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Chain Rules for Smooth Min- and Max-Entropies

Alexander Vitanov, Frédéric Dupuis, Marco Tomamicheldd&enato Renner

Abstract—The chain rule for the Shannon and von Neumann defined asH(A), := —tr(palogpa), where tr denotes
entropy, which relates the total entropy of a system to the the trace andog is taken in base 2 throughout this paper.
entropies of its parts, is of central importance to informaion e congitional von Neumann entropy with classical side
theory. Here we consider the chain rule for the more general . . . . .
smooth min- and max-entropy, used in one-shot information !nformat'on Can aga'n b(_e def'nefd bY an ave_rage_, however, this
theory. For these entropy measures, the chain rule no longer intuitive definition fails if the side information is quamtu
holds as an equality. However, the standard chain rule for te von Pointing to its fundamental importance, the conditionah vo
Neumann entropy is retrieved asymptotically when evaluatig Neumann entropy is thus defined by the chain rule itself, i.e.
them for many identical and independently distributed staes. H(A|B), := H(AB), — H(B),. In addition to the chain rule

and strong sub-additivity, it also satisfies a duality iefat
|. INTRODUCTION For any pure tripartite stateapc, we have H(A|B), =
H(A|C),.
Shannon and von Neumann entropies have been success-
ly employed to characterize an enormous variety of infor
tion theoretic tasks, many of which are of high practical
§ levance (examples include the aforementioned taskstaf da
mpression or channel coding). However, a basic assumptio
sually made in this context is that the underlying random
rocesses (e.g., those relevant for the generation of adiatiae
ccurrence of noise in a communication channel) are modeled
asymptotically by an arbitrarily long sequence of randomi-va
H(AB)=H(A|B)+ H(B) , ables that aréndependent and identically distributed (i.i.d.).

which we call thechain rule must hold. HereH (B) denotes _In the absence of this assumphon (e.g., .'f a c_hannel IS o_nly
invoked a small number of times or if its noise model is

the entropy of the random variablB and H(A|B) is the o ;

. S not i.i.d.), the use of the von Neumann entropy is generally
entropy of the random variablé averaged oveside informa- no longer justified. The formalism of smooth min- and max-
tion in B. The chain rule therefore asserts that the entropy of )

. : entropy, introduced in1[1]-[13] and further developed irb],
two (possibly correlated) random variables,and B, can be 9] [%] [17] overc;{m]eg ‘t?ﬂﬂs limitation and epnablesl the
decomposed into the entropy Bfalone plus the entropy of ! ' '

conditioned on knowings. More generally, one may avera analysis of general situations beyond the i.i.d. scendiis
' g Y y YGevel of generality turned out to be crucial in various areas

over additional side informatior(;, in which case the chain . . . i
e.g., in physics (where entropies are employed for the aimly
rule takes the more general form . . i
of problems in thermodynamic§])) or in cryptography (where
H(AB|C) = H(A|BC) + H(B|C) . (1) entropies are used to quantify an adversary’s uncertainty)
Smooth min- and max-entropy, denotéff,; and H ..

Pespectively, depend on a positive real vatuealledsmooth-
ing parameter: (see Sectionl for formal definitions). When

N classical and quantum information theory, entropy mea-

sures are often used to characterize fundamental infor
tion processing tasks. For example, in his groundbreaki
work on information and communication theod], Shannon
showed that entropies can be used to quantify the mem
needed to store the (compressed) output of an informati®
source or the capacity of a communication channel. It fodlow’
immediately from the basic properties of the Shannon eytro§
that the equality

The chain rule forms an integral part of the entropy calculu
The other basic ingredient is strong sub-additivity, whiem

.b? wrlttgn asH(AJBé?) < H(ﬁlc)’ l.e. additional side the entropies are used to characterize operational tas&s, t
Information can only e(_:rea}set € entropy.’ smoothing parameter determines the desired accuracy. For
The quantum generalization of Shannon’s entropy,\thie

) : : example, the smooth min-entropi;; (A|B), characterizes
Neumann entropyinherits these fundamental properties. FQbe number of fully mixed qubits, independent (decoupled
a quantum statep, on A, the von Neumann entropy i

Sfrom side information3, that can be extracted from a quantum
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many of the basic features of von Neumann entropy, sulgads to strictly tighter bounds, for instance, wherontains
as strong sub-additivity. In light of this, it should not cem information that has been communicated previously over the
as a surprise that smooth entropy also obeys inequalit&és tpublic channel and is therefore already includedtin
generalize the chain ruld); Deriving these is the main aim  Until now, only special cases of the above inequalities have
of this work. been known, except for the first pair, which has been derived
Specifically, one can obtain four pairs of generalized chain[8]. In the present paper we provide proofs for the remaining
inequalities. For any small smoothing parametérs”, <" > relations. In fact, since smooth min- and max-entropy obey a
0 ande > ¢’ + 2¢”, we have duality relation similar to that of von Neumann entrogdy],

HE. (AB|C), > <" (AIBC), +H5'in(B|C)p s H:. (A|B) = —HE,.(A|C), the paired inequalities above

min o imply each other. It will therefore suffice to prove only one
Hré;lax(AB|C)P < Hré;lax(A|BC)P + Hré;lax(B|C)P + fv inequality of each pair.

, . The paper is organized as follows. In the next section
H:in(AB|C), < Hy i (AIBC), + Hy, . (BIC), +2f,  we introduce the notation, terminology, and basic defini-
Hlé;llax(AB|C)P > Hri:;n(AlBC)P + H:,(B|C), —2f, tions. In particular, we defir_1e the (smooth)_min- _and max-

entropy measures and outline some of their basic features.
Hriin(ABw)p < HEI;X(A|BC)p + H:,.(B|C), +3f, In Sectiotrjllll \(/jve derive f:ljlt?rnative expressionsdforlthe miﬁ-

, ” entro ased on semidefinite programming duality. While

HflldX(AB|C)p 2 H?ndx(A|BC)P + H?mn(B|C)P - 3f7 py p g g y

these expressions may be of independent interest, they will
be used in Sectioliv, which is devoted to the statement and

Hyin(AB|C), < Hy, proofs of the generalized chain rules.

min max(A|BC)P+H§r:;Lx(B|C)P+g7
Hi o (AB|C), > H5i (A|BC), + Ho(BIC), — g,

where f does not grow more than of the ordeg 1/e when Il. MATHEMATICAL PRELIMINARIES
e =¢e—¢ — 2" is small, andg is smaller thars for ¢/ + A. Notation and basic definitions

" " H H H H
2¢" + & < 1/5. We note that, in typical applications, we Throughout this paper we focus on finite dimensional

would choose the smoothing parameters so that the connect'i_ﬂlbert spaces. Hilbert spaces corresponding to diffepéwys-
termsf andg are small compared to the typical values of thFcaI systems are distinguished by different capital Lagitelrs

smooth entropies. :
as subscr etc. The tensor product and
The fact that generalized chain inequalities hold for sr’noofs deusigne:'?;[%zgort b¥ap = Ha ®DHBU Gt e

min- and max-entropy is not only important for establishing The set of linear operators frofi to H; is denoted

a complete entropy calculus, analogogs to that for _the Ve L(H.a,Hg). The space of linear operators acting on
Neumann entropy. They are also crucial for applications, e Hilbert space™ is denoted byZ(#) and the sub-

the following example shows. S I X
o . set of £ containing the Hermitian operators is
In quantum key distribution, after the quantum signals ha () g P oH

Yenoted byH . Note thatH dowed with
been exchanged and measured, two honest parties, Alice ﬂ"EHOH?Iber'XSE;Hr;](iZI-? inn(e)zre proaduce(gl(n(%) 62 ()t\;v&T;I,VI)
Bob, are left with two correlated raw keys, about whic ’ ) j

i X . XY € Herm(#), is a Hilbert space. Given an operator
a potential eavesdropper is guaranteed to have only Ilmltﬁg € Herm(H), we writt R > 0 if and only if R is

information. This fimit on the eavesdropper's knpwledge :ﬁositive semi-definite and& > 0 if and only if it is positive
best expressedLl] by a bound on the smooth min-entropyye s Furthermore, Ie8< (H) andS— () denote the sets of

of Allces.raw key, Xa, .cond|t8|/oned on the eavesdroppery , ,omalized and normalized positive semi-defidieasity
quantum informationf, i.e., HE, (X 4|E). However, to en- operatorswith tr p < 1 andtr p 1, respectively.

sure that Bob’s final key agrees with her own, Alice will have Inequalities between Hermitian operators are defined in the
following sense: LefR, S € Herm(H), then we writeR > S,

to send a syndrome§y = s(X4), over an insecure channel
A fundamental question in quantum key distribution is th"PespectivelyR ~ S if and only if R — S is positive semi-
definite, respectively positive definite.

to boundH:; (X4|ES), i.e., the smooth min-entropy of 4
conditiongd on the eavesdropper’s information after learn Given an operatoR, the operator norm of is denoted by
5. The third chain rule above states that IRl and is equal to the highest singular value ®f The
€ (XA|ES)> HE. . (XAS|E) — HE. (S|E) — 2f trace norm ofR is given by||R||; := tr[V R R]. The fidelity

_ e e between two statep, o € S<(#) is defined asl'(p, o) :=
Here, we used that = s(X4) and thusX, — X455 is an For multipartite operators on product spaGéss we will
isometry under which the smooth entropies are invariddt [ use subscripts to denote the space on which they act (e.g.
Roughly speaking, our chain rule thus implies that the eaves, g for an operator or{ 4 5). Given a multipartite operator
dropper gains at most/=.._ (S|E) bits of information about Sap € £(Hag), the corresponding reduced operatorn
X4, where we assumed thdtis negligible. This is strictly is defined byS4 := trg[Sap] wheretrp denotes the partial
tighter than previous results (see, e.@1]], where the gain trace operator on the subsysteHiz. Given a multipartite
was bounded bylog|S| > HZ. (S|E), where|S| is the operatorS,p and the corresponding marginal operaf,
number of different syndromes that can be stored'inThis we call S4p an extensionof S4. We omit identities from



expressions which involve multipartite operators wheneve Finally, the smooth min-entropy is upper-bounded by the
mathematically meaningful expressions can be obtained &yooth max-entropy as shown by the following lemma whose
tensoring the corresponding identities to the operators. proof is deferred to AppendiA:

_ _ Lemma 5. Lete, &/ > 0 and letpap € S<(Hap) be such
B. Smooth Min- and Max-Entropies thate + ¢’ + 2T —trpap < 1. Then,
In the following we successively give the definitions of the

. ) ; '° HeL (A|B), < H:,. (AB
non-smooth min- and max-entropies and their smooth vession min(A1B)p < Hivax(A1B) ) )
[11], [9]. + log .
) 1—(e+¢e +2/1—trp)?
Definition 1. Let pap € S<(Hag), then the min-entropy of S _
A conditioned onB of p4p is defined as C. Semidefinite Programming
Hum(A|B), = max  Hu(AB) where This subsection is devoted to the duality theory of semi-

opE€S<(Hp) plo definite programs (SDPs). We will present the subject asngive
Huin(A[B) o = Sup{/\ ER: pap <274 ®UB}_ ) in [2] anql especially.in 2{.0] bufc will res.trict Fhe discussion to
o _ the special case which is of interest in this work.
Note thatHmin(A|B),|, is finite if and only ifsupp(ps) S A semidefinite program over the Hilbert spadés and# is
supp(cp) and divergent otherwise. atriple(F,Ra,Sp), F € L(Herm(H 4), Herm(Hp)), Ra €

Definition 2. Let pap € S<(Hap), then the max-entropy of Herm(#4) and Sp € Herm(# ), which is associated with
A conditioned on B o is defined as the following two optimization problems:

Hunax(A|B), ==  max  Hpax(A|B),,, where PRIMAL PROBLEM: DUAL PROBLEM:
oB€E€S<(HB)
Huax(A|B) e :==10g F(pap,la ®op)?2. 3) minimize: tr[RaXa4] maximize: tr[SgYs5]
. . . . subject to: F(Xa) > Sz subject to: F'(Yz) < Ra
The maximum in 2) and @) is achieved aS_(*p). Thee- X4>0 Y >0

smooth min- and max-entropies of a statean be understood

as an optimization of the corresponding non-smooth questit where X, € Herm(H4) and Yz € Herm(Hp) are
over a set of states-close top. We use thepurified distance variables. X, > 0 and Yz > 0 such thatF(X4) > Sp
to quantify thes-closeness of states. and Ff(Yz) < R4, respectively, are callegrimal feasible

Definition 3. Let p, o € S<(#). Then the purified distance plan and dual feasible planrespectively. We also denote the
betweerp and o is defined_by solutions to the primal and dual problems by

— v = inf{tr[RaX4] : X4 is a primal feasible plap
P(p,U) = \ 1- F(p7 0)21 where (4) . .
§ := sup{tr[SpYp] : Yz is a dual feasible plgn

F(p,0):=F(p,0)+ \/(1 —trp)(1—tro) (5) The valuesX4 > 0 andYp > 0 satisfyingtr[RaXa] = v
andtr[SgYg| = § are calledorimal optimal plan respectively
dual optimal plan

Hereafter, when two statgs o € S<(#) are said to be- According to theweak duality theorermy > 6. The difference
close we mear(p, o) < ¢ and denote this by ~. 0. Some ~ — ¢ is called duality gap The following theorem called
of the basic properties of the purified distance are review&dater’s conditiorestablishes an easy-to-check condition under
in Appendix B, but for a more comprehensive treatment wevhich the duality gap vanishes, that is= 9.

refer to [L7]. With that convention we are ready to introducel.heorem 6. Lety ands be defined as above anid, R4, 5.4)
a smoothed version of the min- and max-entropieg. [ with R € Herm(H.4) and Sg € Herm(Hz) a semi-definite
Definition 4. Lete > 0, pap € S<(Hag). Then thes-smooth program. Then the following two implications hold:

is the generalized fidelity.

min-entropy of A conditioned on B of 5 is defined as ()[Strict dual feasibility] Supposey is finite and that there
ist tor; 0 such thatFf(Y; Ry. Th
HE (AB), — max Hum(A|B), () S an operaionis = 0 such a7 H{Yin) < fa. Then
i =4.

(ii) [Strict primal feasibility] Suppose that is finite and that

and thee-smooth max-entropy of A conditioned on Bpaf; .
© X Py ” FAle there exists an operatoX 4 > 0 such thatF(X4) > Sg.

is defined as
Then~ = 6.
H: (A|B), := min H A|B); 7
max(41B)s b max(41B)s " [1l. NEW EXPRESSIONS ANDBOUNDS FOR THESMOOTH
where the maximum and the minimum range over all sub- MAX-ENTROPY
normalized stategp ~: pas. In the following, we give alternative expressions for
Hinax(A|B)yo and Hyax(A|B), based on the analysis of

The smooth entropies are dual to each other in the foIIowiré% ; A . :
sense. Whempo € S<(Hagc) is pure, we havel7] Ps. Then, we prove inequalities relating these entrayitbs
' = ' a new entropic measure that turns out to be a useful tool for

H . (AB), = —Hg;,(A|C),. (8) proving the chain rules.

min



PRIMAL PROBLEM: DUAL PROBLEM:

A. New Expressions via SDP Duality minimum:  tr[(La @0 5)Zag] maximum:  tr[Xagopapc]
subject to: Zap ®lc > pasc subject to: tra[Xapc] <1 ®o
Lemma 7. Let pup € S<(Hag), o € S<(Hp) and let BZABZOp. B [ XBAB]C >0 B

papc be a purification ofp 45 on an auxiliary Hilbert space
Hce. Then the max-entropy of A conditioned on B ofp

relative too is given by where Z, 5 is a primal variable andX 5~ a dual vari-

able, respectively. Since the space in the dual problem
Hiax(A|B) |, = logmintr[(Ia ®0p5)Zag], (10) over which one is optimizing, is closed and bounded, it
Zap is compact by the Weierstrass theorem. Hence, the dual
optimal plan is finite. Furthermore, the operatdng =
2|lpascllo Iap > 0 satisfies Slater’s strict primal feasibility
condition 2||paBclleo Lasc —pasc > 0 and thus the dual-
Proof: Uhimann’s theorem1q tells us that the fidelity jty gap between the primal and dual optimization problems
can be expressed as a maximization of the overlap of purifgnishes. m
cations in which the optimization goes over one purification Next, we write out the SDP fo!7m=x(41B)s» and explore

only. In particular, if papc is any purification ofpas, then ihe quality gap between the optimization problems.
by Uhlmann’s theorem

where the minimum ranges over dlyp € P(Hap) with
paBc < Zap @ lc.

Lemma 8. Let pap € S<(Hap) and let papc be a

2Heax(AB)oie = F(pap,1a @0p)? purification of p 45 on an auxiliary Hilbert space{. Then
= max F(papc, Xapc)? the max-entropy of A conditioned on B @f is given by
Xapc>0
trc[XA C]:HA Ko .
rank(X apc)=1 Hunax(A|B), = logmin || Z5 o, (13)
AB
< max tr[papcXanc]
trc[xAgg]C:ﬁA Q05 where the minimum ranges over allap € P(Hap) With
= max F(papc, Xapc)? paBc < Zap ®lc.
Xapc>0 . .
tre[Xapc]=la ®@op Proof: The only thing that changes with respect to the
< F(pag,la ®aB)2 SDP in Lemma/ is thatop is no longer fixed but it becomes
— 9Hmax(A|B) a dual variable. Thus the SDP fof/==(A1B), reads:
where the first inequality follows from the fact that the set PRIMAL PROBLEM: _ DUAL PROBLEM:
hich timize b | d the last i I.m|n|mum: A maximum:  tr[Xapcpapc]
over which we optimize becomes larger and the last inequality yect 10:2, ; 1o > paso subject 10616 [X a o] < 14 ®op
follows from the fact that the fidelity is monotonously in- Ap > tra[Zag] trjop] <1
creasing under the partial trace. The above calculatiotiésp Zap20,A20 Xapc 20,0520

that instead of optimizing over rank one operatdfs zco ) )

as Uhlmann’s theorem demands, one can maximize over Wftere A and Z,p are primal variables andrp and

positive semidefinite extensiod$apc of 14 ®og, thatis,  Xasc dual variables. Obviously, the optimal is equal to
the largest eigenvalue dfp. Hence, the above program may

2 Hmax(AlB)plo — max trjpapcXapc]. (11) be rewritten in the form:
Xac>0
tre[Xapcel=la ®op
PRIMAL PROBLEM: DUAL PROBLEM:
Moreover, for any positive semidefinite operat¥n - with m'g!ml:f?i p @I{I)ZHBII? mfﬁflmtuT: . t[g[(XAB]cg,?IBcg
: subject to:  Zap ®lc > papc  subject to: tro[Xapce] <14 ®op
tro [Xapc] <14 ®op we can define an operator Zan >0 trlon] <1

_ Xapc 20, 020

Xapc == Xapc + Yo ® (Ia®op — tre Xapc),

In the dual problem we are optimizing over compact

sets, thus there exists a finite dual optimal plan. Furtheemo

Zap = 2|lpaBclloolag > 0 and \ = 2”23”00 > 0 satisfy
tr[Xapopase| = tr[Xapepasc]. Slater’s strict primal feasibility conditio 45 ® Ic > papc

and\lp > tra[Zap] which implies a zero duality gap. B

Hence, in (1) it is permissible to take the maximum over Note that one can always write the operator nornZgfas

the set of all nonnegative operatoXs, g whose partial trace

tre Xape is bounded byl4 ®op (in spite of being equal to |1 Z5|0e = maxtrlopZp] = maxtr[(Is ®op)Zas],

I4 ®op), that is, B oB

with Yo an arbitrary element of—(#c). By construction it
is constrained byre X 4pc = 4 ®op and also satisfies

9Hmax(A|B) o — max trlpapcXapc]. (12) where the maximum ranges over alk € S<(Hp). Expres-
Xapc20 sion (13) then acquires the form
tre[Xapc]<la ®op

Based on 12) we can expres@mx(A1B)1- in terms of the  Hmax(A|B), = 1ngABcgléﬁB®nC I%%Xtr[(h ©op)Zas]

following SDP: (24)



On the other hand from the vanishing of the duality gap we obtain the following upper bound fol 7):
the SDP ofH,,.x(A|B),|, it follows that

plo

6r[(115 + I )l (5 + 1) Z 5]

2 _ ~ HpZpllg|e <
log F(pap,la ®cp) logIZnA}rB}tr[(]IA ®op)ZaB] I ZplE|lx < (11 + 1))
which after maximization of the left- and the right-handesid [ + 1) 2 e Z 4]
overop € S<(Hp) implies - tr[(T15 + 15 ) ol
Hpax(A|B), =logmaxmintr[(In ®op)Zag]. trlp)s 23]
0B ZaB < L / /
. . . tr[(Ilg + 1) plg]

Therefore, the operationsiin and max in (14) commute. oAl 1
Since the functiontr[(I4 ®op)Z 4] is bilinear and the sets < QHmax(4] )”‘P’l_\/ﬁ,

over which one optimizes are convex, the commutativity of
min and max can alternatively be seen as a consequence\fere in the last line we used Equatioh0) and Inequality
the minimax theorem. (16). Finally, taking the logarithm on both sides yieldsb).
Henceforth, we will use ), (10) and (L3) and @4) as  The proof is concluded by the upper bound
interchangeable expressions for the conditional maxeegtr

" : . P(pap,pap) = P11 g, p
and the conditional relative max-entropy, respectively. (Par, ) (Mppaslls, Paz)

< P(Uppaplp,pp),pllp) + P(Upp/ s, Pip)

B. A Bound on the Relative Conditional Entropy < P(pap,pan) + \/2 tr[II5 0 5] — (tr[II504 5])?

Here we provide two lemmas which give tight upper bounds < ¢/ 4 ¢

of the max- and min-entropy in terms of the relative max- ) )
and min-entropy, respectively. The first lemma is a new tesifneére we use Inequality3y) and the fact that the function

whereas the latter one is an improved version of Lemma 242t — t* is monotonously increasing in the interval 1]. =

from [18]. Both of the following statements are important fof emma 10. Lete > 0 andpapc € S< (Hapc) be pure. Then
the derivation of chain rules. there exist a projectoil 4 on Hac and a statejapc =

Lemma 9. Lete > 0, pap € S<(Hap) and plyp ~o pap. Nacpapcllac such thatpape = papc and

Then there exists a stafeyp ~.+. p/45 such that 1
Hnin(A|B), < Huin(A|B) 5 + log <72) .
1 1—+V1—¢
Hmax(A|B)ﬁ < Hmax(A|B)p|p/ +1Og PN e .
1-v1l-c¢ As already remarked, the proof of this lemma follows

exactly the one of Lemma 21 inl§, up to the following
Proof: Let Z4 5 be an optimal primal plan for the modification. Instead of defining the dual projectds of

semidefinite program foeraX(A|B)p|p/ and IIg be the IIs¢ with regard to the pure staiespc such that it satisfies

minimum rank projector onto the smallest eigenvalues of thell;pp] < £2/2, we demand

reduced operatofZp such thattr[lI5p}] < 1 — /1 — &2

. 1
where T3 is the orthogonal complement dfiz and let tr[llppp] <1—v1-—¢e
pap =Tlppaplls. By Equation {3), we can write In this way on the one hand the tighter boudd)(yields

2Hfmex(A1B) —  min 1 ZBlco

papcsZaps®lo P(paBc,papc) < \/2 tr[[lkopanc] — (tr[llkopasc))?
ezl V20l 5] — (nliThpn)?
~ =/2tr[llzpp| — (tr|llspp
where we used the fact thatype < Zap ® I implies - B B
<e

pagc <NpZapllp ® Ic. LetTl; be the projector onto the
largest eigenvalue oflpZgIlg. Then the definition ofllz  which is the same as in Lemma 21 and on the other hand

implies that the correction terniog(2/2) in Lemma 21 is replaced by the
i i _ _ =2
(TS + T )] > 1 — VI— e, (16) tighter expressiofog(1/1 — /1 — £2).

Moreover, by constructioli andIl’, project onto orthogonal
eigenspaces of , that is,HBﬁﬂjg 0. Hence the sunil; + C. Thes-Smooths-Entropy
IT); is itself a projector which commutes withiz. We use the ~ For the proof of the chain rules we define an auxiliary
last two facts to find an upper bound for entropy measure calledsmoothS-entropy.
~ - We assume thapap € S<(Hap) andop € S<(Hp)
M5 ZpMs o0 = trlllpZ5) ~ with supp(pp) C supp(op) _a(nd de)note for every\_(e R
- tr(pupZp] (17)  the projector onto the eigenspace corresponding to thetlgtri

pp triup] negative eigenvalues of the operafdpap — o5 by Pip.

where the minimization is over all positive operators in the
support ofll + 1T Fixing up = (115 + 'g) plg (15 + 1), 2The idea for this entropy measure was proposed by Roberigkon



Definition 11. Lete > 0. Then thes-smoothS-entropy of A In the remainder of that section we provide proofs for the
conditioned on B op4p relative toop is defined as remaining three pairs of chain rules. Due to the smooth tuali

N relation @) it is enough to prove only one of each pair.
S°(A|B),s :==inf{\ € R: tr[Pigpan] < c}. (18)
Theorem 14.Lete > 0,¢',¢” > 0 andpapc € S<(Hapc).

Intuitively, this evaluates in &-smoothed way the smallestThen,

A for which p4p > 27 %05 holds. This should be contrasted I A
with the min-entropy, which evaluates to the largestich that Hmin(AB|C)p < Hy il (A|BC),+Hg,, (B|C),+2f(e)
pap < 27 *op. The S-entropy is a technical tool only, and (21)

our results are expressed in terms of the max-entropy ihstea  pProof: Let Papc e paBC, Phe ~ev ppe be such that
In this spirit, the next lemma gives the upper bound of the

e-smoothS-entropy in terms of the max-entropy. Huin(AB|C), = Hiiy(AB|C),, and

Lemma 12. Lete > 0, pap € S<(Hap) andop € S<(HB). Hinax(B|C)pr = Hrilax(Bw)P’
Then, and letoc € S<(#¢) be such that
1 _H..
S*(AlB)pjo < Humax(A[B),|s + log <5_2> - (19) Pape < 2 Hmin(ABIC) g — 9= HiWw(ABIC), 6, (22)

For everyd > 0 andé > 0 there is aé’ € (0,4] such that

the projectorP}, onto the strictly negative eigenvalues of the

tiapg)erator?p — o¢ with X := S%(B|C) |, + 0, satisfies
constraintr[P3 o] < € in Definition 11 If P35 is

@ the orthogonal complement @), we have

PbocPps < 2 Pato’hc Phc. (23)

Proof: Let \ijur € R be the infimum in Definitiorll, that
is, /\mf = S°(A|B) o, let A = Aijyr — 6 whered > 0 and
let PAB denote the projector onto the nonnegative and stric
negative eigenvalues gf41s — 2~ 2o, respectively. Then,
straightforward computation yields

23 Hinax (A1B) 10 =3 S (AIB)sio 30 — || /oo g 12722

1 A conjugation of 2) with P35 together with 23) yields
> tr[\/pasy/oB)2” 2"

= tr[\/paBV2 *op] PRepapcPre <27 H““"(ABlc)er)\PAé BePRE
> tr[Pf;2 Y0 + Pyzpap] Which is equivalent to

> tI‘[ BPAB] mln(A|BC)P)\L o/ PAL|PAL g1 pAL > Hmm(AB|O)p —
>e. (20)

A subsequent optimization of the left-hand side over all
The first inequality follows from Lemma 9.5 irl{)]. In the S<(Hpc) yields
fourth line we have applied Corollary8 and in the last line

have used the fact th&t, , is identical with the projectoP? 5 Hunin(A|BO)pas s 2 Hiia(ABIC), = A (24)
andtr[P)zpap] > ¢ by definition of A for anyd > 0. Finally, Since papc is an extension of pge, by Corol-
taking the logarithm on both sides 02Q) and subsequently lary 22 there exists an extensiopl} 5. of p/5~ such that
taking the limité — 0 we obtain (9). B P(plgc,pasc) = P(phe. pee). Then the triangle inequal-
ity as well as 86) and @7) give us the following upper bound
IV. MAIN RESULTS for the purified distance betwedMysps s PAc andpapc:

This section contains the main result of this paper: a P(PAspspcPhc, paBc)
derivation of the previously unknown chain rules for smooth

. : ‘ \ - <p P / P>\J_’P)\J_ P>\J_
min- and max-entropies. To simplify presentation hereafte < P(PgcpancPoc, PrcpapcPac)

we introduce the function + P(PpépascPac, PacphpcPac)
Foeoslog 1 + P(P36phpoPRE, Pac)
1—v1—-¢2 + P(pApcs paBc)
that appears as an error term in the chain rules. It vanishes a < V28— +¢& +2"
e — 1 and grows logarithmically irt whene — 0. After smoothing the left-hand side a24) and upper-bounding

As remarked in the mtroductlon the explicit form of ongne term 5¢(B|C) 7o ON the right-hand side of2¢) by
of the chain rules has already been derived in Lemma A6 jp . (B|C) o In accordance with Lemma2 and subse-

[8]. Following the steps of the original proof and using thauenﬂy optimizing it overS<(H¢), we obtain
improved bound from Lemma0 we can tighten the chain

rule inequality presented in Lemma A.6 & [as follows: HE, (AB|C), < HY2-E+'+2" (A|BC), + HE. (B|C),
Theorem 13.Lete > 0,¢’,¢” > 0 andpapc € S<(Hapc). + 1og ! +4.
Then,

(A|BC),+ H Finally, the substitutiorf := 1 — v/1 — 2 leads to the chain
+ €

HELE 2 (AB|C), > HE,; 2n(BIC)o—£(€). rule 1) in the limit & —> 0. n

min min



Theorem 15.Lete > 0, &', ¢” > 0 andpapc € S<(Hapc). pipp such thatP(p’i 5, pap) = P(p'spp.pasp). Then, it

Then, follows that
HE, (AB|C), < He (A|BC),+H>++%"(B|C),+3f(¢). P(PAspPappPABDp: Papp) < P(PABpPaspPABD: PaBD)
(25) + P(Pupp: PABD)
Proof: Let papcp be a purification ofpapc. If <WV2% -4 €.

Thus, according to Lemma9, there exists a state
(A|D),—3f(e) 9
pABD N5+./25 E24¢/42e pABD SuCh tha.t

max(B|AD) < HE (ABlD p

max

de(AB|D) Hl’?’lsdt(s +2€ (B|AD) +H§1m

holds, then the chain rule follows by the duality relati@). (
Let p;lBD et PABD, p;&D et PAD be such that
1
Hyox(AB|D),, = HS, (AB|D),, and +0' +log = + f(¢)-
Hpin(A|D) = H;m(A|D)p, Smoothing of the left-hand S|de and regrouping the terms in
the last inequality yields

AB|D), > H5HY?5- 24"+ (B|AD),, + HE,

, 1
. . — 06 —log = — f(e).
Again we use the fact that fo[ every> 0 there exists a €
o' € (0,9] such that for\ := S*(AB|D)y |, +¢', € > 0 Finally, settingé := 1 — /1 — £2, taking the limit§ — 0,
, the projector P}, onto the strictly negative eigenval-and applying the duality relation for smooth entropigg (e
ues of the operatoR*p/,, — op satisfies the constraintobtain chain rule Z5).

A|D),

mln(

and letop € S<(Hp) be such that
(A[D),

max(

php < 2 Hmin(AID)yr 5y — o= Hm.n(A\D)pgD, (26)

tr[PyspPapp) < € in Definition 11 If P}%,, denotes the m
orthogonal complement aP} 5, then The last chain rule follows from chain rul@1) together
2>\PX§DP;&BDP2§D > PXﬁDUDPIi}\ﬁD' (27) with Lemmas.

Corollary 16. Lete’, &” ¢” > 0 and papc € S<(Hapc)

AL
A conjugation of 6) with P,5, and a subsequent combmaSuch thate’ + 2¢” + " < 1 — 2T —trp. Then,

tion with (27) yields
AB|C), < HE (A|BC), + HE, (B|C),

2)\ H mm ( max max

fmn(AID)pPABDpABDPABD > PAspPapPisp. (28) +g(e e e trp), (31)

Consider now the max-entropy
whereg(e' e’/ " tr p) :=
gHun BIAD) o Lyoxt i = min  tr[(Ip ®ps ) Zapp]

1
ZaD20 inf {2 g)+lo ( )}
PAspPapcpPAsp<ZaspBlc HEl f( ) tog 1-— (€+€/+2€”+€W+2\/l—tI‘P)2 7

(29 - . :
wherep, pop is @ purification ofp/, ;,,. Making use of 28) a/r/‘/d the infimum is taken in the ran@e< ¢ < 1 —¢’ —2¢" —
and the inequality 2yl—trp
PAL PM < pMoooT Proof: Let ¢ > 0 be any smoothing parameter such that
ABDPABcDY'ABD = f'ABp @W1C e < 1—¢ —2" " —2/T—trp. Then, by Lemmab,
and omitting the identity operator, we can upper-bound ttiee smooth min-entropy term on the right-hand side2d) (s
right-hand side ofZ9) in the following way: upper bounded by
< tr[ph  PA%: 1
< [PA/Z/ ABD) m&X(A|BC) + log (1 — (€+€,+25,,+€,,,+2m)2)
2A7H”““(A|D)” tr[PA5pPanp PABD) s - -
which immediately gives33l). |

< P—HiW(AID),

min

In contrast to the previous chain rules, the last one leads to
non-trivial results even if we apply it to non-smooth entesp
gsnt is upper For example, for a normalized statg g, we find

where we use that the term[P}% 0 5p Pito
ulinields
Huin(AB|C), < Hiax(A|BC), + Himax(B|C), + 4

bounded by one. Taking the Iogantﬁm and su
Hunax(BIAD) ps yprs i S S¥(ABID) 1o+’ = Hiyin (AID),.

A subsequent application of Lemm2 implies V. CONCLUSION

AD), We derived four pairs of chain rules for the smooth entropy,
and every combination of min- and max-entropies is consid-
(30) ered. Counter-examples suggest that the inequalitiesotden

reversed, and thus that this list is complete. In particwier
where the max-entropy term on the right-hand side has beg not expect a chain rule of the form

optimized onS<(#Hp). Consider now the left-hand side of . i
(30). Corollary 22 guarantees the existence of an extension Hmin(AB|C) < HEy(A|BC) + Hi (BIC) + b, (32)

HmaX(B|AD)P)\J~p/P)\i‘p“ < Hmax(AB|D)p/

mln (

—|—5’—|—1og =



PRIMAL PROBLEM:

1 !/ 1
for small smoothing parameteeses’ and ¢’ and error term minimum: tx{lpr o]

h(e,e_’,a’/) due to the follcl)wing coun_ter-example. L_et us subject to: Ly ®op > trolparsc)
consider the stateapccr = 3 Zie{o,l} Papc @ |iNi|cr with tr[papcpapc)>1— (E+&)?
tr[ﬁA'B:c] <1
Phpe = |9Xdlap @mc  and phpe = Ta @ [6)dlBe, opr 20, parprc 20
where|¢) is a maximally entangled state, is a fully mixed . , DuaL PROBLEM:
. . maximum: I=E+E))IN—u
state, we taked, B and C' to be d-dimensional quantum ; . /
k - i : ’ subject to: tra[Fap] <Ip
systems and’’ is an auxiliary register with basi§|0), |1)}. Mape < EBap @lc+plapc
Any min-entropy conditioned on the classical registércan Eagr >0, X pn>0,
be expressed ad}]
Z} 9~ Hunin (1) i where op, and pa pc are the primal variables and
Hyin(-]-C"), = — log &=0 5 ~ min Huin(-|),s, Fap, A and p are the dual variables, respectively. Let
K3

Z g be a primal optimal plan for the semidefinite pro-
where we approximate up tal. Thus, Hyin(AB|CC’) = 0 gram of Hy.(A'|B')5, that is Zap @ Io > parpc and
and Hoin(A|BCC") = Huin(B|CC") ~ —logd and it is tra/[Zap] < 2H==A159: 15, Then the variable® g =
easy to verify that §2) is violated for moderate smoothingTH““‘*(A/'Bl)ﬁZA/B/, A = 27 Hoax(A1505 and = 0 are a
g/,e"” < } andd such thatlogd > h. dual feasible plan for the above semidefinite program. By the
weak duality theorem we have then
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(33)

By Proposition 5.3 in 15 we have HZ, (A'|B);, =

APPENDIXA o :
substituting in 83) ¢ = & + /1 —tr(pap) and &

PROOF OFLEMMA 5

e’ + /1 —tr(pap) and considering thaﬂ{riin(A|B)p <
In the following we restate Lemmaand prove it using the Hri;vl—“/’(mB)ﬁ as well as H;*;le—“/’(mB)ﬁ <
derived SDPs for the non-smooth max-entropy. He . (A|B), we conclude the proof. m
Restatement of Lemmab. Lete, ¢/ > 0 such thate + &’ +
2y/T—trpap <1andletpsp € S<(Hap). Then, APPENDIXB
TECHNICAL LEMMAS
Hiin(AlB), < Hiok(AlB), A. Operator inequalities
+1Og< 1 ) Theorem 17 ([1], Theorem 1) Let @ and R be positive
1—(e+e& +2y1—trp)? semidefinite operators on a Hilbert spaieand let0 < s < 1.
Then,
Proof: Define pap = pap/tr(pap). According to s hlos 1
Lemma 5.2 in 15 there are embeddings : Ha4 — Ha tr [Q°R'™°] > S @+ R—-1Q - Rl (34)

andV': Hp — Hp such that there exists a norn;allze(Tj State £rom this theorem we can draw the following useful corol-
parp Re parp, Wherepap = (URV)pap (Ut eV, lary.
which minimizes the smooth max-entrogy:, . (A'|B’), =

max

HE . (A|B);. Corollary 18. Let R and() be positive semidefinite operators
Consider now the quantitg~ 7t (187, We are simulta- O @ Hilbert space?, let 0 < s < 1 and let P, and
neously minimizing over albp € S<(Hz) and all states P_ denote_the orthogona_l projectors onto thg eigenspaces
jarp, that arez + &-close to the normalized stafes s corresponding to nonnegative and strictly negative eigéres

By Uhlmann's theorem the latter constraint translates inff the operator — R, respectively. Then,

trparproparpc] > 1— (€ + 5’22/ whereH¢ is a purifying tr [QSR1—S] > tr[Py R+ P_Q)
system. We can formulatg™“uin (A’|B’); as the following _ N
semidefinite program: Proof: We make the following decomposition g — R|

Q-R[=P (Q-R) P, —P_ (Q-R)P-,  (39)



where P, are the projectors onto the nonnegative and strictly
negative eigenvalues @ — R, respectively. Substituting36) 1]
in (34) and using the fact thaP, + P_ = I, we obtain

QR > Sul@+ R Q- R
=tr[P.Q+ (I-P_) R [3]
—tr[P.Q+ P,R]. 4]

[5]
B. Purified Distance: Properties (6]

Lemma 19 ([17], Lemma 7) If p,0 € S<(H) and € is a
trace non-increasing CPM o (), then

P(&E(p),E(0)) < P(p,0).

Evidently, for any0 < II < 1 the map defined by —
IIpIl, p € S<(H) is a trace non-increasing CPM. Thus, in
particular, by the above lemma we have [10]

P(IIpIL IIoll) < P(p, o)
for p, 0 € S<(H).

Lemma 20 ([4], Lemma 7) Letp € S<(H) and0 <II < L.
Then,

(7]
(8]
[0

(36) 1]

[12]

[13]

[14]

P(IIpIl, p)

—\/trp

WhenII is a projector, that i§1? =
ward computation yields

\/2tr I+ p]

wherelIl+ = I —II is the orthogonal complement oF.

Lemma 21 ([17], Lemma 8) Let p,o0 € S<(H), H = H
andp € S<(H®H') be a purification ofp. Then, there exists
a purificationg € S<(H ® H’) of ¢ such thatP(p,5) =
P(p,0).

From that lemma one infers the following corollary:

Corollary 22. Letp,0 € S<(H), H 2 H andp € S<(H®
‘H') be an extension gf. Then, there exists an extensiore
S<(H ® H') of o such thatP(p,5) = P(p,0).

(tr[II2p])2. 1)

I1, then a straightfor-
[16]

P(IplL, p) — (tx[1+p])? (37)

[17]

(18]

[20]

[21]
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