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Abstract

This thesis presents computational methods used for the recognition of

disease genes and for the optimal design of disease gene CRISPR/Cas9

editing systems. The key innovation in these computational methods is

the feature space and characteristics captured from the biology domain

knowledge through machine learning algorithms.

The disease-gene association prediction problems are studied in Chapters

3-5. Disease gene recognition is a hot topic in various fields, especially in

biology, medicine and pharmacology. Non-coding genes, a type of genes

without protein products, have been proved to play important roles in disease

development. Particularly, the two kinds of non-coding gene products such

as microRNA (miRNA) and long non-coding RNA (lncRNA) have caught

much attention as they are abundantly expressed in various tissues and

frequently interact with other biomolecules, e.g. DNA, RNA and protein.

The disease-ncRNA relationships remain largely unknown. Computational

methods can immensely help replenish this kind of knowledge. To overcome

existing computational methods’ limitations such as significantly relying on

network structures and similarity measurements, or lacking reliable negative

samples, this thesis presents two novel methods.

One is the precomputed kernel matrix support vector machine (SVM)

method to predict disease related miRNAs in Chapter 3. The precomputed

kernel matrix was built by integrating several kinds of similarities computed

with effective characteristics for miRNAs and diseases. The reliable negative

samples were collected through analyzing the published array and sequencing

xxv



Abstract

data. This binary classification method accurately predicts disease-miRNA

associations, which outperforms those state-of-the-art methods. In Chapter

4, the predicted novel disease-miRNA associations were combined with

known relationships of diseases, miRNAs and genes to reconstruct a disease-

gene-miRNA (DGR) tripartite network. Reliable multi-disease associated

co-functional miRNA pairs were extracted from this DGR for cross-disease

analysis by defining the co-function score. This not only proves the proposed

method’s effectiveness but also contributes to the study of multi-purpose

miRNA therapeutics.

Another is the bagging SVM-based positive-unlabeled learning method

for disease-lncRNA prioritizing that is described in Chapter 5. It creatively

characterized a disease with its related genes’ chromosome distribution and

pathway enrichment properties. The disease-lncRNA pairs were represented

as novel feature vectors to train the bagging SVM for predicting disease-

lncRNA associations. This novel representation contributes to the superior

performance of the proposed method in disease-lncRNA prediction even when

a given disease has no currently recognized lncRNA genes.

After confirming the relationships between genes and diseases, one of the

most difficult tasks is to investigate the molecular mechanism and treatment

of the diseases considering their related genes. The CRISPR/Cas9 system

is a promising gene editing tool for operating the genes to achieve the goals

of disease-gene function clarification and genetic disease curing. Designing

an optimal CRISPR/Cas9 system can not only improve its editing efficiency

but also reduce its side effect, i.e. off-target editing. Furthermore, the off-

target site detection problem involves genome-wide sequence observing which

makes it a more challenging job. The CRISPR/Cas9 system on-target cutting

efficiency prediction and off-target site detection questions are discussed in

Chapters 6 and 7 respectively.

To accurately measure the CRISPR/Cas9 system’s cutting efficiency,

the profiled Markov properties and some cutting position related features

were merged into the feature space for representing the single-guide RNAs
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(sgRNAs). These features were learned by a two-step averaging method

where an XGBoost’s predictions and an SVM’s predictions were averaged

as the final results. Later performance evaluations and comparisons

demonstrate that this method can predict a sgRNA’s cutting efficiency with

consistently good performance no matter it is expressed from a U6 promoter

in cells or from a T7 promoter in vitro.

In the off-target site detection, a sample was defined as an on-target-off-

target site sequence pair to turn this problem into a classification issue. Each

sample was numerically depicted with the nucleotide composition change

features and the mismatch distribution properties. An ensemble classifier

was constructed to distinguish real off-target sites and no-editing sites of a

given sgRNA. Its excellent performance was confirmed with different test

scenarios and case studies.
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