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Abstract

This thesis presents computational methods used for the recognition of

disease genes and for the optimal design of disease gene CRISPR/Cas9

editing systems. The key innovation in these computational methods is

the feature space and characteristics captured from the biology domain

knowledge through machine learning algorithms.

The disease-gene association prediction problems are studied in Chapters

3-5. Disease gene recognition is a hot topic in various fields, especially in

biology, medicine and pharmacology. Non-coding genes, a type of genes

without protein products, have been proved to play important roles in disease

development. Particularly, the two kinds of non-coding gene products such

as microRNA (miRNA) and long non-coding RNA (lncRNA) have caught

much attention as they are abundantly expressed in various tissues and

frequently interact with other biomolecules, e.g. DNA, RNA and protein.

The disease-ncRNA relationships remain largely unknown. Computational

methods can immensely help replenish this kind of knowledge. To overcome

existing computational methods’ limitations such as significantly relying on

network structures and similarity measurements, or lacking reliable negative

samples, this thesis presents two novel methods.

One is the precomputed kernel matrix support vector machine (SVM)

method to predict disease related miRNAs in Chapter 3. The precomputed

kernel matrix was built by integrating several kinds of similarities computed

with effective characteristics for miRNAs and diseases. The reliable negative

samples were collected through analyzing the published array and sequencing

xxv
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data. This binary classification method accurately predicts disease-miRNA

associations, which outperforms those state-of-the-art methods. In Chapter

4, the predicted novel disease-miRNA associations were combined with

known relationships of diseases, miRNAs and genes to reconstruct a disease-

gene-miRNA (DGR) tripartite network. Reliable multi-disease associated

co-functional miRNA pairs were extracted from this DGR for cross-disease

analysis by defining the co-function score. This not only proves the proposed

method’s effectiveness but also contributes to the study of multi-purpose

miRNA therapeutics.

Another is the bagging SVM-based positive-unlabeled learning method

for disease-lncRNA prioritizing that is described in Chapter 5. It creatively

characterized a disease with its related genes’ chromosome distribution and

pathway enrichment properties. The disease-lncRNA pairs were represented

as novel feature vectors to train the bagging SVM for predicting disease-

lncRNA associations. This novel representation contributes to the superior

performance of the proposed method in disease-lncRNA prediction even when

a given disease has no currently recognized lncRNA genes.

After confirming the relationships between genes and diseases, one of the

most difficult tasks is to investigate the molecular mechanism and treatment

of the diseases considering their related genes. The CRISPR/Cas9 system

is a promising gene editing tool for operating the genes to achieve the goals

of disease-gene function clarification and genetic disease curing. Designing

an optimal CRISPR/Cas9 system can not only improve its editing efficiency

but also reduce its side effect, i.e. off-target editing. Furthermore, the off-

target site detection problem involves genome-wide sequence observing which

makes it a more challenging job. The CRISPR/Cas9 system on-target cutting

efficiency prediction and off-target site detection questions are discussed in

Chapters 6 and 7 respectively.

To accurately measure the CRISPR/Cas9 system’s cutting efficiency,

the profiled Markov properties and some cutting position related features

were merged into the feature space for representing the single-guide RNAs

xxvi
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(sgRNAs). These features were learned by a two-step averaging method

where an XGBoost’s predictions and an SVM’s predictions were averaged

as the final results. Later performance evaluations and comparisons

demonstrate that this method can predict a sgRNA’s cutting efficiency with

consistently good performance no matter it is expressed from a U6 promoter

in cells or from a T7 promoter in vitro.

In the off-target site detection, a sample was defined as an on-target-off-

target site sequence pair to turn this problem into a classification issue. Each

sample was numerically depicted with the nucleotide composition change

features and the mismatch distribution properties. An ensemble classifier

was constructed to distinguish real off-target sites and no-editing sites of a

given sgRNA. Its excellent performance was confirmed with different test

scenarios and case studies.

xxvii





Chapter 1

Introduction

This chapter introduces the background knowledge of the research topics

in Section 1.1. Then, the research questions and their formulations are

presented in Section 1.2. The contributions and structure of this thesis are

described in Sections 1.3 and 1.4 respectively.

1.1 Background

This thesis introduces two topics of my research such as disease gene (mainly

non-coding gene) recognition and optimal design of CRISPR/Cas9 system

for disease gene editing. In this section, protein-coding genes and non-coding

genes, disease-non-coding RNA associations, the CRISPR/Cas9 system and

machine learning related background knowledge are described.

1.1.1 Protein-coding gene, non-coding gene and non-

coding RNA

Genes are always referring to the functional regions in the genome DNA (Portin

& Wilkins 2017). The gene expression includes a transcription process

where the gene information is transcribed into a corresponding RNA, e.g.

a messenger RNA (mRNA) for a protein-coding gene or a non-coding RNA

(ncRNA) for a non-coding gene (Alberts, Johnson, Lewis, Walter, Raff &
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Roberts 2002). The mRNA is then translated to produce the protein while

those ncRNAs are not. It was estimated that about 75% of the human

genome can be transcribed to RNAs. Among these RNAs, just 3% of them

have the protein coding ability (Ling, Fabbri & Calin 2013). Currently,

the functions of those protein-coding genes have been widely investigated as

their protein products are stable enough to be observed and experimentally

validated. In comparison, clarifying the non-coding genes’ functions is more

difficult because of the ncRNAs’ instability and diversity (Eddy 2001). The

ncRNAs transcribed from the non-coding genes include ribosomal RNAs

(rRNAs), small nucleolar RNAs (snoRNAs), microRNAs (miRNA), long non-

coding RNAs (lncRNAs) and so on (Palazzo & Lee 2015). Among them,

the miRNAs and lncRNAs have attracted increasing attention as they were

reported to contain significant genetic information and functions (Mattick

& Makunin 2006, Derrien, Johnson, Bussotti, Tanzer, Djebali, Tilgner,

Guernec, Martin, Merkel, Knowles et al. 2012).

The miRNA is a type of evolutionarily conserved small RNA with ∼22

nucleotides, which is produced by the RNase-III-type enzyme Dicer from

an endogenous transcript that contains a local hairpin structure (Ambros,

Bartel, Bartel, Burge, Carrington, Chen, Dreyfuss, Eddy, Griffiths-Jones,

Marshall et al. 2003, Kim 2005, Bartel 2018). The miRNAs were estimated to

account for 1-5% of the human genome and more than 30% of protein-coding

genes are regulated by them (Berezikov, Guryev, van de Belt, Wienholds,

Plasterk & Cuppen 2005, Rajewsky 2006, MacFarlane & R Murphy 2010).

It was also reported that there may be about 40% of miRNA genes located in

the introns or even exon regions of other genes (Rodriguez, Griffiths-Jones,

Ashurst & Bradley 2004, Baskerville & Bartel 2005, Kim & Kim 2007). The

miRNAs regulate their target mRNAs’ expressions at the post-transcriptional

level by RNA degradation or translation repression (Eulalio, Huntzinger,

Nishihara, Rehwinkel, Fauser & Izaurralde 2009, Wahid, Shehzad, Khan

& Kim 2010, Gebert & MacRae 2018). These processes are completed

via pairing up with the complementary sequences within their target

2
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mRNAs (Bartel 2009).

The lncRNA is another type of ncRNA with more than 200 nucleotides.

LncRNAs can be grouped into five categories according to their genomic

locations such as stand-alone lncRNAs, i.e. large intergenic (or intervening)

ncRNAs (lincRNA), antisense transcripts, pseudogenes, long intronic ncRNAs

and others (Kung, Colognori & Lee 2013). Different from those small

ncRNAs, most (81%) lncRNAs are poorly conserved (Wang & Chang 2011,

Fang & Fullwood 2016). However, the lncRNAs also play key roles in

gene expression regulation via various actions such as gene activation or

repression (Carpenter, Aiello, Atianand, Ricci, Gandhi, Hall, Byron, Monks,

Henry-Bezy, Lawrence et al. 2013), acting as miRNA sponges (Hansen,

Jensen, Clausen, Bramsen, Finsen, Damgaard & Kjems 2013), regulating

mRNA degradation (Liu, Li, Zhang, Guo & Zhan 2012, Dykes & Emanueli

2017) and others (Wang & Chang 2011, Kung et al. 2013, Marchese,

Raimondi & Huarte 2017).

1.1.2 Non-coding RNA and human diseases

The dysregulation of ncRNAs may result in the aberrant expression of their

target genes or disturbing their related cellular processes, which finally cause

the development of various diseases. For example, the miRNA miR-21 was

proved to be a regulator of the ERKMAP kinase signaling pathway, which

relates to the myocardial diseases (Thum, Gross, Fiedler, Fischer, Kissler,

Bussen, Galuppo, Just, Rottbauer, Frantz et al. 2008). Some researchers

drew the conclusion that loss of miRNA-29a/b-1 cluster may result in

the over-expression of BACE1/β-secretase gene and finally associate with

the causing of Alzheimer’s disease (Hébert, Horré, Nicoläı, Papadopoulou,

Mandemakers, Silahtaroglu, Kauppinen, Delacourte & De Strooper 2008).

The lncRNA-NUTF2P3-001 was experimentally verified to be significantly

over-expressed in both the pancreatic cancer and the chronic pancreatitis

tissues (Li, Deng, Zhu, Jin, Cui, Chen, Xiang, Li, He, Zhao et al. 2016).

Loc285194, another lncRNA, was also proved to be a tumor suppressor that
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regulates p53 (Liu, Huang, Zhou, Zhang, Zhang, Lu, Wu & Mo 2013).

Disease development describes the process of appearing disorders that

affect the normal condition of an organism. Here, we just study the disease

development associated with the dysfunction of genes that dys-regulated by

other functional molecules during different cell processes but not the physical

injury or virus infection.

During the past decade, some databases have collected abundant of

verified associations between the miRNAs or lncRNAs and diseases. The

HMDD (Li, Qiu, Tu, Geng, Yang, Jiang & Cui 2013) and miR2Disease (Jiang,

Wang, Hao, Juan, Teng, Zhang, Li, Wang & Liu 2009) are two of the

most popular databases that store the experimentally verified disease-miRNA

associations. The validated disease-lncRNA associations can be found from

the databases LncRNADisease (Chen, Wang, Wang, Qiu, Liu, Chen, Zhang,

Yan & Cui 2013) and Lnc2Cancer (Ning, Zhang, Wang, Zhi, Wang, Liu, Gao,

Guo, Yue, Wang et al. 2016). However, comparing with the known species of

ncRNAs and diseases, the known associations of them are rare. Traditional

biological experiments for finding the associations are time-consuming and

expensive. Thus, over the past few years, many computational prediction

methods have been designed to predict the potential disease-associated

ncRNAs at a large scale. They require only known associations and other

related information as inputs but achieve good prediction performances.

1.1.3 The CRISPR/Cas9 system

Gene editing (or genome editing) is the technique to change an organism’s

genome DNA. Previously reported gene editing tools include the zinc

finger nucleases (ZFNs) (Urnov, Miller, Lee, Beausejour, Rock, Augustus,

Jamieson, Porteus, Gregory & Holmes 2005, Urnov, Rebar, Holmes, Zhang

& Gregory 2010) and the transcription activator-like effector nucleases

(TALENs) (Reyon, Tsai, Khayter, Foden, Sander & Joung 2012, Joung &

Sander 2013). Recently, a third generation gene editing tool, the Clustered

Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein
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9 (CRISPR/Cas9) was generated (Ran, Hsu, Wright, Agarwala, Scott &

Zhang 2013, Shalem, Sanjana, Hartenian, Shi, Scott, Mikkelsen, Heckl,

Ebert, Root, Doench et al. 2014, Wang, Wei, Sabatini & Lander 2014,

Doudna & Charpentier 2014). The CRISPR/Cas9 system is thought to be

faster, cheaper, more accurate and efficient than ZFNs and TALENs (Wang,

Yang, Shivalila, Dawlaty, Cheng, Zhang & Jaenisch 2013, Xiong, Ding &

Li 2015, Kanchiswamy, Sargent, Velasco, Maffei & Malnoy 2015). It is

composed of a CRISPR associated protein 9 (Cas9) and a single-guide RNA

(sgRNA) as a complex (see Figure. 1.1). The sgRNA always contains at

least a CRISPR-RNA (crRNA) and a trans-activating crRNA (tracrRNA)

which are linked by a linker loop. There is a 20 nucleotides (20nt) spacer

sequence at the 5’-end of the crRNA which can pair-up with its target

DNA region (Nishimasu, Ran, Hsu, Konermann, Shehata, Dohmae, Ishitani,

Zhang & Nureki 2014, Jiang & Doudna 2017). The sgRNA can locate the

CRISPR/Cas9 system to its target region by pairing up with the DNA

sequence opposite to the protospacer. The Cas9 protein is an RNA-guided

DNA endonuclease enzyme which has two function domains such as the

HNH and RuvC (Jinek, Jiang, Taylor, Sternberg, Kaya, Ma, Anders, Hauer,

Zhou, Lin et al. 2014, Anders, Niewoehner, Duerst & Jinek 2014, Nishimasu

et al. 2014). This protein can recognize a 3nt protospacer adjacent motif

(PAM), e.g. ‘NGG’, and cut the PAM upstreamed protospacer sequence and

its complementary sequence (Anders et al. 2014).

The genome cleavage process begins with the locating of a CRISPR/Cas9

system to the region where one of its DNA sequences can pair-up with the

spacer. Then, the Cas9 protein binds to this region and tries to recognize

the downstream PAM. If a PAM exists, the double-strand break (DSB) is

generated at the position 3nt upstream to this PAM by the Cas9 (Hsu, Lander

& Zhang 2014, Doudna & Charpentier 2014). After cleavage being generated,

the cell senses this problem and activates the repairing mechanisms such as

homology-directed repair (HDR) and non-homology end joining (NHEJ) to

repair this problem (Ran, Hsu, Lin, Gootenberg, Konermann, Trevino, Scott,
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Figure 1.1: An example of a CRISPR/Cas9 system cutting a genome

DNA sequence.

Inoue, Matoba, Zhang et al. 2013, Kan, Ruis, Takasugi & Hendrickson 2017).

During the repairing process, one can insert a fragment into the genome via

HDR, or knock-out a fragment with NHEJ to complete the genome editing

task.

1.1.4 CRISPR/Cas9 system design for disease gene

editing

As is described above, the target regions of a CRISPR/Cas9 system have

two properties: existing a protospacer where its complementary sequence

can pair-up with the spacer and existing a PAM which is downstream to

the protospacer. After injecting a CRISPR/Cas9 system into the cell, if it

generates the DSB at our expected target region, then we call this action

an on-target cutting. However, if this system cuts the genome at unwanted

regions, off-target cuttings will happen. The CRISPR/Cas9 cutting at an

unintended region is mainly due to the fact that the 20nt protospacer + 3nt
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PAM sequence may not uniquely exist in the genome. Especially, during the

base-pairing of a spacer and the DNA sequence, mismatches or even bulges

are permitted (Fu, St Onge, Fire & Smith 2016, Lee, Cradick & Bao 2016).

There may be thousands of such kind of 23nt sequences in the whole genome

when as many as 6 or more mismatches are permitted. Thus, off-target

cuttings may possibly exist for a designed CRISPR/Cas9 system, which can

result in serious toxic effects.

The CRISPR/Cas9 system is now one of the most widely applied gene

editing tools in various fields such as gene function investigation (Swiech,

Heidenreich, Banerjee, Habib, Li, Trombetta, Sur & Zhang 2015), disease

model construction (Platt, Chen, Zhou, Yim, Swiech, Kempton, Dahlman,

Parnas, Eisenhaure, Jovanovic et al. 2014) and genetic disease treatment (Wu,

Liang, Wang, Bai, Tang, Bao, Yan, Li & Li 2013). Disease-gene editing

helps reveal the role of this gene played in the disease development and

benefits the accurate modeling and treating of the disease. A corresponding

CRISPR/Cas9 system is required to be designed for editing a given disease

gene. An optimal design of the CRISPR/Cas9 system is that its on-target

cutting efficiency is high and it has no off-target effect. However, fully

avoiding the off-target effect is extremely hard. Designing the system with

higher on-target cutting efficiency but with lower off-target effect is an

alternative goal in practical usage. The design of a CRISPR/Cas9 system

in this thesis means to select a 20nt spacer sequence for the sgRNA. In

following contents, we may call the CRISPR/Cas9 system design task a

sgRNA selection process or a spacer choosing step instead. In addition,

for convenience, the statement of “cutting efficiency of a spacer or a sgRNA”

equals to “cutting efficiency of the CRISPR/Cas9 system”.

1.1.5 Machine learning in bioinformatics

Machine learning algorithms are powerful tools for addressing many bioinfor-

matics problems such as molecular structure prediction (Ward, McGuffin,

Buxton & Jones 2003, Bindewald & Shapiro 2006), molecular function
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prediction (Cai, Han, Ji, Chen & Chen 2003, Barutcuoglu, Schapire &

Troyanskaya 2006, Schietgat, Vens, Struyf, Blockeel, Kocev & Džeroski

2010) and association prediction (Bock & Gough 2001, Liu, Wu, Wang,

Zhang & Chen 2010, Zhang, Zhou, Hu, Gong, Chen, Cheng & Zeng

2015). The application of a machine learning algorithm usually contains

a model training process. According to whether labels are available

during the model training, machine learning algorithms can be classified

into supervised learning (Kotsiantis, Zaharakis & Pintelas 2007), semi-

supervised learning (Chapelle, Scholkopf & Zien 2009) and unsupervised

learning (Hastie, Tibshirani & Friedman 2009), which correspond to labels

provided, part of the labels provided and no label provided respectively.

Machine learning algorithms are always used to solve classification, regression

or clustering problems. In a classification problem, a sample can be classified

to belong to one of the known categories. However, in a regression question,

a continuous value is assigned to this sample. For a clustering issue, the

input samples are clustered into several groups, where no group information

is known before the learning (usually learned by unsupervised algorithms).

Many bioinformatics problems can be transformed into classification,

regression or clustering issues. For example, the disease-gene prediction

can be regarded as a classification problem, where a gene can be labeled

as a disease gene or a non-disease gene (Le, Hoai & Kwon 2015). The

CRISPR/Cas9 system cutting efficiency measurement can be solved by

regression methods (Doench, Fusi, Sullender, Hegde, Vaimberg, Donovan,

Smith, Tothova, Wilen, Orchard et al. 2016). There are two fundamental

steps when applying machine learning to solve bioinformatics questions. One

is the collection of reliable training samples and another is the feature space

construction for sample representation. As the reliable samples are always

collected from biological experiments, obtaining enough samples for building

effective models are always difficult. Designing excellent methods to make

good use of the limited samples for optimizing the final model is also a

significant task. On the other hand, the construction of feature spaces is
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important as good features can significantly improve the final performance

of the model (Guyon & Elisseeff 2003, Saeys, Inza & Larrañaga 2007). With

the samples and feature spaces being prepared well, the following step is

to select an appropriate machine learning algorithm. The widely applied

algorithms include decision tree (Safavian & Landgrebe 1991), support vector

machine (SVM) (Hearst, Dumais, Osuna, Platt & Scholkopf 1998), random

forest (Liaw, Wiener et al. 2002) and deep learning algorithms (LeCun,

Bengio & Hinton 2015) and so on. Later, the model can be optimized via

parameter tuning with cross-validations (Kohavi 1995). The final model can

be provided to users for completing new prediction tasks.

1.2 Research Questions and Formulations

This thesis mainly discusses two research topics such as disease-ncRNA gene

prediction and disease gene editing tool design. There are several specific

questions need to be solved for these two topics. The detail research questions

and their formulations are listed in below Q1 to Q3.

• Q1: Disease-ncRNA gene association prediction

This thesis only focuses on two kinds of ncRNA genes such as miRNA

and lncRNA. For a given disease d and a ncRNA gene r, this research

question can be simply expressed as the following formula:

f (d, r) =

{
1 if r relates to d,

0 else.
(1.1)

Here, f is a well-trained binary classification model to classify a disease-

ncRNA pair (d, r) as positive (1, if the ncRNA relates to the disease)

or negative (0, otherwise). There are four kinds of difficulties in

solving this question: (1) Lacking negative samples. The existing

databases only collected the validated disease-ncRNA associations but

neglected negative ones (i.e., no association between a disease and a
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ncRNA); (2) NcRNA and disease representation. The RNA sequences

have different lengths and their properties vary widely. Especially,

diseases are phenotypes, their mathematical characterization seems

extremely difficult; (3) Outperforming the existing methods. A

number of computational methods have been proposed for solving this

question. Overcoming their limitations and improving the prediction

performances are challenging; (4) The validation of outputs. We

cannot conduct wet-lab experiments to validate our newly predicted

associations.

• Q2: CRISPR/Cas9 system on-target cutting efficiency predic-

tion

For a given disease gene g (coding or non-coding gene) to be cut by

the CRISPR/Cas9 system, the cutting efficiency cei of its candidate

sgRNA si is predicted via the below function:

f (si|g) = cei (1.2)

The function f is an optimized regression model. The output efficiency

cei is a continuous value between 0 and 1 where 1 represents the highest

cutting efficiency. The challenges for addressing this question are:

(1) New feature space is required to be constructed for representing

sgRNAs. Currently adopted features may lose valuable information.

More domain knowledge based characteristics should be extracted;

(2) The prediction performance needs to be improved. There exists

large space for improving the prediction performances of the state-

of-the-art methods. Novel prediction strategy needs to be applied;

(3) Investigating the effects of expression systems and species on the

cutting efficiency prediction. The existing datasets are collected from

various expression systems (e.g. U6 or T7) and species (e.g. mammals

and zebrafish). The data source’s effect on the prediction performance

10
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has not been clearly investigated. (4) Web server construction. A web

server is necessary for helping users access to the proposed tool.

• Q3: CRISPR/Cas9 system off-target site detection

Each of the given sgRNA si for cutting a disease gene g hasN candidate

editing sites O = {o1, o2, · · · , oj, · · · , oN}, we need to label oj with the

following model:

f (oj|si, g) =
{
1 if oj is edited,

0 else.
(1.3)

f is a well-learned classifier to determine whether a given candidate

site oj is an off-target site (being edited) or not. The troubles to

be handled include: (1) Transforming the off-target site detection

problem into a classification issue. Simply defining a candidate

editing site as the sample to be classified is not reasonable; (2) Data

collection. The already known sgRNAs’ off-target sites are rare. The

experimental platforms for finding them are different. It is hard to

collect and clear those heterozygous data to generate reliable datasets;

(3) Imbalanced learning. Each designed sgRNA contains thousands of

potential editing sites. Only a small part of them may be real off-

target sites. The training dataset must be extremely imbalanced; (4)

Performance evaluation and comparison. The size of those reliable data

is small. Splitting the data reasonably for optimizing and validating

the prediction model is difficult. In addition, comparing the proposed

machine learning method with those existing methods including the

wet-lab technologies and the computational methods is uneasy.

1.3 Research Contributions

Corresponding to the above research questions, we have proposed novel

methods to solve them (described in Chapters 3 to 7). Our contributions
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are concluded as the following C1 to C5.

• C1: Precomputed kernel matrix SVM for disease-related

miRNA prediction

Chapter 3 presents a precomputed kernel matrix SVM method for

predicting disease-related miRNAs. The contributions of this part of

work are four-fold: (1) New strategy was adopted to select reliable

negative samples. We regarded those non-significantly differentially

expressed miRNAs as non-disease related miRNAs. We then turned the

disease-miRNA association prediction problem into a binary classificat-

ion issue; (2) A precomputed kernel matrix was designed as the input

of SVM instead of traditional features. We used new characteristics to

measure the disease similarities and miRNA similarities for constructing

the precomputed kernel matrix. There is no need to do feature

selection and SVM parameter tuning during the prediction model

construction; (3) The proposed method achieves better performance

than the existing state-of-the-art methods. This was confirmed by

various cross-validation tests; (4) By applying this model, some

novel disease-miRNA associations were predicted and validated. For

example, the predicted breast cancer-hsa-miR-15b and prostate cancer-

hsa-miR-29c have been validated by newer literature.

• C2: Cross disease analysis of co-functional miRNA pairs on a

reconstructed network of disease-gene-miRNA tripartite

In Chapter 4, we describe an extended study about the application of

disease-miRNA associations, where the co-functional roles of miRNA

pairs in multi-disease development are explored. Our contributions are:

(1) By combining our predicted novel disease-related miRNAs with

existing disease-miRNA associations, miRNA-target gene relationships

and disease-target gene associations, we reconstructed a disease-gene-

miRNA tripartite network (DGR); (2) We defined the multi-disease

related co-functional miRNA pair co-function score. By this definition,

the reliable multi-disease related co-functional miRNA pairs can be

12
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prioritized for further investigation; (3) Reliable multi-disease related

co-functional miRNA pairs were found. For example, we found that

the pair miR-15b-miR-195 may contribute to the development of

as many as 38 different cancers through dys-regulating their target

gene BCL2. These multi-disease related miRNA pairs can help for

multi-propose drug design; (4) From the cross-disease analysis of co-

functional miRNAs, we found that the co-function phenomenon is

not unusual. We also confirmed that the regulations of miRNAs for

the development of cancers are more complex and have more unique

properties than those of non-cancer diseases.

• C3: Chromosome preference of disease genes and vectorization

for the prediction of non-coding disease genes

Chapter 5 describes the proposed positive-unlabeled learning method

based on the bagging SVM to prioritize disease related lncRNAs.

Our contributions include: (1) We found that there exist distribution

preferences of disease-genes on the chromosomes. One is that disease-

genes of a given disease are very likely located at a neighborhood

region. Another is that disease genes are unevenly located on the

chromosomes, e.g. p-arm of chromosome 6 is the most preferred

substructure of disease genes - about 16.2% of the disease-related gene

sets can be enriched here; (2) We characterized diseases with two types

of novel vectors such as the disease-gene chromosome substructures’

distribution information entropy vector and the disease-gene enriched

pathway groups’ distribution information entropy vector. With these

two vectors, we can accurately compute the similarity between two

diseases. We also characterized the lncRNAs with feature vectors

on the basis of their sequence and expression profile information.

(3) A bagging SVM positive-unlabeled learning method was adopted

to handle the difficulty of lacking negative samples; (4) With the

comparisons and case studies, we proved the excellent performance of

our proposed method on the disease-lncRNA association prediction.

13
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• C4: CRISPR/Cas9 cleavage efficiency regression through

boosting algorithms and Markov sequence profiling

In Chapter 6, a CRISPR/Cas9 system’s cutting efficiency prediction

tool is presented. This part work contributes to several aspects: (1) We

extracted new domain knowledge characteristics to represent sgRNAs.

These new features include the profiled hidden Markov properties,

some sequence composition features and the cutting position features;

(2) We proposed a two-step average method for the prediction of

CRISPR/Cas9 on-target cutting efficiency. We carried out the first

step prediction with an XGBoost framework. Then, a second round

prediction was implemented via learning the XGBoost selected import-

ant features. The two rounds of predictions were averaged as the

final predicted scores; (3) The applied prediction strategy significantly

improved the performance comparing to the state-of-the-art methods;

(4) We found some important features that affect the cutting efficiency

largely such as the cutting position relative to not only the protein

but also the transcript; (5) We confirmed that the sgRNA expression

system affects the efficiency prediction. A number of datasets were

used to conduct the tests for this confirmation; (6) A web server tool

was provided which can predict the cutting efficiency of a sgRNA no

matter it is expressed from a U6 or a T7 promoter; (7) Two case studies

validated the good performance of the proposed method for designing

sgRNAs to cure genetic diseases in practical use.

• C5: Recognition of CRISPR/Cas9 off-target sites through

ensemble learning of uneven mismatch distributions

The Chapter 7 introduces a novel method for detecting off-target

sites of the CRISPR/Cas9 system. Following outcomes have been

obtained: (1) We turned the off-target site detection problem into

a binary classification issue by defining a sample as a sequence

pair that is composed of a given on-target site sequence and a

corresponding candidate editing site sequence. The sequence pair
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can be labeled as positive if its candidate editing site is a real off-

target site, otherwise negative; (2) Samples were characterized with the

nucleotide composition change and mismatch distribution properties.

We observed significant differences of these two kinds of properties

between positive samples and those negative ones; (3) We proposed an

ensemble SVM classifier to detect off-target sites, which outperforms

the existing computational methods. Our method also predicted more

off-target sites that have been detected by the wet-lab technologies; (4)

We applied two case studies to display the reliability of our method for

sgRNA design in practical usage.

1.4 Thesis Structure

The structure of this thesis is shown in Figure. 1.2 and is simply explained

below:

Chapter 1 mainly introduces the background knowledge related to the

work in this thesis. The research questions and our contributions are also

described. Chapter 2 reviews the related work about the studied problems

in this thesis. For each of the three research questions such as disease-

ncRNA prediction (including miRNA and lncRNA), CRISPR/Cas9 on-target

cutting efficiency prediction and CRISPR/Cas9 off-target site detection,

a section is used to present the current research progress about it. The

limitations of existing methods and the inspirations from them are discussed

at last. Chapter 3 to Chapter 7 describe the proposed methods for solving

the research questions such as disease-miRNA prediction, multi-disease

related co-functional miRNA pair extraction, disease-lncRNA prioritization,

CRISPR/Cas9 on-target cutting efficiency prediction and CRISPR/Cas9 off-

target site detection. These methods’ construction, evaluation, comparison

and related case studies are presented. Simple conclusions are given at the

end of each chapter. Chapter 8 summaries the work in this thesis and

discusses my future research plans.

15



Chapter 1. Introduction

 Research Questions 
 Research Contribution  Background 

 Methods predicting disease-ncRNAs 
 Methods predicting on-target efficiency 
 Methods detecting off-target sites 
  

Chapter 3~7 

My own work 

Chapter 1 

Introduction 

Chapter 2 

Related Work 

Chapter 8 

Conclusion and 
future work 

Ch. 1

Ch. 2 

Ch. 3

Ch. 4

Ch. 5

Ch. 6

Ch. 7

Ch. 8

Precomputed kernel matrix svm for predicting disease related miRNAs 

 Reliable negative samples 
 Precomputed kernel matrix svm 
 Integrated similarities 

 Excellent performance 
 Novel associations 

Cross-disease analysis of co-functional miRNA pairs 
 Co-functional score 
 prioritization 
 GO analysis 
 Pathway enrichment 

 Reliable multi-cancer-miRNA pairs  
 Potential multi-propose drug 
 Co-function is not unusual 

Disease gene chromosome preference for disease-lncRNA prediction 
 Disease gene chromosome preference 
 Disease vectorization 
 Disease-lncRNA representation 
 Bagging svm for PU learning 

 Compute disease 
similarity well 

 Improved performance 

Two-step averaging method predicts CRISPR/Cas9 on-target efficiency 
 Markov sequence profiles  
 XGBoost regression 
 Two-step averaging 

 Improved performance 
 Property preference confirming 
 Work for T7/U6 expression system 

Ensemble learning from mismatch distribution for off-target site detection 

 Mismatch distribution preference  
 Sequence pair characterizing 
 Ensemble svm classification 

 excellent performance 
 overlap well with wet-lab 

tools 
 work well for practical use 

 Conclusions  Future work 

Figure 1.2: Thesis Structure. It includes four main parts: Introduction;

Related work; My own work; Conclusion and future work. The overview of

the contents in each part is shown at the right side.
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Chapter 2

Related Work and Literature

Review

This chapter describes the related studies of the work in this thesis. In

Section 2.1, the existing disease-ncRNA association prediction methods are

surveyed. Then, in the following Section 2.2, the strategies for CRISPR/Cas9

system on-target cutting efficiency prediction are reviewed. Later, Section

2.3 presents the published methods for detecting off-target sites of the

CRISPR/Cas9 system. In Section 2.4, the limitations of these existing

methods for solving disease-ncRNA gene prediction and disease-gene editing

optimization problems are discussed. At last, Section 2.5 summaries the

content in this chapter.

2.1 Disease-ncRNA Association Prediction

As the disease-miRNA association prediction and disease-lncRNA association

prediction are similar problems, this section describes their related work

together. We classify those existing prediction methods into four main types

such as network analysis methods, similarities analysis or semi-supervised

methods, supervised learning methods and other kinds of methods. Most of

these methods predicted the candidate disease-ncRNA associations with the
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same criterion: the similar diseases always associate with similar ncRNAs.

In the following subsections, some representative methods of the four types

are introduced.

2.1.1 Network analysis methods

The network analysis methods always find new associations from the already

known relationships of the nodes in those disease-miRNA related networks.

For example, the method proposed by Jiang et al. (Jiang, Hao, Wang, Juan,

Zhang, Teng, Liu & Wang 2010) prioritized disease related miRNAs with the

analysis of a human phenome-microRNAome network. It was extended from

the disease-related protein-coding gene prediction method (Linghu, Snitkin,

Hu, Xia & DeLisi 2009). The core idea is scoring the disease-miRNA pairs

in the human phenome-microRNAome network with the hypergeometric

distribution. This network was constructed with the disease phenotype

similarities and miRNA function similarities. The miRNA functional

similarity was computed according to the statistical analysis of the shared

targets of two miRNAs and the phenotype similarity was obtained with the

MimMiner (Van Driel, Bruggeman, Vriend, Brunner & Leunissen 2006). The

authors claimed that their method can predict related miRNAs of a given

disease accurately even without known miRNAs of this disease. Obviously,

the accuracy of this method is limited by the accuracy of the similarities

of the disease phenotypes and miRNA targets. As was concluded by the

authors, their method used the overlapping of the miRNA targets to analyze

the function similarities, which may ignore the function relationships of those

targets themselves. Moreover, they computed the local similarities among the

miRNAs (just considered the neighbor nodes of a given node), which may lose

the global information of the whole network and finally affect the prediction

accuracy.

Then, Chen et al. (Chen, Liu & Yan 2012) developed a network analysis

method namely the RWRMDA. This method constructed two networks

such as the miRNA-disease associations network (N1) and miRNA-miRNA
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functional similarity network (N2). There are no edges between different

diseases. To predict the disease associated miRNAs, those miRNAs in the

network N1 were used as the seed RNAs and the random walk with restart

(RWR) algorithm was implemented on network N2. Each of the miRNAs

in N2 then obtained a score for indicating its possibility to associate with

a disease. Different from the previous method, Chen et al. computed the

global network similarities between the miRNAs. This method did not adopt

the disease similarity information. Even though the prediction performance

of this method on the benchmark dataset was claimed to be better than

the previous method, it still relies on the similarities between miRNAs.

The network structure may also influence the prediction. Obviously, if a

disease has no connected miRNA in the studied network, no potential related

miRNAs could be found for it.

In 2013, Shi et al. (Shi, Xu, Zhang, Xu, Li, Wang, Zhao, Jiang, Guo &

Li 2013) predicted disease related miRNAs by analyzing the protein-protein

interaction network (PPI) where some nodes of it are miRNA targets and

disease genes. Their hypothesis for predicting disease-miRNA associations is

that a miRNA may associate with a disease if they share the same related

genes. Similar to RWRMDA, the RWR algorithm was adopted to evaluate

the probability of a miRNA associating with a given disease. The miRNA

targets and the disease genes of a special disease-miRNA pair were regarded

as the seeds for RWR respectively. In this method, no similarity information

was required. The PPI network provides the functional relationships of the

miRNA target genes and the disease genes. This method’s performance

heavily depends on the structure of their PPI network and the accuracy

of known miRNA-target and disease-gene information.

Recently, Xuan et al. (Xuan, Han, Guo, Li, Li, Zhong, Zhang &

Ding 2015) adopted the RWR to analyze the miRNA functional similarity

network for predicting disease-miRNA associations. This method is also

similar to RWRMDA. The functional similarities of miRNAs were computed

with their related diseases’ semantic similarities but not their targets’
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information. Two one-step transition matrices were constructed to guide

the walker according to the calculated similarities of miRNAs and the known

associations between miRNAs and diseases. To predict the disease associated

miRNAs without known related miRNA for this disease, the author also

built a bilayer network. It was extended from the former miRNA functional

similarity network by connecting the diseases with their semantic similarity

and connecting the diseases and miRNAs with known associations. By

comparing this method with other existing methods such as the above Jiang’s

method and Chen’s method, the author claimed that the involving of prior

information and topology properties of the bilayer network can improve

the prediction performance. However, both the functional similarities of

miRNAs and the similarities between diseases were computed with the

disease semantic similarities. This may lose some important information such

as the miRNA target relationships and the disease-related genes’ information,

which affects the prediction accuracy.

Similarly, some network analysis methods were proposed for predicting

disease-lncRNAs. LncRNAs are newer ncRNAs comparing to miRNAs.

Thus, disease-lncRNA association prediction methods are mainly inspired

by those miRNA related ones. For example, in 2014, three network analysis

methods were reported such as Yang et al.’s method (Yang, Gao, Guo,

Shi, Wu, Song & Wang 2014), Sun et al.’s RWRlncD (Sun, Shi, Wang,

Zhang, Liu, Wang, He, Hao, Liu & Zhou 2014) and the ncPred proposed

by Salvatore et al. (Alaimo, Giugno & Pulvirenti 2014). In Yang et al.’s

method, a bipartite network containing the genes (coding or non-coding

genes) and diseases was constructed with known lncRNA-disease associations

and disease-genes. Then, the propagation algorithm was implemented on

the bipartite network to obtain a score for indicating the probability of a

lncRNA associating with the given disease. Although this method needs not

to compute the disease similarities and lncRNA similarities, it significantly

relies on the network structure. It’s impossible to predict a given disease

related lncRNAs if it has no already known associated lncRNA. Several
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months later, Sun et al.’s RWRlncD was published. It adopted the RWR to

analyze the lncRNA functional similarity network. This method is almost the

same as Chen’s RWRMDA. NcPred was proposed by adopting the concept

of resources transfer to analyze the tripartite network that is composed of

ncRNAs, RNA targets and diseases. This method requires no similarity or

other biological information of the network nodes. As the testing dataset is

small, whether this method can work well in bigger sample space should be

further investigated.

In 2015, two similar methods using the RWR algorithm to analyze

the lncRNA-disease heterogeneous network were proposed by Ganegoda et

al. (Ganegoda, Li, Wang & Feng 2015) and Zhou et al. (Zhou, Wang, Li, Hao,

Wang, Shi, Han, Zhou & Sun 2015) respectively. Both of these two methods

constructed the networks with the disease similarities, lncRNA-lncRNA

relationships and known disease-lncRNA associations. The differences are

their distinct ways to weight the similarities and assigning the transition

probabilities during the random walk. Ganegoda et al. applied the disease

phenotype similarities and lincRNA tissue-specific similarities, while Zhou

et al. adopted the lncRNA-miRNA interaction information and the disease

semantic similarities. These two methods also have the same limitations

comparing with above network analysis methods. Chen et al. (Chen 2015)

then presented the KATZLDA to predict the associations between lncRNAs

and diseases. It mainly computed the similarity of two nodes in the

heterogeneous network to measure the probability of existing a link between

them. The heterogeneous network integrates the lncRNA-disease association

network, the lncRNA similarity network and the disease similarity network.

In this method, similarities of lncRNAs were calculated by their functional

similarities and expression profiles. The disease similarities were composed

of disease semantic similarities and Gaussian interaction profile kernel

similarities. The informative heterogeneous network ensures the KATZLDA

can predict the disease related lncRNAs at large scale even without known

associated lncRNAs for a given disease. However, the requirement of
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abundant information makes the collection of those information a heavy job

(or sometimes impossible).

2.1.2 Similarities or semi-supervised methods

Those semi-supervised or similarity based methods are also commonly used to

predict the ncRNA-disease associations. This kind of methods do not depend

on the network topology properties. The ncRNAs’ similarities, diseases’

similarities and the known associations are the main prior information.

These methods regard the association prediction problem as an optimization

question.

For example, the HDMP method designed by Xuan et al. (Xuan, Han,

Guo, Guo, Li, Ding, Liu, Dai, Li, Teng et al. 2013) applied the idea of

considering a known disease-miRNA’s top-k most similar neighbors as new

disease-miRNAs. The miRNAs’ functional similarities were computed with

their related diseases’ semantic, term and phenotype similarities. Each

disease-miRNA pair was assigned a score to indicate whether the miRNA

in this pair correlates with that disease. During the scoring, for a given

disease’s candidate miRNAs, their miRNA family and cluster information

were also considered. The parameter k was tuned by the comparison of

known associations’ scores with those of the unknown disease-miRNA pairs.

This method is sensitive to the accuracy of miRNAs’ similarities. At the

same time, if a disease has no already known related miRNAs, the prediction

is impossible. Furthermore, selection of the parameter k is quite difficult

for a large scale of diseases. In the same year, Chen et al. (Chen &

Zhang 2013) proposed three models such as MBSI, PBSI and NetCBI. MBSI

applied the miRNA-miRNA functional similarity for predicting disease-

miRNA associations. PBSI used the disease phenotype similarities and

NetCBI adopted the disease-miRNA network consistency information. These

three models also leveraged the similar criterion as previous HDMP. Thus,

they have the same limitations comparing to the HDMP.

Chen et al. (Chen & Yan 2014) proposed their RLSMDA, a representative
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semi-supervised method, to predict disease-miRNA associations. A regularized

least square function was designed to optimize the classification functions of

the miRNA space and disease space. The two classification functions were

then combined to output the final prediction scores indicating the possibilities

of miRNAs associating with the diseases. This RLSMDA method has three

kinds of advantages: negative samples are not required; it can predict

different diseases’ related miRNAs simultaneously; it runs fast. However,

RLSMDA also has some drawbacks. First of all, it heavily depends on the

miRNAs’ similarities and diseases’ similarities. Secondly, the model training

and evaluation also involved unlabeled disease-miRNA pairs, which may

introduce bias. In fact, some of those unknown pairs may be positive. At

last, as were mentioned by the authors, they did not solve the parameter

selection problem.

In 2013, Chen et al. (Chen & Yan 2013) presented their LRLSLDA

method to predict the relationships between disease and lncRNAs. This

algorithm requires to compute the diseases’ similarities (Gaussian interaction

profile kernel similarity) and lncRNAs’ similarities (Gaussian interaction

profile kernel similarity and expression similarity) as well. Then, the laplacian

regularized least squares framework was adopted to predict the associations.

LRLSLDA is also a semi-supervised prediction method, thus it may have the

similar drawbacks as the RLSMDA, e.g. similarity dependency, unlabeled

samples related bias.

2.1.3 Supervised learning methods

To date, some supervised learning methods were adopted to address the

problem of predicting disease-ncRNA associations. The first supervised

learning method may be the one proposed by Xu et al. (Xu, Li, Lv, Li,

Xiao, Shao, Huo, Li, Zou, Han et al. 2011). In this method, the authors

represented miRNAs with topological features that were extracted from the

miRNA-target network. They used the known disease-miRNAs as positive

samples. Their negative samples were selected according to the tissue-
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specificity properties of the miRNAs. A SVM classifier was built to conduct

binary classification of the miRNAs for a given disease. Based on their

case study on prostate cancer, the author drew the conclusion that their

network-centric method can be adopted to prioritize novel disease-miRNAs.

They conducted the in vitro experiment to verify the reliability of their

prediction results. There are several disadvantages of this method. Firstly,

only the network topological features were adopted for the prediction. Other

useful features can be included such as the miRNA sequence and function.

Secondly, the negative samples are not reliable enough as the miRNA with

low expression level is not equal to it will not dys-express. Furthermore, this

method is not suitable for large scale prediction. For each disease, a specific

classifier needs to be constructed. At last, their sample size is quite small,

there are just 37 positive samples and 44 negative samples. This may lead

to inadequate learning of the machine.

Another SVM classification method was published by Jiang et al. (Jiang,

Wang, Jin, Li & Wang 2013). In Jiang’s method, a miRNA is represented by

a vector where the similarities between this miRNA and other miRNAs are

the elements. Similarly, a disease is vectorized by computing the similarities

of it comparing with other diseases. The two vectors were combined to

characterize the disease-miRNA pair and used as the input of the SVM to

train the prediction model. This method’s negative samples were selected

randomly from those unknown disease-miRNA pairs. Apparently, this

method has the following three defects. Firstly, the feature vector may change

if the members of miRNAs or diseases change. Then, those negative samples

are not reliable, which may result in a high false positive rate. At last, the

sample size of this method is also small, only 270 positive samples are used

in the cross-validation.

In 2015, Zhao et al. (Zhao, Xu, Liu, Bai, Xu, Xiao, Li & Zhang 2015)

proposed a naive bayesian classifier to find potential cancer-related lncRNAs

with genome, regulome and transcriptome information. This method also

regarded the random selected unknown disease-lncRNA pairs as negative
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samples. Their feature space is complex as much information were required.

2.1.4 Other types of prediction methods

Apart from the previous three types of methods, some other strategies were

applied to solve the disease-ncRNA association prediction problems. In the

year 2014, Biswas et al. (Biswas, Gao, Zhang & Wu 2014) adopted the idea

of non-negative matrix factorization (NMF) to predict the disease related

lncRNAs. At first, a relationship matrix was built with the known disease-

lncRNA associations. Then, different types of NMF models were applied to

obtain special vectors for each lncRNA and each disease. Finally, the scores

of the lncRNA-disease pairs were calculated according to their corresponding

vectors before ranking all the unknown pairs. This method did not apply the

similarities, network and negative samples. It seems easy to be implemented

as little prior information was required. However, this may also reduce the

accuracy of the prediction results.

Recently, Wang et al. (Wang, Ma, Ma, Chen, Yang, Xi & Cui 2016)

developed a sequence-based bioinformatics tool for identifying disease related

lncRNAs. This method predicted the miRNAs that interact with the given

lncRNA at first. Then, these miRNAs were enriched to known disease-

associated miRNA sets. Those diseases whose miRNA sets are significantly

enriched were thought to be associated with the given lncRNA. This method

applied the idea of those disease-miRNAs regulated lncRNAs are more likely

to associate with the diseases. Two types of information are critically

important such as the lncRNA-miRNA interactions and the disease-miRNA

relationships, which affect the method’s performance a lot.

A newer miRNA-disease association prediction method was proposed

by Pasquier et al. (Pasquier & Gardès 2016) later. This method firstly

represented diseases and miRNAs with high-dimensional vectors according

to known distributional information such as miRNA-neighbor associations,

miRNA-family associations, known miRNA-disease associations and so on.

After dimensionality reduction, the similarity between a disease vector and a
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miRNA vector was used to evaluate the possibility of this miRNA associating

with the disease. The involved information of this method is abundant, which

improves the prediction performance. However, to extract all those required

information is difficult at the same time.

2.2 CRISPR/Cas9 On-target Cutting Efficiency

Prediction

The CRISPR/Cas9 system is one of the most promising tools to edit those

disease genes (including ncRNA genes) currently (Ho, Zhou, Huang, Koirala,

Xu, Fung, Wu & Mo 2014, Swiech et al. 2015, Wu, Zhou, Fan, Zhang,

Zhang, Wang, Xie, Bai, Yin, Liang et al. 2015, Zhu, Li, Liu, Chen, Liao,

Xu, Xu, Xiao, Cao, Peng et al. 2016). Selecting an optimal spacer sequence

to make sure that the system has higher cutting efficiency is an important

step for CRISPR/Cas9 system design. Evaluating the cutting efficiencies

by biological experiments is accurate but expensive and time-consuming.

Computational methods are always fast, cheap and easy, which can be used to

select those possible optimal spacers for further experimentally confirmation.

They can help the CRISPR/Cas9 system design by saving time and cost in

practical use. This section reviews the existing computational methods for

CRISPR/Cas9 system on-target cutting efficiency prediction. The known

methods are classified into three categories such as classification, regression

and non-machine learning methods. They are described in three subsections

below. The basic descriptions of these methods are shown in following

Table 2.1.

2.2.1 Binary classification of the sgRNAs

The binary classification methods always assign a given sgRNA the label

of highly-active or low-active. In 2014, Doench et al. (Doench, Hartenian,

Graham, Tothova, Hegde, Smith, Sullender, Ebert, Xavier & Root 2014)
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Table 2.1: The existing tools for CRISPR/Cas9 on-target cutting

efficiency prediction.
Tool method year server offline author

Rule set 1 logistic regression classifier 2014 yes no Doench et al.

SSC Elastic-Net model classification 2015 yes yes Xu et al.

sgRNAscorer1.0 SVM classifier 2015 yes yes Chari et al.

WU-CRISPR SVM classifier 2015 yes yes Wong et al.

CRISPRScan liner regression 2015 yes no Moreno-Mateos et al.

BiophyM Biophysical Model 2016 no no Farasat et al.

ge-CRISPR SVM classification/regression 2016 yes no Kaur et al.

Rule set 2 boosted regression tree 2016 yes yes Doench et al.

sgRNAscorer2.0 SVM classifier 2017 yes no Chari et al.

DeepCRISPR deep learning 2018 yes yes Chuai et al.

bacteriaSgRNA boosting regression tree 2018 no yes Guo et al.

reported their classification method (Rule set 1) for helping select highly

active sgRNAs. The cutting efficiencies of 1841 sgRNAs for editing 9

genes were measured with wet lab experiments. For each gene’s sgRNAs,

their efficiencies were normalized to be scores between 0 to 1. After

ranking all the sgRNAs’ efficiency scores, the top-ranked 20% sgRNAs were

regarded as highly-active ones. The sgRNAs were characterized with features

including individual nucleotides indexed by position in the 30-mer target site

(N4N20NGGN3, where N20 is the spacer sequence and NGG is the PAM),

all pairs of adjacent nucleotides indexed by position in the 30-mer target site

and the number of ‘G’ and ‘C’ in the 20nt spacer. Then, an L1-regularized

linear support vector machine was adopted to select important features from

the feature space with the L1-norm penalty. At last, a logistic regression

classifier was trained with these selected features. According to the authors’

analysis, they confirmed that there exists nucleotide preference of the highly

active sgRNAs such as preferring guanine (‘G’) but disliking cytosine (‘C’) at

the 20th position (counting from 5’ to 3’), preference for cytosine and against

guanine at position 16. The dataset used by this method has been one of the

golden standard datasets in sgRNA efficiency classification.

In the year 2015, three another sgRNA efficiency classifiers were published

by different research groups. Xu et al. (Xu, Xiao, Chen, Li, Meyer, Wu,
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Wu, Cong, Zhang, Liu et al. 2015) built an Elastic-Net model (SSC) for

the classification of the sgRNAs with only sequence features such as the

binary vector for representing the presence or absence of the nucleotides.

They collected 3 datasets containing the sgRNAs for editing human and

mouse essential genes to train and evaluate their method. The authors

also confirmed some similar nucleotide preferences as Doench et al.’s

work (Doench et al. 2014). In addition, Xu et al. observed new preferences

such as the cytosine preference at the 3rd position upstream to the PAM. By

testing with the independent datasets, the authors drew the conclusion that

their model performs better than Doench et al.’s method.

Later, Chari et al. (Chari, Mali, Moosburner & Church 2015) proposed

their in vivo library-on-library method to simultaneously measure the

sgRNAs’ activities (sgRNAscorer1.0). In Chari et al.’s work, they collected

two relatively small datasets for Cas9Sp (from Streptococcus pyogenes) and

Cas9St1 (from Streptococcus thermophilus, with the PAM of ‘NNAGAAW’)

respectively. The spacer+PAM sequences were encoded with a 4-bit binary

system for each nucleotide as the inputs of the SVM to construct their

classifier. Comparing with Doench et al.’s method, the authors observed

a modest correlation between the two methods’ results. This was explained

by the reasons that these two classifiers’ training dataset are different and

their experiment time is not the same. In addition, Chari et al. applied the

direct sequence-based readout to assay the sgRNA activity while Doench et

al. used a phenotype-based readout. Chari et al. also confirmed similar

nucleotide preferences of highly active sgRNAs and they found that these

preferences are generally existing (both for Cas9Sp and Cas9St1).

Wong et al. (Wong, Liu & Wang 2015) reported their SVM classifier for

the sgRNA cutting efficiency classification (WU-CRISPR). In their work,

CRISPR related RNA-seq data were analyzed. This helped them identify

many novel features to characterize sgRNAs for the classification. Those

novel features include the repetitive bases, overall nucleotide usage and

structural characteristics such as overall secondary structure, self-folding
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free energy, and the accessibility of individual nucleotides in the structure.

By comparing with the above three existing methods, the authors claimed

that their classifier works better than the other methods according to the

Precision-Recall (PR) curves.

In the year 2016 and 2017, some other methods for classifying sgRNAs

were proposed. For example, Kaur et al. (Kaur, Gupta, Rajput & Kumar

2016) reported their ge-CRISPR which integrates many different features and

applies feature selection to improve their classifier’s performance. Chari et

al. (Chari, Yeo, Chavez & Church 2017) provided an improved version tool

sgRNAscorer2.0 which can predict sgRNA activities across multiple CRISPR

systems.

2.2.2 Regression methods for sgRNA cutting efficiency

prediction

The regression methods prone to give each sgRNA a continuous score

for indicating its cutting efficiency. For instance, Moreno-Mateos et

al. (Moreno-Mateos, Vejnar, Beaudoin, Fernandez, Mis, Khokha & Giraldez

2015) built one of the earliest regression methods namely CRISPRScan

to predict the sgRNAs’ cutting efficiencies. They firstly measured 1280

sgRNAs’ efficiencies for targeting 128 zebrafish genes and normalized them

to the scores between 0 to 100 (100 means highest). After the filtering

process, 1020 sgRNAs with experimentally determined efficiencies were

remained for building their linear regression model. The selected subset (91-

dimensional) of the mononucleotide type indexing (4 bits) and dinucleotide

type indexing features were applied to represent the 35nt target site sequences

(N6N20NGGN6, NGG is the PAM and N20 is the spacer). The cross-

validation and independent tests proved that their predicted efficiency scores

correlate well with the experimentally measured values. In addition, they

have found some determinants for the sgRNA’s cutting efficiency. For

instance, the guanine enrichment and adenine depletion can increase the

sgRNA stability and activity.
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In 2016, Doench et al. (Doench et al. 2016) improved their previous

work (Rule set 1 (Doench et al. 2014)) by proposing the Rule set 2 for

the prediction of sgRNA cutting efficiency. They expanded their dataset

with another 2549 sgRNAs whose efficiencies were determined with the drug

resistance phenotype. The total 4379 sgRNAs (some sgRNAs were filtered

out as they were mapped to multi-genome locus) with their normalized

efficiency scores (0 to 1) form one of the most popular gold standard

datasets. By combining their previous sequence features with newly proposed

ones such as the melting temperature and the sgRNA location within the

protein properties, the gradient-boosted regression trees were trained to

build their regression model. Through the performance comparisons, the

authors concluded that their Rule set 2 outperforms their Rule set 1 (Doench

et al. 2014), Xu et al.’s SSC (Xu et al. 2015) and Wong et al.’s (Wong

et al. 2015) WU-CRISPR.

Recently, two more regression methods for sgRNA cutting efficiency

prediction were published. The first one is the DeepCRISPR proposed

by Chuai et al. (Chuai, Ma, Yan, Chen, Hong, Xue, Zhou, Zhu, Chen,

Duan et al. 2018), which applied the deep learning to predict the efficiency

scores by learning the sequence information and the epigenetic information

of the target sites. They tested their model and others’ with various testing

scenarios to prove their method’s excellent performance. Later, Guo et

al. (Guo, Wang, Guan, Liu, Luo, Xie, Zhang & Xing 2018) reported their

gradient boosting regression tree-based regression model (bacteria sgRNA).

In their method, the sgRNAs were encoded by the strategy similar to Doench

et al.’s Rule set 1 (Doench et al. 2014). Guo et al.’s method is mainly

designed for bacteria but not mammals. They proved that the methods

designed for mammals may cannot predict the sgRNAs’ cutting efficiencies

well for bacteria.

30



Chapter 2. Related Work and Literature Review

2.2.3 A Non-machine learning method for on-target

cutting efficiency prediction

Though machine learning methods are popular for the CRISPR/Cas9 on-

target site cutting efficiency prediction, there exists a biophysical model

method for completing this task. Farasat et al. (Farasat & Salis 2016)

developed free energy models to estimate the cutting efficiency of the sgRNA.

It adopted the statistical thermodynamics and kinetics to model the processes

of Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop

formation and cleavage. Then, abundant structural, biochemical, expression,

and next generation sequencing data were used to determine their model’s

parameters.

2.3 CRISPR/Cas9 Off-target Site Detection

Though CRISPR/Cas9 system can generate DNA cleavage with high efficien-

cy, the off-target effect is one of the important limitations for its practical

usage. Detecting the potential off-target sites is a significant step for the

optimal design of a sgRNA. This section surveys the existing methods for

detecting genome-wide off-target sites of a given sgRNA. These methods can

be classified into wet-lab technologies and computational methods. For the

computational methods, mismatch information scoring methods and machine

learning methods are mainly included. These three types of methods are

discussed in the following three subsections. The basic information of them

are listed in following Table 2.2.

2.3.1 Wet-lab technologies for off-target site detection

Some wet-lab technologies have been proposed to detect off-target sites of

the CRISPR/Cas9 system. These technologies apply the next-generation

sequencing (NGS) technology to detect mutated reads that are induced by

the CRISPR/Cas9 system. These wet-lab tools can detect bona fide off-
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Table 2.2: The existing off-target site detection methods.
Tool method year web-server offline tool author

CIRCLE-seq wet-lab 2017 no yes Tsai et al.

Digenome-seq wet-lab 2015 no yes Kim et al.

multiplex Digenome-seq wet-lab 2016 no res Kim et al.

GUIDE-seq wet-lab 2014 no yes Tsai et al.

HTGTS wet-lab 2014 no yes Frock et al.

SITE-Seq wet-lab 2017 no yes Cameron et al.

CCTop scoring 2015 yes yes Stemmer et al.

CFD scoring 2016 yes yes Doench et al.

CRISPOR integration 2016 yes yes Haeussler et al.

CRISTA RandomForest 2017 yes yes Abadi et al.

CROP-IT scoring 2015 yes no Singh et al.

MIT-score scoring 2013 yes no Hsu et al.

Elevation machine learning 2018 yes no Listgarten et al.

DeepCRISPR deep learning 2018 yes yes Chuai et al.

target sites at genome scale.

The first widely used wet-lab technology is the GUIDE-seq (Tsai,

Zheng, Nguyen, Liebers, Topkar, Thapar, Wyvekens, Khayter, Iafrate, Le

et al. 2015). It can detect DSBs caused by CRISPR-Cas nucleases such

as the CRISPR/Cas9. This technology detects the off-target site by two

procedures. Firstly, DSBs in the genomes of living human cells are tagged

by integration of a blunt, double-stranded oligodeoxynucleotide (dsODN) at

these breaks by means of an end-joining process consistent with NHEJ. Then,

dsODN integration sites are detected with the NGS technology. Through

the validation with previous datasets and their low-throughput experiments,

the authors reported that GUIDE-seq can detect genome-wide unbiased off-

target sites accurately.

Frock et al. (Frock, Hu, Meyers, Ho, Kii & Alt 2015) applied their

previously proposed technology high-throughput, genome-wide translocation

sequencing (HTGTS) (Chiarle, Zhang, Frock, Lewis, Molinie, Ho, Myers,

Choi, Compagno, Malkin et al. 2011) to detect CRISPR/Cas9 off-target

sites. HTGTS used the linear amplification-mediated PCR (LAM-PCR)

to distinguish genome-wide DSBs generated by engineered nucleases (e.g.

CRISPR/Cas9) from those endogenous or ectopic ones. HTGTS was claimed
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to have the energy of identifying nuclease-generated, on-target and off-target

DSBs and associated collateral chromosomal damage.

Kim et al. (Kim, Bae, Park, Kim, Kim, Yu, Hwang, Kim & Kim 2015)

designed their tool Digenome-seq for profiling the genome-wide off-target

sites of the CRISPR/Cas9 system. The Digenome-seq adopts the whole

genome sequencing to identify off-target mutations via sequencing in vitro

nuclease-digested genomes. The differences between digested genome reads

and the traditional reads are that the former reads are vertically aligned at

cleavage sites while the later reads would be aligned in a staggered manner.

By comparing with the GUIDE-seq and HTGTS, the authors concluded that

the three tools obtain comparable results but their tool has the advantage

of without chromatin accessibility limitation. Kim et al. (Kim, Kim, Kim,

Park & Kim 2016) improved their Digenome-seq by developing the multiplex

Digenome-seq. This new tool can profile up to 11 CRISPR/Cas9 systems’

genome-wide specificities simultaneously to help save time and reduce cost.

They also proved that the multiplex Digenome-seq detects more complete

bona fide off-target sites than the other wet-lab technologies.

In 2017, the tool SITE-Seq was presented by Cameron et al. (Cameron,

Fuller, Donohoue, Jones, Thompson, Carter, Gradia, Vidal, Garner, Slorach

et al. 2017). This tool detects the off-target sites by assaying mutations at

each cut site using amplicon sequencing. The authors designed this tool for

resolving the issues existing in the GUIDE-seq and HTGTS that they rely

on cellular events such as the integration of donor sequences or chromosomal

translocations. In addition, comparing to the Digenome-seq, it requires no

high read depth. The authors found that their SITE-Seq can detect all the

GUIDE-seq, HTGTS and Digenome-seq detected off-target sites and also

some new sites, which proves their method’s excellent performance.

At the same time, Tsai et al. (Tsai, Nguyen, Malagon-Lopez, Topkar,

Aryee & Joung 2017) reported their tool CIRCLE-seq for in vitro detection

of CRISPR/Cas9 off-target sites. Their core idea is selectively sequencing the

Cas9-cleaved genomic DNA. During CIRCLE-seq’s work, the genomic DNA
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is firstly sheared and circularized by intramolecular ligation. Then, only the

circular DNA molecules containing a Cas9 cleavage site can subsequently

be linearized and sequenced with NGS. The authors concluded that their

tool is accessible, rapid and comprehensive. It applies a highly sensitive,

sequencing-efficient in vitro screening strategy, which outperforms the other

cell-based tools (e.g., GUIDE-seq, HTGTS). It was also reported to have

the advantage of identifying off-target mutations associated with cell-type-

specific single-nucleotide polymorphisms.

2.3.2 Mismatch information scoring methods for off-

target site detection

The mismatch number and mismatch type between the sgRNA sequence

and its target region sequence mainly determine whether there is an off-

target cutting. Detecting off-target sites by directly observing the mismatch

information is a popular strategy. We call those computational tools applying

this strategy the mismatch information scoring methods.

Hsu et al. (Hsu, Scott, Weinstein, Ran, Konermann, Agarwala, Li, Fine,

Wu, Shalem et al. 2013) proposed their tool for evaluating sgRNA specificity

by a scoring method (MIT-score). At first, they observed the phenomenon

that a CRISPR/Cas9 system tolerates mismatches at different positions in

a sequence-dependent manner. The off-target cutting is sensitive to the

number, position and distribution of mismatches between the sgRNA and

its target. These were found by measuring the cutting efficiencies of the

sgRNA variants containing mismatches with different mismatch number, at

various positions and with diverse mismatch types. Finally, they constructed

a scoring function to compute a score for indicating the off-target cutting

efficiency at a given site (Their detail scoring function can be found from the

website: http://crispr.mit.edu/about).

Stemmer et al. (Stemmer, Thumberger, del Sol Keyer, Wittbrodt &

Mateo 2015) developed the CCTOP to detect off-target sites of the sgRNAs.

This method firstly searches all the potential target sites of a given sgRNA
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with Bowtie (Langmead, Trapnell, Pop & Salzberg 2009), a popular read

aligner. Then a score for each potential off-target site can be computed

according to its mismatch number and positions. The simple scoring function

is shown as formula 2.1, where pos is the position of a mismatch, counted

from the 5’ end and the base 1.2 is experimentally determined. This score

was used to indicate the likelihood of a stable sgRNA/DNA heteroduplex,

which also can be regarded as an indicator of the possibility of existing an

off-target cutting.

scoreoff−target =
∑

mismach

1.2pos (2.1)

Singh et al. (Singh, Kuscu, Quinlan, Qi & Adli 2015) designed their

algorithm CROP-IT to predict CRISPR/Cas9 off-target sites. The CROP-

IT considers both the sequence information and the whole genome level

biological information to compute the possibility of a site to be an off-target

site. It filtered the potential off-target sites with the requirement of the PAM

to be ‘NGG’ or ‘NNG’ at first. Then, the score of a given site was computed

by combining the weighted segmented sequence score and the chromatin

state score. The detail scoring function can be found from their published

paper. The authors claimed that their method outperforms the existing

computational methods such as the above MIT-score (Hsu et al. 2013) and

CCTOP (Stemmer et al. 2015).

In 2016, Doench et al. (Doench et al. 2016) proposed their tool CFD

score to measure the off-target cutting efficiency. This tool was designed by

firstly investigating the activities of the sgRNAs when insertion, deletion or

mismatches were introduced into to them. Then, they examined the changes

in activity produced by the three different types of variants. At last, their

CFD score function was produced according to their collected data, where

only the mismatch type and position information were considered. Haeussler

et al. (Haeussler, Schönig, Eckert, Eschstruth, Mianné, Renaud, Schneider-

Maunoury, Shkumatava, Teboul, Kent et al. 2016) evaluated previously
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mentioned scoring methods with their collected datasets. They found that

CFD score achieves better performance than the other tools.

2.3.3 Machine learning methods for off-target site

detection

Recently, three machine learning methods were published for solving the

sgRNA specificity evaluation issue. The first one is the CRISTA of

Abadi et al. (Abadi, Yan, Amar & Mayrose 2017). CRISTA collected

validated off-target cutting activity data from those published datasets

and assembled selected uncleaved sites whose activities are 0. These

collected sites were characterized with sequence features such as PAM

sequence, nucleotide composition and GC content, chromatin structure,

sgRNA secondary structure, similarities between sgRNAs and those sites

and the mismatch or bulge information. Then, a random forest regression

model was constructed to predict the off-target cutting activity of a given

site. By selecting an appropriate threshold, it also can label a site as cleaved

or uncleaved. Comparing with those scoring methods, the authors confirmed

that CRISTA achieves better performances under different tests.

Listgarten et al. (Listgarten, Weinstein, Kleinstiver, Sousa, Joung,

Crawford, Gao, Hoang, Elibol, Doench et al. 2018) created their cloud-based

service tool Elevation to predict off-target activities. The tool assigned scores

to individual guide-target pairs at first and also aggregates them into a single,

overall summary guide score. The authors also concluded that their Elevation

outperforms the existing tools.

Most recently, Chuai et al. (Chuai et al. 2018) proposed their tool

DeepCRISPR which contains the function of evaluating sgRNA target

specificity to help design sgRNAs. At first, this method fitted a given

sgRNA and its one off-target site sequences into the pre-trained DCDNN-

based network respectively for sample representation. Then, the two output

networks were combined channel-wisely to train their CNN classifier for

classifying a sgRNA-potential site pair into positive or negative. The authors
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applied various testings to prove their tool’s good performance comparing to

the scoring methods.

2.4 Limitations of Existing Methods

This section concludes the limitations of those existing methods for disease-

ncRNA association prediction and the optimal design of a CRISPR/Cas9

system. They are discussed in two separate subsections corresponding to the

two research topics.

2.4.1 Limitations of the disease-ncRNA association

prediction methods

Previously, we reviewed four types of existing methods for predicting disease-

ncRNA associations. Each of them has some limitations. For example, the

network analysis methods have the main limitation of strongly relying on the

network structures’ completeness. For those complex networks, vast prior

information are required. This not only introduces more incompleteness to

the network but also makes the mining of new connections extremely difficult.

Comparing with the network analysis methods, the similarity or semi-

supervised methods have no network structure dependency. However, this

type of methods always need to compute accurate disease similarities and

ncRNA similarities. Sometimes, selecting suitable thresholds for similarity

analysis methods or tuning the parameters of the semi-supervised methods

are not easy. In addition, the model optimization and performance evaluation

processes adopted the unknown relationships, which may introduce bias to

the final prediction models.

Those supervised learning methods are rare to date. The biggest

limitation is that reliable negative samples are required. The existing

methods’ strategies to collect negative samples are not reliable enough.

Secondly, bigger datasets should be collected to optimize and evaluate
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the prediction models. In addition, constructing effective feature space to

characterize the disease-ncRNA pairs is also a difficult problem to be solved.

At last, the forth type of methods are different from the other three types

as they borrow ideas from other fields. These methods avoid the limitations

of those traditional methods. However, they are always complex and are not

suitable for large-scale prediction.

2.4.2 Limitations of the methods for gene editing

optimization

Three types of computational methods have been published to predict the

CRISPR/Cas9 on-target cutting efficiency such as classification methods,

regression methods and the biophysical model method. Each of them has

some limitations that should be addressed. Those classification methods

have two kinds of limitations. Firstly, the definitions of highly-active and

low-active sgRNAs are not consistent and objective. For example, in Doench

et al.’s Rule set 1 (Doench et al. 2014), those top-ranked 20% sgRNAs

were defined as highly-active while the remaining ones were labeled as low-

active. However, in Wong et al.’s work (Wong et al. 2015), the top 20%

and bottom 20% were regarded as high and low respectively. Some other

rules were also used such as considering the overlaps of the top quartiles

and bottom quartiles of those sgRNAs (Chari et al. 2015) or observing the

sgRNAs’ decline in abundance in the screens (Xu et al. 2015). These various

definitions may affect the prediction models. Comparisons between different

methods that apply inconsistent sample definitions may be unfair. Secondly,

classifying sgRNAs into highly-active or low-active is not suitable for helping

sgRNA design in practical usage. Usually, a lot of sgRNAs are predicted to

be highly-active, suggesting the best one is difficult.

The regression methods for the on-target cutting efficiency prediction also

contain some limitations. First of all, the efficiency normalization is always

implemented at the gene-scale but not genome-scale. Some of the existing

models were trained with the datasets involving multi-genes but were tested
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on a single gene. This may introduce bias during the model training and

validation. Secondly, some prediction models were just trained with limited

species’ datasets but were applied to other not well-investigated species.

Whether the genome differences affect the cutting efficiency prediction has

not yet been confirmed. In addition, as was reported by Haeussler et

al. (Haeussler et al. 2016), the expression systems of the sgRNAs also make

sense to the prediction performance. The sgRNAs expressed from the T7

and U6 expression systems should be predicted separately. At last, current

regression methods’ performances are not good enough. More work should be

done to improve the prediction accuracy such as extracting more meaningful

features for sgRNA representation or designing new prediction strategies.

The biophysical model method predicts the on-target cutting efficiency

through the simulation of CRISPR/Cas9-DNA interaction with mathematical

models. This method seems more complex than those machine learning

methods. Much information are required to optimize the models’ parameters.

This method is not suitable for predicting the on-target cutting efficiencies

at large scale.

As is described previously, there are wet-lab technologies, scoring methods

and machine learning models to detect CRISPR/Cas9 off-target sites. Those

wet-lab technologies can detect bona fide off-target sites as they directly

observe the mutations induced by gene editing events. However, these

methods are always costly and time-consuming. The mismatch information

scoring methods run fast and are easy to be implemented. On the other

hands, these methods give no consistent threshold to say which site is a

real off-target site. In addition, these methods are too simple to accurately

characterize the off-target site sequences’ properties. Current machine

learning methods have the main limitation of lacking enough reliable training

samples. Especially, the real off-target sites account for a small part of

the whole genome-widely potential editing sites, which makes the datasets

extremely unbalanced. Furthermore, the false positive rates and false

negative rates are high. More efforts are required to solve these limitations
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for the optimal design of the sgRNAs.

2.5 Summary

This chapter mainly reviews the existing methods for addressing the problems

of disease-ncRNA association prediction, CRISPR/Cas9 system on-target

cutting efficiency prediction and off-target site detection. These methods’

limitations have also been discussed. In conclusion, the collection of reliable

samples are crucial for designing excellent models to solve these problems.

If a supervised classification method is applied, negative samples should be

prepared well at first. The second point for improving the performance is to

extract effective features for the representation of those samples. Extracting

domain knowledge characteristics and applying feature selection strategies

may exactly benefit the performance improvement.
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Precomputed Kernel Matrix

SVM Method for Predicting

Disease Related miRNAs

3.1 Introduction

As mentioned in Chapter 1, miRNAs play significant roles in disease

development. The relationships between miRNAs and diseases are still

remaining largely unknown. Existing computational methods for predicting

disease-related miRNAs have been reviewed in Chapter 2. The key idea in

the similarity measuring criterion adopted by most of these existing methods

is that: similar RNAs (functionally similar) are always associated with

similar diseases (phenotypically similar, genotypically similar or semantically

similar). We have concluded in Chapter 2 that these existing computational

methods have some limitations such as the network structure dependency,

the threshold and parameter selection, and lacking reliable negative samples.

To improve the prediction performance and overcome those limitations,

we propose a new method to make predictions of disease-related miRNAs.

Two new ideas are explored. One is the construction of a set of reliable
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negative samples of disease-miRNA association through miRNA expression

comparison between control and diseased subjects. The second idea is the use

of precomputed kernel matrix for support vector machines, which can avoid

characterizing the samples directly and the step to tune the parameters of

the kernel functions. The area under the ROC curve (AUC) performance

of our method is much superior to the literature methods on benchmarking

data sets. Our case studies have demonstrated that our prediction method

can also work well even such a disease is given that has no currently known

disease related miRNAs.

3.2 Method

3.2.1 Data sets for the diseases, miRNAs and their

related genes

Diseases and miRNAs stored at different databases may have different

names or IDs. To deal with this inconsistency issue, we mapped the

names of the diseases and miRNAs from all the relevant databases to

the database Disease Ontology (DO) (Schriml, Arze, Nadendla, Chang,

Mazaitis, Felix, Feng & Kibbe 2012) and miRBase v21.0 (Kozomara &

Griffiths-Jones 2014). The Medical Subject Headings (MeSH) (Lipscomb

2000) and Comparative Toxicogenomics Database (CTD) (Davis, Murphy,

Saraceni-Richards, Rosenstein, Wiegers & Mattingly 2009) were used as the

dictionaries of the disease names. We searched in DO for all the disease names

of a data set. When exact terms were found in DO, the names and the DO

ids were recorded and stored in a separate file. Otherwise, we searched in

MeSH and CTD and used their synonyms to map them to DO terms. To

map the names of the miRNAs, we searched the given ids of the miRNAs in

miRBase v21. When a term was not found, then it was discarded (according

to miRBase, it may be a dead record because it is not a miRNA, or the

record has been replaced by another one). A miRNA id is always related
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to two mature miRNA ids with the suffix of ‘-5p’ or ‘-3p’ which means a

precursor miRNA will generate two mature miRNAs from the 5’-arm or the

3’-arm respectively. As the mature miRNAs are the real functional parts,

the miRNAs from different resources were mapped to the mature miRNA

ids in miRBase v21. For those older version ids, we also mapped them to

the current mature miRNA ids according to the term of Previous IDs of the

miRBase database. Finally, each miRNA was mapped to one mature miRNA

id of the database miRBase v21.

The genes were mapped to the entrez gene ids according to the HUGO

Gene Nomenclature Committee (HGNC) (Povey, Lovering, Bruford, Wright,

Lush & Wain 2001). To get the disease-related genes, we downloaded

the supplementary files of (Cheng, Li, Ju, Peng & Wang 2014) which

contains 117,190 associations between 2817 diseases and 12063 genes from

the database SIDD (Cheng, Wang, Li, Zhang, Xu & Wang 2013). After data

correction and redundancy removal, we obtained a data set of 114754 disease-

gene associations between 2802 diseases and 10893 genes. To get the target

genes of those miRNAs, we searched two databases: miRecords (Xiao, Zuo,

Cai, Kang, Gao & Li 2009) and miRTarBase (Hsu, Lin, Wu, Liang, Huang,

Chan, Tsai, Chen, Lee, Chiu et al. 2010). After mapping the miRNAs to

miRBase v21 and mapping the gene names to entrez gene ids, we retrieved

322,269 miRNA-target pairs between 2588 miRNAs and 14794 genes. These

disease genes and miRNA targets are stored in Supplementary files 1 and 2.

3.2.2 Positive samples and negative samples for training

the prediction model to identify unknown disease-

miRNA associations

There are several disease-miRNA databases such as miR2Disease (Jiang

et al. 2009), HMDD (Lu, Zhang, Deng, Miao, Guo, Gao & Cui 2008),

and miRCancer (Xie, Ding, Han & Wu 2013). This work focuses on the

human mature miRNAs. The database HMDD stores the miRNAs as the
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precursor miRNA ids, these ids were first converted into mature miRNA ids

according to the provided reference links before mapping them to the mature

miRNA ids. After mapping the miRNAs and diseases to miRBase v21 and

DO respectively, we retrieved 4578 associations between 463 miRNAs and

263 diseases from HMDD, 1952 associations between 83 cancers and 341

miRNAs from miRCancer, and 2096 disease-miRNA associations between

108 diseases and 287 miRNAs from miR2Disease. These are known disease-

miRNA associations and they are used as the positive samples for the training

of the prediction model.

Selection of negative samples, i.e., those disease-miRNA pairs that have

little associations, is a difficult problem. We explored a novel idea to select

credible negative samples. The new idea is to select negative samples

according to the expression data of the miRNAs that we downloaded

from the Gene Expression Omnibus (GEO) database (Edgar, Domrachev

& Lash 2002). We computed the fold changes of the miRNAs in the

diseased patients comparing with the controls (i.e., the adjacent normal

cells or the healthy contributor’s corresponding cells) according to the given

platform information of the GEO database. A disease-related miRNA is

always differentially expressed significantly between these two groups of

subjects. Those miRNAs that are not significant differential expressed

(the fold changes smaller than 0.05) will be regarded as non-disease related

miRNAs. After conducting analysis on 78 GSE accessions (some accessions

without enough information for computing the fold changes were removed),

we determined 21432 disease-miRNA pairs between 2473 miRNAs and 73

diseases which have little association. The accession ids can be found in

the Supplementary file 3. By comparing this data set of negative samples

with the above HMDD-based, miRCancer-based and the miR2Disease-based

positive data sets, those pairs that appeared in both of the negative data

set and the positive data sets were discarded. We then obtained 4041,

1838 and 1487 disease-miRNA pairs respectively from HMDD, miRCancer

and miR2Disease, which were regarded as positive samples. 20772 disease-
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miRNA pairs extracted by the analysis of the GSE accessions were used as

negative samples. To obtain more reliable negative samples, we also removed

those diseases that have no known related miRNAs and those miRNAs that

have no known related diseases according to the three positive data sets from

the 20772 disease-miRNA pairs. Finally, there are 4638 negative samples

involving 53 diseases and 538 miRNAs. All these four data sets are further

described in Supplementary file 4.

We note that Jiang’s method (Jiang et al. 2013) takes all those unknown

disease-miRNA pairs as negative samples and constructed balanced data sets

by a random selection of a subset of the negative samples as the same size

of the verified disease-miRNA associations. Xu’s method (Xu, Li, Lv, Li,

Xiao, Shao, Huo, Li, Zou, Han et al. 2011) takes those miRNAs at the lowest

expression levels in the normal tissue as negative samples. Our method for

selecting negative samples is different and more convincing as we consider

the fold changes of the expression levels of the miRNAs between diseased

and control tissues.

3.2.3 Precomputed kernel matrices for the support

vector machine

We applied support vector machine (SVM) to predict disease-related miRNAs.

SVM is a supervised learning model for classification and regression (Cortes

& Vapnik 1995). We adopted the LibSVM version 3.20 (Chang & Lin 2011)

in this work. Usually, one can extract the features of the samples as the

input of SVM to implement classification or regression with different kernel

functions such as linear kernel, polynomial kernel, radial basis function

kernel. However, even though we can represent a miRNA as a feature

vector, it is hard to design an appropriate feature vector to describe a disease.

Diseases are always phenotypes of patients. It is difficult to find the common

properties of diseases that can be normalized as mathematical variables. To

overcome this issue, we proposed to use precomputed kernel matrices instead

of constructing the feature vectors to represent the disease-miRNA pairs.
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Construction of a precomputed kernel matrix has three main steps:

Step 1: Calculate the difference between two disease-miRNA pairs.

Given two disease-miRNA pairs d1m1 and d2m2, we compute their difference

(diff (d1m1, d2m2)) in three ways:

• Average approach:

diff (d1m1, d2m2) = (DisSim (d1, d2) +MiRSim (m1,m2)) /2 (3.1)

• Squared root approach:

diff (d1m1, d2m2) =
√
(DisSim (d1, d2)×MiRSim (m1,m2)) (3.2)

• Center distance approach:

diff (d1m1, d2m2) =[(DisSim (d1, d2)− AvgDisSim)2 +

(MiRSim (m1,m2)− AvgMiRSim)2]1/2
(3.3)

where DisSim andMiRSim represent the similarities between diseases and

miRNAs respectively. AvgDisSim is the average similarity of all the disease-

disease pairs, and AvgMiRSim is the average similarity of all the miRNA-

miRNA pairs. Obviously, bigger values of diff (d1m1, d2m2) means the two

pairs d1m1, d2m2 are more similar. Details of computing the similarities

between diseases or between miRNAs are introduced in the next section.

Step 2: Constructing the kernel matrix for training samples. For

a training set of M samples {d1m1, d2m2, ..., dMmM} with class labels

{l1, l2, ..., lM}, the training kernel matrix, denoted as TKM, is given by:

TKM =

⎛
⎜⎜⎝

k11 · · · k1M
...

. . .
...

kM1 · · · kMM

⎞
⎟⎟⎠ (3.4)

where, kij = diff (dimi, djmj) is the difference between the two pairs dimi

and djmj.

Step 3: Constructing the kernel matrix for testing samples. For a testing

set of n samples {D1M1,D2M2, . . . ,DnMn}, the kernel matrix for the testing
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samples, denoted by PKM, is given by:

PKM =

⎛
⎜⎜⎝
k

′
11 · · · k

′
1M

...
. . .

...

k
′
n1 · · · k

′
nM

⎞
⎟⎟⎠ (3.5)

Using TKM and PKM as input to libSVM, the class labels of the n

testing samples can be predicted, and the probabilities of the predictions can

be derived at the same time.

3.2.4 Measuring the pairwise similarities of diseases or

miRNAs

Disease similarity between two diseases, denoted by DisSim, is measured

in two parts: the disease semantic similarity (SemSim) and the functional

similarity between disease-related gene sets (FunSim). The multiplication

of SemSim and FunSim is defined as DisSim. The definition of FunSim is

referred to the SemFunSim method (Cheng et al. 2014). We implemented

the algorithm and obtained the FunSim measurements between 2802 diseases.

The SemSim was computed with the R package DOSE (Yu, Wang, Yan &

He 2015). For the DOSE, we applied Resnik’s (Resnik et al. 1999) definition

of the common ancestor for two given terms. To avoid too many zero values

of the similarities, we integrated SemSim and FunSim using a sum (instead of

multiplication) and a weight parameter α. The new similarity measurement

between disease di and disease dj is computed by

DisSim (di, dj) = α× FunSim (di, dj) + (1− α)× SemSim (di, dj) (3.6)

MiRNA similarity between two miRNAs, denoted by MiRSim is also

measured in two parts: the sequence similarity (SeqSim) and the function

similarity (funSim). SeqSim evaluates the similarity of the two miRNA

sequences. We applied the idea of pseudo amino acid composition (Chou

2001) to represent a miRNA as a (4 + λ)-dimension vector. This idea was

originally proposed to represent protein sequences as vectors.
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Given a RNA sequence R : r1, r2, . . .ri, . . .rL, where ri ∈ {A,G,C, U}.
Then, R is represented as a vector VR = [vi]1×(4+λ), where the first four

components stand for the occurrence frequencies of the 4 native nucleotides,

and the latter λ components represent the sequence order effects of the

nucleotides of R. The t-th (t < L) tier sequence order effect θt is calculated

by

θt =
1

L− t

∑L−t
i=1 Θ(ri, ri+t) (3.7)

Θ (ri, ri+t) = (Mi −Mi+t)
2 (3.8)

Mi =
M0

i −∑4
j=1

M0
j

4√∑4
j=1

(
M0

i −∑4
j=1

M0
j

4

)2

4

(3.9)

where, Mi is the normalized ith (i=1, 2, 3, 4) molecular weight of the

nucleotide. The original molecular weights (M0
i ) of the four nucleotides are

135.1270 for A, 151.1261 for G, 111.1020 for C and 112.0868 for U. Then

VR = [v1, v2, ...vu, ..., v4+λ],

vu =

{ fu∑4
i=1 fi + w

∑λ
j=1 θj

, (1 ≤ u ≤ 4)

wθu−4∑4
i=1 fi + w

∑λ
j=1 θj

, (5 ≤ u ≤ 4 + λ)
(3.10)

In this work, we set λ = 5 and the weight factor w = 0.05. fu is

the occurrence frequencies of the nucleotide u. Then, each of the miRNA

sequence R is represented as a 9-dimension vector VR = [vi]1×9. Overall, the

sequence similarity is given by

SeqSim (Ri, Rj) = 1− SeqDis (Vi, Vj)−min(SeqDis)

max(SeqDis)−min(SeqDis)
(3.11)

SeqDis (Vi, Vj) = |Vi − Vj| (3.12)

where, |·| is the Euclidean distance, and min(SeqDis) and max(SeqDis)

represent the maximum value and the minimum value of all the SeqSim values

between different miRNAs.
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The funSim measurement is computed similarly as computing FunSim,

namely a funSim between two miRNAs can be represented as the similarity

between the two miRNA target sets. Similar to the measurement of DisSim,

MiRSim of two miRNAs Ri and Rj is measured by integrating funSim and

SeqSim with the same parameter α as follows:

MiRSim (Ri, Rj) = α×funSim (Ri, Rj)+(1− α)×SeqSim (Ri, Rj) (3.13)

Among all the datasets we mentioned previously, 551 different mature

miRNAs were involved. Thus, we obtained the similarities between these

551 miRNAs in this work (details of the miRNAs and their targets listed in

Supplementary file 2). Together with the similarities between 2802 diseases

(details of the disease-gene associations listed in Supplementary file 1), these

plenty of similarity information provides us adequate data to investigate

associations between diseases and miRNAs.

3.3 Results

3.3.1 The optimal precomputed kernel matrix and the

prediction performance

There are a weight parameter α and a kernel matrix type KMT which

can be properly set to build an optimal prediction model in this work.

Parameter α is used to mediate the similarities between diseases and the

similarities between miRNAs, while KMT selects a kernel matrix type for

support vector machine (SVM) to make an accurate classification. Detailed

explanation of α and KMT can be found in Methods. Experiments for

the proper selection of α and KMT were conducted under three steps: (1)

construction of training data. We extracted 1487 known disease-miRNA

associations between 107 diseases and 276 miRNAs from the miR2Disease

database and used them as the set of positive training samples (denoted as

positive miR). We also constructed a set of 4638 negative samples between

53 diseases and 538 miRNAs after a comprehensive analysis of the GSE
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accessions (denoted as negative expression). We randomly selected 1487

negative samples from negative expression to construct a balanced training

data set; (2) prediction model construction. This step has two layers of loops.

The outer loop changes the value of α from 0 to 1 with a step of 0.1, while

the inner loop sets KMT = 1 , 2 , or 3, which represent the three different

types of kernel matrices (i.e., the average type, the squared root type and

the center distance type). A prediction model was constructed with each

α and KMT ; (3) performance evaluation. We implemented 10-fold cross-

validation on the balanced dataset with different α and KMT and the seven

performance metrics were computed. We ran the experiment 100 times. The

averages of the seven indices were taken over the 100 times. Figure 3.1

shows the AUC values and F1 scores.

The squared root type of KMT outperforms the other two types. When

α increases, the AUC and F1 score increase first but then drop down,

suggesting that the integration of different types of similarities can improve

the prediction performance. Furthermore, when α = 0 or α = 1, the average

type and the squared root type can still achieve the AUC values around

0.92 and F1 scores about 0.9. It means that our precomputed kernel matrix

method can have a good prediction performance even with just one kind of

similarity information. Comparing the curves in Figure 3.1, it can be seen

when α is around 0.8, the curves achieve better AUCs and F1 scores. Thus,

we chose the squared root type of KMT and set α = 0.8 for our prediction

model.

To evaluate whether our prediction performance was obtained by chance,

we conducted a permutation test as Jiang et al. (Jiang et al. 2013) did. We

did not use the true labels of the samples (positive samples and negative

samples) but distributed the labels randomly. Then, we implemented the

10-fold cross-validation and observed the changes of the performance. The

positive miR data set was adopted as the positive samples and balanced

training data sets were built. The normal predictions (true labels) were

considered as the control group while the permutation tests were regarded
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Figure 3.1: Performances of the predictions under different

precomputed kernel matrix and α. We mainly compare the AUC values

and the F1 scores of each models with different parameters. K1, K2 and K3

represent the three kernel matrix types such as the average type, the squared

root type and the center distance type respectively. The results indicate that

the model with the squared root type of kernel matrix and α = 0.8 achieves

better performance.

as the test group. All these two groups of experiments were repeated 10

times. The ROC curves of the test group and control group are shown in

Figure 3.2. The ROC curve of the test group is nearly overlapped with the

random lines while the ROC curve of the control group can achieve an AUC

value of 0.97, which indicates that the performance of our prediction model

was not produced occasionally but contains biological significance.
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Figure 3.2: The ROC curves of the permutation test. The experiment

includes the test group and the control group parts. The test group part

used the permutated labels for the training samples while the control group

part uses the original labels of the same training dataset. Both of the two

parts of the experiment adopts our optimal prediction model.

3.3.2 Effect of the size of the negative samples on the

prediction performance

To investigate whether the number of negative samples affects the performance

of our predictions, we fixed the size of positive samples as the size of the

positive miR data set, and changed the number of negative samples in the

training data set. All the negative samples were randomly selected from the

negative expression data set. We varied the number of negative samples from

3 times the number of positive samples to 2 times, to equal size, and to 80%

of the size of positive samples, 60%, 40% and 20%. In addition, the positive

samples from the positive HMDD (totally 4041 positive samples which were

extracted from the HMDD database) excluding those samples already in the
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data set of positive miR were adopted to build the validation data set. There

are 3484 positive samples in this validation data set. Again, 10-fold cross-

validation was implemented on the training data. The prediction model was

then tested on the validation data set. As the samples in the validation

data set are all positive samples, we just computed the accuracy but not

other metrics. All the experiments were repeated 100 times. The average

performances are depicted in Figure 3.2 to show the changes of AUC and

mcc values of the cross validation experiments and the accuracy based on the

validation dataset when the size of negative samples changes (the size ratio

between the negative and positive samples is displayed on the x-axis).
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Figure 3.3: Performances of the prediction models with different

size ratio of negative and positive samples. The prediction model

was trained on the sample sets with different ratio of negative and positive

samples. The x-axis shows the ratios. AUC and mcc values were computed

based on 10-fold cross validation. The Accuracy is the percentage that the

samples in the validation dataset (a dataset with just positive samples but

does not overlap with the training sample sets) are predicted correctly.
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We can find that the AUC values have nearly no changes under different

size ratios between negative and positive samples. However, the accuracy

of the prediction on the validation data set drops when the size of negative

samples increases. But, the mcc value increases till the size of negative

samples is equal to that of positive samples. Then, it keeps at the same level

even more negative samples are added. As mcc is a more comprehensive

performance index than accuracy, we suggest that a balanced training data

set of positive and negative samples should be adopted to infer new disease-

miRNA associations as we did in this work.

3.3.3 Performance comparison when changing the approach

of selecting negative samples

The negative samples of disease-miRNA relationship randomly selected from

the negative expression data set were used by this work for the training of the

prediction model. There are other ways for the construction of negative data

sets, such as by random selection from the un-connected disease-miRNA

pairs. We compared the performances of our prediction model when the

approach to select negative samples was changed. The positive samples

were always the same, i.e., the data set positive miR containing 1487 known

disease-miRNA associations.

The negative data set formed by a random selection from those un-

connected disease-miRNA pairs is named negative random (there are total

26704 disease-miRNA pairs). We conducted two experiments. In the first

experiment, we used all the 1487 positive samples from positive miR and

1487 negative samples randomly selected from the negative expression data

set to build the training data set. The second experiment is similar to the first

one with the only difference that the 1487 negative samples were randomly

selected from negative random. 10-fold cross-validation was conducted on

the training data sets. To get a test performance, we also used the above

validation data set to test the prediction models. All these experiments were

repeated 100 times, and the average performance was taken to reduce the
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Table 3.1: The prediction performances based on different

approaches to select negative samples
10-fold cross-validation

negative specificity recall precision accuracy F1 mcc AUC Accuracy

expression 0.9194 0.9107 0.9191 0.9151 0.9147 0.8306 0.9704 0.7315

random 0.7719 0.7808 0.7746 0.7764 0.7773 0.5534 0.7315 0.5077

bias of the predictions (Table 3.1).

It is clear that the 10-fold cross-validation performance of selecting

negative samples from negative expression significantly outperformed another

approach. For the 3484 samples of the validation data set, 73.15% of them can

be correctly predicted by the model when the negative samples were selected

from negative expression, while the negative random based model could only

accurately predict 50.77% of the 3484 disease-miRNA associations. This

comparison indicates that the approach for the selection of negative samples

has significant impact on the prediction performance. The best choice is to

select negative samples based on the analysis of expression data.

3.3.4 Performance comparison: prediction of disease-

miRNA relationships by different methods

A number of methods have been proposed to make predictions of unknown

disease-miRNA relationships. We compared the performance of our prediction

method with three state-of-the-art methods: RLSMDA (Chen & Yan 2014),

the method proposed by Xu et al. (Xu, Li, Lv, Li, Xiao, Shao, Huo, Li, Zou,

Han et al. 2011), and Jiang’s method (Jiang et al. 2013). RLSMDA is a semi-

supervised method that does not need any negative samples. Xu’s method

is a supervised approach and it collects the negative samples according to

tissue-specific and expression properties of the miRNAs. Jiang’s method

is also a supervised method. It has utilized a set of 270 negative samples

randomly selected from the un-connected disease-miRNA pairs of a miRNA-

disease bipartite network. More detail of these procedures and the results can

be found in the contents and Supplementary file 5: Figure S1-S3. The source
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Table 3.2: Performance comparison between our method and the

three state-of-the-art prediction methods. Symbols “+/-” represent

“positive samples/negative samples”. cv means cross-validation.

Methods sample size cv type Specificity Sensitivity Accuracy AUC

RLSMDA 1184+ LOOCV – – – 0.9475

our model 1184+,1184- LOOCV 0.9367 0.9368 0.9367 0.9896

Xu’s method 37+, 44- 5-fold 0.8833 0.8643 0.8772 0.9189

our model 37+, 37- 5-fold 0.9990 1.000 0.9995 0.9854

Jiang’s method 270+, 270- 10-fold 0.9125 0.7338 0.8232 0.8884

our model 263+, 263- 10-fold 0.9274 0.8982 0.9128 0.9871

codes of these literature methods were not available. We implemented the

RLSMDA algorithm, but not the complicated Xu’s or Jiang’s method. For a

fair comparison, their data sets and performance metrics were exactly used by

our method. The performance metrics are: specificity, recall (or sensitivity),

precision, accuracy, and AUC (area under the ROC curve). More details of

the implementation and data sets are described in Supplementary file 5, the

positive samples are listed in Supplementary file 7.

The AUC performances are benchmarked in Table 3.2. The ROC curve

of our method is depicted in Figure 3.4 in comparison with the curve of

the RLSMDA method under the same data set and the same leave-one-

out cross-validation (LOOCV). The ROC curves for the comparison of our

methods with all the three methods are also showed in Supplementary file

5: Figure S4-S6. Our prediction model achieves much better AUC values

than the three state-of-the-art methods. The superior performance of our

prediction method is mainly attributed to the careful selection of reliable

negative samples as well as the precomputed kernel matrix which can identify

more positive samples.
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Figure 3.4: The ROC curves of our model compared with RLSMDA

based on the same positive samples. The comparison is based on the

same positive sample set and the different prediction model of RLSMDA and

our newly designed model. The average AUC value of our model is 0.9896

while the RLSMDA obtains the lower value of 0.9475.

3.3.5 The predicted miRNAs that are related to breast

and prostate cancer: Case studies

In this section, we report details of the predicted miRNAs which are likely

related to breast cancer and prostate cancer. Breast cancer is the leading type

of cancer in women, accounting for 25% of all women cancer patients (Stewart

& Wild 2014). Prostate cancer is the second most common type of cancer

and the fifth leading cause of cancer-related death in men (Stewart &

Wild 2014). We have taken the following three steps for this case study:

(1) the prediction model was trained on the RLSMDA data set of disease-

miRNA associations (Chen & Yan 2014) which contains 1184 disease-miRNA

associations; (2) the prediction model was applied to make predictions

for those disease-miRNA pairs whose relationships were unknown in this
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data set; (3) the positively predicted disease-miRNA pairs were evaluated

using the latest version of databases such as miRCancer (Xie et al. 2013),

miR2Disease (Jiang et al. 2009) and HMDD (Lu et al. 2008), which stores

newer disease-miRNA associations than the RLSMDA data set does. In fact,

the RLSMDA data set stores only 78 and 34 miRNAs associated with breast

cancer and prostate cancer respectively. However, the latest version of the

three databases stores 227 and 152 miRNAs which have been found related to

breast and prostate cancer. Thus, our predicted results can be fairly verified

by the literature ground truth. As some of the predicted disease-miRNA

associations were not covered by the three databases, we also searched other

web resources to confirm the prediction results.

We constructed 100 prediction models (for making reliable predictions),

each time using all the 1184 disease-miRNA pairs as the positive samples and

a set of randomly selected 1184 negative samples from the negative expression

data set (a data set of 4638 negative samples based on the analysis of

expression data). If an unknown cancer-miRNA relationship is positively

predicted by all the 100 models, then a strong association exists between

the cancer and the miRNA. The association probabilities derived by the

100 models are averaged to indicate the strong association. Figure 3.5

shows the 30 top-ranked positively predicted miRNAs related to breast and

prostate cancer in terms of the average probabilities of the 100 models for

the miRNAs. The edges at the (a) part represent the breast cancer-miRNA

associations while the edges at the (b) part show the prostate cancer-miRNA

associations. The labels on these edges represent the ranking positions

and evidence type of the prediction results. The characters “*”, “#” or

“$” stand for that the corresponding associations can be confirmed by the

records in the miR2Disease database, the HMDD database or the miRCancer

database respectively. The character “@” means that the association can be

confirmed by other articles. Otherwise, the predicted associations could not

be confirmed to our best knowledge. Overall, 58 of the 60 predicted disease-

miRNA relationships can be verified by the newer databases or by other
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literature work.

Figure 3.5: The top 30 predicted breast cancer-miRNA and prostate

cancer-miRNA associations and the verification resources. The left

part shows the predicted breast cancer related miRNAs and the right part

gives the predicted prostate cancer related miRNAs. The labels of the edges

illustrate the ranks of the predicted associations and the confirming types.

The characters “*”, “#” or “$” stand for that the corresponding associations

can be confirmed by the records in miR2Disease , HMDD or miRCancer

respectively. The character “@” means that the association can be confirmed

by other articles. A co-functional pair miR-195-5p-miR-15b-5p is highlighted.

Figure 3.6(a) shows the percentages of the predicted disease-miRNA

associations that can be verified when the number of top-ranked miRNAs

varies from 10 to 150. The x-axis is the number of predictions (× 10) while

the y-axis is the percentages of the verified predictions. For the first 10

59



Chapter 3. Precomputed Kernel Matrix SVM Method for Predicting
Disease Related miRNAs

to 50 predicted miRNAs associated with breast cancer or prostate cancer,

100% and 96% of them can be verified by the three newer databases or

literature. The percentages drop to 98% and 88% when we assess on the

first 100 predicted associations. This indicates that a more reliable predicted

disease associated miRNAs can be ranked at a higher position by our method.
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Figure 3.6: The percentages of the predicted disease-miRNA

associations that can be verified. Panel (a) introduces the prediction

performance of the model with the known cancer (breast and prostate cancer)

related miRNAs. Panel (b) shows the prediction performance after the

removal of the existing associations. The x-axis is the number of predictions

(× 10) while the y-axis is the percentages of the verified predictions.

A novel association predicted by our method is about hsa-miR-15b

(mapped as hsa-miR-15b-5p by miRBase) and breast cancer. Hsa-miR-15b

is ranked as the 5th leading breast cancer related miRNA. This miRNA is

an epidermal growth factor induced miRNA, and its association with breast
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cancer has not been recorded by any existing databases. However, a new

discovery in 2015 can verify that there is an inverse correlation between the

high expression of miRNA-15b and the low expression of its target gene

MTSS1 in the tissues of breast cancer patients with the aggressive basal

subtype (Kedmi, Ben-Chetrit, Körner, Mancini, Ben-Moshe, Lauriola, Lavi,

Biagioni, Carvalho, Cohen-Dvashi et al. 2015). The growth factor-inducible

miRNAs can mediate the mechanisms underlying the progression of breast

cancer. Another novel association predicted by our method is about hsa-

miR-29c (mapped as hsa-miR-29c-3p by miRBase) and prostate cancer.

This association is also ranked at the 5th position among the predicted

prostate cancer related miRNAs, but it has not been recorded by any

existing databases. A recent report claimed that miR-29c together with other

five miRNAs such as miR-29a, miR-29b, miR-26a, miR-26b and miR-218

can control the expression of metastasis-promoting LOXL2 gene during the

development of prostate cancer (Kato, Kurozumi, Goto, Matsushita, Okato,

Nishikawa, Fukumoto, Koshizuka, Ichikawa & Seki 2017).

For the association miR-20b-prostate cancer which cannot be verified,

we found that Moltzahn et al. (Moltzahn, Olshen, Baehner, Peek, Fong,

Stöppler, Simko, Hilton, Carroll & Blelloch 2011) has reported the upregulat-

ion of miR-20b in prostate cancer patients comparing with the healthy

samples according to their robust multiplex qRT-PCR method profiling.

However, this upregulation was not statistically significant based on the

follow-up PCR. This clue shows that there may be an association between

miR-20b and prostate cancer.

For some diseases, there have no currently known associations with any

miRNAs. To test whether our prediction algorithm is still applicable for

such situations, we conducted another experiment. In the experiment, we

removed all the known miRNA associations with breast cancer or prostate

cancer from the RLSMDA data set. The objective was to see whether

our model can correctly predict these purposely removed and currently

known breast cancer-miRNA or prostate cancer-miRNA associations. The
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prediction results are shown in Figure 3.6(b). Our model has a superior

performance for predicting disease-miRNA associations even when there is

no known association for these two cancers. Of the top 50 predicted disease-

miRNA associations, all the predicted breast cancer-miRNA associations can

be confirmed by the existing databases or literature, while 96% of the top

50 predicted prostate cancer-miRNA associations can be confirmed. The

confirmation rates for the top-100 predicted associations can still maintain

at a very high level. Moreover, the breast cancer-hsa-miR-15b-5p and the

prostate cancer-hsa-miR-29c-3p can still be predicted and ranked highly.

More details of the predicted and verified disease-miRNA pairs can be found

in Supplementary file 5: Table S3-S6. The code in the Supplementary file 6

which implements our prediction algorithm has a default setting to output

no more than 100 miRNAs for a given disease.

3.4 Conclusion

In this chapter, we designed a precomputed kernel matrix SVM method

with reliable negative samples to address the disease-miRNA association

prediction question. This method solves part of my research questionQ1 (see

Section 1.2). The contributions are concluded as follows (also described

in Section 1.3 C1): (1) We proposed a new idea for selecting reliable

negative samples of disease-miRNA relationship which can overcome the

problem of lacking negative samples for machine learning methods to make

reliable predictions of disease-associated miRNAs; (2) We applied the miRNA

sequence information to compute miRNA similarities. Various ways for

computing disease similarities and miRNA similarities were integrated to

improve the prediction performances; (3) Our prediction model does not

need to do feature selection, and it is applicable for large-scale prediction

of disease-associated miRNAs; (4) Our prediction model can work well for

those miRNAs that have no currently known miRNA-disease associations.
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Chapter 4

Cross Disease Analysis of

Co-functional microRNA Pairs

on A Reconstructed Network of

Disease-gene-microRNA

Tripartite

4.1 Introduction

As mentioned in previous Section 1.1.2, abundant validated disease-miRNA

associations have been collected by the databases such as HMDD (Lu

et al. 2008) and miR2Disease (Jiang et al. 2009). In Chapter 3, a

precomputed kernel matrix SVM method was introduced for new disease-

miRNA association prediction. By observing those known associations

and the newly predicted ones, we can find many overlapped miRNAs that

associate with different diseases. This inspired us to investigate the co-

functional roles of miRNAs in multi-diseases.

Pairs of miRNAs have been reported to work cooperatively for regulating

an individual gene or a cohort of genes that participate in similar processes (Lai,
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Schmitz, Gupta, Bhattacharya, Kunz, Wolkenhauer & Vera 2012, Xu,

Li, Li, Li, Shao, Bai, Chen & Li 2013). This cooperativity (or co-

function) is a frequent regulation mechanism of miRNAs for an enhanced

target repression which has exhibited distinctive and fine-tuned target

gene expression patterns (Schmitz, Lai, Winter, Wolkenhauer, Vera &

Gupta 2014). Investigation on miRNA cooperativity can help systematically

understand miRNA functions (Xu, Li, Li, Lv, Ma, Shao, Xu, Wang, Du,

Zhang et al. 2011) and study their potential disease links (Xiao, Xu, Guan,

Ping, Fan, Li, Zhao & Li 2012).

Using miRNAs as diagnostic and therapeutic targets, miRNA therapeutics

is a promising research area that designs sophisticated strategies to restore

or inhibit miRNA expression for the treatment of cancer and other diseases.

For example, a therapy with the vector-encoded pair miR-15a and miR-16-1

has been proposed for the treatment of patients with chronic lymphocytic

leukaemia (CLL) (Ling et al. 2013). The microRNA cluster miR-216a/217

was also reported to target genes PTEN and SMAD7 to induce the epithelial-

mesenchymal transition, which finally promotes the drug resistance and

recurrence of liver cancer (Xia, Ooi & Hui 2013). Such co-functional miRNA

pairs are more suitable as drug targets instead of using individual ones. Large

scale detection of novel co-functional miRNA pairs is an important pre-step

to identify proper miRNA pairs as more effective drug targets. Currently,

abundant disease-gene association information is stored in Online Mendelian

Inheritance In Man (OMIM) (Hamosh, Scott, Amberger, Bocchini &

McKusick 2005) and Comparative Toxicogenomics Database(CTD) (Davis,

Murphy, Johnson, Lay, Lennon-Hopkins, Saraceni-Richards, Sciaky, King,

Rosenstein, Wiegers et al. 2013); disease-miRNA associations are recorded

in miR2Disease and HMDD; and miRNA-target regulations are recorded in

miRecords (Xiao et al. 2009) and miRTarBase (Hsu et al. 2010). Linking and

integrating these databases, it can be inferred which diseases are correlated

with the same genes or with the same miRNAs, and which miRNAs have the

same target disease genes. Our hypothesis is that some of the miRNAs
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can regulate their common targets cooperatively and have roles in the

development of a series of diseases.

The focus of this work is on the detection and prioritization of multi-

disease associated co-functional miRNA pairs. A multi-disease associated

co-functional miRNA pair is a pair of miRNAs whose common target genes

are associated with a series of diseases. Here, the definition of co-function for

the miRNA pairs is broader than the definition of cooperativity as proposed

in (Broderick, Salomon, Ryder, Aronin & Zamore 2011, Moore, Scheel,

Luna, Park, Fak, Nishiuchi, Rice & Darnell 2015). Figure 4.1 shows an

example of multi-disease associated co-functional miRNA pairs detected from

a disease-gene-miRNA (DGR) tripartite network. From this example, we

can see that multi-disease associated co-functional miRNA pairs may hold a

vast mechanism underlying multiple disease development, similarly like the

basic cellular functions maintained by housekeeping genes. More importantly,

these miRNAs can be considered as the common drug targets of these diseases

for the design and development of multi-purpose drugs.

MiRNA co-function mechanisms have attracted intensive research recently

(Yoon & De Micheli 2005, Xu, Li, Li, Lv, Ma, Shao, Xu, Wang, Du, Zhang

et al. 2011, Xiao et al. 2012, Wu, Li, Zhang, Yao, Wu, Han, Liao, Xu,

Lin, Xiao et al. 2013), with the focus on the analysis of miRNA-target

networks or on the analysis of disease-miRNA associations for a specific

disease. Our work advances the current research with two steps: (i) We

reconstruct a DGR tripartite network through the integration of existing

databases with our newly predicted disease-miRNA associations, and (ii)

we propose a novel scoring method to prioritize the potential multi-disease

associated co-functional miRNA pairs.

Combining our predicted disease-miRNA associations (by the proposed

precomputed kernel matrix SVM method described in Chapter 3) with those

literature-maintained associations between diseases, miRNAs and genes, we

construct a more complete DGR tripartite network to detect and prioritize

multi-disease associated co-functional miRNA pairs. Given a miRNA pair,
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Figure 4.1: An example: From a DGR tripartite network to a

co-functional miRNA pair. The network in panel (a) contains known

associations among the genes g1, g2, g3, g4, and g5, the diseases d1, d2, d3,

and d4, and the miRNAs R1, R2, R3, and R4. In this example, miRNAs R2

and R3 are both associated with all the four diseases. However, the other

three miRNAs are each associated with only one of these diseases. All these

four diseases are associated with two common genes g4 and g5. Meanwhile,

both of g4 and g5 are the targets of miRNAs R2 and R3. It is believed

that R2-R3-g4-g5 may form a functional module that associated with the

development of all the four diseases.

our scoring method cfscore considers the function relationship between the

two miRNAs, the co-dysexpression of the two miRNAs in the disease tissues

and the relationship between the common target genes and the associated

diseases of these miRNAs. We are also interested in finding the exact

targets dysregulated by the co-functional miRNA pair during the diseases’

development. We call them the co-functional targets of the co-functional

miRNA pair. The flowchart of our work is described in Figure 4.2.

This method was tested on the cancer and non-cancer disease related

DGR tripartite networks. The top 50 multi-disease associated co-functional

miRNA pairs were concentrated for deep analysis. We found that most
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Figure 4.2: The flowchart of our prediction and scoring method. Our

work includes the parts such as material collection, similarity computing,

association prediction, network reconstruction, scoring and priorization of

the co-function miRNA pairs and result output.

of them were from the same miRNA families or miRNA clusters. The

comparison of the co-functional pairs from the two DGR networks suggests

that the dysregulation mechanisms of miRNAs in the cancers are more

complex. It has also been shown that the analysis of multi-disease associated

co-functional miRNAs can help understand the regulation mechanisms of

miRNAs in the development of different diseases and thus can provide new

knowledge for the diagnosis or treatment of the diseases.
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4.2 Method

Our method for the detection and prioritization of co-functional miRNA

pairs and cross disease analysis includes three main computational steps:

(i) Reconstructing the DGR tripartite network by combining the known

relationships of diseases, miRNAs and genes with those predicted disease-

miRNA associations, (ii) Ranking the candidate co-functional miRNA pairs

via a novel scoring method, (iii) Determining the potential co-functional

target genes of these co-functional miRNA pairs. Details of these steps are

described in the following subsections. Those data sets that we adopted have

been described in the Method section of Chapter 3.

4.2.1 Reconstructing the DGR tripartite network

A DGR tripartite network is used to reflect the relationships between

diseases, genes and miRNAs. For a disease group Vd = {d1, d2, . . . , da, . . . , dM},
a gene group Vg = {g1, g2, . . . , gb, . . . , gN} and a miRNA group Vr =

{r1, r2, . . . , rc, . . . , rP}, their associations are stored in Edg for the disease-

gene association, Edr for the disease-miRNA association and Erg for the

miRNA-target association, respectively. The DGR tripartite network can be

constructed by defining da, gb and rc as network nodes and connecting those

nodes that there are known associations between them. For example, we

connect the nodes da and gb if their association da − gb is in Edg.

In Chapter 3, we proposed a precomputed kernel matrix SVM method

to predict reliable disease-miRNA associations. We have proved its excellent

performance by various tests and comparisons. Those newly detected disease

related miRNAs are represented by an association set Epre
dr . Merging Epre

dr

and previous Edr to produce a new set Emer
dr = Epre

dr ∪ Edr, we then can

reconstruct the DGR tripartite network with the updated associations.
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4.2.2 Scoring the multi-disease associated co-functional

miRNA pairs

This work defines a multi-disease associated co-functional miRNA pair as a

pair of miRNAs that can dysregulate the same gene or whose target genes

are involved in the same cellular processes to participate in the development

of a series of diseases. Such a miRNA pair has three good properties: (i) the

members function cooperatively, which means they prefer to share the same

targets; (ii) the members are associated with the development of a same set

of diseases; and (iii) the common miRNA targets of the two miRNAs are

potentially to be the common disease genes of their related diseases. These

three properties can be examined on a DGR tripartite network containing

various associations between miRNAs, diseases and genes.

Let dgr = (Vd ∪ Vg ∪ Vr, E) be a DGR tripartite network, where Vd

is a set of diseases, Vg is a set of disease genes, Vr is a set of disease-

related miRNAs, and E is the associations between these diseases, genes, and

miRNAs. Given a pair of miRNAs R1 and R2, R1, R2 ∈ Vr, we find the gene

sets G1 = {g11, g12, . . . , g1k, . . . , g1m} and G2 = {g21, g22, . . . , g2t, . . . , g2n},
where g1k, g2t ∈ Vg and the edges (R1, g1k), (R2, g2t) ∈ E. We also

find two subsets of diseases D1 = {d11, d12, . . . , d1p, . . . , d1x} and D2 =

{d21, d22, . . . , d2q, . . . , d1y}, such that d1p, d2q ∈ Vd and the edges (R1, d1p),

(R2, d2q) ∈ E. Then, for each disease dl in D1 and D2, we can get its related

genes dgl = {g1, g2, . . . , gl, . . . , gz}.
We quantify (i) the function relationship between a pair of miRNAs, (ii)

miRNA regulation relationship in different diseases, and (iii) the relationship

between the shared targets of two miRNAs and the common disease genes

of these miRNAs associated diseases:

• MiRNA function relationship. A function relationship between R1 and

R2 is quantified as the proportion of the shared targets (psg(R1, R2)),

namely,

psg(R1, R2) =
G1 ∩G2

G1 ∪G2

(4.1)
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• MiRNA regulation relationship in different diseases. The idea is

that those miRNAs that have significant differential expression levels

in different disease are more likely to function cooperatively. The

co-dysexpression rate of R1 and R2, rd(R1, R2), is defined with

consideration of their shared diseases and the percentage of the shared

diseases comparing with all the diseases in dgr (i.e., |Vd|):

rd(R1, R2) =
D1 ∩D2

D1 ∪D2

· D1 ∩D2

|Vd| (4.2)

• The relationship between the shared targets of R1 and R2 and the

common disease genes of R1 and R2 shared diseases is defined as

psgc(R1, R2). The idea is that those co-functional miRNAs always

co-dysregulate the common disease genes to contribute to the disease

development.

psgc(R1, R2) =

⋃s
l=1((G1 ∩G2) ∩ dgl )

G1 ∩G2

(4.3)

where s is the number of diseases that the R1 and R2 shared.

The score for weighting the probability of the pair R1 and R2 to be a

multi-disease associated co-functional pair (cfScore) is defined as:

cfScore(R1, R2) = psg(R1, R2) · rd(R1, R2) · psgc(R1, R2) (4.4)

MiRNA pairs related to bigger number of diseases are more likely to

reflect the general regulation mechanism. Thus, a threshold is set to control

the number of diseases that the pair is associated with. There is no reliable

data set for us to select an optimal threshold, we just set the threshold to be

10. We can then rank all the candidate co-functional miRNA pairs according

to their cfScores. A higher position indicates the pair is more likely to be a

multi-disease associated co-functional miRNA pair.
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4.2.3 Determining the potential co-functional target

genes

Usually, the two members of a co-functional miRNA pair can share more than

one common targets. However, only part of them are really dysregulated

by the miRNA pair during the development of the diseases (called the

co-functional targets of this co-functional miRNA pair). As all those

miRNAs shared targets can be candidate co-functional target, a probability is

estimated for the candidate co-functional targets to be the exact dysregulated

genes during the diseases’ developments. The idea is that the candidate

co-functional targets being the disease genes for more of the miRNA pair

associated diseases are more likely to be the real ones. We calculate the

probability of gene gi, p(gi), to be a co-functional target by:

p(gi) =
Cgi∩(D1∩D2)

C(D1∩D2)

(4.5)

where CD1∩D2 is the number of common diseases associated with miRNA

R1 and R2, while Cgi∩(D1∩D2) is the number of diseases associated with gene

gi.

4.3 Results

4.3.1 Multi-disease associated co-functional miRNA

pairs and their common dysfunctional target

genes

Two cancer-gene-miRNA tripartite networks were constructed to investigate

the performance of our method for detecting and ranking multi-cancer

associated co-functional miRNA pairs. We have merged the miRCancer

database (Xie et al. 2013) with miR2Disease (Jiang et al. 2009) and

HMDD (Lu et al. 2008), and collected 3655 cancer-miRNA associations

between 83 cancers and 503 miRNAs. Connecting these miRNAs and
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diseases to their associated genes, the first cancer-gene-miRNA tripartite

network was constructed. Then, all the 3655 cancer-miRNA associations (as

positive samples) and a balanced set of 3655 negative samples of cancer-

miRNA association in this tripartite network were used together to train our

prediction model (the precomputed kernel matrix SVM method, see Chapter

3) for inferring new cancer-miRNA associations. The prediction model was

applied to all the un-connected disease-miRNA pairs between the 83 cancers

and 503 miRNAs to predict whether some of them have associations or

not. When a pair was predicted to have an association between a cancer

and a miRNA, a probability was also estimated. A total of 3000 top-

ranked associations were added to the first cancer-gene-miRNA tripartite

network to form the second cancer-gene-miRNA tripartite network (i.e., a

reconstructed network by adding the predicted cancer-miRNA associations).

Those associations can be found in the Supplementary file 8.

On average, the 503 miRNAs are associated with 7 or 13 cancers

respectively for the first and the reconstructed network; and there are 2532

and 5634 miRNA pairs in these two networks that have a cfScore larger

than 0 and that are associated with at least 10 cancers. There are very few

literatures which prove the miRNA pairs co-function during the development

of more than 10 different diseases. To understand whether these miRNA pairs

co-function during the development of some of the diseases, we manually

searched and examined relevant literature to confirm that the individual

miRNAs in the pairs can function cooperatively to regulate the same targets.

Of the top-ranked 50 miRNA pairs from our reconstructed network, 40 pairs

can be validated to be co-functional pairs by the literature, in comparison

with 35 of the top 50 pairs from the the first tripartite network. Here,

we can just confirm these pairs of miRNAs are co-functional miRNA pairs

but not multi-disease associated co-functional ones. We can’t find literature

that discuss the relationship between miRNAs and a series of diseases

simultaneously. This also implies that the addition of the predicted disease-

miRNA associations into the tripartite network is useful and effective for the
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study of co-functional miRNA pairs.

Figure 4.3: The 50 top-ranked co-functional miRNA pairs from

the reconstructed cancer-miRNA-gene network. The labels along

the edges illustrate the co-function information of the miRNAs. The first

number of each label is the rank of the corresponding pair according to

our prioritization method. The following gene symbols are the validated

common targets during the co-functioning of the pair of miRNAs. The last

number shows the potential diseases that related to this co-function pair.

The pair miR-195-5p-miR-15b-5p and the pairs formed by miR-29a/b/c-3p

are highlighted and used as the examples to explain their co-function.

Details of the 50 miRNA pairs are shown in Figure 4.3, where on the

label of each edge, the first number represents the ranking position of the
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miRNA pair. If the rank number is followed by one or more gene names,

it represents that the miRNA pair is a co-functional pair and has validated

common targets. The number at the end of the label is the number of

diseases that may associate with this co-functional pair. These multi-cancer

associated co-functional miRNA pairs are mostly from the same clusters or

families such as from the let-7 family (let-7a∼7e and miR-98) and the miR-

17∼92 cluster (miR-17-3p, miR-17-5p, miR-18a, miR-19a, miR-19b, miR-20a

and miR-92). It has been known that clustered miRNAs or those miRNAs

from the same family are evolved from a common ancestor and can target

functionally related genes (Hausser & Zavolan 2014). Thus, it can be

easily understood that miRNAs from the same cluster or family have similar

functions and can always function cooperatively. It should be mentioned

that not all those miRNAs in the same families or clusters will co-function

with each other. The target genes of those miRNAs from the same families

or clusters are not completely overlapped. Moreover, some miRNAs that

belong to different families or clusters may also be co-functional miRNAs.

The 17th-ranked pair miR-497-5p-miR-424-5p is also prioritized to be a co-

functional miRNA pair. However, according to the miRBase, miR-424-5p is

a member of mir-322 gene family while miR-497-5p stems from the mir-497

family. They are also not clustered miRNAs.

To prove that each of those top-ranked miRNA pairs contains two co-

functional miRNAs and it associates with multi-diseases, we take the 5th-

ranked pair, miR-15b and miR-195, as an example. They both belong to

the miR-15 family, and both of them can target gene BCL2, an important

apoptosis inhibitor. In fact, this pair of miRNAs can work together with

another miRNA (miR-16) in the regulation (Liu, Yang, Xie, Ren, Sun, Zeng

& Sun 2012). We hypothesize that this co-functional pair may dysregulate

their targets cooperatively, leading to the development of 38 different cancers

such as prostate cancer (DOID:10283), prostate carcinoma (DOID:10286),

stomach cancer (DOID:10534), and breast cancer (DOID:1612). The top

three potential common targets of this miRNA pair are genes BCL2 (entrez

74



Chapter 4. Cross Disease Analysis of Co-functional microRNA Pairs on A
Reconstructed Network of Disease-gene-microRNA Tripartite

id:596), CDKN1A (entrez id:1026), and CCND1(entrez id:595). We have

verified that these three genes are individually related to most of (68%,

68% or 66%) the 38 cancers. Furthermore, these three genes are all

involved in four KEGG (Kanehisa & Goto 2000) pathways: hsa05215:

Prostate cancer (p-value=1.5E-4), hsa05206: MicroRNAs in cancer (p-

value=1.7E-3), hsa04151: PI3K-Akt signaling pathway (p-value=2.5E-3) and

hsa05200: Pathways in cancer (3.2E-3) as revealed by the DAVID functional

annotation tool (Huang, Sherman & Lempicki 2009b, Huang, Sherman &

Lempicki 2009a). Moreover, the three genes all have the functions of the

cellular response to DNA damage stimulus (GO:0006974, p-value=1.4E-4)

and response to drug (GO:0042493, p-value=4.0E-4), which are important

functions for the normal cells. Based on these analysis and evidences, it

is suggested that the pair of miR-15b and miR-195 may contribute to the

development of all the 38 different types of cancers via a similar regulation

mechanism. More details of the discovered miRNA pairs and references are

listed in Supplementary file 5.

We were also interested in the problem of whether the co-functional

phenomenon for the non-cancer disease related miRNAs is the same as

those of cancers. Thus, we constructed a non-cancer disease related DGR

tripartite network containing 1625 non-cancer disease-miRNA associations

between 334 miRNAs and 174 diseases extracted from the three existing

databases and also containing 1625 predicted associations (Supplementary

file 8). There were just 13 multi-non-cancer-disease associated co-functional

miRNA pairs having a cfscore bigger than 0 and associating with no less

than 10 different diseases. Again, we manually examined these candidate

co-functional miRNA pairs. We found that 11 of them can be validated with

strong evidence from literature (Supplementary file 2). Furthermore, 5 of the

13 pairs overlap with the cancer related top 50 miRNA pairs. This indicates

that the co-functional mechanism exists not only for the cancer related

miRNAs but also for non-cancer disease related miRNAs. (However, there

are less multi-non-cancer disease associated co-functional pairs comparing
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with cancers.) The dysregulation mode of the specific miRNAs for the

development of cancers and the non-cancer diseases may shed a light to some

extent.

Table 4.1: The co-functional miRNA pairs and their potential co-

functional targets for both cancers and non-cancer diseases
cancer related co-functional miRNA pairs

miRNA1 miRNA2 rank cancer numbers co-functional targets

miR-15a-5p miR-15b-5p 8 37

BCL2; CDKN1A; CCND1; VEGFA;

MTHFR; IFNG; FGF2; FGFR4; SMAD7;

CHEK1

miR-17-5p miR-20a-5p 1 50

TP53; CCND1; BCL2; CDKN1A;

MDM2; VEGFA; MYC; HIF1A; CXCL8;

SOD2

miR-29a-3p miR-29b-3p 19 27
BCL2; MDM2; VEGFA; CASP8; MMP2;

PTEN; AKT2; SPARC; VHL; DNMT3B

miR-29a-3p miR-29c-3p 10 27
BCL2; MDM2; VEGFA; CASP8; MMP2;

PTEN; AKT2; SPARC; VHL; DNMT3B

miR-29b-3p miR-29c-3p 13 29
BCL2; MDM2; VEGFA; CASP8; MMP2;

PTEN; VHL; AKT2; SPARC; CCNA2

non-cancer diseases related co-functional miRNA pairs

miRNA1 miRNA2 rank disease numbers co-functional targets

miR-15a-5p miR-15b-5p 5 10

IFNG; MTHFR; RARB; BCL2;

CSNK1E; JARID2; PDCD1; ALDH3B1;

APP; CDC25A

miR-17-5p miR-20a-5p 2 17
CXCL8; SOD2; BCL2; ESR2; TP53;

VEGFA; F3; ITGA2; PTGER4; CCL5

miR-29a-3p miR-29b-3p 1 20
MMP2; VEGFA; COL3A1; BCL2; FGB;

CASP8; FGA; S100B; SPARC; TGFB3

miR-29a-3p miR-29c-3p 4 13

MMP2; COL3A1; VEGFA; AKT2;

CASP8; FGB; MDM2; SGK1; TET2;

BCL2

miR-29b-3p miR-29c-3p 3 14

MMP2; COL3A1; VEGFA; AKT2;

CASP8; FGB; MDM2; MMP15; SGK1;

MMP24

4.3.2 An in-depth analysis of five co-functional miRNA

pairs

To further understand the regulation mechanism of the co-functional miRNA

pairs, we particularly focused on the potential common targets of the 5
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overlapping co-functional pairs (Table 4.1). The first two columns list the

two individual miRNAs in the co-functional miRNA pairs, the third column

shows the number of diseases that may relate to the miRNA pairs, and

the last column lists the co-functional targets of these miRNA pairs which

are related to multiple diseases. Here, a target gene is ranked higher if it

relates to more diseases. It can be seen that even though there are common

co-functional miRNA pairs between cancers and non-cancer diseases, the co-

functional targets of these miRNA pairs are different from each other. For

example, for the two miRNA pairs that both are members of the miR-15

family (miR-15a/b), the top three possible co-functional targets for the non-

cancer diseases are IFNG, MTHFR, RARB, while for cancers are BCL2,

CDKN1A and CCND1. Meanwhile, there are a lot of genes repeatedly relate

to various miRNA pairs such as the last three miRNA pairs from Table 4.4.

Thus these miRNA pairs may function cooperatively and can form a co-

functional module. This co-functional module is related to both of multi-

cancers and multi-non-cancer diseases.

To reveal the detailed regulation mode of these miRNAs associating with

multiple cancers and non-cancer diseases, we conducted a deep case analysis.

In Figure 4.4, the top ten common target genes of each co-functional pair were

combined to be a gene set. The DAVID functional annotation tool (Huang

et al. 2009b, Huang et al. 2009a) was applied to analyze these gene sets

of the co-functional pairs in the module miR-29a-miR-29b-miR-29c, where

the threshold of the pathway enrichment analysis (Kanehisa & Goto 2000)

was set as p-value≤0.05. The labels on the edges from the diseases to the

genes are the probabilities of genes to be the co-functional targets of the

miRNA co-function module. For example, the edge from the diseases to

the gene VEGFA has the label of “C 77% N 23%”. This label means that

the co-function module may dysregulate the gene VEGFA to contribute to

the development of the 26 cancers (C) with the probability of 77%. This

gene may also be the common target of the co-functional module during the

dysregulation in the development of those 13 non-cancer disease (N) with the
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Figure 4.4: The miR-29a-miR-29b-miR-29c co-function module,

their targets and the enrichment analysis of the KEGG pathways.

The triangles are the potential common target genes of the miR-29a/b/c

co-functional module. Those small squares are the genes enriched pathways.

Those disease names in the big squares are the co-functional module related

diseases according to our prioritization method.

probability of 23%. The labels along with the edges connecting the genes and

the pathways indicate that the genes from the target gene sets of the diseases

(i.e., cancers (C) or non-cancer diseases (N)) associated co-function module

can be mapped to the corresponding pathways. For instance, there are three

edges connecting the genes with the pathway ‘hsa05219: Bladder cancer’

together with the labels of “C N VEGFA”, “C N MMP2” and “C MDM2”.

The labels mean the genes VEGFA, MMP2 and MDM2 from the target gene

set of the cancers (C) associated co-function module can be mapped to the

Bladder cancer pathway. For the non-cancer diseases (N), only two genes

(VEGFA and MMP2) can be mapped to this pathway. Those genes that

cannot map to any pathways or those diseases that are not associated with
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all of the three co-functional pairs are ignored in the figure. The cancer

related gene sets can be mapped to many different pathways, we just show

the top ten pathways according to their p-values.

It is uncovered that the co-functional module mainly dysregulates the

‘hsa05219: Bladder cancer’ and the ‘hsa05200: Pathways in cancer’ to

contribute to the development of the 13 non-cancer diseases. The module

also regulates eight other pathways (hsa05205, hsa04510, hsa04066, hsa04151,

hsa04150, hsa04210, hsa05161 and hsa05215) to involve in the development

of the 26 cancers. The cancer developments are more complex with more

common genes involved. This observation is consistent with the hypothesis

that similar diseases may be related to similar miRNAs and genes. The

top three non-cancer disease genes regulated by the co-functional module

and mapped to the pathways are MMP2, VEGFA and CASP8, while

for the cancers are BCL2, MDM2 and VEGFA. With the gene ontology

enrichment analysis, we found that the former three genes have the function

of angiogenesis (GO:0001525, p-value=1.8E-4), macrophage differentiation

(GO:0030225, p-value=2.1E-3), negative regulation of cysteine-type endo-

peptidase activity involved in apoptotic process (GO:0043154, p-value=9.0E-

3) and response to hypoxia(GO:0001666, p-value=2.2E-2). The latter

three genes can play roles of cellular response to hypoxia (GO:0071456, p-

value=5.2E-5), response to iron ion (GO:0010039, p-value=2.4E-3), ovarian

follicle development (GO:0001541, p-value=5.8E-3) and the other related

functions. The co-functional module can regulate two same pathways during

the development of both the cancers and non-cancer diseases. The possible

common targets also have the similar function such as response to hypoxia.

These indicate that the miR-29a/b/c regulation module may contribute to

the disease development partly via similar dysregulation mechanism. On the

other side, the co-functional module may prefer to function by dysregulating

the same genes in the development of various cancers rather than those non-

cancer diseases. During the carcinogenesis of 26 kinds of cancers, averagely

more than 70% of those cancers relate to the dysfunction of the above three

79



Chapter 4. Cross Disease Analysis of Co-functional microRNA Pairs on A
Reconstructed Network of Disease-gene-microRNA Tripartite

genes (BCL2, MDM2 and VEGFA). For the three non-cancer diseases related

genes (MMP2, VEGFA and CASP8), the percentage is just around 30%.

Those cancers related genes are more likely to involve in the same pathways

which indicates the close relationships between their functions. This is mainly

due to the fact that cancers are more similar to each other than those non-

cancer diseases.

Interestingly, there are a number of literature which have reported

the co-function of the miR-29 family members in the development of the

cancers such as non-small-cell lung cancer (Tan, Wu & Cai 2013), renal cell

carcinoma (Yonezawa, Enokida, Yoshino, Hidaka, Yamasaki, Itesako, Seki

& Nakagawa 2013), breast cancer (Cittelly, Finlay-Schultz, Howe, Spoelstra,

Axlund, Hendricks, Jacobsen, Sartorius & Richer 2013), ovarian cancer (Yu,

Yan, Lai, Huang, Chou, Lin, Yeh & Lin 2014) and others types of cancers

(Jiang, Zhang, Wu & Jiang 2014). Furthermore, the MYC-mediated miR-29

repression mechanism for the therapy of aggressive B-cell malignancies (B-

cell malignancies is the synonym of chronic cymphocytic ceukemia according

to Medical Subject Headings (MeSH) (Lipscomb 2000)) by applying the

HDAC3 and EZH2 as therapeutic targets (Zhang, Zhao, Fiskus, Lin, Lwin,

Rao, Zhang, Chan, Fu, Marquez et al. 2012) was reported. Another report in

2015 also discussed the adoption of miR-29s (miR-29a/b/c) as candidate epi-

therapeutics for curing hematologic malignancies (Amodio, Rossi, Raimondi,

Pitari, Botta, Tagliaferri & Tassone 2015). According to our findings and

those articles, we claim that it is reasonable to consider miR-29a/b/c as

potential drug targets for the treatment of multiple cancers.

Our conclusion is that the newly predicted disease related miRNAs and

the prioritization of multi-disease associated co-functional miRNA pairs are

highly effective for the analysis of the regulation mechanisms of miRNAs for

different diseases at a system level. Particularly, it is useful to find common

and special mechanisms in the development of different diseases and can

provide new strategies for the diagnosis or treatment of the diseases. For

example, if the three miRNAs (miR-29a/b/c) are proved to be effective drug
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targets to cure some of the 26 cancers, they may also be suitable drug targets

for the remaining cancers.

4.4 Conclusion

In this chapter, we proposed a novel method for prioritizing multi-disease

associated co-functional miRNA pairs. It is the extended study of the

research question Q1 (see Section 1.2). The contributions of this chapter’s

work are as follows (corresponding to the research contribution C2 in Section

1.3): (1) We reconstructed a disease-gene-miRNA tripartite network with our

designed disease-miRNA association prediction method. The testing results

show it provides more complete information for investigating the miRNA co-

functioning; (2) We designed a scoring function to prioritize the candidate

multi-disease associated co-functional miRNA pairs and their potential co-

regulated genes; (3) We performed detailed case studies to understand the

miRNA co-functional phenomenon for both cancers and non-cancer diseases;

(4) We found that the multi-disease associated co-functional miRNA pairs

can do good to the designing of multi-propose drugs for their related multi-

diseases.
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Chapter 5

Chromosome Preference of

Disease Genes and

Vectorization for the Prediction

of Non-coding Disease Genes

5.1 Introduction

The background knowledge in Chapter 1 (Section 1.1) shows that lncRNAs

have been found to contain significant genetic information and functions

(Mattick & Makunin 2006). The dysregulation of lncRNAs can result in

the dysfunction of their target protein coding genes or their participated

cellular processes, causing the development of diseases. Increasing number of

studies have been focusing on the application of disease-lncRNA associations

including disease diagnosis (Sánchez & Huarte 2013), survival prediction

(Kumarswamy, Bauters, Volkmann, Maury, Fetisch, Holzmann, Lemesle,

de Groote, Pinet & Thum 2014) and RNA therapeutics (Wahlestedt 2013).

However, the function annotation of lncRNA genes such as their roles in

disease development is remaining largely unknown.

Genomic locus inferring methods (Chen et al. 2013, Li, Gao, Wang,
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Ma, Tu, Wang, Chen, Kong & Cui 2014), computational methods including

gene-lncRNA co-expression methods (Sun, Luo, Liao, Bu, Zhao, Liu, Liu

& Zhao 2013, Liu, Chen, Chen, Cui & Yan 2014), network analysis

methods (Ganegoda et al. 2015), similarities analysis or semi-supervised

learning methods (Chen & Yan 2013), supervised learning methods (Zhao,

Xu, Liu, Bai, Xu, Xiao, Li & Zhang 2015) and others (Wang et al. 2016)

can speed up this area of research for disease gene prediction. As concluded

in Chapter 2, the network analysis heavily relies on the topology properties

of the constructed networks. The semi-supervised learning methods depend

on accurate similarity measurements between diseases and lncRNAs. The

supervised learning approach has not been extensively explored because of

lacking reliable negative samples of disease related lncRNA genes.

We propose to use a positive-unlabeled learning (PU-learning) method

to predict disease related lncRNA genes. PU learning can well address

the problem of lacking reliable negative samples to gain high prediction

performance. In this work, we also introduce a novel vector 〈Vd〉 to represent

a disease d, and a novel vector 〈VLnc〉 to represent an lncRNA gene Lnc. We

merge these two vectors as 〈Vd, VLnc〉 to represent the pair of disease d and the

lncRNA gene Lnc. The prediction problem is: whether this merged vector

can be mapped to 1 or 0 with a certain level of probability. If it is mapped

to 1 with a high probability (e.g. 90%), then it means that the disease d is

related to the lncRNA gene Lnc under a high probability. Otherwise, the

disease d has little relationship with lncRNA gene Lnc.

The novel disease vector representation 〈Vd〉 consists of two sub-vectors.

The elements of the first sub-vector
〈
V chr
d

〉
represent the chromosome

substructures’ distribution information entropies of the genes related to the

disease d. We consider 45 chromosome substructures in this work (details

presented later).

This idea for disease representation is inspired by a chromosome substruc-

ture enrichment analysis of the disease related protein coding genes. It

is similar to gene pathway enrichment analysis that the protein gene set
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of a disease can be enriched at each chromosome substructure containing

the protein gene set. We have observed that about 16.2% of 2802 diseases’

genes can be enriched to chromosome 6 p-arm (with Fisher’s exact test, p-

value<0.05), implying a strong chromosome preference of disease genes. This

preference is significantly higher than the second most enriched chromosome

2 q-arm (containing just 5.92% of the 2802 diseases). Furthermore, no

disease gene set can be enriched to the chromosome 21 p-arm. Our

hypothesis is that genes are located at various positions on chromosomes

and mitochondrion, and the distribution of disease related protein coding

genes on the chromosomes can be used to characterize the differences between

diseases.

The second sub-vector
〈
V path
d

〉
represents the KEGG pathway groups’

distribution information entropies of disease d related genes enriched KEGG

pathways. Human KEGG pathways (Kanehisa & Goto 2000) can be divided

into 30 groups. By the disease gene KEGG pathway enrichment analysis on

the 2802 diseases, we have observed that almost all these KEGG pathways

are involved in disease developments. The distribution of disease gene sets

on KEGG pathway groups is also uneven. For example, more than 30%

of the 2802 diseases are associated with 6 pathways including hsa04933:

AGE-RAGE signaling pathway in diabetic complications and hsa05321:

Inflammatory bowel disease (IBD). In comparison, as many as 61 kinds of

pathways are related to less than 1% of these diseases.

Comparing with existing disease characterization methods through com-

puting similarities of disease related coding or non-coding genes (Cheng et al.

2014), semantics (Mathur & Dinakarpandian 2012), phenotypes (Freudenberg

& Propping 2002, Hoehndorf, Schofield & Gkoutos 2015), symptoms (Zhou,

Menche, Barabási & Sharma 2014) and ontology (Li, Gong, Chen, Liu, Wu,

Zhang, Li, Li, Rao & Li 2011), our disease vectorization
〈
V chr
d , V path

d

〉
is

much simpler. It does not need repeated set operations such as union and

intersection or large scale of text mining. Our disease vectors are also effective

to capture unique disease characteristics. The disease similarity can reach
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the average area under ROC curve (AUC) of 0.9458 when the diseases are

represented by our vectors. However, FunSim (Cheng et al. 2014) and a

disease symptom representation method (Zhou et al. 2014) have only 0.9202

and 0.7674 AUC respectively on the same set of diseases.

The vector 〈VLnc〉 representing an lncRNA gene Lnc consists of two sub-

vectors 〈V seq
Lnc〉 and

〈
V prof
Lnc

〉
as well. The first one represents its sequence’s

k-mer frequencies, and the second one represents its expression profiles.

Merging the two disease sub-vectors
〈
V chr
d

〉
and

〈
V path
d

〉
, the two lncRNA

sub-vectors 〈V seq
Lnc〉 and

〈
V prof
Lnc

〉
, we can represent a disease-lncRNA gene

pair (denoted d − Lnc) as 〈Vd, VLnc〉. Procedures for constructing the main

sub-vectors are shown in Figure 5.1.

Disease related lncRNA genes should also prefer to co-expressing with

other genes that are associated with this disease (such as those lncRNA

genes which regulate some of the disease related protein coding genes).

With this hypothesis, we add these co-expression features as the fifth sub-

vector 〈Vco−exp〉 to the merged vector 〈Vd, VLnc〉. From our baseline classifier

selection experiments, we have proved that this new sub-vector can further

improve the prediction performance.

A bagging SVM for PU learning algorithm (Mordelet & Vert 2014) is

adopted to prioritize disease related lncRNA genes. This model was trained

on a set of disease-lncRNA vectors. On three data sets retrieved from three

disease-lncRNA association databases: LncRNADisease (Chen et al. 2013),

Lnc2Cancer (Ning et al. 2016) and MNDR (Wang, Chen, Chen, Li, Kang,

Fan, Hu, Xu, Yi, Yang et al. 2013), the overall AUC scores of leave-one-

out cross-validation (LOOCV) by our method are 0.8016, 0.8335 and 0.7527

respectively. This performance is significantly superior to two state-of-the-

art methods: LRLSLDA (Chen & Yan 2013) (0.6882, 0.7308 and 0.6346)

and LRLSLDA-ILNCSIM (Huang, Chen, You, Huang & Chan 2016) (0.6949,

0.7390 and 0.6435). Especially when only the sequence information of the

lncRNA genes is available, our method can still work well for the prediction.

The overall LOOCV AUC scores for the three datasets are 0.7889, 0.8266 and
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Figure 5.1: The flowchart for the vectorization representation

of a disease-lncRNA gene pair. A disease-lncRNA gene pair can

be represented by the integration of four sub-vectors including disease

gene chromosome substructures’ distribution information entropy vector

(disease gene distribution vector), the disease gene enriched pathway

groups’ distribution information entropy vector (disease pathway distribution

vector), the lncRNA gene sequence’s k-mer frequency vector and the lncRNA

gene expression profile.

0.7216. The results of the following leave-one-disease-out cross-validation

(LODOCV) experiments show the ability of our method to predict without

known disease related lncRNA genes for a given disease as the average AUC

value is 0.7356 for the LncRNADisease dataset. There are 68 out of 162

diseases can achieve the AUC values bigger than 0.9.
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5.2 Materials and Methods

Datasets of diseases and disease related genes were collected and relevant

human KEGG pathways were collected as well for the construction of the

disease vectorization model and the disease gene prediction method. The

details of the datasets and prediction algorithms are presented below.

5.2.1 Diseases, disease genes and KEGG pathways

The Medical Subject Headings (MeSH) (Lipscomb 2000), Comparative

Toxicogenomics Database (CTD) (Davis et al. 2009), Disease Ontology

(DO) (Schriml et al. 2012) and Online Mendelian Inheritance in Man

(OMIM) (Hamosh et al. 2005) are widely visited databases containing

massive amount of disease related information. However, there is no standard

for the adoption of disease names or ids between these databases. We mapped

disease names to DO ids using the DO, MeSH and CTD as dictionaries.

Similarly, for genes, we did id or name conversion using the data records

from the HUGO Gene Nomenclature Committee (HGNC) (Povey et al. 2001)

database. It contains reference records of genes among a great number

of widely used databases. In this work, we mainly mapped the genes

obtained from various resources to entrez gene ids (Maglott, Ostell, Pruitt

& Tatusova 2005). We downloaded the HGNC database on Jun 17, 2016.

There are totally 39670 approved gene records with entrez gene ids including

19025 protein coding genes and 20645 non-protein coding genes.

We downloaded disease-gene associations from the supplementary file of

a published article (Cheng et al. 2014) which contains 117,190 associations

between 2817 diseases and 12063 genes. The authors collected these data

records from database SIDD (Cheng et al. 2013). Each of the diseases has a

unique id from database DO. After data correction and redundancy removal

according to the latest version of the databases DO, MeSH, CTD and HGNC,

we obtained a set of 114754 disease-gene associations between 2802 diseases

and 10893 genes (including 10321 protein coding genes and 572 non-protein
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coding genes). The human KEGG pathways were extracted from the KEGG

database on June 21, 2016. There are 303 unique pathways containing 7060

unique genes (all have an entrez gene id). All these datasets are listed in

Supplementary file 9 and Supplementary file 10.

5.2.2 Associations between diseases and lncRNAs

The disease-lncRNA associations were obtained from three databases: lncR-

NADisease (downloaded on April 18, 2016), lnc2cancer (downloaded on July

4, 2016) and MNDR (downloaded on June 30, 2016). There are 1102, 1239

and 754 disease-lncRNA associations (redundant and unclear information

are existing). For the diseases, we mapped them to DO. To construct our

PU learning model for disease related lncRNA prediction, we collected the

sequences and expression profiles of the lncRNAs.

We mapped each of these lncRNAs to its corresponding ensembl gene id,

RefSeq accession id, entrez gene id and other detail information. This process

was manually finished via searching and comparing the lncRNA related

databases such as ensembl (Cunningham, Amode, Barrell, Beal, Billis, Brent,

Carvalho-Silva, Clapham, Coates, Fitzgerald et al. 2014), NONCODE (Zhao,

Li, Fang, Kang, Wu, Hao, Li, Bu, Sun, Zhang et al. 2015), Lncipedia (Volders,

Helsens, Wang, Menten, Martens, Gevaert, Vandesompele & Mestdagh

2012), lncRNAdb (Quek, Thomson, Maag, Bartonicek, Signal, Clark, Gloss

& Dinger 2014), HGNC. Then, lncRNA sequences were extracted from the

RefSeq (Pruitt, Tatusova & Maglott 2006). We downloaded the expression

level of 60245 genes (coding or non-coding genes matched with an ensembl

id and gene symbol) in 16 tissues from the Expression Atlas (Petryszak,

Keays, Tang, Fonseca, Barrera, Burdett, Füllgrabe, Fuentes, Jupp, Koskinen

et al. 2015).

Finally, we obtained 454 disease-lncRNA associations from lncRNADisease

(between 162 diseases having known disease genes and 187 lncRNAs with

known sequences and expression levels). Those 594 (79 cancers, 310

lncRNAs) and 176 (86 diseases, 57 lncRNAs) more pairs were extracted
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from lnc2cancer and MNDR respectively. For those diseases that not

exist in the above 2802 ones, disease genes were obtained from the CTD,

DisgeNet (Bauer-Mehren, Rautschka, Sanz & Furlong 2010), OMIM and

malaCard (Rappaport, Nativ, Stelzer, Twik, Guan-Golan, Iny Stein, Bahir,

Belinky, Morrey, Safran & Lancet 2013). The datasets are stored in

Supplementary file 11.

5.2.3 Disease gene chromosome preference analysis

and disease vectorization method

Human genes are located on mitochondrion and 24 unique chromosomes

including 22 autosomes and two sex chromosomes. The genes’ locations

on the chromosomes or mitochondrion have been labeled by the HGNC

database. As disease related genes are distributed at various locations

and have a different number of each disease, we hypothesize that the gene

distribution differences between diseases on the chromosomes or mitochond-

rion may reflect the divergences of the diseases. We also hypothesize that

disease genes may have some preferred chromosomes for some diseases. This

hypothesis can be investigated by the disease genes’ chromosomes enrichment

analysis via fisher’s exact test (Beißbarth & Speed 2004). Thus, it is better

to characterize the distribution properties of disease genes on each of the

chromosomes instead of on the whole known gene set (we call it a “part

overcomes the whole” hypothesis).

On the basis of these hypotheses, we considered to vectorize a disease

via modeling the distribution property of its related gene set. However, with

just the gene distribution characteristics, there may be no gene function

information involved. Thus, we considered to extract the distribution

properties of disease gene enriched KEGG pathways comparing to all

the known pathways to inject complementary information for our vector

representation of diseases. This vectorization process includes the following

steps:

89



Chapter 5. Chromosome Preference of Disease Genes and Vectorization for
the Prediction of Non-coding Disease Genes

• Step1: Initialization. Sorting all known genes according to their

chromosome locations and sorting all the human KEGG pathways by

their ids.

• Step2: Grouping. Dividing the genes and pathways into groups.

Producing a status series for each group with the length equals to the

number of genes or pathways it contains. These statuses are initialized

to be 0 (inactivated).

• Step3: Mapping. For a given disease related gene set, mapping them

to the gene groups and mapping its enriched pathways to the pathway

groups. Then, setting the corresponding status of a gene or pathway

in the status series to be 1 (activated) if it has been mapped.

• Step4: Vectorization. Calculating the status series’ k-mer information

entropy of each gene group or pathway group to quantify them and

constructing two sub-vectors for a given disease.

Here, dividing all the genes and pathways into groups is to apply

our “part overcomes the whole” hypothesis. In our Results section, we

demonstrate that this strategy (part) is more effective for characterizing

diseases comparing to the status series without dividing (the whole). As a

chromosome always contains a p-arm and a q-arm, we divide the genes into

groups according to the natural chromosome substructures. For the pathway

status series, we divide it into T groups on average. (There is no guidance

for us to divide pathways similar to chromosome structure). Finally, this

vectorization model includes two parts: disease gene set vectorization and

disease gene enriched pathway set vectorization.

Let d represent a disease, and dg = {g1, g2, · · · , gk, · · · , gn} be its

related gene set. Let all of the approved genes from HGNC be G =

{g1, g2, · · · , gi, · · · , gN}, and the pathway set from KEGG database be P

= {p1, p2, · · · , pj, · · · , pM}. Let the unique genes in P be represented as Gp

= {g1, g2, · · · , gA} while each pathway related gene set as gpj. We define
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a k-mer sub-status series as (s1, s2, · · · , sr, · · · , sk), where sr = 0 or 1. By

definition, there can be 2k possible k-mer sub-status series. The detail process

is described as a pseudo codes in Algorithm 5.1 and outlined in Figure 5.1.

The source codes can be referred to Supplementary file 12.

Then we compute the similarity between d1 and d2 with their vectors.

The similarity between d1 and d2 is denoted as Sim(d1, d2) and computed

by:

simGe (D1, D2) =

⎧⎨
⎩0 if ||Ege

D1|| × ||Ege
D2|| = 0;

subspace (Ege
D1, E

ge
D2) else.

(5.1)

simPe (D1, D2) =

⎧⎨
⎩0 if ||Epe

D1|| × ||Epe
D2|| = 0;

subspace (Epe
D1, E

pe
D2) else.

(5.2)

Sim (D1, D2) = e−[θ×simGe+(1−θ)×simPe] (5.3)

where θ is a parameter to mediate the ratio of each vector’s contribution to

compute the similarity. ||·||means the norm. subspace(x, y) is the function to

obtain the angle between two vectors x and y. Larger value of Sim (D1, D2)

shows more similarity of the diseases.

The four parameters k1 (the size of k-mer for gene series), k2 (the size

of k-mer for pathway series), T and θ can be determined via a performance

test through comparing the disease similarity with a benchmark dataset. We

first set θ=1 to optimize k1 and set θ=0 to optimize k2, T with the objective

of achieving the best performance. Then, the three parameters are set as the

optimal values to select the best θ. Similarly, we can also apply subspaces

between the disease gene status series (a disease is represented as a fixed-

length vector with the elements equal to 0 or 1) or the pathway status series

themselves instead to measure the similarities of diseases. We call them the

disease gene status series vector method and the pathway status series vector

method. In the Results section, we compare the performances of our status

series methods and our entropy vector methods to prove our “part overcomes

the whole” hypothesis.
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Algorithm 5.1 Disease vectorization.
Require: disease d related gene set dg, the number of genes in dg is n, Approved genes

G, human pathway set P with totally M pathways, the number of unique genes in P

is A, each pathway pj contained gene set gpj , parameter k1, k2, T ;

1: Sort G according to the chromosome location of gi, sort P according to the ids of pj ;

2: Separate G according to the natural chromosome structure such as chr1 p-

arm, chr1 q-arm, · · · . There are total S chromosome substructures, i.e.

chr1, chr2, · · · , chru, · · · , chrS ;
3: Divide P into T groups, i.e. pg1, pg2, ·, pgw, · · · , pgT ;

4: Generate the initial status series of each S chru = (0, 0, · · · , 0) and S pgw =

(0, 0, · · · , 0);
5: Map dg to chru according to its location and change the corresponding status in S chru

as 1;

6: Set k=k1

7: for u = 1 to S do

8: Scan S chru with window size of k and step size 1;

9: Compute the frequency of qth k-mer sub-status series as fq

10: Compute the summary of the entropy of all the k-mer sub-status series for S chru

as Echru =
∑2k

q=1 fqlog (fq) ;

11: end for

12: for j = 1 to M do

13: Count genes in gpj as L = Length (gpj);

14: Count genes mapped into pj as B = Length (dg ∩ gpj);

15: Do the fisher exact test:

16: [h, p, stats] = fishertest ([L−B,B;A− L− n+B,n−B]), where p is the p-

value;

17: if p ≤ 0.05 then

18: Change the corresponding status of pj in S pgw as 1;

19: end if

20: end for

21: Set k = k2

22: for w = 1 to T do

23: Scan S pgw with window size of k and step size 1;

24: Compute the frequency of vth k-mer sub-status series as fv

25: Compute the summary of the entropy of the all the k-mer sub-status series for

S pgw as Epgw = −∑2k

v=1 fvlog (fv) ;

26: end for

27: Output The gene set entropy vector Eg
D = [Echr1 , Echr2 , · · · , EchrS ]

28: Output The genes enriched pathway entropy vector Ep
D = [Epg1 , Epg2 , · · · , EpgT ]
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5.2.4 Prioritizing disease related lncRNA genes

We always just have the positive samples of disease-lncRNA associations,

as the negative samples, namely the lncRNAs that do not relate to the

diseases, are neglected or even cannot be obtained. Supervised learning

algorithms are unable to deal with this situation. However, the Positive

Unlabeled learning (PU learning) method (Li & Liu 2003) can address this

issue effectively. PU learning has been an effective method for solving

similar problems in bioinformatics such as disease gene prediction (Yang,

Li, Mei, Kwoh & Ng 2012), predicting conformational B-cell epitopes (Ren,

Liu, Ellis & Li 2015), splicing elucidation (Hao, Colak, Teyra, Corbi-Verge,

Ignatchenko, Hahne, Wilhelm, Kuster, Braun, Kaida et al. 2015) and kinase

substrate prediction (Yang, Humphrey, James, Yang & Jothi 2015). These

PU learning approaches are mainly derived from two types of PU learning

algorithms: the biased-SVM (Liu, Dai, Li, Lee & Yu 2003) and Elkan et

al’s lemmas (Elkan & Noto 2008). The application of Elkan et al’s lemmas

requires the satisfaction of “selected completely at random assumption”,

while the biased-SVM methods need to tune a set of parameters. Mordelet et

al. (Mordelet & Vert 2014) proposed a bagging SVM model for PU learning

and proved that their model can match and even outperform the biased-SVM

algorithm. Especially, the bagging SVM for PU learning algorithm can run

considerably faster. We adopt this bagging SVM PU learning to prioritize

disease related lncRNA genes.

Let Lnc be a lncRNA gene, represented as Lnc=l1l2 . . . le . . . lO. We

calculate its k-mer frequency 〈V seq
Lnc〉 and its expression profile

〈
V prof
Lnc

〉
.

As there are four kinds of nucleotides in a lncRNA sequence (i.e., le ∈
{A,G,C, T}), there are 4k possible k-mers. These k-mers are sorted by

their alphabetic order. Their frequencies are counted via the window sliding

mechanism with the window size of k and a step size 1, which are then the

elements of the vector 〈V seq
Lnc〉. The expression profile of Lnc can be extracted

from the Expression Atlas (Petryszak et al. 2015). The expression levels of

the lncRNA gene in the 16 tissues are the elements of the vector
〈
V prof
Lnc

〉
.
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Then for a disease-lncRNA pair, e.g. d − Lnc, we construct another

feature namely vector 〈Vco−exp〉, called the co-expression levels. This sub-

vector can be constructed on the basis of the principle that a disease related

lncRNA gene may show the preference of co-expressing with other genes

associating with this disease (such as the lncRNA’s targets). This sub-vector

contains three elements, i.e. the maximum, minimum and average spearman

correlation coefficients (〈Vco−exp〉= 〈maxco−exp,minco−exp, avgco−exp〉) between

the expression profile of Lnc and all the known disease d related genes’

expression profiles.

The whole disease-lncRNA feature vector is formed by combining the five

sub-vectors: the disease gene distribution entropy vector
〈
V chr
d

〉
(sf1), disease

pathway distribution entropy vector
〈
V path
d

〉
(sf2), lncRNA sequence’s k-mer

frequency 〈V seq
Lnc〉 (sf3), lncRNA expression profile

〈
V prof
Lnc

〉
(sf4), and the co-

expression features 〈Vco−exp〉 (sf5). The pseudo codes for prioritizing the

disease related lncRNAs with the bagging SVM for PU learning model are

shown as Algorithm 5.2.

In Algorithm 5.2, |PO| means the sample size of the positive dataset.

The feature type means the type of combination of the five sub-vectors. The

feature vector
〈
V chr
d , V seq

Lnc

〉
is used as the basic feature type. Adding the

remaining sub-features to this basic type makes new feature types. The

best one can be identified via comparing the results of the cross-validation

experiments. The bootstrap strategy is adopted with the purposes of making

good use of the abundant unlabeled samples and improving the prediction

performance. After obtaining the scores for the unlabeled samples, we sort

them. The larger scores imply that the samples are more likely to be positive

ones.
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Algorithm 5.2 A bagging SVM for prioritizing the disease related

lncRNA genes.
Require: Positive dataset PO, unlabeled dataset UN , bootstrap sample size R, bootstrap

number V , SVM parameters, feature type W

1: for a=1 to 100 do

2: Randomly select |PO| of unlabeled samples as negative samples

3: Implement a 5-fold cross validation on the positive-negative dataset with feature

type W and do grid search of SVM parameters;

4: end for

5: Use the F1 score as the metric, determine the optimal SVM parameters opPara and

the optimal feature type Wop;

6: ∀x ∈ UN, n (x)← 0, f(x)← 0;

7: for b=1 to V do

8: Draw a bootstrap sample UNb of size R in UN

9: Train a classifier fb to discriminate PO against UNb with opPara and Wop;

10: For any x ∈ UN \ UNb, update:

11: f (x)← f (x) + fb (x);

12: n (x)← n (x) + 1.

13: end for

14: Output The score s (x) = f (x) /n (x) for x ∈ UN .

5.3 Results

5.3.1 Chromosome preference and disfavor of disease

genes

In the understanding of unique characteristics of disease genes on the

chromosomes, we constructed chromosome enrichment analysis of disease

genes. The process is similar to the implementation of Fisher’s exact test

for pathway enrichment analysis which we have described in Algorithm

5.1. The main difference is that the pathway genes are replaced with the

chromosome involved genes. We note that only protein coding genes are

considered for the chromosome preference analysis of disease genes as the

non-coding disease genes are under prediction.

The 24 chromosomes of human genome can be naturally divided into
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48 substructures with the p-arm and the q-arm as two substructures for

each chromosome. However, for chromosome 13 (chr13), there is only one

protein gene on the centromere and there is no approved protein gene located

at its p-arm; for chromosome 14, only one gene is located at its p-arm;

and there is no gene located at the p-arm of chr15 or chr22. Thus, these

four chromosomes were not divided. We consider the mitochondrion as a

special chromosome which cannot be divided into two substructures. In total,

we have 45 chromosome substructures, namely S=45 in Algorithm 5.1.

Figure 5.2 and Figure 5.3 show the statistics of the chromosome substructure

enrichment analysis for the disease genes of each of the 2802 diseases.

22%

53%

15%

5%

2%3%

no subchr

1 subchr

2 subchrs

3 subchrs

4 subchrs

>4 subchrs

Figure 5.2: The disease chromosome enrichment analysis pie graph.

Subchr means chromosome substructure. We did the statistics of how many

chromosomes a disease gene set enriches. More than a half (53%) of the 2802

diseases are just enriched to only one chromosome substructure, while just 3%

of these diseases can be enriched to more than 4 chromosome substructures.

There are about 75% of the diseases whose related gene sets can be

enriched to no more than 1 chromosome substructure (Figure 5.2). There
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Figure 5.3: The disease chromosome enrichment analysis results. The

y-axis are percentages of diseases that enriched to each of the chromosome

substructures. The x-axis are the indexes of the chromosome substructures.

The bar graph at the top right shows the statistics of the numbers of

chromosome substructures that contained by diseases with given percentages

scopes.

are just 3% of the diseases whose related gene sets can be enriched to more

than 4 chromosome substructures. This distribution of disease genes on

the chromosome substructures reveals that the disease genes of a given

disease are very likely located at a neighborhood region. As indicated by

Figure 5.3, the p-arm of chromosome 6 is the most preferred substructure of

disease genes — about 16.2% of the disease related gene sets can be enriched

here. This percentage is significantly higher than the other substructures
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(all no more than 6%). Interestingly, there is no disease related gene set

that can be enriched to the p-arm of chromosome 21. From the top-right

bar graph of Figure 5.3, we can also see that 16 out of the 45 chromosome

substructures are enriched by only 1%-2% of the 2802 gene sets. There are

10 and 8 substructures can be enriched by 2%-3% and 3%-4% of the 2802

gene sets. Thus, most of the chromosome substructures (38 out of 45) can

be enriched by no more than 3% of the 2802 gene sets. These observations

suggest a phenomenon that disease genes are unevenly distributed in the

45 chromosome substructures. The genes related to a disease are preferred

at a physical neighborhood close to each other in the chromosomes. This

observation of chromosome preference lays down the foundation for our

disease vector representation.

We also conducted pathway enrichment analysis to understand the

distribution of disease genes in human KEGG pathways. We found that

disease genes are also unevenly enriched in these pathways. More than 30%

of the 2802 diseases are associated with one of the top 6 pathways such

as hsa04933: AGE-RAGE signaling pathway in diabetic complications, and

hsa05321: Inflammatory bowel disease (IBD). In contrast, 61 out of 303

pathways are related to less than 1% of these diseases. More details are

reported in Supplementary file 13.

5.3.2 Performance on the prediction of highly similar

diseases using our disease vector representation

We tested the performance of our vectorization model for computing disease

similarities on the dataset downloaded from the supplementary files of

Cheng’s paper (Cheng et al. 2014). It contains a candidate disease set and

a benchmark set of similar disease pairs. The disease set is composed of

2802 diseases and their related genes. There are 70 similar disease pairs

in the benchmark set. Zhou et al. (Zhou et al. 2014) proposed a symptom

representation method for measuring disease similarities. To compare this

method with ours, we downloaded their similarity scores between 1596
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diseases and mapped these diseases to the disease set. Totally 1012 diseases

and 56 similar disease pairs in the benchmark set can be mapped. These two

disease sets have been stored in Supplementary file 14.

Following cheng’s method, we drew a ROC curve to display how our

method can rank the similar pairs in the benchmark set comparing with those

randomly selected unknown disease pairs. That means, for a given threshold,

if the similarity of a pair in the benchmark set exceeds this threshold, it

is defined as a true positive, otherwise, as a false negative. Inversely, an

unknown disease pair exceeds the threshold is defined as a false positive. A

total of 560 testing disease-disease pairs were randomly selected from the

1012 candidate diseases (but not overlapping with the benchmark set). This

process was repeated 100 times.

There are three parameters, i.e. k1, k2 and T , for Algorithm 5.1

and one parameter θ for equation 5.3 need to be tuned. According to the

HGNC database, there are 19025 approved protein coding genes. Because the

minimum length of the chromosome substructure is 9 (only 9 protein coding

genes on this substructure), thus the parameters k1 was changed from 1 to

9 with the step size of 1. There are 303 different human KEGG pathways.

To simplify our model, we set T=30 with the first 29 groups containing 10

pathways while the last group has 13 pathways. Finally, the disease genes

chromosome substructures’ distribution information entropy (disease gene

distribution entropy) feature is represented as a 45-dimensional vector while

the disease gene enriched pathway groups’ distribution information entropy

(disease pathway distribution entropy) feature is a 30-dimensional vector. k2

is changed from 1 to 10 with the step size of 1. The integration parameter θ

is in the range of [0, 1].

When k1=9, we can get the biggest average AUC=0.9429. Meanwhile,

when k2=8, the AUC value with just pathway distribution entropy vectors

can achieve 0.8872. Thus, we set k1=9 and k2=8 for the subsequent

experiments.

We also compared the performances of our methods (namely the entropy
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vector methods and the status series vector methods), the FunSim (Cheng

et al. 2014) and symptom representation method (Zhou et al. 2014). We

implemented the FunSim according to the published paper. Then, the AUC

values were computed according to the scores via different methods. During

the comparison, θ was set to be 0 to 1 with the step size of 0.1. When θ=0.8,

the integrated similarity method can work best with average AUC=0.9458.

We drew the corresponding overall ROC curves (all the 100 times repeat

experiments’ results are combined together to compute the False Positive

Rate and True Positive Rate; thus, the overall AUC values are smaller than

the average AUC values) of the 100 times experiments in Figure 5.4. More

comparison results for the original 2802 disease set can be found in the

Supplementary file 13.
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pathway distribution entropy vector(θ=0, k2=8): AUC=0.8555

disease gene distribution entropy vector(θ=1, k1=9): AUC=0.9067

intergrated similarity method(k1=9, k2=8, p=0.8): AUC=0.9094
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random

Figure 5.4: The ROC curves of different methods for computing

the disease similarities. There are 7 ROC curves: the disease

pathway distribution entropy vector method (θ=0, AUC=0.8555); the

disease gene distribution entropy vector method (θ=1, AUC=0.9067);

the integrated similarity method (θ=0.8, AUC=0.9094); the pathway

status series vector method (AUC=0.7867); the disease gene status series

vector method (AUC=0.5882); FunSim (AUC=0.8858) and Symptom

representation method (AUC=0.7455).
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Figure 5.4 shows that the integrated similarity method is better than

the other methods. However, it just improves 0.0027 on the AUC value

comparing with just disease gene distribution entropy vector method (k1=9,

θ=1). It implies that there is not much complementary between the disease

gene distribution entropy and disease pathway distribution entropy features

as to compute the similarities of diseases. The integrated similarity method

with θ=0.8 outperforms the FunSim and symptom representation method

by improving AUC values of 0.0236 and 0.1639 respectively. In comparison,

the status series vector methods cannot work as well as the entropy vector

methods. The entropy vector methods (disease gene distribution entropy

vs. disease gene status series and disease pathway distribution entropy vs.

pathway status series) improve the overall AUC values by 0.3185 and 0.0688.

This proves our “part overcomes the whole” hypothesis that our dividing and

information entropy strategy for representing diseases is more effective than

the original status series.

5.3.3 Performance on the prediction and prioritization

of disease related lncRNA genes

The performance of our disease vectorization method for predicting and

prioritizing disease related lncRNA genes was tested and evaluated on three

datasets: the lncRNADisease dataset (454 positive samples, i.e., 454 known

associations between some diseases and some lncRNA genes), the lnc2cancer

dataset (594 positive samples) and the MNDR dataset (176 positive samples).

See details of these datasets at the section Materials and Methods.

Classifier and parameter selection for final prediction model with

the lncRNADisease dataset

We used both liner and RBF kernel for the SVM-based positive-unlabled

learning method to conduct cross-validation on the lncRNADisease dataset.

The number of positive samples is 454, and the number of unlabeled samples
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Table 5.1: Feature types and their corresponding performance.
Type Combinations Liner kernel RBF kernel

0 sf1, sf3 C = 7, F1 =0.6668 C = -1, G = -1, F1 = 0.6734

1 sf1, sf2, sf3 C = 2, F1 =0.6895 C = 3, G = -5, F1= 0.7024

2 sf1, sf3, sf4 C = 7, F1 =0.6692 C = 6, G = -2, F1 = 0.6734

3 sf1, sf2, sf3, sf4 C = 0, F1 =0.6942 C = 5, G = -7, F1 = 0.7058

4 sf1, sf3, sf5 C = 8, F1 =0.6658 C = 0, G = -2, F1 = 0.6768

5 sf1, sf2, sf3, sf5 C = 0, F1 =0.6906 C = 4, G = -6, F1 =0.7032

6 sf1, sf3, sf4, sf5 C = 1, F1 =0.6708 C = 0, G = -2, F1 = 0.6748

7 sf1, sf2, sf3, sf4, sf5 C = 2, F1 =0.7004 C = 3, G = -5, F1 = 0.7114

(i.e., the number of unknown associations) is 29840, derived by exhaustively

pairing the 162 diseases and 187 lncRNAs in the lncRNADisease dataset

after the deduction of the number of 454 positive samples. Recall that our

vector representation for a pair of disease and lncRNA gene consists of five

sub-vectors. Here, we choose different combinations of these sub-vectors to

understand that all of these sub-vectors are important for the prediction.

The steps are presented in Algorithm 5.2.

The basic combination of the sub-vectors is to merge the disease

gene distribution entropy sub-vector
〈
V chr
d

〉
, and lncRNA sequence’s k-mer

frequency sub-vector 〈V seq
Lnc〉. Here, we set k=3 (k-mer size for lncRNA

sequence) and k1=9 (k-mer size for disease gene series) in the previous

section. This basic feature vector is a 109-dimensional (45+64) feature

vector, simply denoted by sf1+sf3. We name it the type-0 feature vector.

Adding other sub-vectors such as the disease pathway distribution entropy

vector
〈
V path
d

〉
(sf2, 30-dimensional), lncRNA expression profile

〈
V prof
Lnc

〉
(sf4, 16-dimensional), the basic feature vector can be expanded into another

three feature types, i.e., the feature type 1-3 in Table 5.1. Furthermore,

the co-expression feature namely the fifth sub-vector 〈Vco−exp〉 (sf5, 3-

dimensional) was added to each of the former combinations and form four

more feature types which are showed in the last four lines of Table 5.1.

Adding the disease pathway distribution entropy sub-vector
〈
V path
d

〉
(i.e.,

sf2) can improve the performance for predicting disease-lncRNA associations
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(type1 vs. type0, type3 vs. type2, type7 vs. type6, averagely improved by

0.0257 for liner SVM and 0.0307 for RBF SVM respectively). However, the

improvement by adding the lncRNA expression profile is not as high as adding

the disease pathway distribution entropy sub-vector (0.0052 for liner SVM,

0.0021 for RBF SVM averagely). However, the co-expression feature vector

〈Vco−exp〉 can further improve the prediction performance averagely by 0.0039

and 0.0033 for liner SVM and RBF SVM respectively. The combination of

all the 5 sub-vectors (i.e., the type 7 feature vector) worked the best among

the 8 types of feature vectors (on average improving by 0.0223 for liner SVM

and 0.0243 for RBF SVM). Furthermore, the RBF kernel outperforms the

liner kernel (on average improving by 0.0092). Thus, our baseline classifier is

the RBF SVM (C = 3, G = -5) with the type 7 feature vector representation

(W=7).

Using all the sub-vectors (i.e., the type 7 feature vector) to represent a

pair of disease and lncRNA gene, the 5-fold cross-validation AUC results

on the lncRNADisease dataset by bagging SVM is showed in Figure 5.5,

using different bootstrap sample size R and the bootstrap number V . Here,

we repeated the experiment 10 times. The AUC values were computed by

comparing the scores of known pairs (set to be unknown during the cross

validation) with those unknown ones. We note that we simply set R = |PO|
as Mordelet et al (Mordelet & Vert 2014) had proved that setting R to be

the same as the size of positive samples is a safe choice for the bagging SVM.

The AUC values change in a narrow scope (0.79-0.81) when the bootstrap

number V varies from 10 to 400. In fact, the running time for computing

the scores of unknown samples increases significantly when V is increasing.

As bigger V achieves weak improvement of the performance but results in

significant increase of time cost, we suggest fixing V =10. This is consistent

with the conclusion of Mordelet’s report that when R is large, the SVM

usually rarely benefits from bagging. Thus, our final PU learning classifier

is built with following parameters: RBF kernel SVM with C = 3, G = -5, V

= 10, R = |PO| and W = 7.
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Figure 5.5: The boxplot graph of the AUC values for the 5-fold cross

validation experiments. The x-axis is the value of V , and the y-axis is the

corresponding AUC values. The changes of the AUC values with different V

are tiny. For a given V , the prediction results are stable.

5.3.4 Performance comparison and case studies

In comparison with two state-of-the-art disease-lncRNA association prediction

methods LRLSLDA (Chen & Yan 2013) and LRLSLDA ILNCSIM (Huang

et al. 2016). Our leave-one-out cross-validation AUC performance is much

better on the three datasets (Figure 5.6.). We noted that the source codes

of these two existing methods are not available, but we implemented their

algorithms for a fair comparison. Their datasets are not available either.

Our method with type 7 feature vector has a superior performance

(AUC=0.8016, 0.8335 and 0.7527 on the three datasets) over the other three

methods: the type 1 vector method (AUC=0.7889, 0.8266 and 0.7216), the

LRLSLDA (AUC=0.6882, 0.7308 and 0.6346) and the LRLSLDA ILNCSIM
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Figure 5.6: The leave-one-out cross validation results based on three

datasets with different methods. Four methods were compared, our

method with type 7 (W=7) feature and type 1 (W=1) feature, LRLSLDA

method and the LRLSLDA ILNCSIM method. Our type 7 method works

best for all three datasets.

(AUC=0.6949, 0.7390 and 0.6435). We note that our type 1 vector needs

just the accessible information such as disease genes and lncRNA sequences,

but it can achieve close performance as the type 7 vector method did.

We also did the leave-one-disease-out cross-validation when assuming that

all the related lncRNAs of a given disease are unknown. Then we computed

the possibilities of the lncRNAs to be associated with the disease. The AUC

value was used to test how are those already know related lncRNAs ranked

comparing with the unknown ones. There are more than 40% (68 out of

162 diseases) of the diseases can achieve an AUC value higher than 0.9. The

average AUC of all the diseases is 0.7356. This suggests that our method

is capable of predicting disease-lncRNA associations even without knowing

any association with a given disease.

We did an experiment to predict disease related lncRNAs using the known

454 positive samples and the 29840 unlabeled samples by PU learning. The

predicted results were validated using two other datasets (166 lnc2cancer
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samples and 29 MNDR samples overlap with the 29840 unlabeled samples).

The ranking scores of the 29840 unlabeled samples and a ROC curve are

plotted in Figure 5.7.
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Figure 5.7: The final prediction test on the lncRNADisease dataset.

The x-axis is the unknown disease-lncRNA pairs’ predicted ranks. The y-

axis are the predicted scores which means the possibilities of the samples

to be positive. The predicted results were validated via the lnc2cancer and

MNDR datasets. The validated samples were marked on the score curve.

The ROC curve that compares the scores of the validated samples and the

remain unknown samples is drawn at the top right of this figure. The AUC

value achieves 0.9005.

Figure 5.7 shows that most of the validated samples are ranked at good

positions. We regarded those 166 lnc2cancer samples and 29 MNDR samples

as positive while remaining unknown samples as negative and draw the ROC

curve at the top right of Figure 5.7. It achieves the AUC value of 0.9005,
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Table 5.2: Case studies for predicting breast cancer and prostate

cancer related lncRNAs.
Cancer type Related lncRNA Scores Validated status

breast cancer UCA1 0.8685 validated by lnc2cancer

breast cancer DLEU2 0.8375 validated by literature

breast cancer EPB41L4A-AS1 0.8356 not validated

breast cancer LINC00271 0.8297 validated by literature

breast cancer 7SK 0.828 validated by literature

prostate cancer UCA1 0.922 validated by lnc2cancer

prostate cancer BCYRN1 0.8983 not validated

prostate cancer HOTAIR 0.8952 validated by lnc2cancer

prostate cancer ZFAS1 0.881 validated by literature

prostate cancer BOK-AS1 0.88 not validated

which reveals that our prediction can always rank the positive samples well.

We also did case studies for breast cancer and prostate cancer. Breast

cancer is the leading type of cancer in women, accounting for 25% of all

women cancer patients (McGuire 2016). Prostate cancer is the second most

common type of cancer and the fifth leading cause of cancer-related death in

men (McGuire 2016). We list in Table 5.2 top 5 lncRNAs that are (possibly)

related to these two cancer types.

The most-top ranked lncRNA that is related to breast cancer is UCA1.

This annotation has been already recorded in the lnc2cancer database. The

second highest ranked lncRNA is DLEU2. In fact, DLEU2 is frequently

deleted in malignancy (Lerner, Harada, Lovén, Castro, Davis, Oscier,

Henriksson, Sangfelt, Grandér & Corcoran 2009). It functions as a critical

host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1.

Both of these two microRNAs are related to breast cancer (Cittelly, Das,

Salvo, Fonseca, Burow & Jones 2010). The 4th and 5th top-ranked lncRNAs

LINC0271 (Delgado, Brandao & Narayanan 2014) and 7SK (Ji, Lu, Zhou

& Luo 2014) are related to breast cancers. As to prostate cancer, two

top-ranked lncRNAs UCA1 and HOTAIR have been actually stored in the
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lnc2cancer database. In addition, the lncRNA ZFAS1 was recently reported

to associate with the prostate cancer (Chen, Yang, Xie & Cheung 2018).

These case studies support that our disease vector representation and PU

learning methods are effective to prioritize disease related lncRNA genes.

5.4 Conclusion

In this chapter, we propose a novel disease vectorization method and apply

it for the positive-unlabeled learning to predict and prioritize disease related

lncRNA genes. It addressed part of my research question Q1. As was

concluded in Section 1.3 C3, this part work has several contributions.

Firstly, we observed the disease genes’ chromosome distribution preference.

Then, a disease is newly characterized by using the distribution properties

of disease genes on the chromosome substructures and its related KEGG

pathways to all the pathways. Our vectorization model can be applied to

compute the disease similarities effectively. In addition, we proposed the

bagging SVM based positive-unlabeled learning method for the classification

of disease-lncRNA pairs. Testing on the benchmark datasets, our method

can work better than the state-of-the-art methods. Especially, it can also

work with only lncRNA sequences information or without known related

association.

Future work has been planned to improve the performance of our

vectorization model. First, more accurate disease genes will be collected as

our model critically relies on the reliability of disease genes. Secondly, more

information will be introduced to decrease the disease gene dependency such

as the disease symptom, the disease semantics and so on. Furthermore,

the relationship between the disease genes and lncRNA targets will be

considered to extract more effective features to predict disease-lncRNA gene

associations.
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Chapter 6

CRISPR/Cas9 Cleavage

Efficiency Regression Through

Boosting Algorithms and

Markov Sequence Profiling

6.1 Introduction

We have discussed in Chapter 1 that the key to good design of sgRNAs

is to determine the spacer sequence by selecting a protospacer sequence

complementary with the spacer’s target sequence such that the cleavage

(cleaving) efficiency is high. There are two critical prediction problems in

the selection of sgRNAs. The first problem is the prediction of whether the

sgRNA on-target cleaving efficiency is high or not. The subsequent problem

is whether the sgRNA’s off-target effect is low (Fu, Foden, Khayter, Maeder,

Reyon, Joung & Sander 2013, Shen, Zhang, Zhang, Zhou, Wang, Chen,

Wang, Hodgkins, Iyer, Huang et al. 2014, Kleinstiver, Pattanayak, Prew,

Tsai, Nguyen, Zheng & Joung 2016). The first question is fundamental.

This part work focuses on machine learning algorithms for assessing the

cleaving efficiencies of candidate sgRNAs. The algorithms make regressions
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on the numerical values of their cleavage efficiencies. The algorithms can be

also turned to make binary classifications between high-efficiency and low-

efficiency sgRNAs. The second question about the sgRNA off-target effects

is closely linked to the first one. This question involves genome-wide number

of genes which seems more complex, thus it is investigated in Chapter 7.

As was reviewed in Chapter 2, prediction algorithms have been recently

proposed to identify efficient sgRNAs through characterizing their spacer

sequence preferences (Doench et al. 2014, Xu et al. 2015, Wong et al.

2015, Kaur et al. 2016, Moreno-Mateos et al. 2015), thermodynamics

features (Doench et al. 2014, Wong et al. 2015) and structure features (Wong

et al. 2015). The sequence features are widely adopted because many

nucleotide preference phenomena have been observed. For example, nucleot-

ides distal to the PAM were found to be dominated by the guanine

enrichment, while the remaining nucleotides are characterized by the cytosine

enrichment (Moreno-Mateos et al. 2015). These nucleotide preference

properties have been exploited to differentiate efficient sgRNAs from those

inefficient ones by machine learning methods such as support vector machine

(SVM) (Doench et al. 2014, Wong et al. 2015, Kaur et al. 2016, Rahman

& Rahman 2017). In particular, a regression method (Doench et al. 2016)

has been proposed to predict the numerical values of the cleaving efficiencies

for candidate sgRNAs. Its novel idea is a Rule Set 2 (RS2) for predicting

the on-target activities of sgRNAs. Different from the previous classification

methods, this regression model also uses some new features such as cutting

position features and the two nucleotides in the N and N positions relative

to the PAM ‘NGGN’. Though RS2 achieved remarkable performance, there

still exists large space for improving the performance.

This work introduces a two-step averaging method (TSAM) for the

prediction of sgRNA cleaving efficiencies. At the first step, a boosting

regression model is trained on the conventional feature space of sgRNAs

to map these sgRNAs to their cleaving efficiency scores. At the second step,

we use Markov sequence profiles of sgRNAs as new features together with
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important features selected by the boosting algorithm to train a non-linear

SVM to make regression again on the cleaving efficiencies. The two scores

are then averaged as the predicted cleaving efficiencies of these sgRNAs.

Both the boosting algorithm and the Markov sequence profiling have the

same aim to exploit important characteristic features of sgRNAs to improve

the prediction performance but at different aspects. Literature methods

already proposed a large number of features to describe sgRNAs. However,

not all of them are effective for the prediction of the cleavage efficiencies.

The newly introduced Markov sequence features can capture the global

sequence characteristics of sgRNAs which are different from the conventional

position-specific preferences (Doench et al. 2014, Wong et al. 2015, Kaur

et al. 2016, Doench et al. 2016). The boosting algorithm, XGBoost (Chen

& Guestrin 2016), is a scalable end-to-end tree boosting system that can

rank the feature importance during the training process. XGBoost is also

a state-of-the-art regression algorithm with better performance than the

traditional gradient boosting trees (Doench et al. 2016), having a wider

range of applications (Zhang, Ai, Chen, Yin, Hu, Zhu, Zhao, Zhao &

Liu 2017, Torlay, Perrone-Bertolotti, Thomas & Baciu 2017). Furthermore,

our two-step averaging strategy underlines a complementary nature of the

boosting regression approach and the SVM regression approach. From our

experiments, the regression results of XGBoost and SVM are always different.

It is good to integrate the two regression results to improve the prediction

performance on the sgRNA cleaving efficiencies.

Markov sequence profiles of a sgRNA are extracted through a profile

Hidden Markov Model (pHMM). It works by converting a multiply sequence

alignment for sequences from a known family into a position-specific scoring

system (Eddy 1998). This system can be used to evaluate whether a

new sequence is a homologous sequence of this sequence family. This

method has been leveraged to address many other biological sequence

related bioinformatics problems (Karplus, Barrett & Hughey 1998, Schliep,

Schönhuth & Steinhoff 2003, Wheeler, Clements, Eddy, Hubley, Jones, Jurka,
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Smit & Finn 2013, Huo, Zhang, Huo, Yang, Li & Yin 2017). In this work,

sgRNA sequences are first grouped into sub-families in accordance with their

efficiency scores. Then, probabilities of a given sgRNA being a homologous

sequence for each sub-families are formed as a multi-pHMM vector for

characterizing the global features of sgRNA sequences. An SVM regressor

trained with only pHMM properties can obtain similar mean Spearman

correlations comparing with the state-of-the-art methods. Hence, we decided

to combine pHMM features with the top-ranked features of XGBoost to train

the second-step SVM regressor for a better performance.

The performance of our TSAM is compared with the state-of-the-art

regression methods such as RS2 (Doench et al. 2016) and CRISPRscan

(Moreno-Mateos et al. 2015). On Doench’s FC dataset (human and mouse

sgRNAs), TSAM obtained a mean Spearman correlation of 0.583, better

than RS2’s 0.522. On the RES dataset (human sgRNAs) and the FC+RES

dataset, TSAM achieved mean Spearman correlations 0.530 and 0.567

respectively, better than RS2’s 0.455 and 0.510. On the dataset which was

used by CRISPRscan containing 1020 zebrafish sgRNA sequences, TSAM

can achieve a competitive Pearson correlation of 0.49 (comparing with

CRISPRscan’s 0.45). Our two-step regression approach was converted into a

binary classification method to distinguish between high-efficiency and low-

efficiency sgRNAs. The classification performance on the benchmark datasets

also outperforms the state-of-the-art methods. For instance, the mean AUC

of the three-fold cross validation on Xu’s ribosomal dataset (Xu et al. 2015)

is 0.896, much exceeding Xu’s 0.843. For the cross-gene validation and cross-

platform validation, our performances are 0.813 and 0.840 respectively, better

than Xu’s 0.778 and 0.757.

Haeussler et al. (Haeussler et al. 2016) advised that the performance of

an on-target efficiency prediction model is strongly dependent on whether

the guide RNA is expressed from a U6 promoter or it is transcribed in

vitro with the T7 promoter. To compare the performance of TSAM with

the state-of-the-art methods on datasets of different expression systems, we
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collected abundant datasets from (Haeussler et al. 2016) to test two specified

versions of TSAM. One is named TSAM U6, which was trained with the

FC+RES dataset as input, in which the guide RNAs are all transcribed from

the U6 promoter. The dataset CRISPRScan containing guides expressed

from the T7 promoter in vitro was used to build the second predictor named

TSAM T7. The results confirmed that our TSAM can always achieve better

performances on both of the U6 and T7 promoter datasets.

Our case studies are related to the optimal sgRNAs selected for gene

therapies to cure the retinitis pigmentosa and X-linked chronic granulomatous

disease (Yu, Mookherjee, Chaitankar, Hiriyanna, Kim, Brooks, Ataeijannati,

Sun, Dong, Li et al. 2017, De Ravin, Li, Wu, Choi, Allen, Koontz, Lee,

Theobald-Whiting, Chu, Garofalo et al. 2017). The highly efficient sgRNAs

recommended by our method can well match with those sgRNAs which had

been validated by wet lab experiments and domain experts. This partly

proves the effectiveness of our prediction tool, and illustrates the great

potential of our method for practical use. The web-server can be freely visited

from the site: http://www.aai-bioinfo.com/CRISPR/. The off-line tool can

be downloaded from the website: https://github.com/penn-hui/TSAM.

6.2 Materials and Methods

6.2.1 High throughput genome engineering datasets

for building the regression and classification

models

We tested the algorithms on total 11 datasets. Three datasets from (Doench

et al. 2016) were downloaded to build our TSAM regression model. The

three datasets are named: the FC dataset which contains 1841 sgRNAs

with the flow cytometry (FC) method detecting the knockdowns; the RES

dataset which contains 2549 sgRNAs with their knockdown efficiencies

measured through drug resistance detection; and the combined dataset
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(FC+RES). We removed 10 sgRNAs from the FC dataset because of

their ambiguous mapping to the reference genome (Fusi, Smith, Doench

& Listgarten 2015). Doench’s paper reported that there are 1831 curated

sgRNAs in the FC dataset, however, there are only 1830 unique sgRNAs

from their supplementary materials. Furthermore, 1020 sgRNAs for cleaving

zebrafish genome sequences were acquired from (Moreno-Mateos et al. 2015).

Different from FC and RES, where the guides are transcribed from U6

promoters in cells, this zebrafish dataset contains the guides expressed from

T7 promoters in vitro. As the cutting efficiency measurement methods

are distinct, separate models are trained and evaluated on these different

datasets. More details of these four datasets are listed at the first 4 rows of

Table 6.1.

Table 6.1: 11 datasets for construction and evaluation of our

classification and regression models

Name validation type sample size literature

FC logo1 1830 (Doench et al. 2016)

RES logo 2549 (Doench et al. 2016)

FC+RES logo 4379 (Doench et al. 2016)

CRISPRScan ShuffleSplit 1020 (Moreno-Mateos et al. 2015)

Xu ribo threefold 731H,438L2 (Xu et al. 2015)

Xu non-ribo inter-geneset3 671H,237L (Xu et al. 2015)

Xu mouse inter-platform4 830H,234L (Xu et al. 2015)

Xu inde1 independent5 52H,25L (Xu et al. 2015)

Xu inde2 independent 110H,110L (Xu et al. 2015)

Chari spCas9 tenfold 133H,146L (Chari et al. 2015)

Chari stlCas9 tenfold 82H,69L (Chari et al. 2015)

1 regression, leave-one-gene-out cross-validation
2 classification, where H for efficient and L for inefficient
3 trained on Xu ribo and tested on Xu non-ribo
4 trained on Xu ribo + Xu non-ribo and tested on Xu mouse
5 trained on Xu ribo + Xu non-ribo + Xu mouse and tested on Xu inde1

In the test of whether our TSAM can address the problem of classifying
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sgRNAs into high-efficiency or low-efficiency ones, five datasets from (Xu

et al. 2015) were downloaded including three datasets for three-fold cross-

validation, inter-geneset validation and inter-platform validation, and two

independent test sets (directly from the authors) for evaluation and comparing

the performances of different methods. The details are listed at the 5th to

9th rows of Table 6.1.

To compare with Chari’s sgRNA Scorer (Chari et al. 2015), their datasets

were obtained from the supplementary files of the published paper (shown

at the last two rows of Table 6.1). Chari et al. tested their method

on two datasets: a 133 high-activity vs 146 low-activity sgRNA dataset

for the assessment of spCas9 system, and an 82 high vs 69 low sgRNA

dataset for the stlCas9 system (from Streptococcus thermophilus, where its

PAM is NNAGAAW). All the adopted datasets can be found from our

Supplementary file 16.

6.2.2 Features for building the regression and classification

models

Conventional sequence features

Here, an sgRNA sequence is always referred to as the protospacer sequence

corresponding to the spacer and its upstream to the PAM. To extract some

similar features as used by RS2 (Doench et al. 2016), we similarly extended

the sequences to 30nt in length, namely N4N20NGGN3 (N represents any

nucleotide, the first 4nt and the last 3nt are also extracted together with the

original 20nt spacer and the PAM NGG). An sgRNA sequence is denoted as

S = s1s2s...si...s30, where si ∈ {A,G,C, T}.
Nucleotide composition features: The number of each single nucleotide

(e.g., how many ‘A’) in S is counted, and each characterized as an order

1 nucleotide composition (nc1) feature. Similarly, the number of each

dinucleotide or trinucleotide (e.g., how many ‘AA’ or ‘AAA’ in S) is counted,

and each characterized as an order 2 or order 3 nucleotide composition feature
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(nc2, or nc3). The counts of the dinucleotides and the trinucleotides were

computed by a sliding window mechanism.

Position specific nucleotide binary features: An order 1 position

specific nucleotide binary feature (psnb1), at a given position, is initialized

as a vector (0, 0, 0, 0). The first element represents whether the nucleotide

at this position is ‘A’. If yes, change the 0 to be 1. The second element

represents the status of ‘G’, the third for ‘C’ and the forth for ‘T’. For

example, if at position 1, the nucleotide is ‘A’ then, this vector is (1, 0,

0, 0), or if the nucleotide is ‘C’, this vector is (0, 0, 1, 0). Similarly, an order

2 position specific nucleotide binary feature (psnb2) and order 3 position

specific nucleotide binary feature (psnb3) are established in the same way,

where every dinucleotide and trinucleotide are used as an element of the

16-dimensional vector and 64-dimensional vector at a given position.

GC features: Each of these features describes the counts of how many

‘G’ or ‘C’ in S (named GC counts features), or the percentage of ‘G’+‘C’ in

S (named the GC percent feature).

Thermodynamic features

The melting temperatures of sgRNA sequences at different regions were

computed with the Biopython Tm staluc function (Cock, Antao, Chang,

Chapman, Cox, Dalke, Friedberg, Hamelryck, Kauff, Wilczynski et al. 2009,

Le Novere 2001). We considered the following regions as features: the whole

20nt spacer (TMr1), the core region (12nt adjacent to PAM, TMr2), the

non-core region (the remaining 8nt of the 20nt spacer, TMr3), the whole

30nt extended sgRNA sequence (TMr4), the 5nt adjacent to PAM (TMr5),

the 8nt proximal to the previous 5nt (TMr6) and another 5nt next to the

middle 8nt (TMr7). The last four regions have been used by RS2 (Doench

et al. 2016).
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Cutting position related features

Cutting positions relative to protein sequences have been used to improve

the performance on the prediction of sgRNA cleaving efficiencies (Doench

et al. 2016). In this work, we considered the cutting position to the

genome sequence (cut geno), to the transcript sequence (cut trans) and to

the protein sequence (cut pro) as three features. Meanwhile, the percentage

of the cutting length was considered as a feature computed as the length

from the start of the sequence to the cut position divided by the whole

sequence length (denoted as cut per geno, cut per trans, and cut per pro

respectively). The gene’s genome sequence, transcript sequence, protein

sequence and the detail exon, intron, 5’UTR and 3’ UTR sequences were

downloaded from the ensembl database (Hubbard, Barker, Birney, Cameron,

Chen, Clark, Cox, Cuff, Curwen, Down et al. 2002) for the mapping of

these cutting positions. The gene’s start coordination was normalized to

be 1 for calculating feature values of cut geno, cut trans, cut per geno and

cut per trans. Features cut trans, cut pro, cut per pro and cut per trans

were set to be a value of 0 if the sgRNA cut in an intron region. Features

cut pro and cut per pro were also set to be a value of 0 if the sgRNA cut at

non-coding regions.

Profile hidden Markov model (pHMM) features of sgRNA sequences

It is the sgRNA sequence as a whole that can truly determine its cutting

efficiency. Here, the global features of an sgRNA sequence are extracted

through a profile hidden Markov model (Eddy 1998). We hypothesized

that those sgRNAs with similar cutting efficiencies should contain more

sequence similarities and vice versa. Thus, these sgRNAs can be grouped into

subfamilies where the efficiencies of the sgRNAs in each group are similar.

Then, if a new sequence belongs to a subfamily, its cutting efficiency may

also similar to its homologous sequences. The pHMM was adopted to solve

this homologous sequence searching problem, where the pHMM properties

were used to characterize the sgRNA sequences.
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A pHMM is usually used for modeling multiple sequence alignments

and it can provide a probabilistic model for comparing new sequences

to the multiple alignments (Durbin, Eddy, Krogh & Mitchison 1998).

Traditional pHMM can be described with an HMM composed of a state

set S = {Begin,Match, Insert,Delete, End} and an alphabet of symbols

� = {e1, e2, . . . } that are emitted by the non-silent states (usually are

Match and Insert states). After training on a sequence family (a protein

family or a set of homologous gene sequences), a transition probability

matrix and an emission probability matrix can be constructed to depict the

transitions between the states and the emission status of the non-silent states.

For a given sequence, a log-sum-of-odds score describing the probability

of the pHMM generating it can be computed by the Viterbi algorithm

(Forney 1973). Please be referred to (Eddy 1998, Durbin et al. 1998) for

more details about pHMM.

Most of the high throughput experiments fixed the spacer length as

20nt. Thus, the spacer sequences here were set to be well aligned with

the fixed length 20 (there is no Insert or Delete state but only Match

status), where the pHMM is a so-called BLOCK-style ungapped motif

(Eddy 1998). Two sets of symbols were permitted to be emitted at the

Match state, i.e., a single nucleotide set �1 = {A,G,C, T} and a dinucleotide

set �2 = {AA,AG,AC,AT, . . . , TA, TG, TC, TT}. To avoid the emission

probability of zero, we add pseudocounts to the observed counts. Therefore,

the emission probability ei is calculated as eM(ei) = count(ei)+pu
count(all)+pd

, where pu

and pd are the pseudocounts for the observed count of each emitted symbol

and all the emissions.

Suppose there is a set of sgRNAs Sg = {sg1, sg2, . . . , sgj, . . . , sgm} with

known efficiencies Ef = {ef1, ef2, . . . , efj, . . . , efm}, efj ∈ [0, 1]. For an

sgRNA �, its pHMM properties are extracted by the following two steps:

• Step1: Grouping Sg into k sub-families and training their

pHMMs. Separating Sg into k sub-families Sf = {sf1, sf2, . . . , sfx,
. . . , sfk}, where each of them has an efficiency range, e.g., ef(sfx) ∈
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[0.1, 0.2). For sfx ∈ Sf and a given emission symbol type t, a pHMM

can be trained with its sequences. These pHMMs are denoted as

H t = {ht
1, h

t
2, . . . , h

t
x, . . . , h

t
k}.

• Step2: Extracting �’s pHMM vector. For sgRNA �, the

probability hf t
x generated by ht

x is computed by the Viterbi algorithm,

and � is characterized by a vector Hf t
� =< hf t

1, hf
t
2, . . . , hf

t
x, . . . , hf

t
k >,

where t = �1,�2.

Here both of the two emission symbol sets �1 and �2 are used, which

can produce two vectors for sgRNA �, i.e., Hf�1
� (pHMMe1) and Hf�2

�

(pHMMe2).

6.2.3 Procedures for training our TSAM

Our TSAM cleaving efficiency regression model is built by four main steps.

Firstly, all the features are created. Then, an XGBoost regressor is

trained with some selected primary features to estimate the first-step scores.

The features’ importances are evaluated simultaneously. Later, the most

important features are combined with the pHMM features to optimize an

RBF SVM regressor. Then the second-step scores are calculated. At last,

the first-step scores and the second-step scores are averaged as the final scores

for the regression. Figure 6.1 shows the flowchart to construct TSAM.

To get the best training performance on the dataset FC, the XGBoost

and SVM regression methods were both optimized by the leave-one-gene-out

cross-validation for the best parameters. The best parameters were fixed

when these two regression methods were used to generate leave-one-gene-out

cross-validation performance on the RES dataset or on the FC+RES dataset.

To have a fair performance comparison with (Moreno-Mateos et al. 2015) on

the CRISPRScan dataset, our regression methods were also optimized by the

same Shuffle-Split cross-validation as (Moreno-Mateos et al. 2015) did.

We also note that there is a pre-evaluation process to select important

features from the initial feature set for optimizing the XGBoost regressor.
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Figure 6.1: The flowchart to construct TSAM for predicting sgRNA

cleavage efficiencies. This flowchart contains four main steps: at first 6

types of initial features are created; in the second step, primary features are

selected from the initial feature set to optimize an XGBoost regressor and

output the first-step scores (fss) and the importance scores of the features;

then, the important features are combined with the pHMM features to train

an RBF kernel SVM and compute the second-step score (sss); lastly, the

first-step score and the second-step score of a sgRNA is averaged as the final

predicted score ((fss + sss)/2).

This process is implemented by the backward elimination strategy (Mao

2004) with default parameters for XGBoost. During each fold of the cross-

validation, the selected features are assigned with feature importance to

weight their contributions for optimizing the regressor.

The features that work well for SVM (e.g., the pHMMe1 and pHMMe2

according to our results) are combined with the boosting selected top-K

important features to train an RBF kernel SVM regressor (libSVM v3.22

(Chang & Lin 2011)). As the features’ importance are evaluated during each

cross-validation fold, the final selected important features are the union of
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the top-K ones from all the folds. This SVM regressor predicts the second-

step scores for the sgRNAs. The details of determining the parameters for

regressors and features are described in the Supplementary file 15 (see

Appendix C).

6.3 Results

We first report the cleavage preferences of sgRNAs as revealed by XGBoost

and explain how these preferences are different from literature observations.

Then, we report excellent regression performance achieved by integrating

XGBoost and SVM. These results and analysis are mainly focused on the

dataset FC. After that, we present comparison results between our method

and the state-of-the-art methods to demonstrate the superior performance

on the sgRNA cleavage efficiency regression by our method. At last, two

case studies are presented to illustrate the effectiveness of our method for

practical use in gene therapies.

6.3.1 Nucleotide and cleavage preferences of highly

efficient sgRNAs as revealed by the boosting

algorithm

Some interesting nucleotide preferences of the highly efficient sgRNAs are

revealed by the XGBoost algorithm on the FC dataset (see Figure 6.2).

A highly efficient sgRNA is always a sequence of relatively lower melting

temperature at the middle of the spacer, in comparison with those of low

efficiencies (a mean value 8.84 for the highly efficient sgRNAs that are ranked

at the top 20% of the 1830 sgRNAs according to their actual efficiencies vs

13.11 for the low efficient sgRNAs ranked at the bottom 20%, p-value=1.04E-

09 under the two-sample Kolmogorov-Smirnov test (Lilliefors 1967)). Also,

the highly efficient sgRNAs prefer to cut at the 5’-end closer part of a gene

(a mean value of cut per geno is 41.56% for the highly efficient sgRNAs vs
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46.61% for the low efficient sgRNAs, p-value=1.51E-04). In addition, the

nucleotide composition of the highly efficient sgRNAs and the low efficient

sgRNAs exhibits a distinct divergence: the highly efficient sgRNAs have more

‘A’ (on average 6 for the highly efficient sgRNAs vs. 5 for the low efficient

ones, p-value=2.83E-09), but less ‘G’ (on average 10 for the highly efficient

vs. 11 for the low efficient, p-value=5.06E-03), ‘GG’ (on average 4 for the

highly efficient vs. 5 for the low efficient, p-value=3.23E-08) and ‘GGG’ (on

average 1 for the highly efficient vs. 2 for the low efficient, p-value=6.51E-07).

TM at region 6 TM at region 7 TM at region 5 Cut percent of genome

TM at region 4 Cut percent of protein Cut position of protein

TMr6 TMr7 TMr5 cut_per_geno

cut_per_pro cut_proTMr4 nc1A

nc1G nc2GG nc1C nc2GT

P=8.65E-10 P=2.90E-02 P=2.32E-02 P=1.24E-04

P=3.27E-03 P=1.16E-02 P=8.00E-02 P=3.67E-09

P=4.27E-03 P=2.33E-08 P=3.49E-01 P=1.38E-01

Figure 6.2: Top 12 important features and analysis on the nucleotide

and cleavage preferences. Y-axis shows the feature values. The feature

names are placed under the x-axis and their symbols are placed at the top

right panel of the subplots. These features are ranked by their importance.

Type “high” means that the sgRNAs are ranked at top-20% while the “low”

represents that the sgRNAs are ranked at bottom-20%. The p-value shown

in each sub-figure is computed via the two-sample Kolmogorov-Smirnov test.

(Doench et al. 2016) have reported that the three types of features that

contribute substantially to the efficiency prediction are: position-independent
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counts of single and dinucleotides, location of the sgRNA within the protein,

and melting temperatures at different regions (having Gini importance of

16%, 13% and 11% respectively). By our boosting algorithm, these three

types of features constitute the top 25 sub-features whose importance are

higher than 100. Different conclusions are drawn as follows. First, the

melting temperatures at different regions are the best features (with a mean

importance 542.64), then the cutting position related features are (with a

mean importance 424.41), followed by the nucleotide composition related

features (with an average importance 136.59). Meanwhile, the cutting

percent relative to genome DNA sequence (cut per geno, not applied by

RS2) is better than the cutting percent relative to protein (cut per pro) and

the cutting position at the protein (cut pro) (importance are 503.89, 399.44

and 369.89 respectively). The divergences of the values for cut per pro and

cut pro between the high and low efficient sgRNAs are not as significant

as that of the cut per geno (p-value=1.39E-02, 8.41E-02 and 1.51E-04

respectively).

The regression performance on the cleaving efficiencies by our XGBoost is

better than Doench et al.’s RS2. We obtained a mean Spearman correlation

0.562, but RS2 obtained only 0.522 on the FC dataset. This is why

conclusions on the nucleotide preferences of highly efficient sgRNAs are

different between these two methods. We note that our XGBoost regressor

did not use all the features but only important features such as TMr4-TMr7,

nc1, nc2, nc3, psnb1, psnb2, GC counts, GC percent, cut per geno, cut pro

and cut per pro (form 677 dimensions in total). More details about the

XGBoost regression parameter settings and the features can be found at our

Supplementary file 15.

6.3.2 Further performance improvement by integrating

pHMM properties

The pHMM properties (combining the pHMMe1 and pHMMe2) can be used

to build an SVM regressor to achieve fairly good performance, where a
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mean Spearman correlation 0.519 was obtained. Adding the top-ranked

important features evaluated by the former boosting can further improve

the SVM regressor’s mean Spearman correlation to 0.559 which is superior

to Doench’s methods (RS2’s mean Spearman correlation=0.522 and L1-

Regression’s mean Spearman correlation=0.513). If the pHMM properties

were removed from this strong SVM regressor, the performance dropped

about 0.01. This implies that the pHMM properties are indispensable to

construct our excellent SVM regressor.

The proposed TSAM obtained a mean Spearman correlation 0.583

which is much better than Doench’s methods. It also improves the mean

Spearman correlation of our XGBoost regressor by 0.021, benefited from its

integration with the SVM regressor trained on the pHMM properties and

other significant features. The SVM regressor alone also achieved better

performance than Doench’s methods but worked not as well as TSAM.

This proves that the XGBoost regressor and the SVM regressor can predict

the sgRNA’s cutting efficiencies cooperatively. The parameter optimization

process is described in Supplementary file 15.

6.3.3 Results on 11 benchmark datasets comparing

with the state-of-the-art methods

Four benchmark datasets were used to evaluate the performance of our

proposed TSAM. The performance was compared with the following state-of-

the-art methods: Doench et al’s RS2, L1-Regression methods (implemented

by this work) (Doench et al. 2016), and the CRISPRscan method (Moreno-

Mateos et al. 2015). Our TSAM improves the mean Spearman correlation by

more than 0.05 comparing with RS2 and L1-Regression on the FC, RES and

the FC+RES datasets (under the leave-one-gene-out evaluation framework),

and improves the mean Pearson correlation by about 0.04 comparing with

CRISPRscan (under the same Shuffle-Split evaluation framework) on the

sgRNAs dataset for cutting zebrafish genome sequences. The detailed results

are presented at the first four rows of Table 6.2.
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Table 6.2: Regression performance of different methods on four

benchmark datasets.

Methods
regression performance on

FC RES FC+RES CRISPRscan

RS2 0.522 0.455 0.510 -

L1-Regression 0.513 0.468 0.505 -

CRISPRscan - - - 0.45

TSAM 0.583 0.530 0.567 0.488

TSAM-MT1 0.565 0.441 0.531 0.475

TSAM-MT2 0.575 0.493 0.555 0.477

In the further evaluation of TSAM, we have conducted the cross-dataset

test. We trained TSAM on the FC dataset, and then the sgRNAs belonging

to the 8 genes in the RES dataset were adopted as 8 independent test

sets. The mean Spearman correlation by our regression is 0.431, which is

much better than the performance by Doench’s methods (0.397 by RS2 and

0.383 by the L1 regression). On the 8 genes, we obtained higher Spearman

correlations on 6 of them than Doench’s RS2 and L1 regression methods.

When TSAM was trained with the 2549 sgRNAs from the RES dataset and

tested on the 9 genes from the FC dataset, the mean Spearman correlation

was 0.551 for TSAM, while Doench’s RS2 and L1 regression obtained only

0.508 and 0.493 respectively. As expected, we obtained better Spearman

correlations than Doench’s methods on 7 of the 9 genes.

We have conducted a stricter performance evaluation for TSAM to

satisfy practical use conditions especially assuming the cutting position

features are not accessible. For this performance test, we modified TSAM

as two Mutation Types (MT): TSAM-MT1 and TSAM-MT2. TSAM-

MT1 was trained without cutting position features (674-d, deleting the

cut per geno, cut pro and cut per pro), and TSAM-MT2 was trained without

the cutting position related to the protein features (675-d, without cut pro

and cut per pro). The performances of these two variant methods are shown
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in the last two rows of Table 6.2. It is understood that the cutting position

features can significantly affect the performance of our TSAM on the RES

dataset. Except for one case testing on the RES dataset, our methods

obtained much better performance than the state-of-the-art methods.

Our TSAM regression method can be easily converted for a binary

classification approach to the distinction between highly efficient sgRNAs

and low efficient ones. The steps are as follows. First, XGBoost was

optimized to output feature importance scores (classification with the binary

logistic function). Then, the important features were combined with the

pHMM properties to train an SVM classifier with an RBF kernel (the pHMM

group is set as 2, such as positive sample group and the negative sample

group, probabilities as output). Then the classifier was tested on 7 datasets

including 5 datasets for cross-validation and 2 independent test sets. The

other classifiers (Doench et al. 2014, Xu et al. 2015, Chari et al. 2015) were

also optimized with the corresponding validation types in Table 6.1. The

cross-validations were repeated 10 times and the performances were averaged

as the final performance. Then the classification performances were weighted

by Matthews correlation coefficient (MCC) (Matthews 1975), F1, AUC and

Accuracy which are all shown in Table 6.3.

The variant method TSAM-MT1, instead of TSAM itself, was applied

to test the performance on the Chari stlCas9 dataset. The reason is that

the PAM of the sgRNAs was defined as ‘NNAGAAW’ but not the ‘NGG’

motif. Thus the cutting position features could not be defined. We can see

that TSAM-MT1 can outperform the state-of-the-art methods as well for

the binary classification of sgRNAs. More comparison results are provided

at Supplementary file 15.

6.3.4 Performance of TSAM on more datasets related

to the U6 and T7 expression system

We used the datasets from (Haeussler et al. 2016) to confirm that the

proposed TSAM can work better than RS2 when the guide RNAs are
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Table 6.3: Performance comparison between our method and the

state-of-the-art methods for the binary classification of sgRNAs.

Method dataset MCC F1 AUC Accuracy

TSAM Xu ribo 0.640 0.871 0.896 0.834

Xu et al.’s Xu ribo - - 0.843 -

TSAM Xu non-ribo 0.505 0.884 0.813 0.822

Xu et al.’s Xu non-ribo - - 0.778 -

TSAM Xu mouse 0.508 0.891 0.840 0.830

Xu et al.’s Xu mouse - - 0.757 -

TSAM Xu inde1 0.311 0.800 0.798 0.714

Xu et al.’s Xu inde1 - - 0.729 -

Doench et al. Xu inde1 - - 0.648 -

TSAM Xu inde2 0.433 0.748 0.779 0.700

Xu et al.’s Xu inde2 - - 0.711 -

Doench et al.’s Xu inde2 - - 0.583 -

TSAM Chari spCas9 0.551 0.758 0.859 0.772

Chari et al.’s Chari spCas9 - - - 0.732

TSAM-MT1 Chari stlCas9 0.718 0.865 0.930 0.855

Chari et al.’s Chari stlCas9 - - - 0.815

expressed from U6 and better than CRISPRscan when the expression system

is T7.

Comparison on datasets from the U6 expression system

We compared the prediction performance of TSAM U6 and RS2 on 7 big

datasets containing sgRNAs for cutting human or mouse genomes. Both

TSAM U6 and RS2 are trained on the FC+RES dataset, where the sgRNAs

are expressed from U6 promoters in cells. The Spearman correlation are

shown in Table 6.4.

We can see that for all the seven datasets each containing more than 1000

sgRNAs, our TSAM U6 achieved about 3% more the Spearman correlation

than RS2.
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Table 6.4: Spearman correlation of TSAM, RS2 and CRISPRscan

tested on datasets from U6 or T7 expression systems.
U6 expression system

dataset size genome literature TSAM U6 RS2

Wang/Xu HL60 2076 Human Wang et al. (2014) 0.5171 0.485

Chari 293T 1234 Human Chari et al. (2015) 0.382 0.381

Hart Rpe 4214 Human Hart et al. (2015) 0.309 0.281

Hart Hct116-2 Lib 1 4239 Human Hart et al. (2015) 0.416 0.384

HartHelalib1 4256 Human Hart et al. (2015) 0.388 0.353

HartHelalib2 3845 Human Hart et al. (2015) 0.394 0.359

XuKBM 2076 Human Xu et al. (2015) 0.540 0.512

T7 expression system

dataset size genome literature TSAM T7 CRISPRscan

Eschstruth Zebrafish 17 Zebrafish Haeussler et al. (2016) 0.224 -0.0043

Varshney Zebrafish 102 Zebrafish Varshney et al. (2015) 0.363 0.262

Gagnon Zebrafish 111 Zebrafish Gagnon et al. (2014) 0.410 0.357

Shkumatava Zebrafish 162 Zebrafish Haeussler et al. (2016) 0.292 0.258

Teboul Mouse In Vivo 30 Mouse Haeussler et al. (2016) 0.565 0.426

1 For each dataset, the highest Spearman correlation is in bold

Comparison on datasets from T7 expression system

Another 5 datasets whose sgRNAs are expressed from T7 promoters were

used to compare the performances between TSAM T7 and CRISPRscan.

Both of these two predictors were trained with the CRISPRScan dataset

and the sgRNAs in this dataset are expressed from a T7 promoter in vitro.

The Spearman correlations are listed in Table 6.4. Again, the proposed

TSAM T7 achieved 10% more the Spearman correlation on 3 out of 5

datasets and about 5% more on the remaining two datasets than the best

existing predictor CRISPRscan for this type of expression system. See our

Supplementary file 15 and Supplementary file 17 for detailed results

and the applied datasets.
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6.3.5 Case study: designing sgRNAs for gene therapy

CRISPR/Cas9 system is a very promising genome engineering tool for

curing genetic diseases (Men, Duan, He, Yang, Yao & Wei 2017). In

the understanding of whether TSAM can recommend reasonable sgRNAs

for practical use, we conducted case studies for recommending sgRNAs to

treat retinitis pigmentosa and X-linked chronic granulomatous disease. Gene

editing investigations on these two diseases have been successfully undertaken

by domain experts recently (Yu et al. 2017, De Ravin et al. 2017).

Yu et al. (Yu et al. 2017) attempted to knockdown gene Nrl to

prevent retinal degeneration in a mouse model and suggested adopting

CRISPR/Cas9-mediated NRL disruption in rods as a promising treatment

option for patients with retinitis pigmentosa. For our prediction, the genome

sequences of mouse Nrl gene were downloaded from Ensembl database

under the transcript id ENSMUST00000062232.13. Total 138 potential

spacer sequences were found with the PAM ‘NGG’. Among these 138

candidate sgRNAs, the cleavage efficiencies of those sgRNAs cutting at

the coding region were predicted by our TSAM method. If considering

just the cutting efficiency, the 3 top-ranked sgRNAs’ spacer sequences

are 5’-ATGCCTGGCTCACTGAAGGT-3’ (s1, cut efficiency=0.850), 5’-

GTATGGTGTGGAGCCCAACG-3’ (s2, cut efficiency=0.801) and 5’-CACA-

GACATCGAGACCAGCG-3’ (s3, cut efficiency=0.762). Yu’s work proposed

to use 5 candidate sgRNAs (denoted NT1 to NT5). They finally selected NT2

as an optimal sgRNA because it contains relatively higher ability to generate

indels and lower predicted off-target potential. Our s2 exactly matches

with their NT2 (in comparison, RS2 ranks this optimal sgRNA at the sub-

optimal 3rd position, while CRISPRscan ranks it at the 28th position among

all the potential sgRNAs for cutting Nrl). This suggests that our TSAM

cleavage efficiency regression method is quite accurate for recommending

good sgRNAs for disease gene editing. Our method is indeed useful to suggest

only several top-ranked sgRNAs (e.g., top 3) for narrowing down the search

scope in the subsequent filtering such as the off-target prediction and in vivo

129



Chapter 6. CRISPR/Cas9 Cleavage Efficiency Regression Through
Boosting Algorithms and Markov Sequence Profiling

experimental test. Such a recommendation approach can save time and costs,

meanwhile achieving satisfactory accuracy.

De Ravin et al. (De Ravin et al. 2017) investigated a gene repair problem

with CRISPR/Cas9 to cure patients with X-linked chronic granulomatous

disease that arises from mutations in CYBB (C676T substitution in exon

7 of CYBB gene). Different from the above case study, to correct the

point mutation, the cutting site should be close to the mutation site. Four

potential sgRNAs (gRNA1, gRNA2, gRNA3 and gRNA8) whose cutting

sites are near the mutation site were tested. They found that gRNA2 (5’-

CACCCAGATGAATTGTACGT-3’) had the maximal cutting efficiency. By

our TSAM (exactly, TSAM-MT1 is used, because these sgRNAs cut at non-

coding regions), the predicted scores of the four sgRNAs are: 0.310 for

gRNA1, 0.693 for gRNA2, 0.534 for gRNA3 and 0.243 for gRNA8. For

comparison, the predicted scores by RS2 are quite different as 0.364, 0.704,

0.555 and 0.351 respectively. On the other hand, CRISPRscan could detect

just gRNA3 (score=28) and gRNA8(score=35), but not gRNA1 or gRNA2

(gRNA1 and gRNA2 start with ‘TT’ and ‘CA’ respectively, thus they cannot

be expressed from the T7 promoter and predicted by CRISPRscan (Moreno-

Mateos et al. 2015)). Thus, TSAM can accurately recommend the optimal

sgRNA for the mutation correction case as well.

6.4 Conclusion

In this chapter, we propose a two-step averaging method (named TSAM) to

conduct regressions on the cleavage efficiencies of sgRNAs. This work solves

the research question Q2. The contributions of this part work has been

simply concluded in Chapter 1 Section 1.3 C4. The following contents give

some complementary descriptions of this chapter’s contribution.

In our TSAM, the first-step cleavage efficiency scores are predicted by an

optimized XGBoost regressor. This step also ranks the features’ importance

for feature selection. At the second step, an SVM regression model is
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constructed using the pHMM features combined with the top-ranked features

selected by the first step. The first score and the second score are averaged

as the cleavage efficiency of each sgRNA in the prediction. Our regression

method can be easily converted into a binary classification method for

the distinction between high-efficiency sgRNAs and low-efficiency sgRNAs.

TSAM was evaluated on 11 benchmark datasets containing thousands of

sgRNAs editing human, mouse and zebrafish genome sequences and on

additional 12 datasets of different expression system. The performance of

TSAM was compared with the state-of-the-art methods to prove its superior

performance. Two case studies have also demonstrated the effectiveness of

TSAM.

Our future work will focus on the integration of off-target prediction

methods with the current on-target efficiency prediction algorithm to build

a more comprehensive tool for sgRNA design where higher efficiency and

specificity can be achieved simultaneously. In addition, more definitions

of ‘PAM’ will be considered for TSAM. The cross-species cross-expression

system performance evaluation will be investigated in the near future when

the supporting datasets are publicly available.
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Chapter 7

Recognition of CRISPR/Cas9

Off-target Sites Through

Ensemble Learning of Uneven

Mismatch Distributions

7.1 Introduction

With the increasing number of investigations focusing on mechanism discovery

and engineering transformation of CRISPR/Cas9, practical uses of this

system for clinical applications (Yin, Zhang, Qu, Zhang, Putatunda, Xiao,

Li, Xiao, Zhao, Dai et al. 2017, Roper, Tammela, Akkad, Almeqdadi,

Santos, Jacks & Yilmaz 2018) or other gene editing applications (Hsu

et al. 2014, Swiech et al. 2015, Kramer, Haney, Morgens, Jovičić, Couthouis,

Li, Ousey, Ma, Bieri, Tsui et al. 2018, Najm, Strand, Donovan, Hegde,

Sanson, Vaimberg, Sullender, Hartenian, Kalani, Fusi et al. 2018) are also

widely explored. It has been introduced in Chapter 1 that CRISPR/Cas9

with a specific sgRNA can edit at the right region of its target gene (i.e.,

on-target editing site), meanwhile it may bind and edit at other unintended

regions as well (i.e., off-target editing site see Fig. 7.1 as an example). As
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off-target editing can cause serious toxic effects, it is of great importance to

design an optimal sgRNA such that it can achieve a high on-target editing

efficiency but has little or no off-target editing possibilities.

G|G|C|A|C|T|G|C|G|G|C|T|G|G|A|G|G|T|G|G|G|G|G

G|G|C|A|C|T|G|C|G|G|C|T|G|G|A|G|G|T|G|G|G|G|G

G|G|C|A|C|T|G|C|G|G|C|T|G|G|A|G|G|T|G|G|G|G|G

mismatch

match

Off-target site

G|G|C|A|C|T|G|C|G|G|C|T|G|G|A|G|G|T|G|G|G|G|G

G|G|C|A|C|T|G|C|G|G|C|T|G|G|A|G|G|T|G|G|G|G|G

G|G|C|A|C|T|G|C|G|G|C|T|G|G|A|G|G|T|G|G|G|G|G

On-target site

CRISPR/Cas9 system

Off-target sites

chromatin fiber

Genome DNA

CRISPR/Cas9 system

cell

nucleus
Single guide

RNA(sgRNA)

Spacer

Cut 
position

PAM

protospacer

Figure 7.1: An example of on-target site and off-target sites. The on-

target site is the expected binding site for an sgRNA. The off-target

sites are unintended binding sites and the off-target editing effect should be

avoided in practical use. The spacer in the sgRNA is the RNA version of

the protospacer sequence that is located in the genome DNA. Sometimes the

spacer and protospacer are interchangeably used. The protospacer sequence

determines where for the sgRNA to bind, and the existence of a protospacer

adjacent motif (PAM) determines whether it cuts at the target site.

Small mismatches can be tolerated in the binding of a sgRNA with its

editing site (Fu et al. 2016, Lee et al. 2016). This implies that the on-

target editing site of a sgRNA and its off-target sites are homology sequences

sometimes with small nucleotide differences. Therefore, off-target editing

can possibly happen at any region in a genome-wide scale as long as the

region contains a 3nt protospacer adjacent motif (PAM, usually ‘NGG’)

and a 20nt protospacer sequence of minor mismatches. Such sequence
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regions are all candidate sites of the off-target editing. As some of the

candidates, maybe all of them, are not edited by the CRISPR/Cas9 system

(i.e., no-editing effect), accurate recognition of the real off-target editing

sites is a computationally challenging question and critically important for

assessing the target specificity of the sgRNA as an optimal sgRNA. This

research aims to make accurate predictions of off-target sites for a given

sgRNA, assuming it has a high on-target editing efficiency. Discussions

about on-target cutting efficiency prediction can be referred to those provided

by CRISPR Design (Hsu et al. 2013), sgRNA Designer (Doench et al. 2016)

and the method described in Chapter 6.

In Chapter 2, we have reviewed those previous efforts to address

the off-target site detection problem by bioengineering or bioinformatics

methods (Peng, Lin & Li 2016, Kleinstiver et al. 2016). The high-

throughput sequencing methods (wet-lab technologies) include GUIDE-

seq (Tsai et al. 2015), Digenome-seq (Kim et al. 2015), HTGTS (Frock

et al. 2015), multiplex Digenome-seq (Kim et al. 2016), and CIRCLE-

seq (Tsai et al. 2017). These approaches adopted next generation sequencing

technologies to detect off-target sites at a large scale without bias, providing

bona fide results. However, the experiments are always costly and time-

consuming. State-of-the-art computational methods (mainly the mismatch

information scoring methods) include CCTOP (Stemmer et al. 2015), MIT-

score (Hsu et al. 2013), CROP-IT (Singh et al. 2015) and CFD (Doench

et al. 2016), providing complementary results to the wet-lab data. These

computational methods all predict cutting probabilities at the off-target sites

through scoring rules. The rules are derived by analysis on the cutting

efficiency changes after variations of a mismatch’s position and/or mismatch

type. Regions with higher scores are considered as highly-possible off-target

sites. One limit of these methods is that they do not have a consistent

threshold to determine whether a candidate site is a real off-target site or

not. Furthermore, these rules are unable to rule out off-target sites of low

cutting efficiencies but which should be also avoided in the practical use of
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CRISPR/Cas9.

We propose to use sequence pairs to train a binary classification model

for determining whether a given region is an off-target editing site or a no-

editing site, instead of predicting the cutting efficiencies. Sequence pairs are

our newly introduced concept to effectively capture integrative characteristics

of the off-target editing sites of a sgRNA when combining with its on-

target editing site. Let onTSeq denote the sequence of the on-target site,

offTSeq denote an off-target editing site, and noEdSeq denote a no-editing

site of a sgRNA. Then 〈onTSeq, offTSeq〉 represents the sequence pair of

the on-target site and the off-target site, and similarly 〈onTSeq, noEdSeq〉
represents the sequence pair of the on-target site and the no-editing site.

There exist significant differences between these on-target-off-target

sequence pairs and the on-target-no-editing sequence pairs. For instance, the

GC count composition change of off-target sequences is much bigger than

that of no-editing site sequences when both comparing with the on-target

site sequence. The mismatch distributions of these two classes of sequence

pairs are also different—the 5’-end close regions contain more mismatches

in the off-target sites than in the no-editing sites. Similar observations have

been discussed in literature (Hsu et al. 2013, Wang et al. 2014). Furthermore,

the no-editing sites’ mismatches are about evenly distributed among the 20nt

binding sites but the off-target sites’ are not. In addition, at the first position

from the 5’-end, ‘G-A’ mismatches are preferred in the off-target bindings

while non-off-target binding likes ‘G-T’ more. These significant divergences

between these two classes of sequence pairs provide us effective features for

constructing a reliable machine learning model to make predictions of off-

target sites.

The sequence pair 〈onTSeq, offTSeq〉 is called a positive sample of

off-target binding, while 〈onTSeq, noEdSeq〉 is a negative sample of off-

target binding. We collected positive and negative samples by going

through many sgRNAs, their off-target sites and their no-editing sites for

the training of our classification model. When a candidate site canSeq
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of off-target editing is given, the classification method makes a prediction

of whether 〈onTseq, canSeq〉 is a positive sample or a negative sample. If

〈onTseq, canSeq〉 is predicted as a positive sample, then canSeq is an off-

target editing site, otherwise, it is a no-editing site of the sgRNA. An optimal

sgRNA is a sgRNA having few off-target editing sites after its all possible

editing sites are screened.

In the performance test of our prediction method, we used two positive

data sets. One contains off-target editing sites determined by low-throughput

techniques and the other contains those determined by high-throughput

techniques. The negative data set contains the genome-wide no-editing

sites (allowing up to 6 mismatches). For each sequence pair from these two

classes, we compute a feature vector covering the GC count characteristics

and the mismatch distribution differences. Then, an ensemble support

vector machine (SVM) classification model is constructed to recognize off-

target sites of a test sgRNA. In a cross-dataset validation, we obtained an

AUROC 0.9948 and an AUPRC 0.3323, outperforming MIT-score’s 0.9807

and 0.2922, CCTOP’s 0.9058 and 0.1341, CROP-IT’s 0.8945 and 0.1255 and

CFD’s 0.8561 and 0.0453. In a further leave-one-guide-out cross-validation

(logocv), our model achieved an average AUROC 0.9926 and an average

AUPRC 0.4571 for 29 sgRNAs, much better than CROP-IT’s 0.9160 and

0.1086, CCTOP’s 0.9021 and 0.1407, CFD’s 0.8835 and 0.0844 and better

than MIT-score’s 0.9783 and 0.2960.

Our two case studies related to the design of sgRNAs for curing retinal

degeneration (Yu et al. 2017) and hearing loss (Gao, Tao, Lamas, Huang, Yeh,

Pan, Hu, Hu, Thompson, Shu et al. 2018) demonstrated that our method can

successfully recommend the optimal sgRNAs. Especially, in the case of curing

hearing loss, our method can detect more off-target sites than the above

state-of-the-art prediction methods, matching almost exactly with the off-

target sites detected by a sequencing technique GUIDE-seq (Tsai et al. 2015).

Our off-line tool can be downloaded from the site: https://github.com/penn-

hui/OfftargetPredict.
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7.2 Materials and Methods

7.2.1 Datasets for training and testing the prediction

model

We collected two positive sample sets to train and test our prediction model.

The first one contains on-target-off-target sequence pairs 〈onTSeq, offTSeq〉
in which the off-target sites have been experimentally validated through low-

throughput techniques such as the targeted PCR and flanking PCR (Hsu

et al. 2013, Cho, Kim, Kim, Kweon, Kim, Bae & Kim 2014, Kim

et al. 2015, Wang, Wang, Wu, Wang, Wang, Qiu, Chang, Huang, Lin &

Yee 2015, Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu,

Makarova et al. 2015, Kim et al. 2016). We downloaded these data from the

supplementary file of (Haeussler et al. 2016). There are total 215 unique and

reliable 〈onTSeq, offTSeq〉 sequence pairs related to 29 sgRNAs’ on-target

editing sites and their off-target editing sites. We name this positive sample

set a low-throughput positive set denoted by Dlow
+ .

The second positive sample set consists of 〈onTSeq, offTSeq〉 sequence

pairs, where the off-target sites were detected by high-throughput sequencing

techniques. These techniques include GUIDE-seq (Tsai et al. 2015),

Digenome-seq (Kim et al. 2015), HTGTS (Frock et al. 2015), multiplex

Digenome-seq (Kim et al. 2016), and CIRCLE-seq (Tsai et al. 2017). Those

off-target sites detected by at least two of these five techniques are called

reliable off-target sites. This sample set is named a high-throughput positive

sample set denoted by Dhigh
+ . This data set is associated with 11 sgRNAs,

a subset of the above 29 sgRNAs in Dlow
+ . The identical sequence pairs in

Dlow
+ are excluded from Dhigh

+ . We note that among the samples obtained by

Digenome-seq, those ones having been validated by targeted deep sequencing

are regarded as reliable positive samples. Only the remaining samples

were combined with the other four techniques’ detected samples to select

additional reliable positive samples. As a result, there are 527 unique and

reliable sequence pairs in Dhigh
+ . The union of Dlow

+ and Dhigh
+ is denoted by
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Dall
+ . More details of these two data sets are summarized in Table 7.1.

In the construction of the negative sample set, we adopted an off-line

tool Cas-OFFinder (Bae, Park & Kim 2014) to find genome-wide candidate

editing sites canSeq which can have no more than 6 mismatches and

contain the PAM of ‘NGG’ (where the mismatches in the last 2nt ‘GG’

are also counted) for each of the 29 sgRNAs. The latest human reference

genome version hg38 was downloaded from ensembl (Aken, Ayling, Barrell,

Clarke, Curwen, Fairley, Fernandez Banet, Billis, Garca Girn, Hourlier,

Howe, Khri, Kokocinski, Martin, Murphy, Nag, Ruffier, Schuster, Tang,

Vogel, White, Zadissa, Flicek & Searle 2016). Those candidate editing sites

having been collected in positive sets were excluded in the construction

of the negative sample set. There are 408260 unique negative samples.

This data set is denoted by DCas
− . These three datasets are stored in our

Supplementary file 18.

Table 7.1: The datasets for constructing the positive sample sets.

sgRNA number technique sample number literature

4 targeted PCR 46 Hsu et al. (2013)

10 targeted PCR 106 Cho et al. (2014)

2 PCR 24 Kim et al. (2015)

2 targeted PCR 13 Wang et al. (2015)

2 flanking PCR 19 Ran et al. (2015)

10 PCR 21 Kim et al. (2016)

10 GUIDE-seq 403 Tsai et al. (2015)

10 Digenome-seq 248 Kim et al. (2015)

4 HTGTS 84 Frock et al. (2015)

11 multiplex Digenome-seq 954 Kim et al. (2016)

11 CIRCLE-seq 7104 Tsai et al. (2017)
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7.2.2 Integrative characteristics of sequence pairs

We introduce GC count and mismatch distribution to describe the integrative

characteristics of sequence pairs, and conduct mismatch distribution analysis

such as position-specific mismatch frequency comparison and position-

specific mismatch preference analysis between the positive and negative

sequence pairs.

GC count of a sequence S is defined as the number of guanine (G) and

cytosine (C) in S. It is denoted as GC count(S) = numG(S) + numC(S),

where numG(S) represents the number of ‘G’ in S and numC(S) is the

number of ‘C’ in S. The GC count difference between sequence S1 and

sequence S2 is the GC count of S2 subtracting the GC count of S1. It is

denoted as ΔGC(S1, S2) = GC count(S2)−GC count(S1).

A mismatch is traditionally referred to as the base pairing at a position

of a sgRNA and its DNA target site disagreeing with the rules that ‘U’ pairs

with ‘A’ (U-A), ‘A’ pairs with ‘T’(A-T) and ‘G’ pairs with ‘C’ (G-C). In

this work, if the two nucleotides at the same position of an onTSeq and its

corresponding offTSeq are different, these two nucleotides form a mismatch.

Total 12 types of mismatches can happen, namely, Mis = {‘A-T’, ‘A-C’, ‘A-

G’, ‘T-C’, ‘T-G’, ‘T-A’, ‘G-A’, ‘G-T’, ‘G-C’, ‘C-A’, ‘C-T’, ‘C-G’}. On the

other hand, ‘A-A’, ‘G-G’, ‘C-C’ and ‘T-T’ are called matches between onTSeq

and its homology offTSeq. See Fig. 7.2 for an example of sequence pair

〈onTSeq, offTSeq〉 and their mismatches.

Let t = 1, 2 . . . , or 23 be a position number in onTSeq, then the

mismatching frequency of position t in Dall
+ , denoted by mfreq(t,Dall

+ ), is

computed by

mfreq(t,Dall
+ ) = misnum(t,Dall

+ )/misnum(Dall
+ ) (7.1)

where misnum(t,Dall
+ ) counts the number of mismatches at position t

in Dall
+ and misnum(Dall

+ ) counts the number of all the mismatches in

Dall
+ . Similarly, we compute mfreq(t,DCas

− ). Then we compare these two

mismatching frequencies at every position between the two classes of sequence
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A  A  A  T    G   A  G  A  A    G   A   A   G   A  G  G  C   A  C   AonTSeq

offTSeq

mismatches

position 1   2   3   4    5    6   7   8   9  10  11  12  13 14 15 16 17  18 19 20

A  A  A  A    G   A  G  A  A    G   C   T   G   A  G   G  C   A  C  A

5’- -3’

An example of a <onTSeq, offTSeq> sequence pair

GGG

GGG

PAMProtospacer
NGG

Figure 7.2: An example of a sequence pair 〈onTSeq, offTSeq〉. The

mismatches are those pairs of nucleotides at the given position but with

different nucleotide type such as at the positions of 4, 11 and 12

pairs.

Let mis ∈ Mis be a given type of mismatch at position t, then the

frequency of mis at t in Dall
+ , denoted by mfreq(mis, t,Dall

+ ), is defined as:

mfreq(mis, t,Dall
+ ) = misnum(mis, t,Dall

+ )/misnum(t,Dall
+ ) (7.2)

where misnum(mis, t,Dall
+ ) counts the number of a given mis at position t

in Dall
+ , and misnum(t,Dall

+ ) counts all 12 types of mismatches at t in Dall
+ .

Such position-specific mismatch preference in the negative sequence pair data

set, mfreq(mis, t,DCas
− ), can be similarly defined.

The position-specific mismatching frequency comparison between two

classes of sequence pairs is through mfreq(t,D), while the position-specific

mismatch preference analysis is based on mfreq(mis, t,D). Here, the Two-

sample Kolmogorov-Smirnov test (Two-sample K-S test) (Lilliefors 1967) is

used with a threshold of p-value<=0.05 to evaluate whether the differences

are significant. To get rid of the sample size’s effect on the mismatch
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distribution comparison, we also randomly select 100 subgroups of negative

sequence pairs to compare with the positive sequence pairs. Each of the

negative subgroups has the same size as the positive group.

7.2.3 Convert a sequence pair 〈onTseq, offTSeq〉 into a

feature vector

These GC counts characteristics and mismatch preferences are exploited

as new features, and we convert every sequence pair into a vector under

the new feature space. The new feature space consists of two subsets of

features. The first subset covers the nucleotide composition change features;

the second subset covers the position-specific binary mismatch features. Let

an on-target sequence denoted as onTSeq = s1s2, . . . , si, . . . , s23, and an off-

target sequence denoted as offTSeq = s1s2, . . . , sj, . . . , s23, where si, sj ∈
{A,G,C, T}, the first 20nt sequences represent the protospacer sequences,

and the last 3nt sequences are the PAM sequences. Then 〈onTseq, offTSeq〉
is converted into a new feature vector by the following definitions and steps.

Nucleotide composition change features

The nucleotide composition change features (NCC) are: ΔGC (simply

denoted as f1), GC percent change, GC skew change, AT skew change and

the change of the ratio between GC skew and AT skew.

• GC percent change (f2). The GC percent of a sequence S, denoted

GC per(S), is defined as GC count(S)/length(S), where length(S)

stands for the number of nucleotides in S. The GC percent change from

sequence S1 to sequence S2 is defined as GC per(S2)−GC per(S1).

• GC skew change (f3): GC skew change is a measure of the

distribution of guanine (G) and cytosine (C) across the two DNA

strands S1 and S2 (Ginno, Lim, Lott, Korf & Chédin 2013). As

reported (Jiang, Taylor, Chen, Kornfeld, Zhou, Thompson, Nogales &
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Doudna 2016), GC skew is one of the key factors predisposing to R-loop

formation and R-loop formation is a necessary step for CRISPR/Cas9

system to cut its target site. The GC skew feature is adopted to

characterize the sequences. GC skew of sequence S is computed as

GC sk(S) = (numG(S) − numC(S))/GC count(S), and GC skew

change from sequence S1 to sequence S2 is GC sk(S2)−GC sk(S1).

• AT skew change (f4): Similarly, we also compute the AT skew as a

feature for a given sequence S. That is, AT sk(S) = (numA(S) −
numT (S))/(numA(S) + numT (S)). Then AT skew change from

sequence S1 to sequence S2 is AT sk(S2)− AT sk(S1).

• Change of ratio of GC sk and AT sk (f5): The ratio of GC sk and

AT sk for a sequence S is defined as R sk(S) = GC sk(S)/AT sk(S),

and the ratio change from sequence S1 to sequence S2 is R sk(S2) −
R sk(S1).

The first subset of new features converted from a sequence pair 〈S1, S2〉
in Dall

+ or in DCas
− is <f1, f2, f3, f4, f5>. For any 〈onTSeq, canSeq〉, it is

similarly converted.

Position-specific binary mismatch features

For a pair of sequences S1 and S2, between the t-th position of S1 and S2,

there are four types of nucleotide matches (i.e., ‘A-A’, ‘G-G’, ‘C-C’, and

‘T-T’) and there are 12 types of nucleotide mismatches (i.e., mis ∈ Mis).

The matching or mismatching status of each position between S1 and S2

can be converted into a 12-dimension binary vector. If the position is

matched between S1 and S2, then this position is converted into an all-

zero 12-dimension vector <0, 0, . . . , 0>. If the position is mismatched as

the i-th mismatch type, then this position is converted into a binary vector

< 0, . . . , pi, 0, . . . , 0>, where only pi is 1. Merging all these 12-dimension

vectors, the sequence pair 〈S1, S2〉 can be converted into a (12∗23)-dimension

vector. We convert every sequence pair in Dall
+ and DCas

− by this way. These
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position-specific binary features can characterize the mismatch distributions

of the sequence pairs.

7.2.4 Build the prediction model for detection of off-

target sites

Merging the 5-dimension nucleotide composition change-related feature

vector and the 276-dimension mismatch-related feature vector, every sequence

pair in this study is converted into a 281-dimension feature vector. The

positive and negative 281-dimension vectors are used to train a machine

learning method for the prediction of whether a candidate site is an off-target

editing site or a no-editing site of an sgRNA.

We propose to use an ensemble SVM classifier to predict off-target sites.

The motivation is that the collected datasets are extremely imbalanced, and

ensemble learning is a good strategy to improve the prediction accuracy and

stability. It was also reported that random under-sampling is one of the

effective strategies for addressing imbalanced learning problem (He & Garcia

2009). Thus, we randomly select the same number of negative samples as

that of the positive samples to train base classifiers for n times. An ensemble

SVM classifier is built by averaging the n base classifiers’ output probabilities.

The construction of our prediction model has two procedures: the

optimization step and the evaluation step. In the optimization step, we

optimize three super-parameters: penalty parameter C and the parameter

gamma of RBF kernel for SVM (Libsvm v3.22 (Chang & Lin 2011)) and

the ensemble size n, by a leave-one-guide-out cross-validation (logocv). The

training dataset for the logocv composes of Dhigh
+ and those negative samples

in DCas
− corresponding to the involved 11 sgRNAs. During the logocv,

samples corresponding to each sgRNA are adopted as validation data in

turn and the remaining samples are used as training data. Achieving the

best AUROC is used as the criteria to determine the optimal parameters.

We evaluate and compare our method with the state-of-the-art methods

CCTOP (Stemmer et al. 2015), MIT-score (Hsu et al. 2013), CROP-IT
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(Singh et al. 2015) and CFD (Doench et al. 2016) by a cross-dataset validation

and a logocv. The cross-dataset validation is conducted by training the

classifier with the above training dataset and testing it with the samples

related to the remaining 18 sgRNAs in Dlow
+ that have been excluded from

the training dataset. The logocv is implemented on the dataset combining

Dall
+ and DCas

− .

The AUROC (Aera Under Receiver Operating Characteristic curve)

and the AUPRC (Aera Under Precision-Recall curve) are adopted as the

performance indexes to show how different methods can rank the positive

samples comparing with those negative ones. ROC curve and PR curve are

popular visual representation tools for illustrating a classifier’s performance

and their corresponding AUROC and AUPRC are used to quantify the

classifier’s performance (He & Garcia 2009). Especially, the PR curve was

thought to be a more informative representation of performance assessment

under highly imbalanced data (Davis & Goadrich 2006, He & Garcia 2009).

We note that the four existing methods have taken a scoring strategy

but not the machine learning approach. These traditional methods generate

scoring rules converted from correlations between the mismatch numbers,

positions, and cutting efficiency changes among huge amount of simulative

off-target bindings in their own datasets (Hsu et al. 2013, Doench et al.

2016). This makes their scoring functions hardly adaptable to our collected

datasets because our positive sample size is much smaller than theirs and

we do not have exact cutting efficiency change values. It is also impossible

for us to train our models on their datasets as there is no threshold used

for labeling their samples or the datasets are unaccessible. Thus, in the

performance comparison, we use their already well-tuned scoring rules instead

of re-training them on our data.
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7.3 Results

We first report GC composition related characteristics and mismatch enrich-

ment and preferences in the comparison between on-target-off-target sequence

pairs and on-target-no-editing sequence pairs. Then, we report the superior

prediction performance of our method in comparison with the state-of-the-art

computational methods. We also present how the predicted off-targets by the

computational methods overlap with those detected by the high-throughput

sequencing techniques. At last, two case studies of applying our method to

assist optimal sgRNA selection for disease treatment are described.

7.3.1 GC count change, 5’-end editing potential and

preference

For the on-target-off-target sequence pairs in Dall
+ , on average the GC count

decreases more than the on-target-no-editing sequence pairs in DCas
− does.

The positive samples have a mean ΔGC = -1.09, while the negative samples

have a mean ΔGC = -0.71. This difference is significant with p-value=2.31E-

07 by the two-sample K-S test (Lilliefors 1967). For the randomly selected

100 subgroups of negative samples comparing with the positive samples

(Section 7.2.2 last paragraph), all of them had significant differences (p-

value<0.05); and all of the randomly selected negative data sets have smaller

drop of the GC count than the positive samples.

The position-specific mismatching frequencies in the positive samples

(i.e., mFreq(t,Dall
+ )) are unevenly distributed over the positions t =

1, 2, . . . , 20, peaking at the 5’-end close positions. However, in the negative

samples, the mismatches seem to be uniformly distributed, all having about

5% of the mismatches (i.e, mFreq(t,DCas
− ) =5% for all t). See an illustration

of these mismatching frequency distributions at Fig 7.3. The mismatching

frequencies at the 20 positions are significantly different between the positive

and negative samples (p-value=0.0082). This suggests that if a candidate

editing site of a sgRNA has mismatches with the on-target site accumulating
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at the 5’ end, this candidate site is more likely to be an off-target editing site

instead of no-editing site.

100 rounds of similar comparison analyses were conducted for the set

of positive samples and an equal-size of negative samples randomly selected

from the entire set of negative samples (Section 7.2.2 last paragraph). About

98% of these comparisons showed significant differences (p-value<0.05).

Especially, the 5’-end adjacent two positions contains more mismatches than

the other regions (12% and 9% at the 1st and the 2nd position vs. no more

than 7% at the other positions except for the 8th position ordered from 5’ to

3’). Similar phenomena have been previously reported by (Hsu et al. 2013, Fu

et al. 2013, Pattanayak, Lin, Guilinger, Ma, Doudna & Liu 2013). Thus the

5’-end nucleotides are not as conserved as the nucleotides in the other regions

if they can be edited by sgRNAs. This observation is consistent with the

literature comment that the 5’-end truncated sgRNAs can decrease the level

of off-target potentials (Ren, Yang, Xu, Sun, Mao, Hu, Yang, Qiao, Wang,

Hu et al. 2014, Sternberg & Doudna 2015, Kleinstiver et al. 2016).

From the analysis of mismatch type frequency distributions at given

positions t = 1, 2, . . . , 20, we found that there exists strong mismatch type

preference. For example, the position immediately adjacent to 5’-end (the

first position from 5’ to 3’) has significant differences among the 12 types

of mismatches (p-value=0.0046). Though both the positive samples and

negative samples contain more ‘G-A’, ‘G-T’ and ‘G-C’ mismatches at the

first position (this may due to most of the first nucleotide of the spacers are

‘G’), the positive samples prefer the ‘G-A’ mismatch (mfreq(‘G-A’, 1, Dall
+ ) =

0.4353) over the ‘G-T’ mismatch (mfreq(‘G-T’, 1, Dall
+ ) = 0.224) or the ‘G-

C’ mismatch (mfreq(‘G-C’, 1, Dall
+ ) = 0.2965). On the other hand, there are

relatively more ‘G-T’ mismatches at position 1 in the negative samples than

‘G-A’ or ‘G-C’ (mfreq(‘G-T’, 1, DCas
− ) = 0.2525, mfreq(‘G-A’, 1, DCas

− ) =

0.2279 and mfreq(‘G-C’, 1, DCas
− ) = 0.1616). The 100 balanced comparisons

also show significant differences at this position. More details about this

comparison can be found in our Supplementary file 19.
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Figure 7.3: Comparison of the mismatch distributions in the positive

and negative sample sets. The lines depict the remarkable distribution

differences between the two groups.

7.3.2 Off-target site prediction and performance comp-

arison with other methods

Our training dataset containing the 11 sgRNAs related samples from Dhigh
+

and DCas
− was applied to optimize the parameters such as the penalty

parameter C (c = 2C) and the parameter gamma (g = 2G) for RBF kernel

of the SVM, and the ensemble size n. During each fold of the logocv on this

training dataset, we optimized c and g with a grid search method where

C,G ∈ [−6 : 1 : 6] and set n = size(negative)/size(positive), where

size(negative) stands for the number of negative samples in the training data.

When C=1 and G=-4, the highest average AUROC=0.9819 was achieved.

Fixing C=1 and G=-4, we explored how ensemble size n affects the prediction

performance. We found that a bigger n can indeed decrease the standard

deviation of the prediction performance, however, the AUROC just changes

no more than 0.01 and the running time increases rapidly. Thus, n = 40
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Figure 7.4: Receiver Operating Characteristic curves (left) and

Precision-Recall curves (right) for the cross-dataset validation of

our proposed method and the four state-of-the-art methods.

was selected at last (see Supplementary file 19 to find more details of the

parameter selection).

In the cross-dataset validation, we trained our ensemble model with

the above optimal parameters and on the whole training dataset. The

performances of our proposed method and the four state-of-the-art methods

were tested on the dataset containing the remaining 18 sgRNAs related

sequence pairs in Dlow
+ and DCas

− . The ROC curves and the Precision-Recall

curves are shown in Fig 7.4 and the detailed performance statistics are listed

in Table 7.2 (the second and third column).

These curves and the detailed performance measurements clearly suggest

that both our proposed method and MIT-score can achieve much better

performance than the other three methods (under the cross-dataset test).

Furthermore, our proposed method also works better than MIT-score. This

implies that under the same false positive rate or recall, our method can

obtain the best true positive rate and precision.

The logocv performance by the five methods was achieved on the dataset

Dall
+ merging DCas

− which contains the all 29 sgRNAs’ on-target sites and
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Table 7.2: AUROC and AUPRC scores of the proposed method and

the state-of-the-art methods in various tests.

Methods
cross-dataset validation logocv1

AUROC AUPRC AUROC AUPRC

proposed 0.9948 0.3323 0.9926 0.4571

CCTOP 0.9058 0.1341 0.9021 0.1407

MIT-score 0.9807 0.2922 0.9783 0.2960

CROP-IT 0.8945 0.1255 0.9160 0.1086

CFD 0.8561 0.0453 0.8835 0.0844

1 leave-one-guide-out cross-validation on combined dataset

off-target sites. Thus, this logocv had 29 rounds each corresponding to one

sgRNA. In each round, all sequence pairs related to the same one sgRNA

were reserved as test data, while the remaining sequence pairs were used to

train the ensemble prediction model. The mean AUROC and mean AUPRC

over the 29 rounds of tests are listed in the last two columns of Table

7.2. Our proposed method outperforms the four existing methods on both

AUROC and AUPRC measurements. MIT-score works the best among the

four state-of-the-art methods; however, our proposed method still exceeds

its performance by a 0.1611 AUPRC score and a 0.0143 AUROC score.

The comparison between our method and the two most recently published

methods such as CRISTA (Abadi et al. 2017) and Elevation (Listgarten

et al. 2018) can be found in our Supplementary file 19.

7.3.3 Comparison of the off-target sites detected by

the computational methods and those by the

high-throughput sequencing methods

We carried out analysis to understand how our predicted off-target sites

overlap with those determined by high-throughput sequencing techniques.

Recently developed high-throughput sequencing techniques include GUIDE-
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seq (Tsai et al. 2015), Digenome-seq (Kim et al. 2015), HTGTS (Frock et al.

2015), multiplex Digenome-seq (Kim et al. 2016), and CIRCLE-seq (Tsai

et al. 2017). We compared the list of the off-target sites predicted by our

method with the list of off-target sites predicted by each of these sequencing

techniques.

Two sgRNAs and their on-target sites were used in this analysis.

One is the sgRNA which targets to the EMX1 site (protospacer+PAM:

GAGTCCGAGCAGAAGAAGAAGGG). This sgRNA is the only sgRNA

whose off-target sites were sequenced by all of the five high-throughput

sequencing methods. The second is the sgRNA which targets to the HEK4

site (protospacer+PAM: GGCACTGCGGCTGGAGGTGGGGG). Four of

the sequencing methods (no HTGTS) had been applied in the literature to

detect the off-target sites of HEK4. We note that these sequencing methods

had produced different lists of off-target sites. For EMX1, there are total

15835 potential off-target sites. CIRCLE-seq, Digenome-seq, GUIDE-seq,

HTGTS, and multiplex Digenome-seq detected 176, 27, 15, 13, and 142 off-

target sites respectively. Some of these off-target sites were detected more

than twice, the union of these off-target sites contains only 259 off-target sites

(we call them the ‘Integrated’ detections). For HEK4, 30175 potential off-

target sites were found genome-wide. CIRCLE-seq, Digenome-seq, GUIDE-

seq, multiplex Digenome-seq had produced 980, 38, 133, and 215 off-target

sites respectively. The union of these off-target sites contains 1011 unique

ones.

In the prediction of EMX1 off-target sites by our method, the model

was trained on the positive and negative data sets Dall
+ and DCas

− after all

sequence pairs containing the on-target site EMX1 were removed. Similarly,

all sequence pairs containing the on-target site HEK4 were removed from the

training data in the prediction of HEK4 off-target sites.

An overlap rate (OR) of two lists of off-target sites is used to weight

how a computational method’s predictions overlap with a high-throughput
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sequencing method’s detections:

OR(comM, seqM) =
off(comM) ∩ off(seqM)

off(seqM)
× 100% (7.3)

where comM stands for a computational method, seqM represents a

sequencing method, off(comM) is the list of off-target sites predicted by

comM , and off(seqM) is the list of off-target sites detected by seqM .

The four state-of-the-art computational methods were compared with our

computational method to see which one is better to overlap with the

sequencing methods. Because of no thresholds were provided by these

literature computational methods, we selected top-ranked N off-target sites

according to their scores, where N is the number of test samples labeled

as positive by our method. The overlap rates with regard to different

combinations of the computational methods and sequencing methods are

depicted in Fig 7.5.

For the EMX1 site, our computational method predicted 673 off-target

sites. The ORs are 61% (108 out of 176), 89% (24 out of 27), 100% (15

out of 15), 100% (13 out of 13), 42% (59 out of 142) comparing with

CIRCLE-seq, Digenome-seq, GUIDE-seq, HTGTS, and multiplex Digenome-

seq respectively, and the ORs for the ‘Integrated’ is 43% (112 out of 259).

For the HEK4 site, we predicted 1202 off-target sites and the ORs are: 43%

(417 out of 980), 92% (35 out of 38), 90% (120 out of 133), 76% (163 out

of 215) and 42% (421 out of 1011) for CIRCLE-seq, Digenome-seq, GUIDE-

seq, multiplex Digenome-seq, and Integrated, respectively. From Fig 7.5,

we can see that our ensemble model predicted off-target sites overlap with

those sequencing methods better than the other four computational methods.

As these sequencing methods detect different and far-incomplete lists of

off-target sites, we also draw the conclusion that our method can predict

more complete lists of off-target sites than any of the sequencing methods or

their union. Our computational tool can predict off-target sites that overlap

well with the sequencing methods, thus it can be used as a supplementary

tool for selecting sgRNAs with higher specificities to be further validated by

sequencing techniques, for saving time and cost.
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Figure 7.5: Overlap rates of different computation methods relative

to the high-throughput sequencing base methods. The proposed

method detected off-targets overlaps better than other computational

methods relative to all the sequencing methods’ results. Sequencing

methods CIRCLE, Digenome, GUIDE, HTGTS and mDigenome refers to

the CIRCLE-seq, Digenome-seq, GUIDE-seq, HTGTS, multiplex Digenome-

seq. The ‘Integrated’ means the union result of the four sequencing methods.

7.3.4 Selecting optimal sgRNAs for curing diseases:

Two case studies

Off-target effect is one of the main problems in the application of CRISPR/C-

as9 to cure genetic diseases. Here, we present two case studies to demonstrate

how our tool can help select the optimal sgRNAs with off-target effect as less

as possible. The first case study is about the application of CRISPR/Cas9

to knockdown mouse Nrl gene for preventing retinal degeneration (Yu et al.

2017). Five potential sgRNAs containing protospacer sequences NT1 to NT5

were initially designed by (Yu et al. 2017). Their on-target cutting efficiencies

were estimated by in vitro experiments. These sgRNAs’ possible off-target

sites were predicted and combined with their cutting efficiencies to provide

a selection guidance.
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Table 7.3: The ranks of the sgRNAs by considering both of their

cutting efficiencies and off-target potentials.

sgRNA
literature proposed CRISPR Design sgRNA Designer

Indel(%) ER1 FR2 otN3 otR4 FR otN otR FR otN otR FR

NT1 21.9 4 - 264 5 5 101 2 2 - 1 3

NT2 22.7 2 1 83 1 1 69 1 1 - 2 1

NT3 22.5 3 - 139 4 3 159 4 4 - 5 4

NT4 23.2 1 - 119 3 2 146 5 5 - 3 1

NT5 18.3 5 - 95 2 3 115 3 3 - 4 5

Tmc1-mut1 4.1 2 - 613 3 3 337 3 3 - 1 1

Tmc1-mut2 0.74 3 - 183 1 2 318 2 2 - 3 2

Tmc1-mut3 10 1 1 247 2 1 197 1 1 - 2 3

1 efficiency rank
2 final rank
3 off-target site number
4 off-target site rank

We applied our method and two other web-tools, CRISPR Design

(Hsu et al. 2013) (http://crispr.mit.edu/, the off-target prediction method

is the previous MIT-score) and sgRNA Designer (Doench et al. 2016)

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design, it

uses the previous CFD to predict the off-target sites), to rank the five

sgRNAs’ off-target sites. The mouse reference genome version mm10 was

downloaded from ensembl (Aken et al. 2016). As our method’s input, the

candidate off-target sequences of sgRNAs NT1 to NT5 were extracted by

Cas-OFFinder allowing 6 mismatches at most and with the PAM ’NGG’. A

sgRNA having more off-target sites is ranked lower. For a fair comparison,

the cutting efficiencies were ranked according to the estimated cutting

efficiencies by (Yu et al. 2017). The final rank of a sgRNA is determined

by the average rank of its cutting efficiency rank (efficiency rank) and its

off-target rank (ot rank). In fact, we can adjust the weights of the two kinds

of ranks in practical usages. The best final rank suggests the corresponding

sgRNA works the best and should be selected. The detailed results are shown

in the first five rows of Table 7.3.

The authors (Yu et al. 2017) reported that NT2 was the optimal sgRNA as

it contains better cutting efficiency and relatively lower off-target potential.
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Our method and CRISPR Design mark NT2 as the best choice. However,

sgRNA Designer ranks NT1 as the one with the lowest off-target potential

and both of NT2 and NT4 have the final rank of 1 which may confuse the

users.

The second case study is about a recent application of CRISPR/Cas9 to

treat autosomal dominant hearing loss (Gao et al. 2018). Four sgRNAs were

designed at first with the protospacer sequences of Tmc1-mut1 to Tmc1-

mut4. We did not consider Tmc1-mut4 as it is a truncated protospacer (Our

method and the other two web tools cannot support this type of spacers—

20nt sequences must be required). The authors (Gao et al. 2018) tested

the cutting efficiencies of these sgRNAs. Then GUIDE-seq was adopted to

estimate the sgRNAs’ off-target potential. Similar to the first case study,

we considered both the on-target editing efficiency ranks and off-target

potentials produced by our method, CRISPR Design and sgRNA Designer

for the final ranking of these sgRNAs. The results are listed in the last three

rows of Table 7.3.

Our method and CRISPR Design can both recommend the sgRNA

containing Tmc1-mut3 as the optimal sgRNA, consistent with the optimal

sgRNA used by Gao et al. (Gao et al. 2018). On the other hand, sgRNA

Designer ranked Tmc1-mut1 as the best. Gao et al. (Gao et al. 2018)

detected 10 off-target sites for the sgRNA containing Tmc1-mut3 with up

to 6 mismatches in the protospacer region. We compared the off-target sites

detected by our method, those by the MIT-score and those by CFD with

these 10 GUIDE-seq detected ones. We found that 9 out of the 10 sites were

predicted by our method (among total 247 predicted positive off-targets). In

addition, all these 9 off-target sites were ranked at the top 30, where six out

of them were ranked at the top 10. In comparison, MIT-score only found 8

of these GUIDE-seq validated off-target sites if we defined their top-ranked

247 ones as positive. Among these 8 sites, 4 of them were ranked at top 10.

The CFD ranked 7 out of the 10 GUIDE-seq validated off-target sites at the

top 247. However, only 1 of them was ranked at top 10. More details about
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the comparison can be found in our Supplementary file 19. These two

case studies partly prove that our method can effectively help sgRNA design

for practical use.

7.4 Conclusion

In this chapter, an ensemble machine learning method is proposed for the

prediction of off-target sites of sgRNAs. This method settles the research

question Q3. Its contributions have been described in Section 1.3 C5.

This method is based on the observation that there exist significant GC

count differences and mismatch preferences between the positive on-target-

off-target sequence pairs and those negative ones. Our method not only

takes advantage of the information from known off-target sites but also

adopts the information from those no-editing target sites. It improves the

performance of off-target site prediction in comparison with the state-of-the-

art computational methods; and can detect more off-target sites consistent

with the bona fide detections by high-throughput sequencing methods. As

demonstrated in the two case studies, our method is effective for selecting

the optimal sgRNAs to treat some genetic diseases.

Our future work will focus on two areas. One area is about data collection.

We will investigate which positive and negative samples are more reliable,

especially for the negative samples. In addition, the samples containing

bulges (Abadi et al. 2017) should also be included when abundant data

are available. The second area is about the new feature space in the

conversion of the sequence pairs into the new vectors. Other informative

features such as cutting positions and the dinucleotide mismatch distribution

can be exploited to expand the current feature space. Furthermore, a

tool integrating the sgRNA on-target cutting efficiency prediction and

our off-target site prediction is worth of construction for providing more

comprehensive guidance for selecting the optimal sgRNAs.
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8.1 Conclusions

The work in this thesis mainly addresses two significant bioinformatics issues

namely the disease-ncRNA association prediction and the optimal design of

a CRISPR/Cas9 system for gene editing. The proposed methods for solving

these two issues were discussed in Chapters 3-7 and have been presented in

four of my published journal papers (see the List of Publications). The

Chapters 3-5 described the methods for disease-miRNA and disease-lncRNA

association prediction while the Chapters 6&7 introduced our two machine

learning methods for CRISPR/Cas9 on-target cutting efficiency prediction

and off-target site detection respectively. The work and contributions of this

thesis are concluded below.

In Chapter 3, a precomputed kernel matrix SVM method was introduced

to predict disease related miRNAs. This method has some advantages

comparing to the existing methods. Firstly, it selected those miRNA-disease

pairs that the miRNAs are not significantly differentially expressed in the

disease samples as reliable negative data. In this way, the binary classification

of disease-miRNA pairs is possible. Secondly, the disease-miRNA pairs were

represented by precomputed kernel matrices which are used as the inputs of

SVM. This avoids the difficulty of mathematical representation of diseases.
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In addition, it is possible to predict new associations for a given disease even

if there is no already known miRNAs associating with it (from the miRNA

side also works). Various tests for evaluation and comparison proved the

excellent performance of this method.

The purpose of our study in Chapter 4 is twofold: proving the usefulness

of our proposed precomputed kernel matrix SVM for predicting disease-

miRNAs and investigating the roles of co-functional miRNA pairs in

multi-diseases’ development. A prioritization method was designed for

selecting reliable multi-cancer related co-functional miRNA pairs from the

reconstructed cancer-gene-miRNA tripartite. It applies three kinds of

information: miRNA function relationship; miRNA regulation relationship in

different diseases; and co-functional miRNAs’ co-dysregulation relationship.

Some valuable multi-cancer related co-functional miRNA pairs were obtained

such as the miR-15b-miR-195. Through the gene ontology and pathway

enrichment analysis, several of these pairs were proved to be really important

in multi-cancers’ development. According to the further comparison of the

cancer-gene-miRNA and non-cancer disease-gene-miRNA networks’ analysis,

two conclusions can be reached: the co-function phenomenon is not unusual

and the regulation of miRNAs for the development of cancers is more complex

and have more unique properties than those of non-cancer diseases.

Chapter 5 focuses on the problem of predicting disease-related lncRNAs.

A bagging SVM-based positive-unlabeled learning method was leveraged to

settle this matter. There are at least three novelties in this study. First

of all, a novel disease vectorization method was proposed. It characterizes a

disease with its related genes’ chromosome substructure and pathway groups’

distribution properties. Secondly, a disease-lncRNA association prediction

problem was transferred to be a disease-lncRNA pair classification issue.

Those disease-lncRNA pairs were represented as novel feature vectors for

helping the prediction of disease-lncRNA associations. The last point is that

the bagging SVM was adopted to implement positive-unlabeled learning for

the prediction of reliable disease related lncRNAs. In this way, the problem
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of lacking reliable negative samples is solved. Through various evaluations,

comparisons and case studies, the proposed method’s reliability and accuracy

in disease-lncRNA association prediction were confirmed.

The CRISPR/Cas9 system on-target cutting efficiency prediction issue

was addressed in Chapter 6. A Two-Step Averaging Method was used to

complete this task. It applied the profiled hidden Markov properties of the

sgRNA sequences as novel features which capture the global characteristics

of sgRNAs. Those important features selected by the XGBoost regression

model were combined with the novel profiled hidden Markov properties as

the input of a SVM for an enhanced prediction. The strategy of averaging

the XGBoost regression results and the second step SVM’s predictions as the

final scores was proved to outperform the single regressions and those state-

of-the-art methods. In addition, we found that those highly-active sgRNAs

have lower melting temperature at the middle of the spacer, prefer to cut at

5’-end closer parts of the gene and contain more ‘A’ but less ‘G’, comparing to

the low-active ones. Our further analysis also confirmed that those sgRNAs

expressed from different expression systems such as the T7 promoter or a U6

promoter have inconsistent properties. Their efficiencies should be predicted

with different well-trained models.

In Chapter 7, an ensemble learning method was presented to detect

CRISPR/Cas9 system off-target editing sites. The off-target site detection

problem was turned to be a binary classification issue by defining the sample

as an on-target-candidate-target site sequence pair. A sample is labeled

as positive if the candidate-target site is a real off-target site, otherwise

negative. The second contribution is that the samples were characterized

by the mismatch distribution properties and nucleotide composition change

features. These effective characteristics were applied due to their significant

differences between those positive and negative samples. For example,

mismatches prefer to exist at the 5’-end closer regions of the off-target site

sequences. Lastly, the ensemble learning strategy was adopted to make good

use of the large amounts of negative samples and to improve the prediction
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accuracy and stability. The performance tests and case studies verified that

the proposed method outperforms the existing computational methods and

its detected off-target sites overlap well with the wet-lab technologies’ bona

fide detections.

8.2 Future Work

Increasing studies are focusing on the disease-ncRNA gene association

investigation and gene editing optimization. However, many new issues need

to be addressed in these fields. Especially, the NGS technologies heavily

accelerate the novel disease gene finding and annotation. The development

of the bioengineering and biotechnology also impels the gene editing to its

practical usage. Under this background and trends, our future work will pay

attention to the following areas:

• Novel disease related non-coding RNA gene finding

Non-coding RNA genes have attracted increasing attention for their

significant roles in disease development. Researchers are extremely

interested in lncRNA genes because of their complex functions. One

of my future research topics is to find novel lncRNA genes that

related to diseases especially cancers by combining the NGS data

analysis with machine learning algorithms. The NGS data can provide

abundant information such as the sequence, chromatin, expression

level, methylation status, single nucleotide polymorphism (SNP) and

tissue-specific properties. Machine learning can be applied to extract

patterns from those known non-coding genes for assisting novel gene

finding.

• Non-coding RNA gene function annotation and disease mech-

anism investigation

Large scale of novel ncRNA genes have been found by adopting the

RNA-seq technologies. However, their functions and exact roles in
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disease development remain largely unknown. The rule that similar

structure determines the similar function makes the in silico prediction

of novel genes’ function possible. However, this rule only works for

those homology genes but not the non-homology genes. Thus, various

properties should be integrated to solve this problem, e.g. regulation

information, cellular location, sequence and higher level structural

similarities, network features and so on. Machine learning algorithms

may be applied to do the following automatically annotation jobs.

• Systematical analysis of the gene regulation network and its

application

The genes including ncRNA genes always form functional modules to

involve in different biological activities. The coding gene’s expression

is regulated by various regulators such as ncRNAs. Consideration of

the whole regulation network to find special regulators as the drug

targets can increase drug efficiency but decrease the side effects. This

systematical analysis of the regulation network can also benefit the

understanding of disease occurrence mechanisms, which helps disease

treatment and diagnosis.

• Multi-disease gene editing optimization

A disease especially the cancer often relates to abundant genes. The

editing of a single gene with CRISPR/Cas9 may cannot achieve

expected treatment outcomes. Multi-disease gene editing may be an

effective strategy for overcoming this limitation. In addition, the multi-

disease gene editing can contribute to the gene cooperation related

studies. Construction of an accurate disease model also requires

the multi-disease gene editing technology. As most of the gene-

editing optimization tools are for single genes, a multi-gene editing

recommendation tool is required. To achieve this goal, the optimization

rules need to be set first. Then, on the basis of those existing single

gene editing methods, the corresponding multi-gene editing tools could
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be designed.

• Other types of gene editing systems

CRISPR/Cas9 is one of the most widely applied gene editing systems.

We understand it better comparing to the other CRISPR-based

systems. However, studying other types of gene editing systems

is also important. Firstly, different systems have their advantages.

For example, the CRISPR/Cpf1 system contains smaller and simpler

endonuclease (Cpf1), thus it has less limitations comparing to the

Cas9 protein (Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova,

Essletzbichler, Volz, Joung, van der Oost, Regev et al. 2015, Tang,

Lowder, Zhang, Malzahn, Zheng, Voytas, Zhong, Chen, Ren, Li

et al. 2017). The CRISPR/Cas13 can edit RNA but not DNA, where

we can edit the gene products without changing the genome (Cox,

Gootenberg, Abudayyeh, Franklin, Kellner, Joung & Zhang 2017,

Abudayyeh, Gootenberg, Essletzbichler, Han, Joung, Belanto, Verdine,

Cox, Kellner, Regev et al. 2017). The base editor that generated

by engineering fusions of CRISPR/Cas9 and a cytidine deaminase

enzyme can correct single base without DNA strand break (Komor,

Kim, Packer, Zuris & Liu 2016, Kim, Komor, Levy, Packer, Zhao &

Liu 2017). These gene editing systems’ designing tools are rare but

necessary. Their efficiency evaluation and off-target effect problems

cannot be ignored (Kim, Min, Song, Jung, Choi, Kim, Lee, Yoon &

Kim 2018, Gehrke, Cervantes, Clement, Wu, Zeng, Bauer, Pinello &

Joung 2018).

• Disease oriented gene editing for precise gene therapy

A disease’s development is a complex process and associates with

a lot of genes. We hope to design a disease-oriented gene editing

optimization system to help for precise gene therapy. It combines my

background knowledge of disease-gene related research and gene-editing

tool design experience. For a specific disease, its related gene regulation
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network will be constructed first. Then, the network should be analyzed

deeply to select one or more interested genes as the candidates. At

last, our gene-editing design tools are used for the optimization and

recommendation.
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Appendix A

Appendix: Methodology

foundation

A.1 Adopted Mathematical and Statistical

Conceptions

A.1.1 Information entropy

In information theory, the information entropy is used to measure an event’s

uncertainty, where this event relates to a given probability distribution

(Jaynes 1957, Cover & Thomas 1991). To characterize diseases for investigat-

ing the disease-lncRNA associations (Chapter 5), the information entropy

was applied to represent the disease genes’ distribution on the chromosome

substructures and the disease enriched pathways’ distribution on the manually

generated pathway groups.

For a series X=x1,x2,· · · ,xi,· · · ,xn, its information entropy can be

computed via below definition (formula A.1):

IE (X) = −
n∑

i=1

fxi
log (fxi

) (A.1)

In formula A.1, fxi
means the frequency of xi in the series X. The base
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of the logarithm is always set as 2 where the elements in X is either 1 or 0.

A.1.2 Fisher’s exact test

Fisher’s exact test was proposed by Ronald Fisher (Fisher 1922) to measure

the significance of an event’s happening when the observation number is

small and the observations are presented with a 2*2 contingency table (Bower

2003). This work adopted the fisher’s exact test to do disease gene pathway

enrichment analysis, which helps the disease vectorization (Chapter 5).

The p-value of the fisher’s exact test for indicating whether the statistic

is significant can be computed via the hypergeometric distribution. For

an observed 2*2 contingency table shown in Table A.1, the p-value can be

obtained according to the following formula A.2:

Table A.1: The example 2∗2 contingency table

category A category B

observation 1 a b

observation 1 c d

[h, p, stats] = fishertest ([a, b; c, d]) (A.2)

In the formula A.2, the function ‘fishertest’ can be called with the Matlab

software (version R2014b or higher). The output p is the p-value. We

computed them with default settings.

A.1.3 Two-sample Kolmogorov−Smirnov test

As was defined by Lin et al. (Lin, Wu & Watada 2010), the Two-sample

Kolmogorov-Smirnov test (two-sample K-S test, (Lilliefors 1967)) is a

goodness-of-fit test to determine whether two underlying one-dimensional

probability distributions differ. In this work, the two-sample K-S test was

applied in two ways: to assess important features’ distribution differences
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(Chapter 6) and to help for feature space construction (Chapter 7). The

output p-value of the two-sample K-S test shows the significance of the

difference (p-value<0.05 means significant). It can be computed with the

Matlab function ‘kstest2’ (version R2006a or higher).

A.2 Applied Machine Learning Algorithms

A.2.1 Support vector machine

For a dataset containing n samples xi, i ∈ {1, 2, . . . , n}, where the label of

xi is yi = 1 if it is positive, otherwise yi = 0, the SVM implemented by

(Chang & Lin 2011) (Libsvm v3.22) can be expressed as the following dual

formulation:

minα(L(α)) =
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj)−
n∑

j=1

αj

s.t.
n∑

i=1

yiαi = 0, 0 � αi � C.

where αi are Lagrange multipliers and xi for which αi > 0 are support

vectors. The parameter C controls the fraction of support vectors. K(xi, xj)

is the kernel function. The Radial Basis Function (RBF) kernel is applied to

build the classifier, i.e.,

kRBF
σ = exp(− 1

σ
||xi − xj′ ||2)

where σ is a parameter that controls the width of the radial basis.

The parameters C and σ can be optimized with cross-validations (see next

section).

A.2.2 Ensemble SVM

Ensemble learning is one of the effective strategies to improve the machine

learning performance and has been widely applied to various unbalanced
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dataset classification problems (Yang et al. 2015). For T base classifiers

f i(x) = p(y = 1|x), i = 1, 2, . . . , T , where f i(x) approximates the probability

of sample x to be positive, the ensemble formulation is:

pE(y = 1|x) =
1

T

T∑
i=1

f i(x)

For a given threshold pthreshold, if pE(y = 1|x) > pthreshold then, x is

labeled as 1, otherwise 0.

A.2.3 XGBoost

XGBoost is a scalable end-to-end tree boosting system which was proposed

by Chen et al. (Chen & Guestrin 2016). The authors have pointed out that

their algorithm has two main novelties: it is a sparsity-aware algorithm;

it applies weighted quantile sketch for approximate tree learning. In

Chapter 6, we adopted XGBoost to conduct our first step regression of

the CRISPR/Cas9 on-target cutting efficiencies. At the same time, the

output feature importances guided the feature selection for our second

step regression with SVM. We used the python package of the XGBoost

downloaded from the website: https://github.com/dmlc/xgboost. More

detail information about this algorithm can be found from their conference

paper (Chen & Guestrin 2016).

A.3 Cross-validation and Performance Indicators

A.3.1 Cross-validation

Cross-validation is a widely used strategy for assessing how the constructed

model can be generalized to an independent data set (see the introduction in

Wikipedia, https://en.wikipedia.org/wiki/Cross-validation (statistics)). It

always splits the original dataset into 2 or more parts, where each part

is adopted as a test set in turn to evaluate the model trained by the
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remain data. This method can not only be used to evaluate the model

but also to select optimal parameters for this model (Golub, Heath &

Wahba 1979, Kohavi 1995).

The commonly applied cross-validations include n-fold cross-validation

(n-fold cv, n=3, 5 or 10, see Chapters 3&5&6), leave-one-out cross-validation

(loocv, see Chapters 3&5 ) and leave-one-group-out cross-validation (logocv,

see Chapters 5&6&7). The only difference is the partition process. For

example, in the n-fold cv, the original dataset is split into n parts. In loocv,

each sample is applied as a test sample in each round. However, in logocv,

the partition is related to the group labels. For example, in Chapter 6, the

leave-one-gene-out cv was adopted. The original dataset was split by the

samples related genes (grouped by gene name). If the samples belong to

total N genes, the dataset is split into N parts.

A.3.2 Performance indicators

The machine learning model’s performance can be evaluated by various

indicators. Usually, the indicators for a classification problem are different

from the regression issue.

For a classification question, the popular indicators include Accuracy,

Precision, Specificity, Recall, F1 score, Matthews correlation coefficient

(MCC), area under the ROC curve (AUROC) and area under the PR curve

(AUPRC). The AUROC and AUPRC can be computed via the ROC curve

and the PR curve. The Matlab function ‘perfcurve’ can be called to generate

the ROC curve or PR curve and output the corresponding AUROC and

AUPRC value. The python package ‘scikit-learn’ can also be used instead.

The other 6 indicators can be computed via the following formulas:

Specificity =
TN

TN + FP
(A.3)

Recall =
TP

TP + FN
(A.4)
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Precision =
TP

TP + FP
(A.5)

Accuracy =
TP + TN

TP + TN + FP + FN
(A.6)

F1 =
2×Recall × Precision

Recall + Precision
(A.7)

MCC =
TP × TN − FP × FN√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
(A.8)

where TP,TN,FP and FN represent true positive, true negative, false

positive and false negative respectively. For these classifier indicators, the

bigger the value, the better the performance.

The regression model’s performance can be evaluated with the two

widely used indicators such as the Pearson correlation coefficient (PCC)

and Spearman’s rank correlation coefficient (SCC). For two given variables

X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , yn}, PCC and SCC can be

calculated as following formulas:

PCC(X, Y ) =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
(A.9)

SCC(X, Y ) = PCC(rX , rY ) (A.10)

where, x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi. rX and rY are the ranks of X

an Y respectively.

Both of PCC and SCC have the value between -1 and 1, where 1 means

the strongest positive correlation while -1 represents the strongest negative

correlation.
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databases that has been visited

about this work
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name description authors (with website link)

HMDD v2.0 human miRNA-disease associations Li et al. (2013)

miR2Disease human miRNA-disease associations Jiang et al. (2009)

LncRNADisease lncRNA-disease association Chen et al. (2013)

Lnc2Cancer Human LncRNA and Cancer Associations Ning et al. (2016)

DO human disease ontology Schriml et al. (2012)

miRBase miRNA database Griffiths-Jones et al. (2004)

MeSH Medical Subject Headings Lipscomb et al. (2000)

CTD Comparative Toxicogenomics Database Mattingly et al. (2003)

HGNC human genome resource Povey et al. (2001)

SIDD disease resources Cheng et al. (2013)

miRecords miRNA-target interaction resource Xiao et al. (2009)

miRTarBase miRNA-target interaction resource Hsu et al. (2011)

miRCancer miRNA-cancer associations Xie et al. (2013)

GEO gene expression profiles Edgar et al. (2002)

LIBSVM svm library Chang et al. (2011)

OMIM Human Genes and Genetic Disorders Hamosh et al. (2000)

KEGG pathway resources Kanehisa et al. (2000)

DAVID functional interpretation of large lists of genes Dennis et al. (2003)

MNDR ncRNA-disease associations in mammals Wang et al. (2013)

RefSeq NCBI Reference Sequence Database Pruitt et al. (2000)

NONCODE non-coding RNA resource Liu et al. (2005)

Lncipedia lncRNA sequence and annotation Volders et al. (2012)

ensembl genome browser for vertebrate genomes Hubbard et al. (2002)

lncRNAdb Functional lncRNA reference resource Amaral et al. (2010)

Expression Atlas gene and protein expression profiles Kapushesky et al. (2011)

DisgeNet disease gene resources Bauer-Mehren et al. (2010)

malaCard human maladies and their annotations Rappaport et al. (2013)
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Appendix: List of

Supplementary files

The Supplementary file list and the corresponding download links (https://drive.

google.com/drive/folders/1YmayRRWw-9e0TmJg56OgteA-vRbYfQ3s?usp=sharing)

name chapter description link

Supplementary file 1 3 disease genes download

Supplementary file 2 3,4 miRNA targets download

Supplementary file 3 3 GEO accessions download

Supplementary file 4 3 disease-miRNA association datasets download

Supplementary file 5 3,4 supplementary contents for chapter 3 and 4 download

Supplementary file 6 3 supplementary codes for chapter 3 and 4 download

Supplementary file 7 3 disease-miRNA positive samples download

Supplementary file 8 4 DGRs and predicted disease-miRNAs download

Supplementary file 9 5 disease genes download

Supplementary file 10 5 gene and pathway information download

Supplementary file 11 5 disease-lncRNAs and gene expression profiles download

Supplementary file 12 5 supplementary codes for chapter 4 download

Supplementary file 13 5 supplementary contents for chapter 4 download

Supplementary file 14 5 disease-similarity datasets download

Supplementary file 15 6 supplementary contents for chapter 6 download

Supplementary file 16 6 on-target site cutting efficiency datasets download

Supplementary file 17 6 U6 and T7 expression system test datasets download

Supplementary file 18 7 off-target site detection datasets download

Supplementary file 19 7 supplementary contents for chapter 7 download
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Appendix: List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

CRISPR/Cas9 Clustered regularly interspaced short palindromic repeats/

CRISPR-associated protein 9

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

miRNA microRNA

lncRNA long non-coding RNA

SVM support vector machine

DGR disease-gene-microRNA

mRNA messenger RNA

rRNA ribosomal RNA

snoRNA small nucleolar RNA

lincRNA large intergenic (or intervening) noncoding RNA

ncRNA non-coding RNA
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BACE1 beta-site amyloid precursor protein cleaving enzyme 1

p53 Tumor protein p53

HMDD the Human microRNA Disease Database

ZFN zinc finger nucleases

TALEN transcription activator-like effector nucleases

sgRNA single-guide RNA

crRNA CRISPR-RNA

tracrRNA trans-activation RNA

PAM protospacer adjacent motif

HDR homology-directed repair

NHEJ non-homology end joining

DSB double-strand break

BCL2 B-cell lymphoma 2

RWR random walk with restart

PPI protein-protein interaction

NMF non-negative matrix factorization

PCR Polymerase chain reaction

G guanine

C cytosine

Cas9Sp Cas9 protein from Streptococcus pyogenes

Cas9St1 Cas9 protein from Streptococcus thermophilus
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PR Precision-Recall

dsODN double-stranded oligodeoxynucleotide

HTGTS high-throughput, genome-wide translocation sequencing

LAM − PCR linear-amplificationmediated PCR

NGS next-generation sequencing

DCDNN deep convolutionary denosing neural network

CNN convolutionary neural network

ROC Receiver operating characteristic

AUC area under the ROC curve

DO Disease Ontology

MeSH Medical Subject Headings

CTD Comparative Toxicogenomics Database

HGNC The HUGO gene nomenclature committee (HGNC)

SIDD semantically integrated database

GEO Gene Expression Omnibus

GSE GEO accession

Libsvm A Library for Support Vector Machines

DisSim disease similarity

MiRSim miRNA similarity

AvgDisSim average disease similarity

AvgMiRSim average miRNA similarity
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TKM training kernel matrix

PKM testing kernel matrix

SemSim disease semantic similarity

FunSim disease related genes’ functional similarity

DOSE Disease Ontology Semantic and Enrichment analysis

SeqSim miRNA sequence similarity

funSim miRNA function similarity

KMT kernel matrix type

LOOCV leave-one-out cross-validation

MTSS1 Metastasis suppressor protein 1

LOXL2 Lysyl oxidase homolog 2

qRT − PCR quantitative reverse transcription polymerase chain reaction

CLL chronic lymphocytic leukaemia

PTEN Phosphatase and tensin homolog

SMAD7 Mothers against decapentaplegic homolog 7

OMIM Online Mendelian Inheritance In Man

cfscore multi-disease associated miRNA pair co-function score

CDKN1A cyclin-dependent kinase inhibitor 1

CCND1 Cyclin D1

KEGG Kyoto Encyclopedia of Genes and Genomes
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DAV ID database for annotation, visualization and integrated

discovery

GO gene ontology

V EGFA Vascular endothelial growth factor A

MTHFR Methylene tetrahydrofolate reductase

IFNG Interferon gamma

RARB Retinoic acid receptor beta

MMP2 matrix metalloproteinase-2

MDM2 Mouse double minute 2 homolog

CASP8 Caspase-8

HDAC3 Histone deacetylase 3

EZH2 Enhancer of zeste homolog 2

PU − learning positive-unlabeled learning

IBD Inflammatory bowel disease

LODOCV leave-one-disease-out cross-validation

RBF Radial basis function

SVM support vector machine

UCA1 Urothelial cancer associated 1

DLEU2 Deleted in lymphocytic leukemia 1

HOTAIR HOXtranscript antisense RNA

TSAM two-step averaging method
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pHMM profile Hidden Markov Model

RS2 Rule set 2

FC flow cytometry

RES drug resistance detection

spCas9 Cas9 protein from Streptococcus pyogenes

stlCas9 Cas9 protein from Streptococcus thermophilus

UTR untranslated region

MT Mutation Type

MCC Matthews correlation coefficient

LOGOCV leave-one-gene-out cross-validation

CY BB NADPH oxidase 2

onTSeq on-target site sequence

offTSeq off-target site sequence

noEdSeq no-editing target site sequence

canSeq candidate target site sequence

Two− sample K − S test Two-sample Kolmogorov-Smirnov test

NCC nucleotide composition change features

logocv leave-one-guide-out cross-validation

AUROC area under the ROC curve

AUPRC area under the PR curve

EMX1 empty spiracles homeobox 1
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OR overlap rate

SNP single nucleotide polymorphism

Cpf1 simpler endonuclease
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Hébert, S. S., Horré, K., Nicoläı, L., Papadopoulou, A. S., Mandemakers, W.,

Silahtaroglu, A. N., Kauppinen, S., Delacourte, A. & De Strooper, B.

189



Bibliography

(2008), ‘Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s

disease correlates with increased BACE1/β-secretase expression’,

Proceedings of the National Academy of Sciences 105(17), 6415–6420.

Ho, T.-T., Zhou, N., Huang, J., Koirala, P., Xu, M., Fung, R., Wu, F. &

Mo, Y.-Y. (2014), ‘Targeting non-coding RNAs with the CRISPR/Cas9

system in human cell lines’, Nucleic Acids Research 43(3), e17–e17.

Hoehndorf, R., Schofield, P. N. & Gkoutos, G. V. (2015), ‘Analysis of the

human diseasome using phenotype similarity between common, genetic,

and infectious diseases’, Scientific Reports 5, 10888.

Hsu, P. D., Lander, E. S. & Zhang, F. (2014), ‘Development and applications

of CRISPR-Cas9 for genome engineering’, Cell 157(6), 1262–1278.

Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S.,

Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O. et al. (2013),

‘DNA targeting specificity of RNA-guided Cas9 nucleases’, Nature

Biotechnology 31(9), 827.

Hsu, S.-D., Lin, F.-M., Wu, W.-Y., Liang, C., Huang, W.-C., Chan, W.-

L., Tsai, W.-T., Chen, G.-Z., Lee, C.-J., Chiu, C.-M. et al. (2010),

‘miRTarBase: a database curates experimentally validated microRNA–

target interactions’, Nucleic Acids Research 39(suppl 1), D163–D169.

Huang, D. W., Sherman, B. T. & Lempicki, R. A. (2009a), ‘Bioinformatics

enrichment tools: paths toward the comprehensive functional analysis

of large gene lists’, Nucleic Acids Research 37(1), 1–13.

Huang, D. W., Sherman, B. T. & Lempicki, R. A. (2009b), ‘Systematic

and integrative analysis of large gene lists using DAVID bioinformatics

resources’, Nature Protocols 4(1), 44–57.

Huang, Y.-A., Chen, X., You, Z.-H., Huang, D.-S. & Chan, K. C. (2016),

‘ILNCSIM: improved lncRNA functional similarity calculation model’,

Oncotarget 7(18), 25902.

190



Bibliography

Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox,

T., Cuff, J., Curwen, V., Down, T. et al. (2002), ‘The Ensembl genome

database project’, Nucleic Acids Research 30(1), 38–41.

Huo, L., Zhang, H., Huo, X., Yang, Y., Li, X. & Yin, Y. (2017), ‘pHMM-

tree: phylogeny of profile hidden Markov models’, Bioinformatics

33(7), 1093–1095.

Jaynes, E. T. (1957), ‘Information theory and statistical mechanics’, Physical

Review 106(4), 620.

Ji, X., Lu, H., Zhou, Q. & Luo, K. (2014), ‘LARP7 suppresses P-TEFb

activity to inhibit breast cancer progression and metastasis’, Elife

3, e02907.

Jiang, F. & Doudna, J. A. (2017), ‘CRISPR–Cas9 structures and

mechanisms’, Annual Review of Biophysics 46, 505–529.

Jiang, F., Taylor, D. W., Chen, J. S., Kornfeld, J. E., Zhou, K.,

Thompson, A. J., Nogales, E. & Doudna, J. A. (2016), ‘Structures of

a CRISPR-Cas9 R-loop complex primed for DNA cleavage’, Science

351(6275), 867–871.

Jiang, H., Zhang, G., Wu, J.-H. & Jiang, C.-P. (2014), ‘Diverse roles of

miR-29 in cancer (review)’, Oncology Reports 31(4), 1509–1516.

Jiang, Q., Hao, Y., Wang, G., Juan, L., Zhang, T., Teng, M., Liu, Y. &

Wang, Y. (2010), ‘Prioritization of disease microRNAs through a human

phenome-microRNAome network’, BMC Systems Biology 4(1), S2.

Jiang, Q., Wang, G., Jin, S., Li, Y. & Wang, Y. (2013), ‘Predicting human

microRNA-disease associations based on support vector machine’,

International Journal of Data Mining and Bioinformatics 8(3), 282–

293.

191



Bibliography

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M.,

Wang, G. & Liu, Y. (2009), ‘miR2Disease: a manually curated database

for microRNA deregulation in human disease’, Nucleic Acids Research

37(suppl 1), D98–D104.

Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E.,

Anders, C., Hauer, M., Zhou, K., Lin, S. et al. (2014), ‘Structures of

Cas9 endonucleases reveal RNA-mediated conformational activation’,

Science 343(6176), 1247997.

Joung, J. K. & Sander, J. D. (2013), ‘TALENs: a widely applicable

technology for targeted genome editing’, Nature Reviews Molecular Cell

Biology 14(1), 49.

Kan, Y., Ruis, B., Takasugi, T. & Hendrickson, E. A. (2017), ‘Mechanisms of

precise genome editing using oligonucleotide donors’, Genome Research

27(7), 1099–1111.

Kanchiswamy, C. N., Sargent, D. J., Velasco, R., Maffei, M. E. & Malnoy,

M. (2015), ‘Looking forward to genetically edited fruit crops’, Trends in

Biotechnology 33(2), 62–64.

Kanehisa, M. & Goto, S. (2000), ‘KEGG: kyoto encyclopedia of genes and

genomes’, Nucleic Acids Research 28(1), 27–30.

Karplus, K., Barrett, C. & Hughey, R. (1998), ‘Hidden Markov models for

detecting remote protein homologies’, Bioinformatics 14(10), 846–856.

Kato, M., Kurozumi, A., Goto, Y., Matsushita, R., Okato, A.,

Nishikawa, R., Fukumoto, I., Koshizuka, K., Ichikawa, T. & Seki, N.

(2017), ‘Regulation of metastasis-promoting LOXL2 gene expression by

antitumor microRNAs in prostate cancer’, Journal of Human Genetics

62(1), 123.

192



Bibliography

Kaur, K., Gupta, A. K., Rajput, A. & Kumar, M. (2016), ‘ge-CRISPR-An

integrated pipeline for the prediction and analysis of sgRNAs genome

editing efficiency for CRISPR/Cas system’, Scientific Reports 6, 30870.

Kedmi, M., Ben-Chetrit, N., Körner, C., Mancini, M., Ben-Moshe, N. B.,

Lauriola, M., Lavi, S., Biagioni, F., Carvalho, S., Cohen-Dvashi, H.

et al. (2015), ‘EGF induces microRNAs that target suppressors of cell

migration: miR-15b targets MTSS1 in breast cancer’, Science Signaling

8(368), ra29–ra29.

Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., Hwang, J., Kim, J.-I.

& Kim, J.-S. (2015), ‘Digenome-seq: genome-wide profiling of CRISPR-

Cas9 off-target effects in human cells’, Nature Methods 12(3), 237.

Kim, D., Kim, S., Kim, S., Park, J. & Kim, J.-S. (2016), ‘Genome-wide target

specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-

seq’, Genome Research 26(3), 406–415.

Kim, H. K., Min, S., Song, M., Jung, S., Choi, J. W., Kim, Y., Lee, S.,

Yoon, S. & Kim, H. H. (2018), ‘Deep learning improves prediction of

CRISPR–Cpf1 guide RNA activity’, Nature Biotechnology 36(3), 239.

Kim, V. N. (2005), ‘Small RNAs: classification, biogenesis, and function’,

Molecules and Cells 19(1), 1–15.

Kim, Y. B., Komor, A. C., Levy, J. M., Packer, M. S., Zhao, K. T. & Liu,

D. R. (2017), ‘Increasing the genome-targeting scope and precision of

base editing with engineered Cas9-cytidine deaminase fusions’, Nature

Biotechnology 35(4), 371.

Kim, Y.-K. & Kim, V. N. (2007), ‘Processing of intronic microRNAs’, The

EMBO journal 26(3), 775–783.

Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen,

N. T., Zheng, Z. & Joung, J. K. (2016), ‘High-fidelity CRISPR–Cas9

193



Bibliography

nucleases with no detectable genome-wide off-target effects’, Nature

529(7587), 490–495.

Kohavi, R. (1995), A Study of Cross-validation and Bootstrap for

Accuracy Estimation and Model Selection, in ‘Proceedings of the 14th

International Joint Conference on Artificial Intelligence - Volume 2’,

IJCAI’95, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

pp. 1137–1143.

URL: http://dl.acm.org/citation.cfm?id=1643031.1643047

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. (2016),

‘Programmable editing of a target base in genomic DNA without double-

stranded DNA cleavage’, Nature 533(7603), 420.

Kotsiantis, S. B., Zaharakis, I. & Pintelas, P. (2007), ‘Supervised machine

learning: A review of classification techniques’, Emerging Artificial

Intelligence Applications in Computer Engineering 160, 3–24.

Kozomara, A. & Griffiths-Jones, S. (2014), ‘miRBase: annotating high

confidence microRNAs using deep sequencing data’, Nucleic Acids

Research 42(D1), D68–D73.

Kramer, N. J., Haney, M. S., Morgens, D. W., Jovičić, A., Couthouis,
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