

the form of binary strings. In GAs, a selection operator propagates solutions from the current 

generation to the next generation based on their fitness Selection employs a probabilistic scheme so 

1. Choose a random population of solutions. Each solution here corresponds 

to valid k partitions of the data.  

2. Associate a fitness value with each solution. Typically fitness is inversely 

proportional to the squared error value. Higher the error, smaller the 

fitness and vice versa. 

3. A solution with a small squared error will have a larger fitness value.  

4. Use the evolutionary operators’ viz.  selection, recombination and 

mutation to generate the next population of solutions. 

5. Evaluate the fitness values of these solutions. 

6. Repeat step until some termination condition is satisfied.  

 



that solutions with higher fitness have a higher probability of getting reproduced. A major problem 

with GAs is their sensitivity to the selection of various parameters such as population size crossover 

and mutation probabilities etc. Grefenstette [123] has studied this problem and suggested guidelines 

for selecting these control parameters.  

The general steps of GA for clustering are: 

 

 

 

 

 

 

 

 

 

4.7 Search Based Clustering Approaches  

Search techniques are basically used to obtain the optimum value (minimum or maximum) of the 

criterion function (e.g. distance) called objective function also. The search based approaches are 

categorized into stochastic and deterministic search techniques. The stochastic search techniques can 

evolve an approximate optimal solution (based on fitness value). Most of the stochastic techniques are 

evolutionary approaches based. The rest of the search techniques come under deterministic search 

techniques which guarantee an optimal solution by performing exhaustive enumeration. The 

deterministic approaches are typically greedy descent approaches. The stochastic search techniques are 

either sequential or parallel such as simulated annealing (SA) [172] while evolutionary approaches are 

inherently parallel. Simulated annealing procedures are designed to avoid or recover from solutions 

which correspond to local optima of the objective functions. This is accomplished by accepting with 

some probability a new solution for the next iteration of lower quality as measured by the criterion 

function. The probability of acceptance is governed by a critical parameter called the temperature by 

analogy with annealing in metals which is typically specified in terms of a starting first iteration and 

final temperature value. Al Sultan et al [92] studied the effects of control parameters on the 

performance of the algorithm and used SA to obtain near optimal partition of the data SA is 

statistically guaranteed to find the global optimal solution. 

The SA algorithm can be slow in reaching the optimal solution because optimal results require the 

temperature to be decreased very slowly from iteration to iteration. Tabu search [68, 69] like SA is a 

method designed to cross boundaries of feasibility or local optimality and to systematically impose 

and release constraints to permit exploration of otherwise forbidden regions. Tabu search was used to 

solve the clustering problem in [3]. 

4.8 Collaborative Fuzzy Clustering 

This is relatively a recent type of clustering which has various applications. The database is 

distributed on several sites. The collaborative clustering proposed by Pedrycz [70-73] concerns a 

process of revealing a structure being common or similar to a number of subsets. There are mainly two 

forms of collaborative clustering; horizontal and vertical collaborative clustering [74]. In horizontal 

collaborative clustering, same database is split into different subsets of features, each subset having all 

patterns in the database. The horizontal collaborative clustering has been applied for Mamdani type 

fuzzy inference system [124] in order to decide some association between datasets. In vertical 

collaborative clustering, database is divided into subsets of patterns such that each pattern of any 

subset has all features.  

Input: S (instance set), K (number of clusters), n (population size) 

Output: clusters 

1. Randomly create a population of n structures; each 

corresponds to valid K-clusters of the data. 

2. repeat 

a. Associate a fitness value ∀ structure ∈ population. 

b. Regenerate a new generation of structures. 

3. until some termination condition is satisfied 

 



The objective function for horizontal collaboration technique is explained in Eq. (13). For vertical 

collaboration technique, please refer [73]: 
2 2 2 2

1 1 1 1 1

[ ] [ ] [ ] [ , ] { [ ] [ ]} [ ]
pN c N n

ij ij ij ij ij

i j m i j
m l

Q l u l d l l m u l u m d l
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

    
                          (18) 

where   is a user defined parameter based on datasets (  >0), [ , ]l m  denotes the collaborative 

coefficient with collaborative effect on dataset l through m, c is a number of cluster. 1,2, ,l P . P  

is a number of datasets, N  is the number of patterns in the dataset, u represents the partition matrix, n  
is a number of features, and d  is an Euclidean distance between patterns and prototypes. 

    The general scheme of collaborative clustering is shown in Fig. 11, which demonstrates the 
connections of matrices in order to accomplish the collaboration between the subsets of the dataset. 
First, we solve the problem for each dataset separately and allow the results to interact globally by 
forming a collaborative process between the datasets. Collaborative fuzzy partitioning is carried out 
through an iterative optimization of the objective function as shown in Eq. (13). The optimization of 
Q[l] involves the determination of the partition matrix U and the prototypes V of different data sets as 
shown in Fig. 11(a) and (b). 

 

 

 

 

(a) Collaborative clustering scheme for two datasets (b) Collaborative clustering scheme for three datasets 

Fig. 11 Collaborative clustering scheme 

4.9 Multi Objective Clustering 

In case of multi-objective clustering, many clustering approaches are optimized simultaneously. 

In multi-objective clustering with automatic k-determination (MOCK) [78, 79], compactness of 

clusters is maximized as the first objective while the connectivity of the clusters is maximized as the 

second objective. The Pareto [80] approach is used to optimize the aforesaid two objectives 

simultaneously. The multi objective clustering ensemble (MOCE) proposed by Faceili et.al [81] uses 

MOCK along with a special crossover operator which utilizes ensemble clustering. In Law et. al [82], 

different clustering methods with different objectives are used. Some more surveys can be seen in 

[50]. 

4.10 Overlapping Clustering or Overlapping Community Detection 

The partition clustering usually indicates exclusive and overlapping clustering algorithms (like k-

means discussed above) such that each member or the object belongs to just one cluster. When an 

object belongs to more than one cluster, it becomes overlapping clustering method or algorithm, e.g. 

fuzzy c-means clustering. Nowadays, community detection, as an effective way to reveal the 

relationship between structure and function of networks, has drawn lots of attention and been well 

developed [195]. Networks are modeled as graphs, where nodes represent objects and edges represent 

interactions among them. Community detection divides a network into groups of nodes, where nodes 

are densely connected inside but sparsely connected outside. However, in real world, objects often 

have diverse roles and belong to multiple communities. For example, a professor collaborates with 

researchers in different fields and a person has his family group as well as friend group at the same 



time.  In community detection, these objects should be divided into multiple groups, which are known 

as overlapping nodes [196]. The aim of overlapping community detection is to discover such 

overlapping nodes and communities. Until now, lots of overlapping community detection approaches 

have been proposed, which can be roughly divided into two categories: node-based and link-based 

algorithms. The node-based overlapping community detection algorithms [75, 76] directly divide 

nodes of the network into different communities. Based on an intuition that a link in networks usually 

represents the unique relation, the link-based algorithms firstly cluster on edges of network, and then 

map the link communities to node communities by gathering nodes incident to all edges within each 

link community [77]. The newly proposed link-based algorithms have shown its superiority on 

detecting complex multi-scale communities. However, they have the high computational complexities 

and bias on the discovered communities. Shi et. al. [196] proposed a genetic algorithm, GaoCD, for 

overlapping community detection based on the link clustering framework. Different from those node-

based overlapping community detection algorithms, GaoCD utilized the property of the unique role of 

links and applies a novel genetic algorithm to cluster on edges. Experiments on artificial and real 

networks showed that GaoCD can effectively reveal overlapping structure. 

5 Evaluation Criteria 

The formation of clusters is an important process. However, it is also meaningful to test the 

validity and accuracy of the clusters so formed by any method. It should be tested whether the clusters 

formed by a certain method show maximum similarity among the objects in the same cluster and 

minimum similarity among those in other clusters. Recently, many evaluation criteria have been 

developed. These criteria are divided mainly into two categories: Internal and External. 

5.1 Internal Quality Criteria Measures 

Internal Criteria generally measure the compactness of the clusters by applying similarity measure 

techniques. In general, it measures the inter-cluster separability and intra-cluster homogeneity, or a 

combination of these two.  

5.1.1 Sum of Squared Error 

Sum of Square Error (SSE) [158, 159] is the most frequently used criterion measure for clustering. 

It is defined as: 
2

1 i k
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i k

k x C

SSE x 
  

  
                                                            (19) 

where Ck is the set of instances in cluster k; μk is the vector mean of cluster k.  

5.1.2 Scatter Criteria 

The scatter criteria matrix [1, 22] is defined as follows for the k-th cluster: 
( )( )
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k k k
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S x x 


  
                                                          (20) 

5.1.3 Condorcet’s Criterion.  

The Condorcet’s criterion [110] is another approach to apply for the ranking problem [111]. The 

criterion is defined as follows: 
, ;

( , ) ( , )
i j k i i j i k i

j k

j k j k

C C x x C C C x C x C
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                                    (21) 

where s(xj , xk) and d(xj , xk) measure the similarity and distance of the vectors xj and xk. 



5.1.4 The C-criterion  

Fortier and Solomon [108] defined the C-criterion, which is an extension of Condorcet’s criterion 

and it is defined as: 
, ;
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                           (22) 

where γ is a threshold value. 

5.1.5 Category Utility Metric  

The category utility defined in [109, 112] which measures the goodness of category. A set of 

entities with size n binary feature set F= {fi}, i=1, …, n and a binary category { , }C c c is calculated 

as follows: 

1 1 1

( , ) ( ) ( | ) log ( | ) ( ) ( | ) log ( | ) ( ) log ( )
n n n

i i i i i i

i i i

CU C F p c p f c p f c p c p f c p f c p f p f
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 
   
 

  
   (23) 

where p(c) is the prior probability of an entity belonging to the positive category c, 
( | )ip f c

is the 

conditional probability of an entity having feature fi given that the entity belongs to category c, 
( | )ip f c is likewise the conditional probability of an entity having feature fi given that the entity 

belongs to category c , and p(fi) is the prior probability of an entity processing feature fi.  

5.1.6 Edge Cut Metrics 

An edge cut minimization problem [125, 126] is very useful in some cases for dealing with 

clustering problems. In this case, the cluster quality is measured as the ratio of the remaining edge 

weights to the total precut edge weights. Finding the optimal value is easy with edge cut minimization 

problem, where there is no restriction on the size of the clusters. 

5.2 External Quality Criteria Measures 

In order to match the structure of cluster to a predefined classification of the instances, the 

external quality criteria measure can be useful. 

5.2.1 Mutual Information Based Measure 

Strehl et al [113] proposed mutual information based measure, which can be used as an external 

measure for clustering. The criteria measure for m instances clustered using C = {C1,….,Cg} and 

referring to the target attribute z whose domain is dom(z) = {c1,….,ck} is defined as follows: 
,

, .
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                                             (24) 

where ml,h indicates the number of instances that are in cluster Cl  and also in class ch. m.,h denotes the 

total number of instances in the class ch. Similarly, ml,.  Indicates the number of instances in cluster Cl. 

5.2.2 Rand Index 

The Rand index [115] is a simple criterion used to compute how similar the clusters are to the 

benchmark classifications. The Rand index is defined as: 
TP TN

RAND
TP FP FN TN




                                                        (25) 

where TP is the number of true positives, TN is the number of true negatives, FP is the number of 

false positives and FN is the number of false negatives. The Rand index lies between 0 and 1. When 

the two partitions agree perfectly, the Rand index is 1.  



5.2.3 F-measure 

In Rand index, the false positives and false negatives are equally weighted and this may cause for 

an undesirable features for some clustering applications. The F-measure [116] addresses this concern 

and used to balance of false negatives by weighting recall parameter 0  . The F-measure is defined 

as follows: 2
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  
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                                                                  (26) 

where P is the precision rate and R is the recall rate. Recall has no impact when 0  and increasing η 

allocates an increasing amount of weight to recall in the final F-measure. Precision and Recall [119, 

120] is defined as follows: TP
P

TP FP


                                                                       (27) 
TP

R
TP FN


                                                                         (28) 

5.2.4 Jaccard Index 

The Jaccard index [121] is considered to identify the equivalency between two datasets. The 

Jaccard index is defined as follows: 
| |

( , )
| |

A B TP
J A B

A B TP FP FN


 

                                                (29) 

If A and B are both empty, then ( , ) 1J A B  , i.e 0 ( , ) 1J A B  . This is simply the number of unique 

elements common to both sets divided by the total number of unique elements in both sets. 

5.2.5 Fowlkes–Mallows Index 

The Fowlkes-Mallows index [118] determines the similarity between the clusters obtained after 

the clustering algorithm. The higher value of the Fowlkes-Mallows index indicates a more similarity 

between the clusters. It can be determined as follows: 
TP TP

FM
TP FP TP FN

 
                                                     (30) 

5.2.6 Confusion Matrix 

A confusion matrix is also known as a contingency table or an error matrix [114]. It can be used 

to quickly visualize the results of a clustering. If a classification system has been trained to distinguish 

between apples, oranges and tomatoes, a confusion matrix will summarize the results of testing the 

algorithm for further inspection. Assuming a sample of 27 fruits; 8 apples, 6 oranges, and 13 tomatoes, 

the result of confusion matrix look like the table below: 

Table 3 Confusion Matrix 
 

Actual class 

Predicted class 

Apple Orange Tomato 

Apple 5 3 0 

Orange 2 3 1 

Tomato 0 2 11 

http://en.wikipedia.org/wiki/Fowlkes%E2%80%93Mallows_Index
http://en.wikipedia.org/wiki/Confusion_matrix


External indices are based on some pre-specified structure, which is the reflection of prior information 

on the data, and used as a standard to validate the clustering solutions [50]. Internal tests are not 

dependent on external information (prior knowledge). On the contrary, they examine the clustering 

structure directly from the original data. For more on evaluation, refer to [193,194]. 

6 Applications 

Clustering is useful in several applications. Out of endless useful applications, a few applications 

are given below in diverse fields. 

6.1 Image Segmentation 

Image segmentation is an essential component of image processing. Image segmentation can be 

achieved using hierarchical clustering [37, 83]. K-means can also be applied for segmentation. 

Magnetic resonance imaging (MRI) provides a visualization of the internal structures of objects and 

living organisms. MRI images have better contrast than computerized tomography; therefore, most 

medical image segmentation research uses MRI images. Segmenting an MRI image is a key task in 

many medical applications, such as surgical planning and abnormality detection. MRI segmentation 

aims to partition an input image into significant anatomical areas, each of which is uniform according 

to certain image properties. MRI segmentation can be formulated as a clustering problem in which a 

set of feature vectors obtained through transformation image measurements and pixel positions is 

grouped into a number of structures [28]. 

6.2 Bioinformatics—Gene Expression Data 

Recently, advances in genome sequencing projects and DNA microarray technologies have been 

achieved [50]. The first draft of the human genome sequence project was completed in 2001, several 

years earlier than expected [84, 94]. The applications of clustering algorithms in bioinformatics can be 

seen from two aspects. The first aspect is based on the analysis of gene expression data generated from 

DNA microarray technologies. The second aspect describes clustering processes that directly work on 

linear DNA or protein sequences. The assumption is that functionally similar genes or proteins usually 

share similar patterns or primary sequence structures [50]. 

6.3 Object Recognition  

The use of clustering to group views of 3D objects for the purposes of object recognition in range 

data was described in [85]. The system under consideration employed a view point dependent (or view 

cantered) approach to the object recognition problem; each object to be recognized was represented in 

terms of a library of range images of that object. 

6.4 Character Recognition 

Clustering was employed in Jain [86] to identify lexemes in handwritten text for the purposes of 

writer independent hand writing recognition. The success of a handwriting recognition system is 

vitally dependent on its acceptance by potential users. Writer dependent systems can give a higher 

level of recognition accuracy than that given by writer independent systems but the former require a 

large amount of training data. A writer independent system on the other hand must be able to 

recognize a wide variety of writing styles in order to satisfy an individual user. 

6.5 Information Retrieval   

Information retrieval (IR) is concerned with automatic storage and retrieval of documents [87]. 

Many university libraries use IR systems to provide access to books, journals and other documents. 

Libraries use the library of congress classification (LCC) scheme for efficient storage and retrieval of 

books. The LCC scheme consists of classes labelled A to Z [88] which are used to characterize books 

belonging to different subjects. For example, label Q corresponds to books in the area of science and 

the subclass QA is assigned to mathematics. Labels QA76 to QA76.8 are used for classifying books 

related to computers and other areas of computer science. 



6.6 Data Mining  

Data mining [21] is the extraction of knowledge from large databases. It can be applied to 

relational, transaction and spatial databases as well as large stores of unstructured data such as the 

World Wide Web. There are many data mining systems in use today and applications include the U.S. 

Treasury detecting money laundering. National basketball association coaches detecting trends and 

patterns of play for individual players and teams and categorizing patterns of children in the foster care 

system [89]. Several articles have had recent published in special issues on data mining [90].  

6.7 Spatial Data Analysis 

Clustering is useful to extract interesting features and identify the patterns, which exist in huge 

amounts of spatial databases [106, 127-129]. It is expensive and very hard for user to deal with large 

spatial datasets like satellite images, medical equipment, geographical information systems (GIS), 

image database exploration etc. Clustering process helps to understand spatial data by analyzing 

process automatically. 

6.8 Business 

The role of clustering is quite interesting in business areas [135-139]. It helps marketer 

researchers to do some analysis and prediction about customers in order to provide services based on 

their requirements and it also helps for market segmentation, new product development and product 

positioning. Clustering may be used to set all available shopping items on web into a group of unique 

products.  

6.9 Data Reduction  

Data reduction or compression is one of the necessary tasks for handling very large data [132-134] 

and its processing becomes very demanding. Clustering can be applied to help in compressing data 

information by clustering them in different set of interesting clusters. After different set of clusters we 

can choose the information or set of data which is useful for us. This process will save data processing 

time along with doing data reduction.  

6.10 Big Data Mining 

Big data [161-168] is also an emerging issue. The volume of data which is beyond the capacity of 

conventional data base management tools is processed under big data mining. Due to use of various 

social sites, travel, e-governance etc practices, mammoth amount of data is being heaped every 

moment. Clustering of information (data) can help in aggregating similar information collected in 

unformatted databases (mainly text). Hadoop is one such big data processing tool [169-171]. It is 

expected that big data processing will play an important role in detection of cyber crime, clustering 

groups of people with similar behaviour on social network such as face book, WhatsApp etc. or 

predicting market behaviour based on various polls over these social sites. 

6.11 Other Applications 

Sequence analysis [140], human genetic clustering [141], social network analysis [142], search 

result grouping [143], software evolution [144, 145], recommender systems [146], educational data 

mining [147-149], Climatology [150], Field Robotics [151] etc. 

7 Choice of Appropriate Clustering Methods 

As depicted in Fig.1, and from the wide amount of literature available with some referred in the 

paper, it becomes an obvious question: which method is uniformly good? It is to remember that 

according to No Free Lunch concept given by Wolpert [197], no algorithm can be uniformly good 

under all circumstances. In fact, each algorithm has its merit (strength) under some specific nature of 

data but fails on other type of data. The selection of an appropriate clustering method may sometimes 

also involve decision on certain parameters. Whether one wants only a proper alignment (or 

unsupervised grouping) of objects into a number of clusters (say user define k), then only choosing the 

value of k matters. This choice can be made on the ‘how fine tuning among the intra-cluster objects (or 

patterns) by virtue of distance is expected’. Selecting k can be heuristic or stochastic and evolutionary 



computing like genetic algorithms (GA) can be applied to find k. On the other hand, in case of data 

mining or data processing applications with dimensionality reduction, mostly it is required to reduce 

the number of attributes or features in the existing dataset in order to extract rules with better 

prediction capability. In many of these occasions, it is expected that while reducing the dimensionality 

of the dataset, whether the structure or the internal topology of the dataset is not disturbed in the 

reduced data space. Saxena et. al [23] proposed four unsupervised methods for feature selection using 

genetic algorithms. 

In [27], Fraley presents a comprehensive discussion on how to decide a clustering method and 

described a clustering methodology based on multivariate normal mixture models and shown that it 

can give much better performance than existing methods. This approach has some limitations, 

however. The first limitation is that computational methods for hierarchical clustering have storage 

and time requirements that grow at a faster than linear rate relative to the size of the initial partition, so 

that they cannot be directly applied to large data sets.  Secondly, although experience to date suggests 

that models based on multivariate normal distribution are sufficiently flexible to accommodate many 

practical situations, the underlying assumption is that groups are concentrated locally about linear 

subspaces, so that other models or methods may be more suitable in some instances. Bensmail et al. 

[198] showed that exact Bayesian inference via Gibbs sampling, with calculations of Bayes factors 

using the Laplace–Metropolis estimator, works well in several real and simulated examples [27].   

Further, for large data sets, CURE method is advisable whereas BIRCH being also good but with 

less time complexity although quality of clustering is inferior to that obtained by CURE, refer to Table 

1. Under partitioned clustering method, k-means clustering dominates and is still the most popular 

clustering method, refer to Table 2. How many clusters i.e. k depends on how close or fine tuning we 

want among clusters. We should also keep in mind, for what purpose we are applying k-means. In 

various clustering methods presented in the paper already, the strengths and weaknesses of each are 

mostly given therein. Apart from the discussion above on selection of appropriate method for 

clustering, it is worth noting looking to a huge amount of literature available with wide variety of 

application of clustering; it is not possible to settle to an agreeable recommendation. Specific task 

(objectives) calls for specific strategy and should be tested experimentally. Finally, a part of 

comprehensive and comparative table for various clustering algorithms presented before is given in 

Table 4, for details and meaning of symbols refer to [199]. 

Table 4. Comparative study of some clustering algorithms [199] 

Category of 

Clustering 

Algorithm 

Name 

Time complexity Scalability Suitable for 

large scale data 

Suitable for 

high 

dimensional 

data 

Sensitive 

of noise/ 

outlier 

Partition k-means Low O(knt) Middle Yes No High 

PAM High O(k(n-k)ˆ2)) Low No No little 

CLARA Middle O(ksˆ 2+k(n-k)) High Yes No Little 

CLARANS High O(nˆ2) Middle Yes No Little 

Hierarchy BIRCH Low O(n) High Yes No Little 

CURE Low O(s ˆ2*logs) High Yes Yes Little 

ROCK High O(nˆ2*logn) Middle No Yes Little 

Chameleon High O(nˆ2) High No No Little 

Fuzzy based FCM Low O(n) Middle No No High 

Density based DBSCAN Middle O(n*logn) Middle Yes No Little 

Graph theory CLICK Low O(k*f(v,e)) High Yes No High 

Grid based CLIQUE Low O(n+kˆ2) High No Yes Moderate 

 



8 Conclusions 

The classification of objects finds prime importance in several data processing applications 

including data mining, medical diagnostics, pattern recognition and social paradigms. The objects 

already labeled are placed in supervised classified groups while those not labeled are grouped in 

unsupervised classified groups. This paper presented various methods used for clusters with their 

states of arts and limitations. In the hierarchical type of clustering methods, clusters are formed by 

iteratively dividing the patterns (instances) into top-down or bottom up manner accordingly 

agglomerative and divisive or splitting hierarchical clustering methods are discussed. As opposed to 

hierarchical clustering, partitional clustering assigns data into K clusters without any hierarchical 

structure by optimizing some criterion function. The most common criterion is finding Euclidean 

distance between the points with each of the available clusters and assigning the point to the cluster 

with minimum distance. The benchmark k-means clustering methods with its variations like Fuzzy K-

means are discussed. The graph theoretic methods produce clusters via graphs. In the mixture density 

based methods, data objects are assumed to be generated according to several probability distributions 

and can be derived from different types of density functions (e.g., multivariate Gaussian or t-

distribution), or from the same families but with different parameters. The grid based clustering 

techniques include: STING (statistical information grid approach) a highly scalable algorithm and has 

the ability to decompose the data set into various levels of details. The evolutionary approaches for 

clustering start with a random population of candidate solutions with some fitness function, which 

would be optimized. Clustering based on simulated annealing, collaborative clustering, multi objective 

clustering with their states of art are also included. Various types of the similarity criteria for 

clustering have been given in the paper. After the clusters have been formed, the evaluation criteria are 

also summarised to see the performance and accuracy of clusters. The applications of clustering in 

image segmentation, object and character recognition, information retrieval and data mining are 

highlighted in the paper. Of course there is an abundant amount of literature available in clustering and 

its applications; it is not possible to cover that entirely, only basic and few important methods are 

included in this paper with their merits and demerits. 

Acknowledgement 

The authors would like to thank the anonymous reviewers for their valuable suggestions and 

comments to improve the quality of the paper. This work is partially supported by the Australian 

Research Council (ARC) under discovery grant DP150101645. 

References 

1. R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,” Wiley Publications, 2001. 

2. Y. Zhang, Y. Yin, D. Guo, X. Yu, and L. Xiao, “Cross-validation based weights and structure determination of 

Chebyshev-polynomial neural networks for pattern classification,” Pattern Recognition, vol. 47, no. 10, pp. 3414-

3428, 2014. 

3. H. Nakayama, N. Kagaku, “Pattern classification by linear goal programming and its extensions,” Journal of 

Global Optimization, vol. 12, no. 2, pp. 111–126, 1998. 

4. C. M. Bishop, “Pattern recognition and machine learning,” Berlin: Springer, ISBN 978-0-387-31073-2. 

5. G.P. Zhang, “Neural networks for classification: a survey,” IEEE Transaction on Systems, Man, and Cybernetics, 

Part C: Applications and Reviews, vol. 30, no. 4, pp. 451–462, 2002. 

6. H. Zhang, J. Liu, D. Ma, and Z. Wang, “Data-core-based fuzzy min–max neural network for pattern classification,” 

IEEE Transaction on Neural Networks, vol. 22, no. 12, pp. 2339–2352, 2011. 

7. X. Jiang and A. H. K. S. Wah, “Constructing and training feed-forward neural net- works for pattern 

classification,” Pattern Recognition, vol. 36, no. 4, pp. 853–867, 2003. 

8. G. Ou and Y. L. Murphey, “Multi-class pattern classification using neural networks,” Pattern Recognition, vol. 40, 

no. 1, pp. 4–18. 2007. 

9. J. D. Paola and R. A. Schowengerdt, “A detailed comparison of back propagation neural network and maximum-

likelihood classifiers for urban land use classification,” IEEE Transaction on Geoscience and Remote Sensing, vol. 

33, no. 4, pp. 981–996, 1995. 

10. D. E. Rumelhart and J. L. McClelland, “Parallel Distributed Processing,” MIT Press, Cambridge, 1986. 

11. W. Zhou, “Verification of the nonparametric characteristics of back-propagation neural networks for image 

classification,” IEEE Transaction on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 771–779, 1999. 

12. G. Jaeger, U. C. Benz, “Supervised fuzzy classification of SAR data using multiple sources,” IEEE International 

Geoscience and Remote Sensing Symposium, 1999. 

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-387-31073-8
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=772033&queryText%3Dsupervised+fuzzy+classification
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6246


13. F. S. Marzano, D. Scaranari, and G. Vulpiani, “Supervised Fuzzy-Logic Classification of Hydrometeors Using C-

Band Weather Radars,” IEEE Transaction on Geoscience and Remote Sensing, vol. 45 , no. 11, pp. 3784-3799, 

2007. 
14. B. Xue, M. Zhang, and W. N. Browne, “Particle Swarm Optimization for Feature Selection in Classification: A 

Multi-Objective Approach,” IEEE Transaction on Cybernetics, vol. 43, no. 6, pp. 1656-1671, 2013. 

15. A. Saxena and M. Vora, “Novel Approach for the use of Small World Theory in Particle Swarm Optimization,” 

16th International Conference on Advanced Computing and Communications, 2008. 

16. Z. Pawlak, “Rough sets”, International Journal of Computer and Information Science, vol. 11, no. 5, pp. 341-356. 

1982. 

17. Z. Pawlak, “Rough sets In Theoretical Aspects of Reasoning about Data,” Kluwer, Netherlands, 1991. 

18. S. Dalai, B. Chatterjee, D. Dey, S. Chakravorti, and K. Bhattacharya, “Rough-Set-Based Feature Selection and 

Classification for Power Quality Sensing Device Employing Correlation Techniques,” IEEE Sensors Journal, vol. 

13, no. 2, pp. 563–573, 2013 

19. J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81-106, 1986. 

20. D. M. Farida, L Zhang, C. M. Rahman, M. A. Hossain, and R. Strachan, “Hybrid decision tree and naïve Bayes 

classifiers for multi-class classification tasks,” Expert Systems with Applications, vol. 41, no. 2, pp. 1937–1946, 

2014. 

21. J. Han, M. Kamber, and J. Pei, “Data Mining: Concepts and Techniques,” Morgan Kaufmann Publishers, 2011. 

22. L. Rokach, “Clustering Methods,” Data Mining and Knowledge Discovery Handbook, pp 331-352, Springer 2005. 

23. A. Saxena, N. R. Pal, and M. Vora, “Evolutionary methods for unsupervised feature selection using Sammon’s 

stress function, Fuzzy Information and Engineering,” vol. 2, no. 3, pp. 229-247, 2010. 

24. A. K. Jain, “Data Clustering: 50 years beyond k-means,” Pattern Recognition Letters, vol. 31, no. 8, pp. 651–666, 

2010. 

25. Merriam-Webster Online Dictionary, 2008 

26. V. E. Castro and J. Yang, “A Fast and robust general purpose clustering algorithm,” International Conference on 

Artificial Intelligence, 2000. 

27. C. Fraley and A. E. Raftery, “How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster 

Analysis”, Technical Report No. 329, Department of Statistics University of Washington, 1998. 

28. A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A review. ACM Computing Surveys, vol. 31, no. 3, pp. 

264-323, 1999. 

29. P. Sneath and R. Sokal, “Numerical Taxonomy,” W.H. Freeman Co, San Francisco, CA, 1973. 

30. B. King, “Step-wise Clustering Procedures,” Journal of American Statistical Association , vol. 69, no. 317, pp. 86-

101, 1967. 

31. J. H. Ward, “Hierarchical grouping to optimize an objective function,” Journal of the American Statistical 

Association, vol. 58, no. 301, pp. 236-244, 1963. 

32. F. Murtagh, “A survey of recent advances in hierarchical clustering algorithms which use cluster centers,” 

Computer Journal, vol. 26, no. 4, pp. 354-359, 1984. 

33. A. Nagpal, A. Jatain, and D. Gaur, “Review based on Data Clustering Algorithms,” IEEE Conference on 

Information and Communication Technologies, 2013. 

34. A. Periklis, “Data Clustering Techniques,” University of Toronto, 2002. 

35. S. Guha, R. Rastogi, and S. Kyuseok, “CURE: An efficient clustering algorithm for large databases,” ACM, 1998. 

36. K. George, E. H. Han, and V. Kumar, “CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic 

Modeling,” IEEE Computer, vol. 32, no. 8, pp. 68-75, 1999. 

37. D. Lam and D. C. Wunsch, “Clustering,” Academic Press Library in Signal Processing,” Signal Processing Theory 

and Machine Learning, vol. 1, 2014 

38. J. B. MacQueen, “Some Methods for classification and Analysis of Multivariate Observations,” 5th Symposium on 

Mathematical Statistics and Probability, Berkeley, University of California Press, vol. 1, pp. 281-297, 1967. 

39. A. Gersho and R. Gray, “Vector Quantization and Signal Compression,” Kluwer Academic Publishers, 1992. 

40. J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated 

Clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32-57, 1973. 

41. J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, New York, 1981. 

42. R. Yager and D. Filev, “Approximate clustering via the mountain method,” IEEE Transaction on Systems, Man 

and Cybernetics, Part B: Cybernetics, vol. 24, no. 8, pp. 1279–1284. 1994 

43. I. Gath and A. Geva, “Unsupervised optimal fuzzy clustering,” IEEE Transaction on Pattern Analysis  and 

Machine Intelligence, vol. 11, no. 7, pp. 773–781. 1989. 

44.  R. Hathaway, J. Bezdek, and Y. Hu, “Generalized fuzzy c-Means clustering strategies using Lp norm distances,” 

IEEE Transaction on Fuzzy Systems, vol. 8, no. 5, pp. 576–582. 2000. 

45.  R. Krishnapuram and J. Keller, “A possibilistic approach to clustering,” IEEE Transaction on Fuzzy Systems, vol. 

1, no. 2, pp. 98–110, 1993. 

46. C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters,” IEEE Transaction on 

Computer, vol. C-20, no. 1, pp. 68-86, 1971. 

47. R. Urquhart, “Graph-theoretical clustering based on limited neighborhood sets,” Pattern Recognition, vol. 15, no. 

3, pp. 173-187, 1982. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Marzano,%20F.S..QT.&searchWithin=p_Author_Ids:37269625100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Scaranari,%20D..QT.&searchWithin=p_Author_Ids:37660501800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vulpiani,%20G..QT.&searchWithin=p_Author_Ids:37550431200&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4373376&queryText%3Dsupervised+fuzzy+classification
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4373376&queryText%3Dsupervised+fuzzy+classification
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bing%20Xue.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mengjie%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Browne,%20W.N..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6381531&searchWithin%3Dpso+based+classification%26searchWithin%3Dpso+based+classification%26refinements%3D4291944246%26queryText%3Dpso+based+classifications
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6381531&searchWithin%3Dpso+based+classification%26searchWithin%3Dpso+based+classification%26refinements%3D4291944246%26queryText%3Dpso+based+classifications
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221036
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dalai,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chatterjee,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dey,%20D..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chakravorti,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bhattacharya,%20K..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6304906&refinements%3D4291944246%26queryText%3Drough+set+based+classifications
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6304906&refinements%3D4291944246%26queryText%3Drough+set+based+classifications
http://link.springer.com/journal/12543


48. D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,” Machine Learning 2, pp. 139-172. 

1987. 

49. S. Haykin, “Neural Networks: A Comprehensive Foundation,” 2nd Edition, Prentice Hall, 1999. 

50. R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transaction on Neural Networks, vol. 16, no. 3, 

645–678, 2005. 

51. R. Xu. D.C. Wunsch, “Clustering algorithms in biomedical research: a review,” IEEE Reviews in Biomedical 

Engineering, vol. 3, pp. 120–154. 2010. 

52. G. McLachlan, T. Krishnan, “The EM Algorithm and Extensions,” Wiley, New York, 1997. 

53. J. D. Banfield and A. E. Raftery, “Model-based Gaussian and non-Gaussian clustering Biometrics,” vol. 49, no. 3, 

pp. 803-821, 1993. 

54. M. Ester, H. P. Kriegel, S. Sander S, and X. Xu, “A density-based algorithm for discovering clusters in large 

spatial databases with noise,” 2nd International Conference on Knowledge Discovery and Data Mining, 1996. 

55. P. Cheeseman, J. Stutz, “Bayesian Classification (AutoClass): Theory and Results,” Advances in Knowledge 

Discovery and Data Mining, pp. 153-180, 1996. 

56. C. S. Wallace and D. L. Dowe, “Intrinsic classification by mml–the snob program,” 7th Australian Joint Conference 

on Artificial Intelligence, pp. 37-44, 1994. 

57. W. Wang, J. Yang, and R. R. Muntz, “STING: A Statistical Information Grid Approach to Spatial Data Mining,” 

23rd VLDB Conference, pp. 86-195, 1997. 

58. G. Sheikholeslami, S. Chatterjee and A. Zhang, “WaveCluster: a wavelet-based clustering approach for spatial data 

in very large databases,” The International Journal on Very Large Data Bases, vol. 8, no. 3-4, pp. 289-304, 2000. 

59. R. Agrawal, G. Johannes, G. Dimitrios, and P. Raghavan, “Automatic Subspace Clustering of High Dimensional 

Data for Data Mining Applications,” SIGMOD Conference, pp. 94-105, 1998. 

60. A. K. Jain and M. Flynn, “Data clustering: a review,” ACM Computing Surveys (CSUR), vol. 31, no. 3, pp. 264-

323, 1999. 

61. H. P. Schwefel, “Numerical Optimization of Computer Models,” John Wiley, New York, 1981. 

62. L. J. Fogel, A. J. Owens, and M J Walsh, “Artificial Intelligence Through Simulated Evolution,” John Wiley , New 

York, 1965. 

63. J. H. Holland, “Adaption in Natural and Artificial Systems,” University of Michigan Press, 1975. 

64. D. Goldberg, “Genetic Algorithms in Search Optimization and Machine Learning,” Addison Wesley Reading, 

1989. 

65. J. Kennedy and R. C. Eberhart, “Swarm Intelligence,” Morgan Kaufmann, 2001. 

66. J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” 4th IEEE International Conference on Neural 

Networks. pp. 1942–1948, 1995. 

67. M. Dorigoand T. Stützle, “Ant Colony Optimization,” MIT Press, 2004. 

68. F. Glover, “Future Paths for Integer Programming and Links to Artificial Intelligence,” Computers and Operations 

Research, vol. 5, no. 5, pp. 533-549, 1986. 

69. K. S. Al. Sultan, “A Tabu Search Approach to Clustering Problem,” Pattern Recognition, vol. 28, no. 9, pp. 1443-

1451, 1995. 

70. W. Pedrycz, “Collaborative fuzzy clustering,” Pattern Recognition Letters, vol. 23, no. 14, pp. 1675–1686, 2002. 

71. L. F. S. Coletta, L. Vendramin, E. R. Hruschka, R. J. G. B. Campello, and W. Pedrycz, “Collaborative Fuzzy 

Clustering Algorithms: Some Refinements and Design Guidelines,” IEEE Transactions on Fuzzy Systems, vol. 20, 

no. 3, pp. 444-462, 2012. 

72. W. Pedrycz and P. Rai, “Collaborative clustering with the use of Fuzzy C-Means and its quantification,” Fuzzy 

Sets and Systems, vol. 159, no. 18, pp. 2399–2427, 2008. 

73. W. Pedrycz, “Knowledge Based Clustering: From data to information granules,” Wiley Publications, 2005. 

74. M. Prasad, C. T. Lin, C. T. Yang, and A. Saxena, “Vertical Collaborative Fuzzy C-Means for Multiple EEG Data 

Sets,” Springer Intelligent Robotics and Applications Lecture Notes in Computer Science, vol. 8102, pp 246-257, 

2013. 

75. C. Pizzuti, “Overlapping Community Detection in Complex Networks,” GECCO, pp. 859–866, 2009. 

76. S. Gregory, “A Fast Algorithm to Find Overlapping Communities in Networks,” PKDD, pp. 408–423, 2008. 

77. Y. Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal multi-scale complexity in networks,” Nature, 

vol. 466, pp. 761–764, 2010. 

78. G Forestier, P Gancarski, and C Wemmert, “Collaborative Clustering with back ground knowledge,” Data and 

Knowledge Engineering, vol. 69, no. 2, pp. 211–228, 2010. 

79. J. Handl and J. Knowles, “An evolutionary approach to Multiobjective clustering,” IEEE Transaction on 

Evolutionary Computation, vol.11, no. 1, pp. 56-76, 2007. 

80. A. Konak, D. Coit, and A. Smith, “Multiobjective optimization using genetic algorithms: A tutorial,” Reliability 

Engineering and System Safety, vol. 91, no. 9, pp. 992-1007, 2006. 

81. K. Faceili, A. D. Carvalho, and D. Souto, “Multiobjective Clustering ensemble,” International Conference, on 

Hybrid Intelligent Systems, 2006. 

82. M. K. Law, A. Topchy, and A. K. Jain, “Multiobjective Data Clustering,” IEEE Conference on Computer Vision 

and Pattern Recognition, vol. 2, pp. 424-430, 2004. 

83. D. Forsyth and J. Ponce, “Computer vision: a modern approach,” Prentice Hall, 2002. 

http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gehrke:Johannes.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gunopulos:Dimitrios.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Raghavan:Prabhakar.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod98.html#AgrawalGGR98
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Marco+Dorigo%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Thomas+St%C3%BCtzle%22
http://link.springer.com/search?facet-author=%22Mukesh+Prasad%22
http://link.springer.com/search?facet-author=%22Chin-Teng+Lin%22
http://link.springer.com/search?facet-author=%22Chien-Ting+Yang%22
http://link.springer.com/search?facet-author=%22Amit+Saxena%22
http://link.springer.com/book/10.1007/978-3-642-40852-6
http://link.springer.com/bookseries/558


84. I. H. G. S. Consortium, “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860–921, 

2001.  

85. C. Dorai and A. K. Jain, “Shape Spectra Based View Grouping for Free Form Object,” International Conference on 

Image Processing, vol. 3, pp. 240-243, 1995. 

86. S. Connell and A. K. Jain, “Learning Prototypes for On-Line Handwritten Digits,” 14th International Conference on 

Pattern Recognition, vol. 1, pp. 182-184, 1998. 

87. E. Rasmussen, “Clustering Algorithms,” Information Retrieval: Data Structures and Algorithms, Prentice Hall 

Englewood Cliffs, pp 419-442, 1992. 

88. G. McKiernan, “LC Classification Outline,” Library of Congress Washington, D. C, 1990. 

89. S. R. Hedberg, “Searching for the mother lode: Tales of the first data miners,” IEEE Expert: Intelligent Systems an 

Their Applications, vol. 11, no. 5, pp. 4-7, 1996. 

90. J. Cohen, “Communications of the ACM: Data Mining Association for Computing Machinery,” Nov. 1996.  

91. A. Saxena, J. Wang, “Dimensionality Reduction with Unsupervised Feature Selection and Applying Non-

Euclidean Norms for Classification Accuracy,” International Journal of Data Warehousing and Mining, vol. 6, no. 

2, pp 22-40, 2010. 

92. K. S. Al. Sultan and M. M. Khan, “Computational experience on four algorithms for the hard clustering problem,” 

Pattern Recognition Letters, vol. 17, no. 3, pp. 295-308, 1996. 

93. R. Michalski, R. E. Stepp, and E. Diday, “Automated construction of classifications: conceptual clustering versus 

numerical taxonomy,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 5, no. 4, pp. 396–409, 

1983. 

94. J. C. Venter et. al.,“The sequence of the human genome,”Science,vol. 291, pp. 1304–1351, 2001. 

95. J. L. Kolodner, “Reconstructive memory: A computer model,” Cognitive Science, vol. 7, no. 4, pp. 281-328, 1983. 

96. C. Carpineto and G. Romano, “An order-theoretic approach to conceptual clustering,” 10th International 

Conference on Machine Learning, pp. 33–40, 1993. 

97. L. Talavera and J. Bejar. “Generality-Based Conceptual Clustering with Probabilistic Concepts,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 196-206, 2001. 

98. M. Hadzikadic and D. Yun, “Concept formation by incremental conceptual clustering,” 11th International Joint 

Conference Artificial Intelligence, pp. 831-836, 1989. 

99. G. Biswas, J. B. Weinberg, and D. H. Fisher, “Iterate: A conceptual clustering algorithm for data mining,” IEEE 

Transactions on Systems, Man, and Cybernetics, Part C, vol. 28, no. 2, pp. 219–230, 1998. 

100. K. Thompson and P. Langley, “Concept formation in structured domains,” Concept Formation: Knowledge and   

Experience in Unsupervised Learning, Morgan Kaufmann, 1991. 

101. I. Jonyer, D. Cook, and L. Holder, “Graph-based hierarchical conceptual clustering,” Journal of Machine Learning 

Research, vol. 2, pp. 19-43, 2001. 

102. M. Lebowitz, “Experiments with Incremental Concept Formation: UNIMEM,” Machine Learning, vol. 2, no. 2, 

pp. 103-138, 1987. 

103. S. Hanson and M. Bauer, “Conceptual clustering, categorization and polymorphy,” Machine Learning Journal, 

vol. 3, no. 4, pp. 343-372, 1989. 

104. T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1–3, Pages 1–6, 1998. 

105. J. Vesanto and E. Alhoniemi, “Clustering of the Self-Organizing Map,” IEEE Transactions on Neural Networks, 

vol. 11, no. 3, 2000. 

106. J. G. Upton and B. Fingelton, “Spatial Data Analysis by Example,” Point Pattern and Quantitative Data, John 

Wiley & Sons, New York, vol. 1, 1985. 

107. A. Strehl, J. Ghosh, and R. Mooney, “Impact of similarity measures on web-page clustering,” Workshop on 

Artificial Intelligence for Web Search, pp 58–64, 2000. 

108. J. J. Fortier, and H. Solomon, “Clustering procedures,” The Multivariate Analysis, pp. 493-506, 1996. 

109. M. A. Gluck and  J. E. Corter,(1985), “Information, uncertainty, and the utility of categories,” Program of the 7th 

Annual Conference of the Cognitive Science Society, pp. 283–287, 1985. 

110.  M. J. A. N. Condorcet, “Essai sur l’Application de l’Analyse `a la Probabilite´ des decisions rendues a la 

Pluralite´ des Voix,” paris: L’Imprimerie Royale, 1785. 

111. J. F. Marcotorchino and P. Michaud, “Optimisation en Analyse Ordinale des Donnees Masson, Paris, 1979. 

112. J. E. Corter and M. A. Gluck, “Explaining basic categories: Feature predictability and information,” Psychological 

Bulletin, vol. 111, no. 2, pp. 291–303, 1992. 

113. A. Strehl and J. Ghosh, “Clustering Guidance and Quality Evaluation Using Relationship-based Visualization,” 

Intelligent Engineering Systems through Artificial Neural Networks, St. Louis, Missouri, USA, pp 483-488, 2000. 

114. S. V. Stehman, “Selecting and interpreting measures of thematic classification accuracy” Remote Sensing of 

Environment, vol. 62, no. 1, pp. 77–89, 1997. 

115. W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of the American Statistical 

Association, vol. 66, no. 336, pp. 846– 850, 1971. 

116. V. Rijsbergen, “Information retrieval,” Butterworths, London, 1979. 

117. J. F. Brendan and D. Dueck, “Clustering by passing messages between data points,”.Science, vol. 315, pp. 972–

976, 2007. 

118. E. B. Fowlkes and C. L. Mallows (1983), “A Method for Comparing Two Hierarchical Clusterings,” Journal of 

the American Statistical Association, vol. 78, no. 383, pp. 553–569, 2010. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kohonen,%20T..QT.&searchWithin=p_Author_Ids:37318173400&newsearch=true
http://www.sciencedirect.com/science/journal/09252312
http://www.sciencedirect.com/science/journal/09252312/21/1
http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
http://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
http://www.sciencedirect.com/science/article/pii/S0306457301000486#BIB33
http://en.wikipedia.org/wiki/Science_(journal)


119. D. L. Olson and D. Delen, “Advanced Data Mining Techniques,” Springer, 1st edition, 2008. 

120. D. M. W. Powers, “Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & 

Correlation,” Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2007. 

121. P. Jaccard, “Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines,” Bulletin 

de la Société Vaudoise des Sciences Naturelles, vol. 37, pp. 241-272, 1901. 

122. J. Han, M. Kamber, and J. Pei, “Data mining: Concepts and techniques,” Morgan Kaufman, San Francisco, USA, 

2011. 

123. J. J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,” IEEE Transaction on Systems, 

Man and Cybernetics, vol. 16, no. 1, pp. 122–128, 1986. 

124. C. T. Lin, M. Prasad, and J. Y. Chang, “Designing mamdani type fuzzy rule using a collaborative FCM scheme,” 

International Conference on Fuzzy Theory and Its Applications, 2013. 

125. L. Eugene, “Chapter 4.5. Combinatorial Implications of Max-Flow Min-Cut Theorem, Chapter 4.6. Linear 

Programming Interpretation of Max-Flow Min-Cut Theorem,” Combinatorial Optimization: Networks and 

Matroids, Dover. pp. 117–120, 2001. 

126. C. H. Papadimitriou and K. Steiglitz, “Chapter 6.1 The Max-Flow, Min-Cut Theorem,” Combinatorial 

Optimization: Algorithms and Complexity. Dover. pp. 120– 128, 1998. 

127. A. S. Fotheringham, M. E. Charlton, and C. Brunsdon, “Geographically weighted regression: a natural evolution 

of the expansion method for spatial data analysis,” Environment and Planning, vol. 30, no. 11, pp. 1905-1927, 

1998. 

128. M. Honarkhah, and J. Caers, “Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling,” 

Mathematical Geosciences, vol. 42, no. 5, pp. 487–517, 2010. 

129. P. Tahmasebi, A. Hezarkhani, and M Sahimi, “Multiple-point geostatistical modeling based on the cross-

correlation functions,” Computational Geosciences, vol.16, no. 3, pp. 779-797, 2012. 

130. S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering Algorithm for Categorical Attributes,” IEEE 

Conference on Data Engineering, 1999. 

131. T. Zhang, R. Ramakrishnan, and M. Linvy, “BIRCH: An Efficient Method for Very Large Databases,” ACM 

SIGMOD, 1996. 

132.  D. Jiang, G. Chen, B. C. Ooi, K. L. Tan, and S. W, “epiC: an Extensible and Scalable System for Processing Big 

Data,” 40th VLDB Conference, pp. 541 - 552, 2014. 

133. Z. Huang, “A Fast Clustering Algorithm to Cluster very Large Categorical Data Sets in Data Mining,” DMKD, 

1997. 

134. A. Hinneburg and D. Keim, “An Efficient Approach to Clustering in Large Multimedia Databases with Noise,” 

KDD Conference, 1998. 

135. M. J. A. Berry and G. Linoff, “Data Mining Techniques For Marketing, Sales and Customer Support,” John Wiley 

& Sons, Inc., USA, 1996. 

136. G. Fennell, G. M. Allenby, S. Yang and Y. Edwards, “The Effectiveness of Demographics and Phychographic 

Variables for Explaining Brand and Product Category Use,” Quantitative Marketing and Economics, vol. 1, no. 2, 

pp. 223-224, 2003. 

137. M. Y. Kiang, D. M. Fisher, M. Y. Hu, “The effect of sample size on the extended self-organizing map network- A 

market segmentation application,” Computational Statistics and Data Analysis, vol. 51, no. 12, pp. 5940-5948, 

2007. 

138. S. Dolnicar, “Using Cluster Analysis for Market Segmentation–Typical Misconceptions, Established 

Methodological Weaknesses and Some Recommendations for Improvement,” Journal of Marketing Research, vol. 

11, no. 2, pp. 5-12, 2003. 

139. R. Wagner, S. W. Scholz, and R. Decker, “The number of clusters in market segmentation,” Data Analysis and 

Decision Support, Heidelberg: Springer, pp. 157-176, 2005. 

140. R. M. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, “Biological Sequence Analysis: Probabilistic Models of 

Proteins and Nucleic Acids,” Cambridge: Cambridge University Press, 1998. 

141. J. M. Kaplan,el, R. G. Winther, “Prisoners of Abstraction? The Theory and Measure of Genetic Variation, and the 

Very Concept of “Race”,” Biological Theory, vol. 7. 2012. 

142. P. J. Carrington, and J. Scott, “Social Network Analysis: An Introduction,” The Sage Handbook of Social 

Network Analysis, London, vol. 1, 2011. 

143. “Yippy growing by leaps, bounds,” The News-Press. 23 May 2010, Retrieved 24 May 2010. 

144. D. Dirk, “A concept-oriented approach to support software maintenance and reuse activities” 5th Joint Conference 

on Knowledge Based Software Engineering, 2002. 

145. M. G. B. Dias, N. Anquetil, and K. M. D. Oliveira, “Organizing the knowledge used in software maintenance,” 

Journal of Universal Computer Science, vol. 9, no. 7, pp. 641–658, 2003. 

146. R. Francesco, L Rokach and B. Shapira, “Introduction to Recommender Systems Handbook,” Recommender 

Systems Handbook, Springer, 2011, pp. 1-35. 

147.  “www.educationaldatamining.org,” 2013. 

148. R. Baker, “Data Mining for Education,” International Encyclopedia of Education (3rd edition), Oxford, UK, 

Elsevier, vol. 7, pp. 112-118, 2010. 

149. G. Siemens, R. S. J. D. Baker, “Learning analytics and educational data mining: towards communication and 

collaboration,” 2nd International Conference on Learning Analytics and Knowledge, pp. 252–254, 2012. 

http://www.bioinfo.in/uploadfiles/13031311552_1_1_JMLT.pdf
http://www.bioinfo.in/uploadfiles/13031311552_1_1_JMLT.pdf
http://www.sciencedirect.com/science/article/pii/S095741740700663X#bib18
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Grefenstette,%20J.J..QT.&searchWithin=p_Author_Ids:37388906500&newsearch=true
http://en.wikipedia.org/wiki/Eugene_Lawler
http://en.wikipedia.org/wiki/Christos_H._Papadimitriou
http://en.wikipedia.org/wiki/Kenneth_Steiglitz
http://www.vldb.org/pvldb/vol7/p541-jiang.pdf
http://www.vldb.org/pvldb/vol7/p541-jiang.pdf
http://en.wikipedia.org/wiki/Richard_M._Durbin
http://en.wikipedia.org/wiki/Sean_Eddy
http://en.wikipedia.org/wiki/Anders_Krogh
http://books.google.com/books?id=2chSmLzClXgC&pg=PA1
http://www.news-press.com/article/20100523/BUSINESS/5230344/1014/BUSINESS/Yippy-growing-by-leaps--bounds
http://en.wikipedia.org/wiki/The_News-Press
http://www.educationaldatamining.org/


150. R. Huth, C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul, M. Cahynova, J. Kysely, and O. E. Tveito, 

“Classifications of Atmospheric Circulation Patterns: Recent Advances and Applications” Annals of the New 

York Academy Science, vol. 1146, no. 1, pp. 105-152, 2008. 

151. A. Bewley. R. Shekhar, S. Leonard, B. Upcroft, and P. Lever, “Real-time volume estimation of a dragline 

payload,” IEEE International Conference on Robotics and Automation", pp. 1571-1576, 2011. 

152. C. D. Manning, P. Raghavan, and H. Schu¨tze, “An Introduction to Information Retrieval,” Cambridge University, 

Press, 2009. 

153. D. T. Nguyen, L. Chen, and C. K. Chan, “Clustering with Multi-viewpoint-Based Similarity Measure,” IEEE 

Transactions on Knowledge and Data Engineering, vol. 24, no. 6, pp. 988-1001, 2012. 

154.  Bravais, “Memoires par divers savants,” T, IX, Paris, pp. 255–332, 1846. 

155. K. Pearson, “Mathematical Contributions to the Theory of Evolution, III, Regression, Heredity, and Panmixia,” 

Philosophical Transactions of the Royal Society of London, Series A, vol. 187, pp. 253–318, 1896. 

156. T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on similarity of 

species and its application to analyses of the vegetation on Danish commons,” Kongelige Danske Videnskabernes 

Selskab, vol. 5, no. 4, pp. 1–34, 1948. 

157. L. R. Dice, “Measures of the Amount of Ecologic Association Between Species,” Ecology, vol. 26, no. 3, pp. 

297–302, 1945. 

158. J. D. Hamilton, “Time Series Analysis,” Princeton University Press, 1994. 

159. R. S. Tsay, “Analysis of Financial Time Series,” John Wiley & SONS, 2005. 

160. A Saxena and J. Wang, “Dimensionality Reduction with Unsupervised Feature Selection and Applying Non-

Euclidean Norms for Classification Accuracy,” International Journal of Data Warehousing and Mining (IJDWM), 

vol. 6, no. 2, pp. 22–40, 2010. 

161. S. Arora, I. Chana, “A Survey of Clustering Techniques for Big Data Analysis,” 5th International Conference on 

The Next Generation Information Technology Summit (Confluence), 2014. 

162. A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan, “Big Data Clustering: A Review,” Lecture 

Notes in Computer Science, vol. 8583, pp. 707-720, 2014. 

163. H. Wang, W. Wang, J. Yang, and P. S. Yu, “Clustering by Pattern Similarity in Large Data Sets,” International 

Conference on Management of Data, ACM, 2002. 

164. Z. Huang, “A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining,” DMKD. 

1997. 

165. X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,” IEEE Transaction on Knowledge and Data 

Engineering, vol. 26, no. 1, pp. 97-107, 2014. 

166. P. Russom, “Big Data Analytics,” TDWI Best Practices Report, Fourth Quarter, 2011. 

167. C. Xiao, F. Nie, and H. Huang, “Multi-view k-means clustering on big data,” The Twenty-Third International 

Joint Conference on Artificial Intelligence, AAAI, 2013. 

168. W. Fan and B. Albert, “Mining Big Data: Current Status and Forecast to the Future,” ACM SIGKDD Explorations 

Newsletter, vol. 14, no. 2, pp. 1-5, 2013. 

169. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” IEEE 26th Symposium 

on Mass Storage Systems and Technologies (MSST), 2010. 

170. D. Jeffrey and S. Ghemawat, “MapReduce: a flexible data processing tool,” Communications of the ACM, vol. 

53, no. 1, pp. 72-77, 2010. 

171. https://hadoop.apache.org/ 

172. G. Celeux, and G. Govaert, “A classification EM algorithm for clustering and two stochastic versions,” 

Computational statistics & Data analysis, vol. 14, no. 3, pp. 315-332, 1992. 

173. L. Kaufman and P. Rousseeuw, “Finding Groups in Data: An Introduction to Cluster Analysis,” Wiley, 1990. 

174. R. Ngand and J. Han, “CLARANS: A method for clustering objects for spatial data mining,” IEEE Trans. 

Knowledge Data Engineering, vol. 14, no. 5, pp. 1003–1016, 2002. 

175. Sisodia, singh, sisodia, and saxena, “Clustering Techniques: A Brief Survey of Different Clustering Algorithms”, 

International Journal of Latest Trends in Engineering and Technology (IJLTET), vol. 1, no. 3, pp. 82-87, 2012. 

176. Zhong, Miao, and Wang, “A graph-theoretical clustering method based on two rounds of minimum spanning 

trees,” Pattern Recognition, vol. 43, pp. 752 – 766, 2010. 

177.  Y. Chen, S. Sanghavi, and H. Xu, “Improved graph clustering,” IEEE Transactions on Information Theory, vol. 

60, no. 10, pp. 6440-6455, 2014. 

178. A. Condon, and R. Karp, “Algorithms for graph partitioning on the planted partition model,” Random Structures 

Algorithms, vol. 18, no. 2, pp. 116-140, 2001. 

179. W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning of graphs,” IBM J. Res. Develop., vol. 17, 

pp. 420 – 425, 1973. 

180. J. Shi, J. and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 22, no. 8, pp. 888 – 905, 2000. 

181. U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4, pp. 395-416, 2007. 

182. K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-dimensional stochastic block model,” The 

Annals of Statistics, vol. 39, no. 4, pp. 1878-1915, 2011. 

183.  S. Gunnemann, I. Farber, B. Boden, and T. Seidl, “Subspace clustering meets dense sub-graph mining,” A 

synthesis of two paradigms, In ICDM, 2010. 

http://en.wikipedia.org/wiki/Plant_sociology
http://en.wikipedia.org/wiki/Kongelige_Danske_Videnskabernes_Selskab
http://en.wikipedia.org/wiki/Kongelige_Danske_Videnskabernes_Selskab
http://amzn.to/1cqB6QD
http://amzn.to/1blTqWD
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558


184. K. Macropol and A. Singh, “Scalable discovery of best clusters on large graphs,” Proceedings of the VLDB 

Endowment, vol. 3, no. 1-2, pp. 693-702, 2010. 

185. J. J. Whang, X. Sui, and I. S. Dhillon, “Scalable and memory-efficient clustering of large-scale social networks,” 

In ICDM, 2012. 

186. G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM 

Journal on Scientific Computing, vol. 20, no. 1, pp. 359-392, 1998. 

187. G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irregular graphs,” Journal of Parallel and 

Distributed Computing, vol. 48, pp. 96-129, 1998. 

188. D. Yan, L. Huang, and M. I. Jordan, “Fast approximate spectral clustering,” In KDD, pp. 907-916, 2009. 

189. J. Liu, C. Wang, M. Danilevsky, and J. Han, “Large-scale spectral clustering on graphs,” In IJCAI, 2013. 

190. W. Yang and H. Xu, “A divide and conquer framework for distributed graph clustering,” In ICML, 2015. 

191. Ghosh and Dubey, “Comparative Analysis of K-Means and Fuzzy C Means Algorithms,” International Journal of 

Advanced Computer Science and Applications, vol. 4, no.4, pp. 35-39, 2013. 

192. S. Niwattanakul, J. Singthongchai, E. Naenudorn and S. Wanapu, “Using of Jaccard Coefficient for Keywords 

Similarity”, Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 

IMECS 2013, March 13 - 15, 2013, Hong Kong, 1-5.  

193. C. Chen, L. Pau, and P. Wang, “Hand book of Pattern Recognition and Computer Vision , Eds., World Scientific, 

Singapore, pp. 3 –32. R.Dubes, “Cluster analysis and related issue”. 

194. A. Jain and R. Dubes, “Algorithms for Clustering Data,” Englewood, Cliffs, NJ: Prentice-Hall, 1988. 

195. C. Shi, Y. Cai, D. Fu, Y. Dong, and B. Wu, “A link clustering based overlapping community detection algorithm,” 

Data & Knowledge Engineering, vol. 87, pp. 394–404, 2013. 

196. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of complex 

networks in nature and society,” Nature, vol. 435, pp. 814–818, 2005. 

197. D. H. Wolpert and W. G. Macready, “No Free Lunch Theorem for Optimization,” IEEE Transactions on 

Evolutionary Computation, vol. 1, No. 1, pp. 67-82, 1997 

198. Bensmail, H., Celeux, G., Raftery, A. E. and Robert, C. P. (1997) Inference in model-based cluster analysis. 

Stat.Comput., 7, 1–10. 

199. Xu.D., Tian, Y., “A Comprehensive Survey o f Clustering Algorithms”, Ann. Data Sci. 2, 165-193,2015. 


