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Abstract

This thesis focuses on the modeling and regulation of exercise intensity by using non-

invasive portable sensors. Firstly, an innovative switching Resistance-Capacitor (RC)

model has been proposed to depict the dynamics of human cardio-respiratory (CR)

responses to the onset and offset of exercise. This switching model utilizes electronic

terms with switching mechanism to explicitly depict dynamical characteristics at the

onset/offset of exercise and the transition in between. It can not only guarantee the

continuity of model output between onset and offset of exercise but also quantify lactate

metabolism at onset and offset by using the term ‘oxygen debt’.

Secondly, to effectively regulate human CR responses to exercise, a single-input single-

output (SISO) closed-loop control framework is proposed. Within this framework, a

control oriented modeling approach using support vector regression (SVR) is presented.

Based on that, a novel model predictive control (MPC) algorithm is developed for the

regulation of exercise intensity. Simulation study shows the proposed machine learning

based model predictive control approach can achieve desired performance requirements

for both the onset and offset of exercise and the transitions in between.

The third research topic is related to the monitoring of outdoor exercise. A reliable

Android application based monitoring system is developed. This system includes a

portable HxMBT HR sensor (Zephyr�), an easy-to-use interface, and a supervisory

module. This technique is applicable to cardiovascular disease detection and diagnosis,

home based rehabilitation monitoring, and exercise strength regulation under free living

conditions.

Finally, in order to provide a more reliable automated treadmill system for running

exercise, the multi-loop integral controllability (MIC) analysis is introduced, which ex-

tends the concept of decentralized integral controllability (DIC) from square systems

vi



to multiple-input single-output (MISO) processes. A condition to ensure MIC for 2ISO

is proposed and its sufficiency has been proved by using singular perturbation theory.

Then, a sufficient MIC condition for MISO processes is provided.
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