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Abstract

Imbalanced data problems are among the most challenging in Data Mining

and Machine Learning research. This dissertation investigates the

performance of ensemble learning systems on different types of data

environments, and proposes novel ensemble learning approaches for solving

imbalanced data problems. Bagging is one of the most effective ensemble

methods for classification tasks. Despite the popularity of bagging in many

real-world applications, there is a major drawback on extremely imbalanced

data. Much research has addressed the problems of imbalanced data by

using over-sampling and/or under-sampling methods to generate an equally

balanced training set to improve the performance of the prediction models.

However, it is unclear which is the best ratio for training, and under which

conditions bagging is outperformed by other sampling schemes on

extremely imbalanced data.

Previous research has mainly been concerned with studying unstable

learners as the key to ensuring the performance gain of a bagging predictor,

with many key factors remaining unclear. Some questions have not been

well answered: (1) What are the key factors for bagging predictors to

achieve the best predictive performance for applications? and (2) What is

the impact of varying the levels of class distribution on bagging predictors

on different data environments. There is a lack of empirical investigation of

these issues in the literature.

xvii



The main contributions of this dissertation are as follows:

1. This dissertation proposes novel approaches, uneven balanced bagging

to boost the performance of the prediction model for solving imbalanced

problems, and hybrid-sampling to enhance bagging for solving highly

imbalanced time series classification problems.

2. This dissertation asserts that robustness and stability are two key

factors for building a high performance bagging predictor. This

dissertation also derives a new method, utilizing two-dimensional

robustness and stability decomposition to rank the base learners into

different categories for the purpose of comparing the performance of

bagging predictors with respect to different learning algorithms. The

experimental results demonstrate that bagging is influenced by the

combination of robustness and instability, and indicate that

robustness is important for bagging to achieve a highly accurate

prediction model.

3. This dissertation investigates the sensitivity of bagging predictors. We

demonstrate that bagging MLP and NB are insensitive to different

levels of imbalanced class distribution.

4. This dissertation investigates the impact of varying levels of class

distribution on bagging predictors with different learning algorithms

on a range of data environments, to allow data mining practitioners

to choose the best learners and understand what to expect when

using bagging predictors.

xviii



Chapter 1

Introduction

Finding effective methods and improving predictive performance are of

primary concern in all learning applications (Quinlan 1996); this is

especially true for developing ensemble learning systems. The aim of

ensemble learning is to improve the performance of a prediction model by

generating and combining a set of multiple individual models. It is well

known that a good ensemble learning system can be constructed if the

individual models are accurate and diverse (Dietterich 2000a, Hansen &

Salamon 1990, Krogh & Vedelsby 1995, Opitz & Shavlik 1996b). There are

two main approaches to constructing the ensemble learning systems:

parallel and serial. This thesis is restricted to parallel ensemble learning

method, bagging.

Bagging (Breiman 1996a) (bootstrap aggregating), represents a popular

ensemble method for improving performance of a prediction model using

bootstrap sampling and voting techniques. Despite its promising ability to

improve the accuracy of classification tasks and the popularity of bagging

in many real-world applications, however, there is a major drawback for

predicting the predefined class label on extremely imbalanced data-sets.

Learning from imbalanced class distribution is considered to be one of ten

1



challenging problems in data mining research (Yang & Wu 2006).

Imbalanced class distribution (Liang 2012, Liang & Cohn 2013) often

causes learning algorithms to perform poorly on the minority class; in

addition, the overall accuracy is an ineffective evaluation measure for the

imbalanced classification task (Liang & Zhang 2011b, Liang, Zhu &

Zhang 2011b), because it cannot represent the accuracy of minority class

(Weiss & Provost 2001); other evaluation metrics must therefore be

considered. Much research has addressed the problem of imbalanced data

by using over-sampling and/or under-sampling methods to generate an

equally balanced training set to improve the performance of the prediction

models, but it is unclear what ratio of class distribution is the best for

training a prediction model, and under which conditions bagging is

outperformed by other sampling schemes in terms of extremely imbalanced

classification. There is a shortage of novel sampling schemes for bagging to

solve highly imbalanced classification in the literature.

Previous empirical studies (Breiman 1996a, Quinlan 1996, Opitz &

Maclin 1999, Bauer & Kohavi 1999, Dietterich 2000b) have demonstrated

that bagging is often more accurate than individual classifiers in the

ensemble if the base learners are unstable. However, these studies have

mainly been concerned with studying unstable learners as the key to

ensuring the performance gain of a bagging predictor, with many key

factors remaining unclear; in addition, these studies have not given

consideration to learning from imbalanced class distribution nor the altered

class distribution, and have only used estimated error rate as an evaluation

measure. It is important to understand the performance of bagging with

respect to different learning algorithms by considering two factors,

robustness and stability, and the effect of varying levels of class distribution

on different types of data environments. However, there is also a lack of

empirical investigation those of issues in the literature.
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1.1 Objectives

This dissertation investigates the performance of ensemble learning

systems with respect to different learning algorithms and varying levels of

class distribution on various types of data environments, such as medical

data, and time series data. It also proposes four novel approaches as

follows:

1. A novel unevenly balanced bagging (UBagging) approach for solving

extremely imbalanced classification. This novel approach is not only

for solving extremely imbalanced classification problems, but also for

solving almost balanced classification problems.

2. A novel Hybrid-sampling (H-sampling) to enhance bagging

(HBagging) approach for solving highly imbalanced time series

classification (HITSC) problems.

3. A novel approach, asserting that both stability and robustness are key

requirements for building a high performance bagging predictor, is

proposed. Formal definitions of robustness and stability are

determined to investigate the performance of bagging predictors with

respect to different learning algorithms on 48 data-sets.

4. A novel approach, two-dimensional decomposition of robustness and

stability, is proposed to rank base learners into different categories,

strong, weak, stable and unstable learners, to investigate the

performance of bagging predictors and established under what

condition it could be improved.

1.1 Objectives

The aim of this dissertation is to contribute to the investigation of the

performance of ensemble learning systems with respect to various learning

3



1.1 Objectives

algorithms and varying levels of class distribution in different data

environments. The goal of this dissertation is to contribute to the solution

of extremely imbalanced classification problems by proposing novel

ensemble learning approaches, for solving extremely imbalanced

classification and HITSC problems. The objectives of this dissertation are

therefore as follows:

1. to propose a novel approach, UBagging, to boost the performance of

bagging predictors for solving extremely imbalanced classification

problems.

2. to propose a novel HBagging approach for solving HITSC problems.

3. to assert that both robustness and stability are key requirements for

building a high performance bagging predictor, and to propose two

formal definitions of the two factors: instability and robustness.

4. to propose a two-dimensional robustness and stability decomposition to

rank the base learners into different categories, namely stable, unstable,

strong, and weak learners, to investigate the performance of bagging

predictors with respect to different learning algorithms and in relation

to which conditions can be improved in terms of learning from original

class distribution.

5. to evaluate the effect of varying levels of class distribution on the sen-

sitivity of bagging predictors.

6. to investigate the performance of bagging predictors with respect to

different levels of imbalanced class distribution in various types of data

environments.
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1.2 Contributions

1.2 Contributions

Corresponding to the objectives of my research described in Section 1.1, this

dissertation presents empirical studies to address a number of issues:

• How to use an ensemble learning method to boost the performance of

bagging predictors for solving extremely imbalanced classification and

HITSC problems, and under what condition, bagging is outperformed

by other sampling schemes in terms of extremely imbalanced

classification and HITSC.

• How to address the two factors, robustness and stability, which are both

key requirements for building high performance bagging predictors.

• How to rank base learners into different categories to investigate the

performance of bagging predictors with respect to different learning

algorithms on 48 data-sets.

• How to investigate the effect of varying levels of class distribution on

the sensitivity of bagging predictors.

• How to evaluate the performance of bagging predictors with respect to

different levels of imbalanced class distribution in various types of data

environments.

The contributions of this study can be summarized as follows:

1. A novel ensemble learning UBagging approach is proposed to boost

the performance of a prediction model for solving extremely

imbalanced problems. The experimental results demonstrate that the

novel UBagging approach is statistically significantly superior to

single learner J48 (SingleJ48), standard bagging (SBagging), and

equally balanced bagging (BBagging) (Liang & Cohn 2013).
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2. A novel HBagging approach (Liang 2013) is proposed for solving HITSC

problems. The experimental results demonstrate that this HBagging

approach is dramatically superior to the exiting approaches (Liang &

Zhang 2012b, Liang 2012, Cao, Li, Woon & Ng 2011).

3. A novel assertion that both robustness and stability are key factors

for building a high performance bagging predictor is proposed. The

two key factors, robustness and stability, are formally defined to

investigate the performance of bagging predictors with respect to 12

learning algorithms on 48 data-sets. We demonstrate that bagging is

influenced by the combination of instability and robustness, and point

out that robustness is an important factor for achieving a highly

accurate prediction model (Liang, Zhu & Zhang 2011a, Liang

et al. 2011b).

4. A novel categorization of base learners is proposed using

two-dimensional robustness and stability decomposition to rank the

base learners into different categories. A clear picture of the

categorization of 12 base learners is provided (Liang et al. 2011a).

5. The effect of varying the levels of class distributions on the sensitivity

of bagging is investigated. We demonstrate that bagging MLP and

NB are insensitive to different levels of imbalanced class distribution

(Liang 2012).

6. The impact of varying the levels of class distributions on the

performance of bagging predictors with respect to different learning

algorithms on imbalanced data and medical data is investigated

(Liang & Zhang 2011b, Liang et al. 2011b, Liang, Zhu & Zhang 2014).

7. The statistical analyses of the experimental results instil confidence in

the validity of the conclusions of this research.
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1.3 Organisation

1.3 Organisation

This dissertation is organized as follows:

• Chapter 2 presents the literature review.

• Chapter 3 proposes a novel UBagging approach for solving the

extremely imbalanced classification problems.

• Chapter 4 empirically evaluates the performance of bagging predictors

with respect to different learning algorithms.

• Chapter 5 investigates the sensitivity of bagging predictors to

imbalanced class distribution.

• Chapter 6 presents empirical evaluations of the impact of varying levels

of class distribution on bagging performance.

• Chapter 7 investigates the performance of bagging predictors on specific

domains.

• Chapter 8 proposes a novel H-sampling to enhance bagging approach

for solving HITSC problems and compares the performance of under-

sampling, over-sampling and H-sampling techniques and state of the

art time series classification methods on HITSC.

• Chapter 9 draws conclusions and proposes future work.

1.4 Publications Related to the Thesis

During my PhD study, my published, accepted and submitted papers are as

follows:

7



1.4 Publications Related to the Thesis

The published and accepted papers:

1. Liang, G. 2013, ‘An effective method for imbalanced time series classi-

fication: Hybrid-sampling’, Proceedings of the 26th Australasian Joint

Conference on Artificial Intelligence, AI 2013, Dunedin, New Zealand,

pp. 374-385. (part of Chapter 8).

2. Liang, G. & Cohn, A.G. 2013, ‘An effective approach for imbalanced

classification: Unevenly balanced bagging’, Proceedings of the 27th

AAAI Conference on Artificial Intelligence, AAAI 2013, Washington,

USA, pp. 1633-1634. (part of Chapter 3).

3. Liang, G., Zhu, X. & Zhang, C. 2014, ‘The effect of varying levels of

class distribution on bagging with different algorithms: An empirical

study’, International Journal of Machine Learning and Cybernetics,

IJMLC, vol 5, no. 1, pp. 63-71. (part of Chapter 6).

4. Liang, G. 2012, ‘An investigation of sensitivity on bagging predictors:

An empirical approach’, Proceedings of the 26th AAAI Conference on

Artificial Intelligence, AAAI 2012, Toronto, Canada, pp. 2439-2440.

(part of Chapter 5).

5. Liang, G. & Zhang, C. 2012, ‘An efficient and simple under-sampling

technique for imbalanced time series classification’, Proceedings of the

ACM International Conference on Information and Knowledge

Management, CIKM 2012, pp. 2339-2342. (part of Chapter 8).

6. Liang, G. & Zhang, C. 2012, ‘A comparative study of sampling methods

and algorithms for imbalanced time series classification’, Proceedings

of the 25th Australasian Joint Conference on Artificial Intelligence, AI

2012, Sydney, Australia, pp. 637-648. (part of Chapter 8).
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7. Liang, G., Zhu, X. & Zhang, C. 2011, ‘An empirical study of bagging

predictors for different learning algorithms’, Proceedings of the 25th

AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,

USA, pp. 1802-1803. (part of Chapter 4).

8. Liang, G., Zhu, X. & Zhang, C. 2011, ‘An empirical study of bagging

predictors for imbalanced data with different levels of class

distribution’, Proceedings of the 24th Australasian Joint Conference

on Artificial Intelligence, AI 2011, pp. 213-222.(part of Chapter 6).

9. Liang, G. & Zhang, C. 2011, ‘An empirical evaluation of bagging with

different learning algorithms on imbalanced data’, Proceedings of the

7th International Conference on Advanced Data Mining and

Applications, ADMA 2011, pp. 339-352. (part of Chapter 6).

10. Liang, G. & Zhang, C. 2011, ‘Empirical study of bagging predictors

on medical data’, Proceedings of the 9th Australian Data Mining

Conference, AusDM 2011, pp. 31-40. (Chapter 7).

The submitted paper under-review:

11. Liang, G., Cohn, A.G., Wu, X. 2014, ‘Comparison of variant bagging for

imbalanced classification’, Proceedings of the 28th AAAI Conference on

Artificial Intelligence, AAAI 2014,. (part of Chapter 3).
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Chapter 2

Related Work

2.1 Ensemble Learning

Ensemble learning has been a popular method of boosting the performance

of prediction models (Cieslak 2010) and has the capacity to improve the

performance of base learners (Webb & Zheng 2004). It has been one of the

most active areas of research in supervised learning to study methods for

constructing good ensembles of classifiers (Dietterich 2000a). Quite a large

volume of research has focused on ensemble learning, both theoretically

(Hansen & Salamon 1990, Krogh & Vedelsby 1995) and empirically

(Hashem 1997, Opitz & Shavlik 1996a, Opitz & Shavlik 1996b)

demonstrating that a good ensemble requires the individual classifiers in

the ensemble to be accurate and diverse (Opitz & Maclin 1999). Ensemble

learning consists of learning methods that construct a set of trained

classifiers to classify new instances in the test-set by taking a vote of their

predictions from those individual trained classifiers. There are two main

approaches to the construction of ensembles of classifiers: parallel and serial

(Tuv 2006). Bagging (Breiman 1996a) and Boosting (Freund &

Schapire 1996) are two representative techniques.
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It is well known that the performance of an ensemble prediction model

is better than the performance of any of its individual classifiers if the base

learners in the ensemble are highly accurate and diverse

(Dietterich 2000a, Hansen & Salamon 1990). Therefore, accuracy and

diversity are two important factors for building a high performance

ensemble prediction model.

2.1.1 General Ensemble Learning Approaches

Dietterich reviewed the ensemble learning algorithms and summarized the

two primary approaches to designing ensemble learning algorithms

(Dietterich 2000a, Dietterich 2003) as follows:

1. the first approach is to construct each classifier independently to make

a set of classifiers accurate and diverse. Several ways to force diversity

are as follows:

• the first way is to generate different subsets of training data to

construct multiple classifiers, e.g., Bagging, “Bootstrap

Aggregating” (Breiman 1996a) uses bootstrap sampling

techniques to randomly select samples with replacement to form

different subsets of training data. The sample size of the subsets

of training data m is the same as the sample size of the original

training data. The final prediction is made by taking a majority

vote of a set of the predictions of trained classifiers.

• the second way is to generate different subsets of input features

to force the diversity, e.g., Cherkauer selected different subsets

of the input features to group together features that were based

on different image processing operations, for instance, principal

component analysis and the fast Fourier transform (Cherkauer

1996).
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• the third way is to use the technique called error-correcting

output coding (ECOC) (Dietterich & Bakiri 1995) to generate

the output labels of the training data, e.g., the combined ECOC

with ADABOOST called ADABOOST.OC (Schapire 1997),

which is superior to the ECOC method and bagging.

• the fourth way is to inject randomness into the learning

algorithm, e.g., randomized trees (Dietterich 2000b), random

subspace method (Ho 1998), and random decision forests

(Breiman 2001), which combine bagging with the random

subspace method.

2. the second approach uses an additive model to construct a set of

component models, and the prediction is made by taking the weighted

sum of a set of component models, e.g., Adaboost (Freund &

Schapire 1996) algorithm is an effective method for constructing an

additive model (Dietterich 2003).

• Let dl(xi) be the weight on data point xi, during iteration l of the

algorithm.

• Initially, a weight d1(xi) =
1
m

(m is the number of data points) is

assigned to all training data points i.

• In each iteration, the weighted error is computed and applied to

update the weights on the training examples.

• The final classifier is constructed by a weighted vote of the

individual classifiers. Each classifier is weighted according to its

accuracy on the weighted training set that it was trained on.
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2.1.2 Empirical Studies on Ensemble Learning

Numerous empirical studies have compared the performance of bagging,

boosting and other ensemble methods with different classification methods

(Quinlan 1996, Opitz & Maclin 1999, Bauer &

Kohavi 1999, Dietterich 2000b, West, Dellana & Qian 2005, Banfield, Hall,

Bowyer & Kegelmeyer 2007, Lopes, Scalabrin & Fernandes 2008, Kim &

Kang 2010). For example, Banfield et al. conducted an experimental

evaluation of bagging as a baseline against seven other randomization-based

ensemble techniques (Banfield et al. 2007). These investigations mainly

focused on comparing the performance of standard bagging and other

ensemble methods, for instance, boosting, random subspaces, three

variations of random forests and randomized C4.5. The bagging method

has been used in many real world applications, such as decision support

application in the health care field, diagnosis model for the medical field,

face recognition, protein structural class prediction, and software

engineering prediction problems. Tu, Shin & Shin applied a bagging

algorithm for a real world application, the diagnosis of Heart disease to

identify the warning signs of Heart disease in patients (Tu, Shin &

Shin 2009b). This research also compared the effectiveness of the bagging

predictor with single learner decision tree J4.8 on four data-sets of Heart

disease database from the UCI KDD Archive. The research compared three

measures, sensitivity, specificity and accuracy, to evaluate the accuracy of

classification. The experimental results showed that the bagging method is

more effective than the single learner decision tree. An experimental

comparison of LibSVMs, C4.5, bagging C4.5, AdaBoosting C4.5 and

Random Forest five classification methods on seven micro-array cancer

data-sets has been conducted (Hu, Li, Plank, Wang & Daggard 2006). This

research compared the average accuracies of ten-fold cross validation tests

to confirm the findings that all ensemble methods out-perform C4.5.
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2.2 Bagging

Section 2.2 includes four subsections as follows: (1) Subsection 2.2.1 presents

the basic concept and framework of bagging; (2) Subsection 2.2.2 shows

the bagging algorithm; (3) Subsection 2.2.3 indicates the advantages of the

bagging predictor; and (4) Subsection 2.2.4 presents the background of, and

approaches to, bagging.

2.2.1 Basic Concept and Framework of Bagging

Subsection 2.2.1 presents the basic concept and framework of bagging.

Bagging represents a set of classifiers Ck (integer k indicates the numbers

of bootstrap samples) which are trained from a set of bootstrap samples Dk

to form an ensemble method for prediction, and its function is to predict new

samples by a set of classifiers; a final prediction is made by taking a majority

vote of individual classifiers.
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Algorithm 
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Set 
Prediction 
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Figure 2.1: Framework of bagging

Figure 2.1 illustrates the basic framework of a bagging prediction model

using bootstrap sampling and voting techniques to improve the performance

of the bagging prediction model. Bagging is known as bootstrap aggregating.
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2.2 Bagging

Firstly, for each of the bootstrap samples (D1, D2, ..., Dk), a new training set

Dk is randomly drawn from the original training set D of m instances with

replacement conducted by repeated drawingm times. Each bootstrap sample

therefore contains the same number of m instances as the original training

set D; some instances may appear many times, while some instances may not

appear. Secondly, the k bootstrap samples of a training set with m instances

will generate k classifiers (C1, C2, ..., Ck). Finally, the unseen instance x of

the test set will be predicted by applying each of the k classifiers Ck (integer

k = 1 to k) and a final decision C∗ is made by majority vote of the individual

classifiers (C1, C2, ..., Ck).

2.2.2 Bagging Algorithm

The bagging algorithm is indicated in Algorithm 1.

Algorithm 1: Bagging

Output: A composite model, C∗.

Method:

for i = 1 to k do
Create bootstrap sample of size n, Di by sampling D with

replacement;

Train a base classifier model Ci from Di;

end

To use the composite model, C∗ for Test set T on a instance, x and

it’s true class label is y:

C∗(x) = argmaxy
∑
i

δ (Ci(x) = y)

Delta function δ(·) = 1 if argument is true, else 0.
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2.2.3 Advantages of Bagging

Subsection 2.2.3 presents the advantages of bagging predictors as follows:

1. Bagging is one of the most popular and effective parallel ensemble

learning methods (Goebel 2004).

2. It requires less memory than boosting (Freund & Schapire 1996).

3. It improves the performance of the prediction models if the base

learners are unstable;

4. It is simply and easy to implement by using random sampling technique

to generate bootstrap samples with replacement to build a set of trained

classifiers and by using the voting technique, majority vote to make the

final prediction.

5. It improves predictive accuracy, and has been applied to wide range of

real world applications.

6. It is more robust for classification noise than boosting; although

boosting can reduce more classification error than bagging on average,

degradation can occur on some data-sets.

2.2.4 Bagging Background and Approaches

Bagging (Breiman 1996a) uses bootstrap samples (Efron &

Tibshirani 1993) to build a set of classifiers to form a prediction model; the

final decision of the prediction model is made by taking a majority vote of

the predictions of the individual classifiers in the ensemble. Breiman points

out that instability is an important factor in improving the accuracy of a

prediction model (Breiman 1996a). Bagging is widely accepted as a

variance-reduction technique, and is therefore mostly applied to unstable,

16



2.2 Bagging

high variance algorithms (Tuv 2006). Many theories

(Friedman 1997, Domingos 2000, Kohavi & Wolpert 1996, Kong &

Dietterich 1995, Breiman 1996b, Valentini & Dietterich 2002) have been

proposed on the effectiveness of bagging for classifications based on bias

and variance decomposition (Opitz & Maclin 1999).

Theoretical investigations of why bagging works have been presented by

many researchers (Friedman & Hall 2007, Bühlmann & Yu 2002, Buja &

Stuetzle 2000, Buja & Stuetzle 2006). Breiman reported empirical evidence

that bagging is a variance reduction technique and that the effectiveness of

bagging relies on the instability of the base learner (Breiman 1996a), while

Bauer and Kohavi also indicated that bagging reduces the bias portion of

the error (Bauer & Kohavi 1999). In addition, Buja and Stuetzle conducted

a theoretical investigation to understand bagging by a simple real-valued

U-statistic of i.i.d. data. In their simulations, they applied bagging to

CART trees, and observed that bagging CART trees can reduce both bias

and variance. Therefore, their claim that bagging always reduces variance is

in fact not true (Buja & Stuetzle 2006).

Previous empirical studies (Breiman 1996a, Opitz &

Maclin 1999, Quinlan 1996, Bauer & Kohavi 1999, Dietterich 2000b) have

demonstrated that bagging is often more accurate than any of the

individual base learners in the ensemble if the base learners are unstable.

However, most previous experimental research only focuses on comparing

the performance of bagging and other ensemble methods with one or two

base learners, such as J48 and neural network, and only consider one

factor, instability, as a key factor. None of them has compared the

performance of various bagging predictors against one another, nor has

most previous research given consideration to learning from imbalanced

class distribution nor the altered class distribution, and has only used

accuracy/error rate evaluation metric. Furthermore, there are inexplicit
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measures to rank the base learners into different categories to analyze the

effectiveness of bagging. To the best of our knowledge, no previous research

has made such extensive comparisons that rank the bagging predictors

underlying base learners over a large number of data-sets to provide a full

comparison of the overall performance of bagging predictors. There is a

distinct advantage to including 12 learning algorithms on various types

data environments in this dissertation.

There is a debate in the scientific community as to whether bagging can

improve the performance of SVM. Some researchers have reported that SVM

are stable classifiers and bagging is not expected to improve the performance

of SVM and may cause a slight deterioration (Buciu, Kotropoulos & Pitas

2006). However, different results on the performance of bagged SVM have

been observed, and other researchers have demonstrated an improvement in

bagged SVM performance (Kim, Pang, Je, Kim & Bang 2002, Valentini &

Dietterich 2003).

Alternative bagging methods to improve the performance of the

prediction model have been proposed (Valentini & Dietterich 2003, Zaman

& Hirose 2008, Zhu, Bao & Qiu 2008, Zhu & Yang 2008, Zhu 2007, Su,

Khoshgoftarr & Zhu 2008, Hothorn & Lausen 2003, Leung &

Parker 2003, Frank & Pfahringer 2006, Zaman & Hirose 2009, Collobert,

Bengio & Bengio 2002), and some bagging has solved imbalanced data

problems (Liu, Wu & Zhou 2009, Zhu & Yang 2008, Zhu 2007, Kang &

Cho 2006, Li 2007, Molinara, Ricamato & Tortorella 2007).

Despite its promising capabilities in improving the accuracy of

classification tasks and the popularity of bagging in many real-world

applications, there is a major drawback for solving extremely imbalanced

classification problems. Much research has addressed the problem of

imbalanced data by using over-sampling or under-sampling methods to

generate a more equally balanced training set to improve the performance
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of the prediction models. However, it is unclear what ratio is the best for

training, and under which conditions bagging is outperformed by other

sampling schemes in extremely imbalanced data. In addition, some

questions have not been clearly answered. The key area of concern is the

performance of bagging predictors with respect to different learning

algorithms on various types of data environments, and with respect to

various levels of class distribution in the existing research.

2.3 Statistical Test

To conduct a rigorous and fair analysis, non-parametric tests were performed

for the statistical comparison of learners: the Wilcoxon signed-rank test for

the comparison of two learners in Subsection 2.3.1, and the Friedman test

with the corresponding post-hoc Nemenyi test for the comparison of multiple

learners in Subsection 2.3.2 (Demšar 2006).

2.3.1 Wilcoxon Signed-rank Test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis

test which is considered to be an alternative to the paired t-test. Its main

difference from a t-test is that it does not require assumptions to be made

about the populations of a normal distribution. This test is the most

accurate non-parametric test for paired data to determine whether there is

a difference between paired samples. The Wilcoxon signed-rank test is

considered to be safe from a statistical point of view and is more powerful

than the t-test when test conditions cannot meet the assumption

requirements of a parametric test (Demšar 2006). We therefore performed

this test to determine whether there really is an improvement of

performance between the two learners, bagging and single learner.
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2.3.2 Friedman Test and Post-hoc Nemenyi Test

Both Friedman and post-hoc Nemenyi tests are non-parametric for comparing

multiple algorithms over multiple data-sets.

Firstly, all the algorithms are ranked on each data-set, giving the best

performing algorithm the rank of 1, the second best rank 2, and so on. If

there are ties, average values are assigned.

Secondly, the average rank of the algorithm is obtained by equation 2.1 ,

where rji is the rank of the j− th of d algorithms on the i− th of N data-sets.

Rj =
1

N

∑
i

rji (2.1)

Finally, the Friedman test compares the average ranks of algorithms and

checks whether there is a significant difference between the mean ranks. The

Friedman statistic is calculated by equation 2.2.

χ2
F =

12N

d(d+ 1)
[
∑
j

R2
j −

d+ (d+ 1)2

4
] (2.2)

where N is the number of data-sets, d is the number of algorithms

compared, and Rj is the average rank of algorithms. This statistic is χ2
F

distributed with k − 1 degrees of freedom.

The Null Hypothesis of this test states that the performances of all

algorithms are equivalent. If the Null Hypothesis is rejected, it does not

determine which particular algorithms differ from one another. A post-hoc

Nemenyi test is needed for additional exploration of the differences between

mean ranks to provide specific information on which mean ranks are

significantly different from others to identify them. The critical difference is

calculated by equation 2.3.

CD = qα

√
d(d+ 1)

6N
(2.3)
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The critical values qα are based on the studentized range statistic divided

by
√
2 (Demšar 2006). If the mean ranks are different by at least the critical

difference, the performance of two learners is significantly different.

2.4 Sampling Techniques

Sampling techniques are widely used to treat imbalanced class distribution

problems (Weiss & Provost 2003, Chawla, Bowyer, Hall &

Kegelmeyer 2002, Chawla, Lazarevic, Hall & Bowyer 2003, Han, Wang &

Mao 2005, Bunkhumpornpat, Sinapiromsaran & Lursinsap 2009). There

are two main categories of sampling methods: under-sampling the majority

class (Liu et al. 2009, Kubat & Matwin 1997) and over-sampling the

monitory class (Chawla et al. 2002, Chawla et al. 2003, Han

et al. 2005, Bunkhumpornpat et al. 2009, Bunkhumpornpat,

Sinapiromsaran & Lursinsap 2011) to modify the degree of class

distribution to any desired level (Batista, Prati & Monard 2004).

There are advantages and disadvantages to using under-sampling and

over-sampling methods as follows:

• The advantages of under-sampling: only uses a subset of the majority

class for training, so the training process becomes faster, and thus is

very efficient.

• The main disadvantages of under-sampling may lose important and

useful information for training and may degrade the performance of

the prediction models, even though it significantly reduces the

computational cost of training, because only a proportion of the

majority class examples are selected to train prediction models.

• The main disadvantages of over-sampling are that over-sampling

dramatically increases the computational cost of training and training
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time, and may cause over-fitting, even though it maintains the

important information for training, because additional large number

of new positive examples with high dimensional features are generated

to balance the training set for HITSC (Liang & Zhang 2012b).

Random under-sampling (RUS) and random over-sampling (ROS) are

two of the simplest sampling methods in statistics (Cochran 1977) that are

used as baseline methods to deal with imbalanced class distribution problems

(Laurikkala 2001). For example, RUS selects all positive class samples from

the minority class, sample size P into a sub-set S, then randomly selects

negative class samples from majority class samples with the same sample

size P into the sub-set S to form a balanced sub-set S. The simple random

under-sampling method reduces the size of the majority class to compensate

for the imbalance (Yang, Zhang, Zhou & Zomaya 2011). Even though the

training process becomes faster, and computationally efficient, it may lose

potentially useful information. On the other hand, ROS randomly duplicates

instances of the minority class to balance the data-set.

A number of advanced intelligent approaches have been introduced as

follows:

1. The one-sided selection procedures (Kubat & Matwin 1997) remove the

noise or duplicated instances from the majority class, by keeping all the

positive samples and randomly selecting a representative subset of the

negative sample in a subset C, then removing the number of redundant

negative samples by using 1-NN rule with the subset C to re-classify

the training samples and adding the mis-classified training samples to

subset C, next removing the noisy and borderline majority samples to

form a new training set T .

2. NCL (Laurikkala 2001) introduced Neighborhood Cleaning Rule as an

under-sampling technique by balancing imbalanced class distribution
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with data reduction and comparing three under-sampling methods.

The experimental results determined that NCL outperformed simple

random under-sampling and one-side selection methods.

3. SMOTE (Chawla et al. 2002) is considered to be the state of the art

over-sampling technique (Bunkhumpornpat et al. 2011). This

technique created synthetic minority class instances by selecting some

of the nearest minority neighbors of a minority instance (MI), and

generating new minority class instances along the lines between MI

and each nearest minority neighbor. SMOTE reduced the imbalanced

class distribution without causing over-fitting (Yen, Lee, Lin &

Ying 2006), but may result in an overgeneralization problem, as the

drawback of SMOTE that it blindly generates synthetic minority

class instances without considering the size of the majority class (Yen

et al. 2006, Bunkhumpornpat et al. 2011).

4. Borderline-SMOTE (Han et al. 2005) divides positive instances into

three regions: noise, borderline, and safe. It uses the same

over-sampling technique as SMOTE, but it only generates the

synthetic instances from the borderline instances of the positive

instances, which is different from the SMOTE technique which

over-samples all instances of the positive class.

5. The Safe-Level-SMOTE (Bunkhumpornpat et al. 2009) technique

defines a safe level and a safe level ratio. The safe level is used to

assign a safe level to each positive instance before the synthetic

instances are generated, and the safe level ratio is used to select the

safe positions for generating synthetic instances. This technique is

designed to improve over-sampling technique.

In the literature, previous studies comparing under-sampling and
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over-sampling with decision trees C4.5 indicate that under-sampling is

more effective than over-sampling methods (Drummond, Holte

et al. 2003, Domingos 1999, Ling & Li 1998, Liu et al. 2009). For example,

compared under-sampling and over-sampling techniques, and respectively

reported that under-sampling produced better classifiers for C4.5 − Rules

and better lift index for boosted C4.5. Drummond et al. used cost curve to

analyze their experimental results and showed that under-sampling produce

a reasonable sensitivity to change in mis-classification cost and class

distribution, while over-sampling is ineffective, often producing little or no

change in performance (Drummond et al. 2003). In addition,

under-sampling is an efficient and popular method for learning from

imbalanced class distribution (Liu et al. 2009).

Japkowicz compared several sampling methods and determined that

both over-sampling and under-sampling methods are very effective in

dealing with imbalanced class distribution problems, and there is no

significant advantage in using sophisticated over-sampling and

under-sampling methods over simple random over-sampling and

under-sampling methods (Japkowicz 2000). Comparative studies of various

re-sampling techniques show that simple RUS and ROS perform better

than the intelligent techniques mentioned above (Batista

et al. 2004, Van Hulse, Khoshgoftaar & Napolitano 2007).

2.5 Evaluation Metrics

Accuracy is a commonly used measure for evaluating the performance of a

classifier in general terms. However, it is an ineffective metric for measuring

the performance of a prediction model on extremely imbalanced data-sets.

As in real world applications, the proportion of the minority class is much

smaller than the whole population. The minority class is the class in which
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users are interested and normally a high prediction accuracy is required in a

minority class; however, accuracy or error rate has limitations in evaluating

the performance of a classifier on a minority class (Fawcett 2006). We

therefore select True Positive Rate (TPR), Geometric mean (Gmean),

Receiver Operating Characteristic (ROC) curve, and Area Under the ROC

curve (AUC) as evaluation metrics for this empirical study.

Table 2.1: Confusion matrix for a binary classification problem

Predicted Positives Predicted Negatives

Actual Positives (P ) True Positives (TP ) False Negatives (FN)

Actual Negatives (N) False Positives (FP ) True Negatives (TN)

Table 2.1 presents the confusion matrix for a binary classification

problem. The confusion matrix indicates the differences between the true

and predicted class samples. The columns represent the Predicted Positives

and Negatives in each class; the rows represent the Actual Positives (P )

and Negatives (N) in each class.

In this thesis, we consider the minority class as the positive class and

the majority class as the negative class. Following this convention, in Table

2.1, True Positives (TP ) refers to the number of positive instances correctly

classified as the positive class; True Negatives (TN) refers to the number of

negative instances correctly classified as the negative class; False Positives

(FP ) refers to the number of negative instances incorrectly classified as the

positive class; and False Negatives (FN) refers to the number of positive

instances incorrectly classified as the negative class (Chawla 2010). TPR and

TNR evaluate the performance of a binary classification algorithm directly
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on the minority class and the majority class respectively. TPR refers to the

proportion of the minority class that has been correctly classified as a positive

class, while TNR refers to the proportion of the majority class that has been

correctly classified as a negative class. The Gmean of the accuracy rate of the

majority class and minority class is recommended as a performance measure

to compare different algorithms by monitoring the accuracy rates of both

the majority and the minority classes (Ng & Dash 2006, Provost & Fawcett

2001), and is suggested as a performance measure to assess the performance

of learning methods for imbalanced learning (Ng & Dash 2006, Provost &

Fawcett 2001, He & Garcia 2009). The formulas of the evaluation measures

are defined as follows:

TPR = Recall =
TP

TP + FN
(2.4)

FPR =
FP

FP + TN
(2.5)

TNR =
TN

TN + FP
(2.6)

FNR =
FN

FN + TP
(2.7)

Gmean =
√
TPR ∗ TNR (2.8)

Accuracy =
TP + TN

TP + FP + TN + FN
(2.9)

Precision =
TP

TP + FP
(2.10)

Fβ = (1 + β)
Recall ∗ Precision

β2 ∗ Precision+Recall
(2.11)
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Equations 2.4 to 2.11 present the formulas of True Positive Rate (TPR),

Recall, False Positive Rate (FPR), True Negative Rate (TNR), False Neg-

ative Rate (FNR), Gmean, Accuracy, Recall, Precision, and Fvalue, respec-

tively.

2.5.1 ROC

A ROC curve, a two-dimensional plot, is used to plot the False Positive

Rate (FPR), and True Positive Rate (TPR) on the x-axis and y-axis,

respectively. In the ROC plot, the upper left point (0,1) stands for “perfect

point”, presenting 100% true positives and zero false positives, while the

point (1,0) is the least desired point, called “ROC Hell” (Qin 2005),

presenting zero true positives and 100% false positives.

In the ROC space, one point is better than another if it is close to the

“perfect point”, (Provost & Fawcett 1997). In this study, a ROC curve is

used to represent the performance of each bagging predictor at nine different

levels of class distribution in Table 6.1.

The ROC is a well known performance metric for evaluating and

comparing algorithms. In the literature, previous work anticipates that

sampling will produce the same effect as moving the decision threshold or

adjusting the cost matrix, and experimental results demonstrate that the

over- and under- sampling procedures produce ROC curves almost identical

to those produced by varying the decision threshold of Näıve Bayes

(Maloof 2003). Moreover, ROC has been considered as an alternative

measure for comparing the performance of classifiers across the entire range

of class distributions and error costs (Provost, Fawcett &

Kohavi 1998, Ling, Huang & Zhang 2003).

In addition, ROC is a good way of visualizing the performance of a

prediction model, and AUC is a desirable way to obtain a single figure as a
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measure of comparing a number of different prediction models

(Bradley 1997). AUC (Han et al. 2005, Bradley 1997) is not biased against

the minority class and it has an important statistical property

(Fawcett 2004), so it is commonly used as an evaluation criterion to assess

the average performance of classifiers on data with imbalanced class

distribution (Fawcett 2006, Kotsiantis, Kanellopoulos & Pintelas 2006, He

& Garcia 2009). The calculated AUC of ROC curves is considered as an

evaluation metric to compare bagging and single learners over multiple

imbalanced data-sets, and also to examine the group of comparisons of

ROC curves between 12 bagging predictors and single learners on the

Diabetes data-set.

Equations 2.4 and 2.5 present the formulas TPR and FPR, respectively.

In our study, when the class distribution is varied, nine pairs of (FPR, TPR)

are used to plot a ROC curve, so each ROC curve represents the performance

of prediction models at different levels of class distribution.

2.5.2 How to Calculate AUC of ROC

The simple trapezoidal method is used to calculate AUC of ROC as the

sum of the areas of trapezoids in the ROC space in this study. Each ROC

curve is formed by i pairs of (FPRi, TPRi). The formula of the area of each

trapezoid is indicated as follows (Slaby 2007):

S =
(yi + yi−1)(xi − xi−1)

2
(2.12)

S =
(TPRi + TPRi−1)(FPRi − FPRi−1)

2
(2.13)
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The FPR is sorted from small to large. In the literature (Slaby 2007), the

Matlab notation of the AUC of ROC is given as follows:

AUC = sum(
(tpr(2 : n) + tpr(1 : n− 1)) ∗ (fpr(2 : n)− fpr(1 : n− 1))

2
)

(2.14)

2.6 Basic Learning Algorithms

The 12 most common learning algorithms have been selected for this study

from the WEKA implementation, and default parameter settings are used .

• We first select four of the top ten algorithms (Wu, Kumar et al. 2008):

1. C4.5 (Quinlan 1986) decision trees (J48) is proposed, which is

based on gain ratio to select the splitting attribute. When J48 is

used in WEKA, it is a unstable learner;

2. Support Vector Machines (SVM), a complex model for

classification which uses mapping to transform the original

training data into a higher dimension and the decision boundary,

is determined by finding the optimal separating hyper-planes,

and default setting is selected from the WEKA implementation

for this study; the experimental result indicates that it is a

stable learner, however in the literature, there is debate as to

whether it is a stable learner or an unstable learner.

3. Näıve Bayes (NB) learner based on Bayes theorem, a simple, yet

effective learner for large data-sets. It is a stable learner.

4. K-nearest-neighbors (KNN), a lazy learner in the WEKA imple-

mentation, is used for this study with the default setting; it is a

stable learner.
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• Next the most commonly used neural network algorithm, Multi-layer

Perceptron (MLP) with default setting is selected from the WEKA

implementation. In the literature, it is mostly considered to be a

unstable learner, however, the experimental results show that it is a

strong and stable learner, and has a similar value of stability as KNN.

• Then we select four family tree learners: Random Tree (RandTree),

RepTree, Näıve Bayes Tree (NBTree) and Decision Stump (DStump).

They are unstable learners.

• Finally, we select three rule learners: PART, Decision Table (DTable),

and OneR. They are unstable learners.

2.7 Benchmark Data-sets

Table 2.2 gives a summary of the characteristics of the 48 data-sets used in

this experiment. The first and fourth columns indicate the ID number and the

name of the data-set. The second and fifth columns present the information

about the data itself which includes the number of attributes and instances,

the number of attributes excluding the class and the number of instances in

each data-set. The third and sixth columns present the information about

the class of each data-set, and the number of classes on each data-set. The

selection of the 48 data-sets covers the number of instances, which vary from

small to large (up to 20,000), the number of attributes, which vary from five

to 70, and the number of classes, which vary from binary classes to multiple

classes (up to 29).

2.7.1 Imbalanced Data-sets

Table 2.3 shows a summary of the characteristics of the 14 imbalanced data-

sets. The data-sets were employed using different criteria, such as the number
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of instances from 57 up to 3772, the number of attributes from seven up

to 61, and the frequency of each class from almost balanced to extremely

imbalanced.

2.7.2 Selection of Medical Data-sets

A summary of the characteristics of the eight imbalanced medical data-sets

is displayed in Table 2.4. The selected medical data-sets are binary classes.

The selection of the eight data-sets covers the number of instances, which

varies from small to large up to 3772, the number of attributes, which varies

from nine to 31, and the natural class distribution (P%), which indicates the

percentage of the positive instances from the total instances of each data-set.

The results vary from 6.1% for the extremely imbalanced data-set Sick to

45% for the almost balanced data-sets Heart-c and StatlogHeart.

For the data-set selection, we first select the Breastc data-set which has

ten attributes and 286 instances, in which the proportion of the minority

class is 29%; next, we select four moderately imbalanced data-sets,

WDBC, Heart-h, Diabetes and WBreastc, in which the proportions of the

minority class are 37%, 36%, 34% and 34%, respectively; then, we select an

extremely imbalanced Sick data-set, which has 30 attributes and 3772

instances, in which the proportion of the minority class is 6%; finally, we

select two almost balanced data-sets, Heart-c and StatlogHeart data-sets,

in which the proportions of the minority class are about 45%.
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Table 2.2: Experimental data-set characteristics

Data-Sets Information Data Class Data Data-Sets Information Data Class Data

ID Name Attributes Instances Classes ID Name Attributes Instances Classes.

1 Abalone 9 4177 29 25 Lymph 19 148 4

2 Anneal 39 989 6 26 Monk1 7 432 2

3 Audiology 70 226 24 27 Monk2 7 432 2

4 Auto-mpg 8 398 3 28 Monk3 7 432 2

5 Balance 5 625 3 29 Mushroom 23 8124 2

6 Breast 10 286 2 30 Pima 9 768 2

7 Bupa 7 345 2 31 Segment 20 2310 7

8 Car 7 1728 4 32 Sick 30 3772 2

9 Cmc 10 1473 3 33 Sonar 61 208 2

10 Colic 23 368 2 34 Soybeen 36 683 19

11 Crx 16 690 2 35 Spambase 58 4601 2

12 Crx- 21 1000 2 36 Splice 61 3190 3

13 Diabetes 9 768 2 37 StatlogHeart 14 270 2

14 Ecoli 8 336 8 38 Ta 6 151 3

15 Glass 10 214 7 39 Tic-tac-toe 10 958 2

16 Hayes 5 132 3 40 Tumor 18 339 22

17 Heart-c 14 303 5 41 Vehicle 19 846 4

18 Heart-h 14 294 5 42 Vowel 14 990 11

19 Ionosphere 35 351 2 43 Waveform 41 5000 3

20 Iris 5 150 3 44 WBreastc 10 699 2

21 Kr-vs-kp 37 3196 2 45 Wdbc 31 569 2

22 Labor 17 57 2 46 Wine 14 178 3

23 Led 25 1000 10 47 Yeast 9 1484 10

24 Letter 17 20000 26 48 Zoo 17 101 7
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Table 2.3: Imbalanced data-sets

Data-sets Information Data class data

Index Name Attributes Instances Frequency Classes

1 Breastc 10 286 201, 85 2

2 Bupa 7 345 145, 200 2

3 Crx 16 690 307,383 2

4 Crx-g 21 1000 700,300 2

5 Diabetes 9 768 500, 268 2

6 Ionosphere 35 351 126,225 2

7 Kr-vs-kp 37 3196 1669,1527 2

8 Labour 17 57 20,37 2

9 StatlogHeart 14 270 120, 150 2

10 Sick 30 3772 3541, 231 2

11 Sonar 61 208 97,111 2

12 Tic-tac-toe 10 958 626,332 2

13 WBreastc 10 699 458,241 2

14 WDBC 31 569 212,357 2

Table 2.4: Medical data-sets

data-sets information data class data

index name attributes instances frequency P% classes

1 Breastc 10 286 201, 85 29% 2

2 Diabetes 9 768 500, 268 34% 2

3 Heart-c 14 303 165,138 45% 2

4 Heart-h 14 294 188,106 36% 2

5 StatlogHeart 14 270 120,150 44% 2

6 Sick 30 3772 3541,231 6% 2

7 WBreastc 10 699 458,241 34% 2

8 WDBC 31 569 212,357 37% 2
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Chapter 3

An Effective Approach for

Imbalanced Classification:

UBagging

This chapter proposes a novel supervised ensemble learning approach,

unevenly balanced bagging (UBagging) for solving extremely imbalanced

problems. Learning from imbalanced data is an important problem in data

mining research, and one which occurs widely in many real world

applications, e.g., cancer detection on an imbalanced medical data-set.

Much research has addressed the problem of imbalanced data by using

over-sampling and/or under-sampling methods to generate equally balanced

training sets to improve the performance of the prediction models, but it is

unclear what ratio of class distribution is best for training a prediction

model. Bagging is one of the most popular and effective ensemble learning

methods for improving the performance of prediction models; however,

there is a major drawback on extremely imbalanced data-sets. It is unclear

under which conditions standard bagging is outperformed by other

sampling schemes in terms of imbalanced classification. These issues
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motivate us to propose a novel approach, called unevenly balanced bagging

(UBagging), which generates a set of moderately unevenly balanced

bootstrap samples of training sub-sets to increase the diversity of the

individual classifiers in the ensemble to boost the performance of the final

prediction model for imbalanced binary classification. In comparing the

performance of four prediction models based on decision trees C4.5(J48) as

base learning algorithms, our experimental results demonstrate that

UBagging is effective and statistically significantly superior to single learner

J48 (SingleJ48), standard bagging (SBagging), and equally balanced

bagging (BBagging) on 32 imbalanced data-sets.

The chapter is organized as follows. Section 3.1 gives an introduction.

Section 3.2 outlines the designed UBagging algorithm. Section 3.3 presents

related work. Section 3.4 provides the experimental setting. Section 3.5

discusses the experimental results to compare the performance of the four

prediction models, SingleJ48, SBagging, BBagging, and UBagging based on

two evaluation metrics, Fvalue and Gmean. Section 3.6 concludes this chapter.

3.1 Introduction

Imbalanced class distribution (Weiss & Provost 2001) refers to the situation

in which the numbers of training samples are unevenly distributed among

different classes and the costs of misclassifying an instance in different classes

are different. The imbalanced class distribution problem is one of the top ten

challenging problems in data mining research (Yang & Wu 2006), and one

which appears in a large number of real world applications in various domains,

such as fraud detection (Phua, Alahakoon & Lee 2004), RNA gene prediction

(Meyer 2007), and biomedical data prediction (Mazurowski, Habas, Zurada,

Lo, Baker & Tourassi 2008). In medical cancer detection, for example, which

is a typical imbalanced binary classification task, patients with cancer are
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considered to be a minority class, generally forming a small proportion of

the whole population in an imbalanced medical data-set; however the cost

of misclassifying such samples in the interesting minority class as a normal

patient is much higher than the cost of misclassifying normal samples as

a patient with cancer in the other class. The minority class is the more

interesting class for data miners, and it is essential that the performance of

the prediction model is highly accurate in predicting the minority class.

Bagging (Breiman 1996a), known as standard bagging (SBagging) was

proposed in 1996. Because it is one of the most popular and effective

ensemble learning methods for improving the performance of prediction

models, it has been popularly used in a wide range of real world

applications, such as micro-array expression (Hothorn, Lausen, Benner &

Radespiel-Tröger 2004), natural language processing (Wang, Zhou, Qiu,

Zhang & Huang 2010), and inductive logic programming (De Castro Dutra,

Page, Santos Costa & Shavlik 2003). Many empirical studies

(Breiman 1996a, Quinlan 1996, Opitz & Maclin 1999, Bauer &

Kohavi 1999, Dietterich 2000b) have demonstrated that it achieves better

performance than a single learner if the base learners are unstable

(Breiman 1996a). However, in an extremely imbalanced situation, SBagging

performs poorly, especially in rendering poor predictions of the minority

class. This is because SBagging is similar to other traditional algorithms in

attempting to achieve high classification accuracy and it tends to classify

all instances as negative. This is the major drawback of using SBagging to

deal with an imbalanced data-set.

Sampling techniques are considered to be an effective way to tackle the

imbalanced class distribution problem. Goebel stated in his thesis there

must be situations in which standard bagging is outperformed by other

sampling schemes in terms of predictive performance, even though bagging

is the most popular sampling scheme of an ensemble method using equally
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weighted classifier votes (Goebel 2004). Indeed, in an imbalanced situation,

it is unclear whether SBagging can be outperformed by other sampling

schemes. These issues motivate us to propose a new sampling scheme,

unevenly balanced bagging (UBagging) for outperforming the SBagging

prediction models on imbalanced data-sets.

It was empirically demonstrated that bagging can be outperformed

frequently by simple variations in sampling, such as half-sized bags and

double-sized bags (Goebel 2004), but this work did not look at imbalanced

data-sets, and used the same bag size throughout the ensemble. At present,

in existing bagging-based sampling schemes for imbalanced data, most

research has focused on using sampling methods to provide a set of equally

balanced or roughly balanced training sub-sets for training classifiers to

improve the performance of the prediction models for the imbalanced

classification task (Li 2007, Hido, Kashima & Takahashi 2009). To our

knowledge, nobody has used a set of unevenly balanced training subsets

with different bag sizes and varying ratios of class distribution in the

ensemble as a sampling scheme to try to outperform SBagging for

imbalanced data.

This chapter proposes a new sampling scheme to generate a set of

unevenly balanced bootstrap samples to form subsets for training the

prediction model. In each bag, the positive examples Pi are randomly

drawn with replacement from the entire set of positive examples P using a

uniform distribution, whereas the negative examples Ni are randomly

selected with replacement from the original training set again with a

uniform distribution, but a different size for each bag, with |Ni| varying

from 1
2
∗ |P | to 2 ∗ |P | by 0.05 ∗ |P | increments. Thus each ensemble

contains 31 bags, varying in size from 1.5 ∗ |P |, 1.55 ∗ |P |, ..., 3 ∗ |P |.
In comparing the performance of four prediction models all based on the

unstable learner, induction of decision trees C4:5 (J48) (Quinlan 1986) as a
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base learner, which is one of the top ten learning algorithms in data mining

(Wu, Kumar, Ross Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu,

Yu et al. 2008), our experimental results demonstrate that our proposed

algorithm, UBagging, is effective and statistically significantly superior to

single learner J48 (SingleJ48), SBagging, and equally balanced bagging

(BBagging) at a 95% confidence interval on 32 imbalanced data-sets.

The key contributions of this chapter are as follows. (1) a new sampling

scheme, the UBagging algorithm, is presented in Section 2. (2) Empirical

investigation and statistical analysis of the performance of the four

prediction models, SingleJ48, SBagging, BBagging and UBagging are

comprehensively performed. (3) Our UBagging approach is demonstrated

to be statistically significantly superior to the other three prediction

models, SingleJ48, SBagging and BBagging, and is applicable to both

extremely imbalanced and almost balanced data-sets.

3.2 The UBagging Algorithm

Algorithm 2 outlines the algorithm of our new approach, UBagging. Our

designed algorithm maintains the philosophy of bagging, but is very

different from previous approaches for imbalanced classification. In each

sub-set of the training set, the positive instances are randomly selected

with replacement from the entire positive class and evenly distributed,

where the number of positive instances |Pi| have the same size as the entire

positive class, |P |; the negative instances are randomly selected from the

negative class of the original training data with replacement, where the

number of negative instances |Ni| is incrementally increased by 5% of |P |
from 1

2
∗ |P | to 2 ∗ |P |, which results in k = 31 (the number of training

subsets in the ensemble). As a result, the size and class distribution of

sub-sets are different in each bag in the ensemble.
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For the proposed prediction model, a set of classifiers is built based on the

unevenly balanced set of bootstrap samples; each new instance is classified

by a set of classifiers, and the final prediction is made by using majority

voting to aggregate the decisions of the set of classifiers.

Algorithm 2: Unevenly Balanced Bagging

Input:

D, original training set, containing |P | positive
and |N | negative instances;

a learning scheme (e.g. J48, decision trees algorithm);

Output: A composite model, C∗.

Method:

while |Ni| < 2 ∗ |P | do
Create unevenly balanced bootstrap samples of

size |Di| sub-sets, Di = Pi +Ni where

Pi and Ni are randomly drawn with replacement

from P and N , respectively:

|Pi| = |P | and;
|Ni| = (0.5 + 0.05 ∗ i) ∗ |P |;

Train each base classifier model Ci from Di;

end

To use the composite model, C∗ for a test set T on an instance x

where its true class label is y:

C∗(x) = argmaxy
∑
i

δ (Ci(x) = y)

Delta function δ(·) = 1 if argument is true, else 0.
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3.3 Related Work

Ensemble learning methods are considered to be an active research area for

solving important imbalanced class distribution problems. More and more

research (Chawla et al. 2003, Guo & Viktor 2004, Hido et al. 2009, Li 2007)

has focused on ensemble learning methods to solve the imbalance problem.

Ensemble learning is considered to be a powerful technique for boosting the

performance of base learners by combining a set of classifiers in the ensemble.

Bagging (Breiman 1996a) and boosting (Freund & Schapire 1996) are the

most popular representatives of the ensemble learning methods.

Bagging (Breiman 1996a), called SBagging, also known as “bootstrap

aggregating”, uses sampling and voting techniques to boost the performance

of prediction models. A set of bootstrap samples (D1, D2...Dk) randomly

selected from the original training set D with replacement, forms different

sub-sets of training data, where the sample size of the sub-sets of the training

data is the same as the sample size of the original training data; and a set

of classifiers (C1, C2...Ck) trained from the set of bootstrap samples (D1,

D2...Dk) forms an ensemble prediction model. Each new instance is predicted

by the set of classifiers (C1, C2...Ck) and a final prediction is made by taking

a majority vote of the individual classifiers.

Li has proposed bagging ensemble variation (BEV) (Li 2007) to solve

imbalanced problems, where by the number of negative instances is divided

into n disjoint sets, where the size of the disjoint sets is the same as the size of

the positive instances in the original training set, and the N training sub-sets

are formed by uniting one of the disjoint sets and all the positive instances of

the original training set. Thus the bag size and the class distribution of the

training sub-sets are the same in each bag, which is called Balanced Bagging

(BBagging) in this study.
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Goebel’s thesis (Goebel 2004) investigated different sized bags for

bagging, such as bags of half, unit and double size. He found that some

data-sets did better with larger bags and some data-sets did better with

smaller bags, but these approaches do not specifically look at imbalanced

classifiers and use the same subset size in each ensemble - two significant

differences from our approach.

Our previous study (Liang et al. 2011b) also considered varying the

number of positive examples from 0.1 ∗ (|P | + |N |) to 0.9 ∗ (|P | + |N |), but
again in each ensemble all bags were of the same size, since the number of

negative examples was chosen to keep the bag size constant.

Our approach is very different from previous approaches because it gen-

erates unevenly balanced bootstrap samples with varying class distributions

and unequal subset sizes in the ensemble.

3.4 Experimental Setup

A Java platform is used to investigate the performance of the prediction

models. A 10-trial 10-fold cross-validation evaluation is employed for this

study (i.e. each 10-fold cross-validation was repeated 10 times and the results

averaged). The implementation of the decision trees, C4.5 (Quinlan 1986),

J48 with default parameters from WEKA (Witten & Frank 2005), is used

as the base learner. In each ensemble, 31 individual classifiers are used. For

example, there are 1000 instances in the German data-set, which include

300 positive instances and 700 negative instances; for each subset of the

training set, 300 positive instances are randomly selected with replacement

from the entire positive class; negative instances are randomly drawn with

replacement from the original training set with sizes of 150, 165,180, 195, ...,

600, respectively; therefore, the size of each subset of the training set is 450,

465, 480, 495, ..., 900 in the ensemble.
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Table 3.1: Imbalanced data-sets (ordered by %P )

Data-sets Data Information Class Information

Index Name Instances Attributes %P Positive Class Class

1 Abalone19 4177 8 0.80% 19 2

2 LetterA 20000 16 3.90% A 2

3 Car3 1728 6 4.00% good 2

4 Sick 3772 29 6.10% Sick 2

5 FlagWhite 194 29 8.80% white 2

6 Ecoli-4 336 7 10.40% iMU 2

7 Yeast-ME3 1484 8 11.00% ME3 2

8 Glass7 214 9 13.60% headlamps 2

9 Segment1 2310 19 14.30% brickface 2

10 Hepatitis 155 19 20.60% DIE 2

11 VehicleVan 846 18 23.50% van 2

12 Splice1 3190 61 24.00% EI 2

13 Haberman 306 3 26.50% 2 2

14 Lungcancer 32 57 28.10% 1 2

15 Breastc 286 9 29.70% recurrence 2

16 Credit-g 1000 20 30.00% bad 2

17 German 1000 20 30.00% 2 2

18 Breastw 699 9 34.50% malignant 2

19 Tic-tac-toe 958 9 34.70% negative 2

20 Diabetes 768 8 34.90% test positive 2

21 Labor 57 16 35.10% bad 2

22 Ionosphere 351 34 35.90% b 2

23 Heart-h 294 13 36.10% >50 1 2

24 Colic 368 22 37.00% no 2

25 WDBC 569 30 37.30% 1 2

26 Spambase 4601 57 39.40% 1 2

27 Liver-dis 345 6 42.00% 1 2

28 Heart-stat 270 13 44.40% present 2

29 Credit-a 690 15 44.50% 0 2

30 Heart-c 303 13 45.50% >50 1 2

31 Sonar 208 60 46.60% Rock 2

32 Kr-vs-kp 3196 36 47.80% nwon 2
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3.4.1 Data-sets

Table 3.1 shows the 32 imbalanced data-sets selected for this study from UCI

(Merz & Murphy 2006). The first two columns present the index and the

name of each data-set, the third and fourth columns indicate the number of

instances and attributes of the data information, and the final three columns

show the class information: the proportion of the positive examples to the

whole data-set, the name of the positive class, and the number of classes.

The data-sets have different criteria, e.g., the number of instances from 57

to 20000, the number of attributes from 6 to 61, and the proportion of the

positive examples varying from 0.8% to 47.8%.

3.5 Experimental Results and Analysis

This section presents the comparison of the performance of four prediction

models based on two evaluation metrics, Fvalue and Gmean.

Table 3.2 presents a comparison of the performance of the four

prediction models using the average value and average rank based on two

evaluation metrics, Fvalue and Gmean. The results of the average ranks of

Fvalue and Gmean are the output of the Friedman test, and the Null

Hypothesis of this test is rejected, so a post-hoc Nemenyi test is required to

calculate the “critical difference” to determine where one prediction model

is significantly different from another (Demšar 2006). In Table 3.2, the first

two columns indicate the index and name of the data-sets. The final four

columns present the performance of the four prediction models. The last

two rows present the summary of the experimental results, which

respectively indicate the average of evaluation metrics with standard

deviation (STD) and the average rank of evaluation metrics with “critical

difference” of the Nemenyi test over the 32 data-sets.
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Table 3.2: Comparison of the performance of four prediction models based

on Fvalue and Gmean

Data-sets Fvalue Gmean

Index Name SingleJ48 Sbagging Bbagging Ubagging SingleJ48 Sbagging Bbagging Ubagging

1 Abalone19 NA NA 0.051 0.058 0 0 0.836 0.854

2 LetterA 0.954 0.964 0.879 0.902 0.971 0.972 0.994 0.996

3 Car3a NA 0.235 0.378 0.391 0 0.378 0.929 0.933

4 Sick 0.89 0.897 0.798 0.822 0.931 0.926 0.976 0.979

5 FlagWhite NA NA 0.272 0.348 0 0 0.697 0.798

6 Ecoli4 0.579 0.634 0.624 0.64 0.707 0.734 0.917 0.923

7 Yeast-ME3 0.763 0.768 0.781 0.792 0.867 0.866 0.952 0.955

8 Glass7 0.837 0.844 0.859 0.872 0.897 0.905 0.959 0.96

9 Segment1 0.976 0.976 0.974 0.977 0.983 0.983 0.995 0.995

10 Hepatitis 0.366 0.489 0.705 0.722 0.53 0.619 0.88 0.887

11 VehicleVan 0.874 0.909 0.903 0.913 0.919 0.944 0.966 0.97

12 Splice1 0.942 0.937 0.928 0.932 0.969 0.961 0.972 0.974

13 Haerman 0.261 0.326 0.612 0.62 0.418 0.472 0.743 0.752

14 Lungcancer 0.549 0.294 0.727 0.757 0.655 0.439 0.836 0.861

15 Breastc 0.364 0.376 0.599 0.613 0.488 0.5 0.667 0.693

16 Credit-g 0.461 0.505 0.678 0.702 0.587 0.618 0.773 0.799

17 German 0.454 0.502 0.684 0.709 0.581 0.615 0.779 0.807

18 Breast-w 0.924 0.944 0.958 0.97 0.944 0.958 0.976 0.983

19 Tic-tac-toe 0.769 0.906 0.848 0.88 0.816 0.915 0.899 0.925

20 Diabetes 0.621 0.637 0.792 0.811 0.702 0.714 0.848 0.866

21 Labor 0.671 0.797 0.85 0.865 0.738 0.834 0.898 0.91

22 Ionosphere 0.858 0.893 0.942 0.955 0.883 0.904 0.965 0.972

23 Heart-h 0.693 0.71 0.804 0.817 0.753 0.769 0.853 0.864

24 colic 0.783 0.79 0.818 0.837 0.818 0.822 0.86 0.877

25 WDBC 0.912 0.943 0.968 0.972 0.928 0.953 0.979 0.982

26 Spambase 0.908 0.93 0.95 0.956 0.924 0.94 0.964 0.968

27 Liver-dis 0.548 0.628 0.798 0.817 0.619 0.684 0.797 0.823

28 Heart-sta 0.755 0.786 0.884 0.895 0.781 0.808 0.889 0.902

29 Credit-a 0.833 0.849 0.866 0.876 0.849 0.863 0.873 0.884

30 Heart-c 0.733 0.764 0.869 0.881 0.756 0.785 0.866 0.881

31 Sonar 0.716 0.764 0.899 0.901 0.733 0.785 0.896 0.898

32 Kr-vs-kp 0.994 0.994 0.994 0.995 0.994 0.994 0.994 0.995

Average 0.656 0.687 0.772 0.787 0.711 0.739 0.888 0.902

STD 0.284 0.276 0.207 0.202 0.274 0.254 0.087 0.076

Mean Rank 3.64 2.77 2.37 1.22 3.8 3.14 2.05 1.02

“critical difference” 0.829 0.829
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The experimental results indicate that our proposed new sampling

scheme, UBagging, performs the best on average with the smallest STD

and average rank based on both evaluation metrics, Fvalue and Gmean,

across all data-sets (results in bold indicate the best overall performance

out of the four classifiers). Table 3.2 shows that UBagging achieves the

highest average of (0.787) with the lowest average rank (1.22) for Fvalue,

and the highest average of (0.902) with the lowest average rank (1.02) for

Gmean. Therefore, the UBagging prediction model is better than the other

three prediction models: SingleJ48, SBagging, and BBagging.

In addition, Table 3.2 indicates that UBagging achieves better Gmeans

than the other three prediction models on all the data-sets, except for

BBagging on the Segment1 data-set (where they perform equally well); in

Table 3.2 on the other hand, SBagging achieves the best Fvalue compared to

the other three prediction models on only 3 out of 32 data-sets, LetterA,

Sick and T ic − tac − toe, while SingleJ48 achieves the best Fvalue on 1 out

of 32 data-sets, Splice1. We note that lettersA, Sick, and Segment1 are

three large, highly imbalanced data-sets. We further investigate the

performance of the four prediction models on four large imbalanced

data-sets, LetterA, Sick, Splice1, and T ic − tac − toe. We observe that

SingleJ48 and SBagging achieve a very high TNR and a very low TPR on

those data-sets. This is why SingleJ48 and SBagging achieve a high Fvalue

with lower Gmean on those larger data-sets.

Table 3.2 shows that on three highly imbalanced data-sets, Abalone19,

Car3 and FlagWhite, SingleJ48 and SBagging get 0 on Gmean - the reason

is that their TPR =0, which is also why their Fvalue is not available (NA).

For the most balanced data-set, Kr-vs-kp, the four methods produce

fairly similar results. This is not so surprising, although the results for the

other fairly balanced data-sets (e.g. Heart-c and Sonar) show more

differences, indicating that UBagging performs better under these nearly
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3.5 Experimental Results and Analysis

balanced conditions too. It can also be seen that for the largest data set,

LetterA, all four classifiers perform well, even though there are only 3.9%

positive examples, presumably because there are enough positive examples

in such a large data set for them to have sufficient influence on the model.

Figure 3.1 presents a comparison of the performance of the prediction

models with the Nemenyi test, where the x-axis indicates the average rank

of Fvalue, the y-axis indicates the ranking order of the four prediction

models, and the horizontal bars indicate the “critical difference”. If the

horizontal bars between prediction models overlap, it means there is no

statistically significant difference between the prediction models at a 95%

confidence interval. The results indicate that based on Fvalue, our proposed

UBagging is statistically superior to the other three prediction models,

BBagging, SBagging and SingleJ48; BBaging and SBagging are statistically

superior to SingleJ48; however, there is no statistically significant difference

between BBagging and SBagging.

Figure 3.2 presents a comparison of the performance of the four

prediction models with the Nemenyi test based on the evaluation metric,

Gmean, where the x-axis indicates the average rank of Gmean, the y-axis

indicates the ranking order of Gmean for the four prediction models, and the

horizontal bars indicate the “critical difference”. If the horizontal bars

between prediction models do not overlap, it means there is a statistically

significant difference between the prediction models at a 95% confidence

interval. The results indicate that based on Gmean, our proposed UBagging

is statistically superior to the other three prediction models, BBagging,

SBagging and SingleJ48; BBagging is superior to the other two prediction

models, SBagging and SingleJ48; however, there is no statistically

significant difference between SBagging and SingleJ48.
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Figure 3.1: Comparison of average rank of Fvalue of the performance of four

prediction models with the Nemenyi test, where the x-axis indicates the

average rank of Fvalue, the y-axis indicates the ranking order of the four

prediction models, and the vertical bars indicate the “critical difference”.
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Figure 3.2: Comparison of average rank of Gmean of the performance of four

prediction models with the Nemenyi test, where the x-axis indicates the

average rank of Gmean, the y-axis indicates the ranking order of the four

prediction models, and the horizontal bars indicate the “critical difference”.
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3.6 Conclusion

3.6 Conclusion

This chapter proposes a new approach, called UBagging, to boost the

performance of the prediction model for solving extremely imbalanced

problems. This approach generates unevenly balanced bootstraps samples

with unequal bag sizes and varying ratios of class distribution, which is

different from previous approaches, which to the best of our knowledge all

use identical or near-identical sized bags to improve the performance of the

bagging predictor to solve imbalanced classification problems. We

compared the performance of the new approach, UBagging, with three

other prediction models, SingleJ48, SBagging, and BBagging, based on two

evaluation metrics, Fvalue and Gmean. The experimental results demonstrate

that our new approach is statistically significantly superior to the other

three prediction models at 95% confidence interval on two evaluation

metrics over 32 imbalanced data-sets. We observe that this new approach,

UBagging, performs well on both extremely imbalanced and almost

balanced binary classification tasks. We have examined our approach using

an unstable base learner, J48. We believe the success of these results will

also apply to other base learners (initial experiments with an SVM indicate

support for this hypothesis). Our future research will focus on the

performance of UBagging with other base learning algorithms on

imbalanced data-sets. There are also other aspects that could be

investigated too, such as altering the sizes over which Ni varies, and the

increment between successive bags – here we use an increment of 5% of |P |
having found this to be better than 10%, but a more thorough investigation

of these aspects could be made.
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Chapter 4

An Empirical Study of Bagging

Predictors with Different

Learning Algorithms

This chapter investigates the performance of ensemble learning systems

with respect to different learning algorithms in terms of learning from

natural class distribution. Bagging is a simple yet effectively designed

ensemble learning method for generating a set of bootstrap samples with

replacement for training a set of classifiers and aggregating a set of

individual classifiers to improve the performance of the resulting prediction

model. Despite the popular usage of bagging in many real-world

applications, existing research is mainly concerned with studying unstable

learners as the key to ensuring the performance gain of a bagging predictor,

with many key factors remaining unclear. We assert that both stability and

robustness are key requirements for building a high performance bagging

predictor. In addition, the definitions of robustness and stability are

formally defined. A novel approach, two-dimensional robustness and

stability decomposition, is proposed to rank the base learners into different
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4.1 Introduction

categories to investigate the performance of bagging predictors with respect

to different learning algorithms.

In this chapter, we carry out comprehensive empirical studies to

evaluate the performance of bagging predictors by using 12 different

learning algorithms and 48 benchmark data-sets. The experimental results

demonstrate that bagging is influenced by the combination of robustness

and instability, and indicate that robustness is important for bagging to

achieve a highly accurate prediction model. In addition, our studies

demonstrate that bagging is statistically significantly superior to most

single learners, except for KNN and Näıve Bayes (NB). Multi-layer

perceptron (MLP), Näıve Bayes Trees (NBTree), and PART are the

learning algorithms with the best bagging performance.

The chapter is organized as follows. Section 4.1 gives an introduction.

Section 4.2 outlines the designed framework. Section 4.3 presents base learner

characterization. Section 4.4 presents the experimental setting. Section 4.5

analyzes the experimental results. Section 4.6 concludes the chapter and

discusses future research directions.

4.1 Introduction

The aim of ensemble learning is to improve the performance of the

prediction model by combining a set of multiple base learners. The high

accuracy and diversity of ensemble learning have captured the interest of

the data mining and machine learning community for about two decades.

Techniques of effective ensemble methods have been investigated

theoretically and empirically by many previous researchers

(Breiman 1996a, Freund & Schapire 1996, Kittler 1998, Schapire 1990).

Bagging (Breiman 1996a) is one of the most popular and effective parallel

ensemble learning methods. Bagging uses a set of bootstrap samples to
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train a set of classifiers, and the prediction of a new example in the test set

is made by the majority votes of a set of trained classifiers.

As a result of its simple yet effective design, bagging has been popularly

used in many real-world applications (West et al. 2005, Kim & Kang 2010,

Lopes et al. 2008, Tu et al. 2009b, Tu, Shin & Shin 2009a, Xu, Zuo, Zhang

& He 2010, Hothorn et al. 2004, Hu et al. 2006). Bagging is widely accepted

as a variance-reduction technique, so it is mostly applied to unstable, high

variance algorithms (Tuv 2006). Breiman heuristically defined instability as

an unstable classifier, which means that a small change in the training data

can lead to large change in the resulting prediction model (Breiman 1996a).

Existing research is mainly concerned with studying unstable learners as

the key to improving the performance of a bagging predictor, with many

key factors remaining unclear. This study asserts that both stability and

robustness are key requirements to ensure high performance for building a

bagging predictor.

Previous empirical studies (Breiman 1996a, Quinlan 1996, Opitz &

Maclin 1999, Bauer & Kohavi 1999, Dietterich 2000b, Breiman 1996b) have

demonstrated that bagging is often more accurate than any of the

individual learners in the ensemble if the base learners are unstable.

However, most previous experimental research only focuses on one or two

base learners, or only considers one factor: instability. There are implicit

measures to group the base learners into different categories to analyze

bagging; moreover, it is not clear from the literature which bagging

predictor performs best on a application.

Existing studies have demonstrated the effectiveness of the bagging

predictor, but a comprehensive study of bagging predictors with respect to

different learning algorithms has not been undertaken. Given a large body

of learning algorithms, existing research is limited in its ability to answer

practical questions such as (1) when should we expect a bagging predictor
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to outperform a single learner? (2) which learning algorithms are expected

to achieve the maximum accuracy gain? (3) does bagging improve the

performance of low variance but highly accurate base learners? and (4)

which bagging predictor performs best on randomly selected databases from

an application point of view? Answering these questions poses the following

research challenges: (1) how to rank/group the base learners into different

categories, and (2) how to conduct a fair and rigorous study to evaluate

multiple algorithms over multiple data-sets (Demšar 2006).

This chapter presents a comprehensive study on bagging predictors

which uses 12 learning algorithms and 48 benchmark data-sets. The main

contributions of this chapter are as follows:

1. A novel approach is proposed, asserting that both stability and

robustness are key requirements for building a high performance

bagging predictor. Definitions of robustness and stability are formally

defined to investigate the performance of bagging predictors with

respect to different learning algorithms on 48 data-sets.

2. A novel approach, the two-dimensional decomposition of robustness

and stability, is proposed to rank based learners into different

categories: strong, weak, stable and unstable learners.

3. Statistical tests are used to compare the classifiers to draw valid con-

clusions.

4.2 Designed Framework
Figure 4.1 presents the designed framework, which is divided into three tasks:

(1) two important factors, robustness and stability are defined; a novel two-

dimensional robustness and stability decomposition is proposed to categorize

base learners into different categories; (2)the use of Friedman test with post-
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Evaluate Bagging Predictors Based on Different Learning Algorithms

Evaluate base learners
Compare bagging with

each of single Learners

Compare the performance

of all bagging predictors

1. Wilcoxon signed rank test

2. a paired-differences 10-

fold cross-validated t-test.

1. Define robustness and

stability

2. Classify base learners

1. Friedman test

2. Post-hoc Nemenyi test

Figure 4.1: Designed framework

hoc Nemenyi test to compare multiple learners (e.g., comparison of bagging

predictors with one another) to determine which bagging predictors have the

best performance; and (3) the comparison of bagging with single learners, two

statistical tests are used: (a) using Wilcoxon signed-rank test to compare two

learners (e.g., bagging SVM and the single learner SVM) to determine when

bagging will outperform a single learner, and (b) using a paired-difference

cross-validated t-test to determine which bagging predictor on average has

the largest performance gain across all the benchmark data-sets.

4.3 Base Learner Characterization

To investigate the bagging predictors with respect to different learning

algorithms, a two-dimensional robustness and stability decomposition is

proposed to characterize base learners based on estimated error rate, and

variance as a performance measure to assess the base learners.

Definition 1 Robustness refers to the ranking of the average performance

of a base learner among a set of learners. For example, if we assume the
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4.3 Base Learner Characterization

estimated error rate is a performance measure, we rank all base learners

according to their estimated error rate performance on each data-set to obtain

the average rank over all benchmark data-sets; the normalized ranking order

of the estimated error rate is then used to capture the robustness of a learner,

with a smaller ranking number denoting a more robust learner.

Definition 2 Stability refers to the ranking of the variance of a base

learner in a set of learners. For example, if we assume the variance of the

error rate is a performance measure, we rank all base learners according to

their variance on each data-set to obtain the average rank over all

benchmark data-sets; the normalized ranking order of variance is then used

to capture a learner’s stability, with a smaller ranking number denoting a

more stable learner.

Figure 4.2: Two-dimensional robustness and stability decomposition of the

base learners based on estimated error rate and variance, where the x-axis

denotes the robustness of the base learners from robust to weak, and the

y-axis denotes the stability of the base learners from stable to unstable.
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Figure 4.2 illustrates two-dimensional Robustness and Stability

decomposition in assessing base learners based on estimated error rate and

variance as performance measures. There are three steps to plotting Figure

4.2 as follows:

1. All base learners are ranked based on their estimated error rate and

variance. The base learner with the best performance (the lowest error

rate and variance) is ranked as 1, while the worst performance (the

highest error rate and variance) is ranked as 12.

2. The average ranks of their estimated error rate and variance are

calculated.

3. The normalized ascending order of average ranks of estimated error rate

and variance is used to create the two-dimensional plot to represent the

robustness and stability of base learners, respectively.

In Figure 4.2, MLP and SVM with a smaller value of robustness denote

more robust learners, while OneR and Dstump with a larger value of

robustness denote more robust learners. On the other hand, NB and SVM

with a smaller value of stability denote more stable learners, while

RandTree and DTable with a larger value of stability denote more unstable

learners. In addition, we observe that MLP and SVM, both having

relatively lower variance, are similar to and have more robustness than

KNN and NB respectively.

4.4 Experimental Setting

We use WEKA implementation of the 12 algorithms with default parameter

settings in this empirical study (Witten & Frank 2005). To reduce

uncertainty and obtain reliable experimental results, all the evaluations are
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assessed under the same test conditions by using the same randomly

selected bootstrap samples with replacements in each fold of 10-trial 10-fold

cross-validation on each of the 48 data-sets in Table 2.2 collected from the

UCI Machine Learning Repository (Merz & Murphy 2006).

An experimental study of model selection comparing the two common

methods, cross-validation and bootstrap, demonstrate that ten-fold cross

validation is the best method to use to select a good model from a set of

classifiers (model selection) (Kohavi 1995). Therefore, we use the 10-trial

10-fold cross-validation technique for this study.

On each data-set, 20 bootstrap samples are drawn from each iteration

training fold of 10-fold cross-validation with replacements. The integer k is

the number of bootstrap samples. Each bootstrap sample Dk of size |M |
has the same number of instances as the original training set. We trained

the classifiers of different base learners on the same bootstrap sample Dk

of a ten-fold cross validation respectively, and tested the unseen instances

on the test set Tk. For bagging, the prediction C∗ is made by the majority

vote of the k classifiers (C1, C2, ..., Ck) which were previously trained from

the k bootstrap samples, D1, D2, ..., Dk in each training set; while for the

single base learner the classifier is trained from the original training set. The

misclassification error rate is averaged over ten-trial ten-fold cross-validation,

and we therefore we predicted the measures of their performance based on

the average error rate and standard deviation over ten trials. We utilized

0/1 loss to estimate the bias and variance to measure the robustness and

stability of the base learners.

4.5 Experimental Analysis

Section 4.5 analyzes the experimental results as follows: (1) Subsection

4.5.1 is based on the Friedman test with the Post-hoc Nemenyi test to
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compare all bagging predictors with each other to determine which group of

bagging predictors performs the best and the worst, respectively; (2)

Subsection 4.5.2 is based on the Wilcoxon signed-rank test to compare each

pair of bagging predictors and single learners to determine which bagging

predictors are statistically significantly superior to their single learners; and

(3) Subsection 4.5.3 is based on a paired-difference cross-validated t-test to

compare the average improvement of each pair of bagging predictors and

single learners over multiple data-sets.

4.5.1 Comparison of All Bagging Predictors

The Friedman test is used for the comparison of multiple bagging predictors.

First, we perform the Friedman test to compare 12 bagging predictors on each

data-set, and then to obtain their mean ranks over multiple data-sets. If the

Null Hypothesis is rejected, the test indicates that there is at least a difference

between the mean ranks of bagging predictors, and the corresponding post-

hoc Nemenyi test for the additional exploration of the differences between

mean ranks provides specific information on which mean rank is significantly

different from another.

Table 4.1: Mean rank of Friedman test for error rate of bagging predictors

Mean rank of ErrorRate of bagging predictors from Friedman Test

Learners B MLP B NBTree B PART B J48 B SVM B RandTree
Mean Rank 3.61 3.82 3.96 5.24 5.42 5.57

Learners B RepTree B NB B KNN B DTable B OneR B DStump
Mean Rank 6.59 7.47 7.56 7.56 10.38 10.81

Table 4.1 shows the statistical results of the Friedman test and the average

rank of the errorrate performance of bagging predictors. The second and
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fourth rows indicate the name of the bagging predictors, and the third and

last rows indicate the mean rank of the errorrate performance of bagging

predictors from the Friedman test results.

Figure 4.3 reports the results of the Friedman with post-hoc Nemenyi

test for comparison of the mean rank of all bagging predictors over 48 data-

sets. The x-axis indicates the mean rank of each algorithm, while the y-

axis indicates the ascending ranking order of the bagging predictors. The

horizontal error bars indicate the “critical difference”. If the horizontal bars

between bagging predictions do not overlap, that means there is a statistically

significant difference between the bagging predictions at a 95% confidence

interval. We observe that the group of most robust base learners, MLP,

NBTree, and PART contributes to the best bagging predictors, whereas the

group of weakest learners, OneR and DStump, leads to the worst bagging

predictors. There is a statistically significant difference between the two

groups. As a result, one can conclude that the robustness of the base learners

is an important factor for building accurate bagging predictors.

The ranking order of most robust base learners is MLP, SVM, NBTree,

PART and J48, while the ranking order of the most robust bagging predictors

is: B MLP, B NBTree, B PART, B J48, and B SVM. SVM is more robust

than J48, but B J48 is superior to B SVM according to the mean rank of

bagging predictors. The possible reason is that the instability of SVM is

lower than the instability of J48. We conclude that bagging is influenced by

the combination of instability and robustness, and point out that robustness

is an important factor for achieving a highly accurate prediction model.
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Figure 4.3: Friedman and post-hoc Nemenyi test results of comparison of

all bagging predictors, where the x-axis indicates the mean rank of bagging

predictors, the y-axis indicates the ranking order of the bagging predictors,

and the horizontal error bars indicate the “critical difference”.

Table 4.2: The results of the Wilcoxon signed-rank test to compare the

estimated ErrorRate of bagging and single learners. The significance level

is .05.

Wilcoxon signed-rank test to compare bagging and single learners

Learners NB KNN SVM MLP DStump NBTree
p-values .555 .110 .001 .000 .000 .000

Learners DTable OneR J48 PART RepTree RandTree
p-values .000 .000 .000 .000 .000 .000
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4.5.2 Comparison of Two Learners Bagging and Single

Learner

The Wilcoxon signed-rank test is considered to be safe from the statistical

point of view and is more powerful than t-test when the test conditions

cannot meet the assumption requirements of a parametric test. Therefore,

we performed this test to determine whether there really is an improvement in

performance between the two learners, bagging and single learner. The Null

Hypothesis is that the median of differences between bagging and a single

learner equals 0. Therefore, the Null Hypothesis of this test states that both

learners perform equally well, while the alternative Null Hypothesis states

that the performance difference between the two learners is significant.

Table 4.2 presents the summarized results of the Wilcoxon signed-rank

test for the performance between all pair-wise combinations of the

comparisons, bagging and individual single learners. If a calculated p-value

is greater than α value, 0.05, then the p-values are highlighted and we

accept the null hypothesis, e.g., both KNN and NB. For all other cases, the

p-value is less than the α value, 0.05 and we reject the rest of the null

hypothesis. Therefore, the Wilcoxon signed-rank test indicates that bagging

performs statistically significantly better than most of the single learners,

except for KNN and NB. Previous studies have concluded that KNN and

NB are stable learners, so their performance in bagging predictors is not

supposed to be good. It is consistent with previous research.

4.5.3 Comparison of Average Improvement of Bagging

Figure 4.4 presents the average improved performance of bagging over

single learner on multiple data-sets. Each point plots the averaged

difference in the performance of the two algorithms, bagging and single

learner, on all benchmark data-sets. The vertical axis indicates the
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Figure 4.4: The improved accuracy between bagging predictors and

individual base learners on average over multiple data-sets. The error bars

present a 95% confidence interval based on the cross-validated t-test.

observed difference, where the error bars indicate the statistical significance

of the observed difference. In the plot, the 12 learners are sorted in an

ascending order of their averaged differences.

Figure 4.4 demonstrates that bagging RandTree gains nearly 6%

improvement in Error Rate on average over 48 data-sets, while there is

almost no gain for bagging NB and KNN. These findings are consistent

with Breiman’s theories and our experimental results of the Wolcoxon

signed-rank test in Table 4.2. However, bagging MLP and SVM have better

performance gain than bagging KNN and NB over 48 data-sets. According

to Breiman’s theories (Breiman 1996a), if they have similar variance with

KNN and NB, respectively, they should not have a better gain than KNN

and NB. A possible reason is that both MLP and SVM are stronger than

KNN and NB.
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4.6 Conclusions

This chapter empirically studies the performance of bagging predictors with

respect to different algorithms in terms of learning from natural class

distribution. It reports a comprehensive empirical study to evaluate the

performance of bagging for 12 algorithms on 48 data-sets, in which first

both robustness and stability were defined to investigate when bagging is

influenced by different types of base learners. Base learners were then

ranked into different categories by using two dimensional robustness and

stability decomposition to analyze bagging predictors. Surprisingly, we

found that MLP and SVM have relatively low variance with KNN and NB,

while each of them is stronger than KNN and NB, respectively. However,

our results demonstrate that bagging is most often statistically superior to

a single learner, except for KNN and NB. In addition, we found that MLP

is the strongest base learner of all 12 base learners, and that bagging MLP

is the best predictive model of a total of 24 algorithms across numerous

domains on 48 data-sets. Furthermore we observed that the strongest base

learners such as MLP, NBTree and PART can be used to build the best

bagging predictors. This finding is consistent with previous empirical

studies and will provide a useful guideline for real world applications in

selecting a suitable prediction model for projects. There was a distinct

advantage to including different categories of base learners in this study

and a new method is provided to rank those base learners into different

categories, especially when two important factors are defined to analyze

base learners and investigate when bagging is influenced by different types

of base learners. We query why and how bagging would improve low

variance algorithms, such as SVM and MLP.
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Chapter 5

An Empirical Study of the

Sensitivity of Bagging on

Imbalanced Class Distribution

This chapter investigates the effect of varying levels of class distribution on

the sensitivity of bagging. The sensitivity refers to whether there is large

change in the performances of the bagging predictor when the levels of class

distribution are varied; if there is a large change, it means that the bagging

predictor is sensitive, whereas if there is no change or less change in the

performance of the bagging predictor, it means that the bagging predictor is

insensitive.

As growing numbers of real world applications involve imbalanced class

distribution, learning from imbalanced class distribution is considered to be

one of the most challenging issues in data mining and machine learning

research. However, it is unclear which bagging predictors are sensitive when

levels of class distribution are changed. The assessment of the sensitivity of

a bagging predictor is based on the ranking of the changed Gmean (CG)

performance of bagging predictors between two adjacent levels of class

63



5.1 Introduction

distribution, and the average rank of the CG performance of bagging

predictors is compared. The largest mean rank of a bagging predictor

indicates that the bagging predictor is sensitive; by contrast, the lowest

mean rank of a bagging predictor indicates that the bagging predictor is

insensitive to changing levels of class distribution.

This chapter empirically investigates the sensitivity of bagging with

respect to 12 learning algorithms at nine levels of class distribution on 14

imbalanced data-sets by using statistical and graphical methods to address

the important imbalanced problem and the effect of varying levels of class

distribution on bagging predictors. In addition, statistical analyses are

performed to ensure the results are validated. The experimental results

demonstrate that bagging MLP and bagging NB are insensitive when the

levels of imbalanced class distribution vary. Furthermore, we observe that

there is no statistically significant difference between bagging MLP and

bagging NB, and both have statistically significant differences when

compared with the remaining ten bagging predictors.

The chapter is organized as follows. Section 5.1 gives an introduction.

Section 5.2 presents the outline of the designed framework and two

evaluation metrics: ROC curve and Gmean. Section 5.3 presents the

experimental results analysis which uses both statistical and graphical

methods. Section 5.4 concludes the chapter.

5.1 Introduction

Imbalanced class distribution refers to the training samples that are non-

uniformly distributed among classes. Typically, in a binary classification,

the minority class samples are much smaller than the majority class samples;

the minority class and majority class are regarded as a positive class and a

negative class, respectively.
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A growing number of researchers focus on solving imbalanced class

distribution problems in real world applications in a variety of domains,

such as credit card fraud detection, medical diagnosis, and biological data

analysis (Chen & Wasikowski 2008). However, it is unclear which bagging

predictors with which learning algorithms are insensitive to imbalanced

class distribution, and which may perform well if they are directly applied

on the imbalanced data-sets.

(Weiss & Provost 2001) evaluated the effect of class distribution on

classifier learning by assessing the relationship between training class

distribution and the performance of the decision trees C4.5 learner to draw

their conclusions as to which distribution is best for training, based on two

evaluation measures: error rate and Area Under the ROC curve (AUC).

However, they did not evaluate which learner is sensitive when the levels of

class distribution vary. Moreover, imbalanced class distribution often causes

learning algorithms to perform poorly on the minority class; the

mis-classification error rate cannot determine the accuracy of the minority

class (He & Garcia 2009, Weiss & Provost 2001). Two evaluation measures,

Receiver Operating Characteristic (ROC) Curve and Geometric mean

(Gmean) are therefore adopted for this study.

Bagging (Breiman 1996a) utilizes bootstrap sampling and majority vote

techniques to improve the performance of the prediction models. It has been

applied to a variety of real world applications, such as micro-array expression

(Hothorn et al. 2004), financial decision applications (West et al. 2005), and

Natural Language Processing (Wang et al. 2010), but it is unclear which

bagging predictors are sensitive when the levels of class distribution vary.

Our previous studies investigated the performance of bagging predictors with

respect to different learning algorithms (Liang et al. 2011a) and with respect

to different levels of imbalanced class distribution (Liang et al. 2011b), but we

did not investigate the sensitivity of bagging, so it is unclear which bagging
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predictors are sensitive to varying levels of class distribution.

Investigating the sensitivity of bagging predictors presents the following

research challenges: (1) how to evaluate the sensitivity of the bagging

predictors between the adjacent two different levels of class distribution

over multiple data-sets, and (2) how to use graphical methods to visualize

the sensitivity of the bagging predictors.

Our main contribution is to conduct a comprehensive evaluation of the

sensitivity of bagging predictors to understand the effect of varying levels of

class distribution by using two evaluation methods: (1) statistical methods

to draw validated conclusions, and (2) graphical methods to further visualize

the sensitivity of bagging predictors. As a result, our research provides both

graphical and statistical comparisons of the sensitivity of bagging predictors

with the underlying 12 base learners when the levels of class distribution vary.

The experimental results provide a useful guide for data mining practitioners

to understand the sensitivity of the bagging predictors and solve imbalanced

class distribution problems for their applications.

5.2 Designed Framework

Figure 5.1 represents a designed framework for investigating the sensitivity of

bagging predictors as follows: (1) a random under-sampling (RUS) method

is used to change the original data-set into nine new data-sets with different

imbalanced class distribution; (2) a 10-trial 10-fold cross-validation (CV) is

performed on each altered data-set; (3) statistical methods are applied to

draw validated conclusions; and (4) two evaluation metrics are adopted to

further visualize the sensitivity of bagging predictors.
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Evaluate the Sensitivity of Bagging on Imbalanced Class Distribution  

10-trial 10-fold CV on new altered data-sets 

Statistical Methods Graphical Methods 

Based on the calculated CG  

� Friedman Test 

� Post-hoc Nemenyi Test 

Based on evaluation metrics:  

� G-mean 

� ROC Curve 

Use RUS method to change each original data-set into 9 new data-sets with 

various levels of Imbalanced class distribution 

h i i l d

l l

CV

i

Figure 5.1: Designed framework

5.2.1 Sensitivity of Bagging Predictor

Definition 3 Sensitivity refers to whether there is large change in the

performance of bagging predictors, when the levels of imbalanced class

distribution vary. If there is a large change in the performances of the

bagging predictor, it means the bagging predictor is sensitive; on the other

hand, if there is little or no change in the performances of the bagging

predictor, it means the bagging predictor is insensitive.

The assessment of the sensitivity of bagging predictors is based on the

ranking of the changed Gmean (CG) of bagging predictors between two

adjacent levels of class distribution, and the average rank of bagging

predictors is compared. The bagging predictor with the largest mean rank

indicates that the bagging predictor is sensitive; by contrast, the bagging

predictor with the lowest mean rank indicates that the bagging predictor is

insensitive to changing levels of class distribution.
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The details of how to calculate the mean rank of the sensitivity of bagging

predictors and how perform the statistical analysis to assess the sensitivity

of bagging predictors are as shown below.

5.2.2 Friedman Test with Post-hoc Nemenyi Test

In the statistical method, the Friedman test with corresponding post-hoc

Nemenyi test (Demšar 2006) is used to compare multiple bagging predictors:

1. the changed Gmean (CG) between two adjacent levels of class

distribution is calculated; there are eight CG values for each bagging

predictor on each original imbalanced data-set.

2. CG is used to rank bagging predictors on each data-set; the lowest CG

value is ranked as 1, the second lowest is ranked as 2, and so on. If

there is a tie, the average value of their ranks is used. For each bagging

predictor there are eight ranks on each data-set, and 112 ranks over 14

of the data-sets.

3. The Friedman test is used to obtain the average rank of CG among 12

bagging predictors over all data-sets.

4. The post-hoc Nemenyi test is used to calculate “critical difference”

(CD), and to determine where there is a significant difference among

bagging predictors. The bagging predictors with the smallest value of

average ranks are insensitive, meaning that the bagging predictors work

well in imbalanced class distribution situations. The bagging predictors

with the largest value of average ranks are sensitive to different levels

of class distribution, meaning that the bagging predictors do not work

well in extremely imbalanced class distribution situations.
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5.2.3 Evaluation Metrics

The graphical method visualizes the performance of selected bagging

predictors to further examine the statistical results:

1. A ROC curve is used to plot the pairs of False Positive Rate (FPR)

and True Positive Rate (TPR) on the x-axis and y-axis, respectively.

In this study, a ROC curve is used to represent the performance of

each bagging predictor at nine different levels of class distribution.

2. Gmean is calculated by equation 2.8 to summarize and to monitor the

accuracy rates of both TPR and TNR for the minority and majority

classes, respectively.

5.3 Experimental Results

5.3.1 Statistical Analysis

Table 5.1: Statistical results of Wilcoxon signed-rank test

Wilcoxon Signed-Rank Test

MLP NB KNN PART DStump SVM NBTree J48 RdTree OneR RepTree DTable

MLP . - .881 .004 .001 .018 .000 .000 .000 .000 .000 .000 .000

NB .027 .032 .042 .008 .001 .000 .000 .000 .000 .000

KNN .528 .684 .398 .112 .010 . .000 .000 .000 .000

PART .813 .519 .198 .001 .002 . .000 .000 .000

DStump .444 .441 .079 .057 .000 .000 .000

SVM .825 .188 .086 .001 .001 .000

NBTree .282 .115. .000 .000 .000

J48 .855 .016 .000 .000

RdTree .018 .002 .000

OneR .837 .002

RepTree .000

DTable -
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Table 5.1 presents the results of the Wilcoxon signed-rank test to indicate

which bagging predictors are more sensitive to the different imbalanced levels

of class distribution. The experimental results are based on the absolutely

different value of the Gmean between two adjacent levels of class distribution.

For each original data-set, we compared the two adjacent levels of the nine

levels of class distribution, and there were eight groups with an absolutely

different value of Gmean for every bagging predictor on each data-set. We

ranked all 12 bagging predictors on each of eight groups on an original data-

set, so there are 112 ranks for each bagging predictor on 14 data-sets.

The Wilcoxon signed-rank test is used to compare the 112 pairs of ranks of

two bagging predictors to determine whether there is a significant statistical

difference between the two bagging predictors. If the statistical value is

equal to or greater than value .05, they are highlighted in red and there is no

significant difference between the two bagging predictors. Otherwise, there is

a significant difference between the two bagging predictors. The test results

indicate that there is no statistically significant difference between bagging

MLP and bagging NB. Both are statistically significantly different from the

remaining 10 bagging predictors. However, the Wilcoxon signed-rank test

only shows whether their is a statistically significantly difference between

two bagging predictors and does not show which bagging predictor is more

sensitive. The Friedman test is required to show the sensitive ranking order

of bagging predictors.

Figure 5.2 presents a comparison of all bagging predictors with the

Nemenyi test, where the x-axis indicates the average rank of CG

performance of the bagging predictors; the y-axis indicates the ascending

order of the average rank of CG performance, which represents bagging

predictors from insensitive to sensitive; and the horizontal bars indicate the

CD. If the horizontal bars between bagging predictors do not overlap, it

means there is a statistically significant difference between the bagging
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Figure 5.2: Comparison of all bagging predictors with the Nemenyi test,

where the x-axis indicates the average rank of the bagging predictors, the

y-axis indicates the ascending order of the average rank of CG performance,

and the horizontal bars indicate the CD.

predictors at a 95% confidence interval. The results indicate that the

bagging predictors Multi-layer Perceptron (MLP) and Näıve Bayes (NB)

are the most insensitive predictors, which means that the performance of

the bagging predictors changes gradually between adjacent levels of class

distribution, so they are insensitive to varying levels of class distribution;

By contrast, the bagging predictors Decision Table (DTable), RepTree and

OneR are the most sensitive predictors, which means that the performance

of those bagging predictors changes sharply between adjacent levels of class

distribution, so they are sensitive to varying levels of class distribution. The

ranking order of the CG performance of the sensitive bagging predictors is

therefore greater than that of the insensitive bagging predictors when the

levels of class distribution change. There are statistically significant

differences between the two groups.
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Figure 5.3: Comparison of ROC curve and Gmean among selected bagging

predictors and data-sets.
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5.3.2 Graphical Analysis
Graphical methods are used to further assess the sensitivity of bagging

predictors, thus we only select three bagging predictors: two insensitive

bagging predictors and one highly sensitive bagging predictor for

comparisons over four original data-sets.

The first column of Figure 5.3 presents the Gmean comparisons of three

bagging predictors at nine levels of class distribution on four original data-

sets, where the x-axis indicates the levels of class distribution, and the y-axis

indicates the Gmean value. The second column of Figure 5.3 presents the

ROC curves of three bagging predictors at nine levels of class distribution

on four original data-sets, where the x-axis indicates the FPR, and the y-axis

indicates the TPR of the ROC curve. Each plot shows the ROC performance

of three bagging predictors.

The first and second rows of the four sub-figures present graphical

comparisons of Gmean and ROC curves of three selected bagging predictors

at nine levels of class distribution on the Breastc and Diabetes data-sets,

respectively. When the levels of class distribution are changed, the Gmean

performance of bagging NB and MLP changes gradually, while bagging

DTable changes sharply. The ROC curves indicate that Bagging MLP and

NB have more points close to the “ perfect point” and better performance

than bagging DTable at same level of extremely imbalanced class

distribution, eg., at 10%, 20%, 80%, and 90% levels of imbalanced class

distribution. The range of TPR and FPR for bagging DTable varies from

0 to 1, and it is larger than the range for bagging MLP and NB, so bagging

DTable is more sensitive than bagging MLP and NB. All three bagging

predictors perform well around balanced class distribution, e.g., at 0.5 level.

On the other hand, in the last two rows, for sub-figures for Sick and

WBreastc data-sets, the Gmean performances of bagging MLP and NB

show almost no change when the levels of class distribution change, while
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the Gmean performance of bagging DTable changes gradually; therefore,

bagging MLP and NB are more insensitive than bagging DTable. The

graphical results are thus consistent with the statistical results. For the

second last plot on the Sick data-set, the range of FPR for bagging DTable

is larger than the range for bagging MLP and NB; thus bagging DTable is

more sensitive than bagging MLP and NB. For the last plot on WBreastc

data-set, the performance of bagging predictors MLP and NB is extremely

good, nearly reaching the perfect point (0, 1); therefore bagging predictors

MP and NB are more insensitive than bagging DTable.

The graphical observations confirm that bagging predictors, MLP and

NB are insensitive to various levels of class distribution and perform

relatively well with extremely imbalanced class distribution. Our

observations are consistent with the statistical tests.

5.4 Conclusion
This chapter empirically investigates the sensitivity of bagging predictors

with respect to various levels of class distribution, using statistical and

graphical methods. Our statistical results demonstrate that bagging MLP

and NB are insensitive to different levels of imbalanced class distribution,

which means the performances of bagging MLP and NB do not change

much when the levels of class distribution change. Moreover, our

observations by graphical methods are consistent with our statistical

results. Regarding the sensitivity of bagging predictors when class

distribution varies, there is no statistically significant difference between

bagging MLP and bagging NB; however, there are statistically significant

differences between the group of two bagging predictors MLP and NB and

the other group of bagging predictors. This finding provides a useful guide

for data mining practitioners to understand the sensitivity of bagging

predictors for imbalanced class distribution applications.
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Chapter 6

The Impact of Class

Distribution on Bagging

This chapter investigates the effect of imbalanced class distributions on

bagging performance. Imbalanced class distribution refers to the number of

training samples that are unevenly distributed among different classes.

Research into learning from imbalanced class distribution has increasingly

captured the attention of both academia and industry. Many real world

applications involve highly imbalanced class distribution; however, most

traditional classification learning algorithms are designed to maximize the

overall accuracy rate and assume that training instances are uniformly

distributed. Despite the popularity of bagging in many real-world

applications, some questions have not been clearly answered in the existing

research, such as the effect of varying the levels of class distribution on the

performance of bagging predictors, e.g., whether the performance of

bagging is superior to single learners when the levels of class distribution

change. This chapter proposes a unique approach to investigate the effects

of varying levels of imbalanced class distribution on the performance of

bagging predictors with 12 underlying base learners by using statistical and
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graphical methods to assess three evaluation metrics, Geometric mean

(Gmean), True Positive Rate (TPR), Receiver Operating Characteristic

(ROC) graph, and Area Under the ROC curve (AUC) on imbalanced

data-sets.

The experimental results based on both Gmean and TPR evaluation

metrics over multiple imbalanced data-sets demonstrate that PART and

Multi-layer Proceptron (MLP) are the learning algorithms with the best

bagging performance on imbalanced data-sets; moreover, only four out of 12

bagging predictors are statistically superior to single learners. The

experimental results based on AUC indicate that Decision Table (DTable)

and RepTree are the learning algorithms with the best bagging

performance; in addition, the performances of the bagging predictors is

statistically superior to single learners, with the exception of Support

Vector Machines (SVM) and Decision Stump (DStump).

This chapter is organized as follows. Section 6.1 provides an

introduction. Section 6.2 presents the outline of the designed framework.

Section6.3 provides the experimental setting. Section 6.4 presents the

experimental results analysis to compare the performance of bagging with

each of the single learners and to rank all bagging predictors with respect

to different imbalanced levels of class distribution. Section 6.5 concludes

the chapter.

6.1 Introduction

Imbalanced class distribution refers to the number of training samples that

are unevenly distributed among different classes. It is considered to be one

of ten challenging problems in data mining research (Yang & Wu 2006).

Research into learning from imbalanced class distribution has increasingly

captured the attention of both academia and industry, due to the increasing
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6.1 Introduction

number of real world applications involving extremely skewed class

distribution, e.g., fraud detection (Chan & Stolfo 1998, Phua et al. 2004),

text classification (Chawla et al. 2003), medical diagnostics (Mena &

Gonzalez 2006, Rao, Krishnan & Niculescu 2006, Mazurowski et al. 2008),

and detection of oil spills using satellite images (Kubat, Holte &

Matwin 1998).

In those extremely imbalanced class distribution situations, the number

of instances in the majority class (called negative samples) are much greater

than those in the minority class (called positive samples), and the minority

class is more important and has a notably higher cost than the majority

class. High accuracy of a minority class is therefore required; however, the

overall accuracy is an ineffective measure for extremely imbalanced data

(Weiss & Provost 2003, Qin 2005, Chawla et al. 2003, Weiss 2004, Sun,

Kamel, Wong & Wang 2007), because the most traditional learning

algorithms attempt to maximize the overall accuracy rate, which results in

a higher prediction rate for correctly classifying the majority class and a

lower prediction rate for correctly classifying the minority class

(Maloof 2003, Chawla, Japkowicz & Kotcz 2004, Chawla

et al. 2003, Koknar-Tezel & Latecki 2009, Su & Hsiao 2007). Therefore, a

simple estimated error rate has limitations in evaluating the performance of

a classifier on a minority class (Fawcett 2006); the Area Under the Receiver

Operating Characteristic (ROC) curve (AUC) is a commonly used

evaluation metric for imbalanced class distribution (Bradley 1997), and it is

considered to be an alternative measure for comparing the performance of

classifiers across the entire range of class distributions and error costs

(Provost & Fawcett 1997, Provost et al. 1998, Ling et al. 2003).

In the literature, techniques for solving the imbalanced class distribution

problem have been proposed at data-level (Chawla et al. 2002, Han et al.

2005, Estabrooks, Jo & Japkowicz 2004, Batista et al. 2004, He, Han &
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Wang 2005, Bunkhumpornpat et al. 2009) and at algorithm-level (Cieslak &

Chawla 2008, Liu, Chawla, Cieslak & Chawla 2010). The commonly used

techniques are sampling methods at data-level, e.g., over-sampling and under-

sampling methods. Under-sampling is considered to be an efficient method

for imbalanced class distribution learning (Liu et al. 2009).

Chapter 4 reports on statistical comparisons to investigate the

performance of bagging intensively across a rich set of base learners in

general terms (Liang et al. 2011a). However, error rate is not an

appropriate performance measure for imbalanced learning, because the

experimental results cannot be applied to imbalanced situations; in

addition, a comprehensive study of the effect of varying levels of class

distribution on the performance of bagging predictors has not been

undertaken. Bagging has been widely applied in many real world

applications, but some practical questions have not been clearly answered;

for example, which bagging predictors are the best learning algorithms

based on their average performance, when the imbalanced levels of class

distribution change, and in such situations, whether bagging is superior to

single learners. Answering these questions poses the following research

challenges: (1) how should the performance of bagging be evaluated at

different degrees of imbalanced class distribution ; and (2) how should a

valid and rigorous study be conducted to evaluate multiple algorithms over

multiple imbalanced data-sets.

This chapter investigates the impact of class distribution on the perfor-

mance of bagging predictors on imbalanced data, and the investigation uti-

lizes an under-sampling technique to alter the class distribution at different

imbalanced levels. Both statistical and graphical methods have been adopt-

ed to analyze the impact of class distribution on bagging performance over

imbalanced data-sets. The statistical analyses (Demšar 2006) performed in-

stil confidence in the validity of the conclusions of this research.
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Our main contribution is to conduct statistical and graphical comparisons

to investigate the impact of class distribution on the performance of bagging

predictors based on the evaluation metrics, Gmean, TPR, ROC graph, and

AUC of ROC curve on imbalanced data-sets. Overall, the experimental

results provide a useful guide for data mining practitioners to choose the best

or the most effective learners when using bagging predictors for imbalanced

applications.

6.2 Designed Framework

The Impact of Class Distribution on Bagging Performance 

10-trial 10-fold CV on new altered data-sets 

Compare bagging with single learners Compare all the bagging predictors 

1. Friedman Test with Post-hoc Nemenyi 

Test based on three evaluation metrics.  

2. Average value of ACU metric  

 

1. Compare ROC curve of Bagging with single 

MLP on 12 imbalanced data-sets. 

2. Compare ROC curve of 12 bagging predictors 

with single learners on diabetes data-set. 

Use RUS method to alter each original data-set into 9 new data-sets with various levels of class distribution 

Statistical Methods Graphical Methods Statistical Methods 

1.  Wilcoxon Signed Rank 

Test based on three 

evaluation metrics.  

Si f h P

Figure 6.1: Designed framework

Figure 6.1 presents the designed framework of the evaluation of the im-

pact of class distribution on the performance of bagging predictors, which is

divided into tasks as follows:

1. Utilize the under-sampling technique to alter each original imbalanced

data-set into nine new data-sets with different levels of imbalanced class

distribution.
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2. Perform 10-trial 10-fold cross-validation evaluation on the nine altered

data-sets to obtain nine pairs of False Positive Rate (FPR) and True

Positive Rate (TPR) for each learner to form a ROC curve, which

represents the performance of a prediction model at nine different levels

of class distribution.

3. The calculated AUC of ROC curve represents the average performance

of a prediction model at nine different levels of class distribution, so

the AUC of ROC curve is employed to compare the performance of

bagging predictors with single learners;

4. Statistically compare the evaluation metrics, Gmean, TPR, and AUC

as follows:

(a) using the Wilcoxon signed-rank test for comparing two learners,

e.g., comparing bagging and single learner to determine whether

bagging is superior to single learner, and

(b) using the Friedman test for comparing multiple learners, e.g.,

comparing all the bagging predictors to determine which

predictors have the best performance.

(c) using the post-hoc Nemenyi test for determine whether there is a

statistically significant difference between bagging prediction

models

5. Graphically compare the ROC graphs to determine whether bagging

MLP is superior to the single MLP at different levels of class

distribution on 12 data-sets; also graphically examine the ROC curve

to compare 12 bagging predictors with single learners on the Diabetes

data-set.
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6.2.1 Random Under-sampling Technique Varying the

Levels of Class Distribution

Table 6.1: Under-sampling technique altering the levels of class distribution

Class Distribution Data Sample Size

Pi% Set Total Positive Samples Negatives Samples

Original Data D M = P +N P N

10% D1 M1 P1 = P = 10%M1 N1 = 90%M1

20% D2 M2 P2 = P = 20%M2 N2 = 80%M2

. . . . .

. . . . .

10*i% Di Mi Pi = P = 0.1 ∗ i ∗Mi Ni = (1− 0.1 ∗ i)Mi

. . . . .

90% D9 M9 P9 = P = 90%M9 N9 = 10%M9

For this work, the random under-sampling technique is used to vary the

levels of class distribution of the original data to investigate the performance

of bagging predictors, i.e., to alter each original imbalanced data-set, D with

sample size, M into nine new data-sets, D1, D2, ..., D9 with new sample size,

M1,M2, ...,M9, respectively.

First, all the minority class samples are considered as a positive class,

sample size, P and the proportions of the positive class are as follows: 10%,

20%, ..., 90% ofM1,M2, ...,M9, respectively. Next, the majority class samples

are selected randomly without replacement as a negative class, with samples

size N1, N2, ..., N9, and the proportions of the negative class are as follows:

90%, 80%, ..., 10% of M1,M2, ...,M9, respectively. Then the nine new data-

sets, Di (integer i = 1 to 9) are formed. Each original data-set D is thereby

altered into nine new data-sets with nine different levels of class distribution.

A 10-trial 10-fold cross-validation is performed on each of the new data-

sets Di, so that the test-set has the same distributions as the training-set.
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6.3 Experimental Setting

6.3 Experimental Setting

We implement the bagging prediction model in Java, and use WEKA

implementations of the 12 algorithms with default parameter settings in

this empirical study (Witten & Frank 2005). We investigate the AUC

performance of bagging predictors with respect to nine different imbalanced

levels of class distribution on multiple imbalanced binary-class data-sets

collected from the UCI Machine Learning Repository (Merz &

Murphy 2006).

Under-sampling technique is used to alter each original imbalanced data-

set D, sample size |M | into nine new data-sets Di (integer i = 1 to 9) samples

size |Mi| with nine different imbalanced levels of class distribution. The

original minority class (sample size |P |) is used as the positive class in the

new data-sets ( |Pi| = |P |). Table 6.1 describes the under-sampling technique

for altering different levels of class distribution.

For each learning algorithm, we perform a 10-trial 10-fold cross-validation

evaluation on each of the new altered nine data-sets to obtain nine pairs of

FPR and TPR for the single learner and nine pairs of FPR and TPR for

bagging to form ROC curves.

Table 6.2 presents the sampling process to generate new altered data-sets,

build prediction models, and form ROC curve, for each algorithm, e.g., for

SVM, on the new altered nine data-sets with different class distribution, we

build nine single SVM prediction models and nine bagging SVM prediction

models, respectively to form two ROC curves: one for the single learner

and one for the bagging predictor. Overall, for each learning algorithm on

each original data-set, we build 18 models to form two ROC curves. We

investigate the AUC performance of bagging predictors with 12 algorithms

at nine levels of sample distributions on 14 data-sets. As a result, we built
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Table 6.2: Sampling techniques are used to change each original data-set

into 9 altered data-sets with 9 levels of class distribution for building 9 single

and bagging final prediction models, respectively. These prediction models

produce 9 pairs (FPR, TPR) to form a ROC curve for single and bagging

prediction models, respectively.

N# Algorithms
N# Original N# levels N# Altered New N# Models N# pairs

N# ROC curves
Data-Sets Class Distribution Data-sets Single Bagging (FPR, TPR)

1 1 9 9 9 9 18 2

12 1 9 9 108 108 216 24

12 14 9 126 1512 1512 3024 336

Total 12 14 9 3024 3024 3024 336

3024 prediction models in total to evaluate the AUC performance of bagging

predictors.

To reduce uncertainty and obtain reliable experimental results, all the

evaluations are assessed under the same test conditions using the same

randomly selected bootstrap samples (with replacements) in each fold of

the 10-trial 10-fold cross-validation on each data-set.

6.4 Experimental Results Analysis

The experimental results analysis includes three subsections as follows: (1)

Subsection 6.4.1 statistically compares bagging with each of the single

learners based on the Wilcoxon signed-rank test; (2) Subsection 6.4.2

graphically compares ROC curves between a bagging MLP and single MLP

on 12 selected imbalanced data-sets, and between 12 bagging predictors and

single learners on Diabetes data-set, respectively; and (3) Subsection 6.4.3

compares the performance of bagging predictors based on the Friedman test

with post-hoc Nemenyi test.
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6.4.1 Statistical Comparison Bagging Predictors with

Single Learners

This subsection compares the performance of bagging and single learners

based on the Wilcoxon signed-rank test by using three different evaluation

metrics: Gmean, TPR, and AUC of ROC curve.

The Wilcoxon signed-rank test is used to determine whether there is sta-

tistically significant difference between two learners, i.e., AUC performance

of bagging SVM and single learner SVM.

• The Null Hypothesis shows that the median of difference between

Bagging and each single learner equals 0.

• Rule: Reject the Null Hypothesis if the p-value Test Statistic W is less

than α = .05 at the 95% confidence level of significance.

Table 6.3: The statistical results of the Wilcoxon signed-rank test for

comparison of the Gmean performance of bagging and single learners. The

significance level is .05.

Wilcoxon signed-rank test based on Gmean

Learners J48 RepTree RandTree NB SVM Dstump

p-values .005 015 .008 .610 .131 1.000

Learners OneR DTable PART KNN NBTree MLP
p-values .037 .814 .005 .657 .136 .019

Tables 6.3, 6.4 and 6.5 present the summarized results of the Wilcoxon

signed-rank test for the comparison of the performance of bagging predictors

with each of single learners based on the evaluation metrics, Gmean, TPR,
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6.4 Experimental Results Analysis

and AUC. If a calculated p-value is equal to or greater than α value, 0.05,

then the p-values are highlighted in red and the Null Hypothesis is accepted.

Table 6.3 indicates that only 50% bagging predictors perform statistically

significantly better than single learners at 95% confidence interval, including

J48, RepTree, RandTree, OneR, PART and MLP learners, when using Gmean

as an evaluation metric on multiple imbalanced data-sets.

Table 6.4 indicates that less than 50% of bagging predictors perform

statistically significantly better than the single learners at 95% confidence

interval, including J48, RepTree, RandTree, PART and NBTree learners,

while using TPR as an evaluation metric on imbalanced data-sets.

Overall, based on both Gmean and TPR evaluation metrics, only four

out of 12 bagging predictors are statistically significantly superior to single

learners on multiple imbalanced data-sets. The four bagging predictors are

the tree family learners, J48, RepTree and RandTree, and the rule learner,

PART.

Table 6.5 indicates that the p-values of SVM, and DStump are greater

than α value, .05, and the Null Hypothesis is accepted, so there are no

statistically significant differences between bagging SVM and bagging

DStump with single learners SVM and DStump, respectively; while the

p-value of the remaining cases is smaller than α value, .05, and the Null

Hypothesis is rejected, so there are statistically significant differences

between bagging predictors with the rest of the single learners. In addition,

we observe that the AUC of the majority of bagging predictors is larger

than that of the single learners. The experimental results therefore

demonstrate that the AUC performances of bagging are statistically

significantly better than most single learners at 95% confidence interval,

except for SVM and DStump learners.
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Table 6.4: The statistical results of the Wilcoxon signed-rank test for

comparison of the TPR performance of bagging and single learners. The

significance level is .05.

Wilcoxon signed-rank test based on TPR

Learners J48 RepTree RandTree NB SVM DStump
p-values .015 .002 .005 .906 .722 .263

Learners OneR DTable PART KNN NBTree MLP
p-values .110 .272 .006 .575 .002 .136

Table 6.5: The statistical results of the Wilcoxon signed-rank test for

comparison of the AUC performance of bagging and single learners. The

significance level is .05

Wilcoxon signed-rank test to compare the AUC performance

Learners J48 RepTree RandTree NB SVM Dstump
p-values .004 .035 .004 .001 .096 .074

Learners OneR DTable PART KNN NBTree MLP
p-values .031 .001 .004 .008 .026 .019
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6.4.2 Graphical Comparison of ROC Curves

Subsection 6.4.2 compares the group of ROC graphs of 12 bagging predictors

with single learners to further graphically examine whether bagging MLP

(B MLP) is superior to single MLP on 12 selected imbalanced data-sets, and

whether 12 bagging predictors are superior to single learners on the single

Diabetes data-set, respectively.

Figure 6.2 presents the group of comparisons of ROC curves between

the B MLP and the single learner MLP on 12 imbalanced data-sets; each

sub-figure presents two ROC curves, one for bagging and the other for a

single learner on each data-set, and each ROC curve is formed by nine pairs

of FPR and TPR, which represent the average performance of bagging or

single learners at nine degrees of class distribution.

Figure 6.2 indicates that B MLP is superior to a single learner MLP

on two out of 12 imbalanced data-sets, bupa and Diabetes. B MLP has a

greater area than a single learner MLP, and therefore B MLP has better

average performance than the single learner MLP on these two data-sets.

The experimental results are consistent with the result of Wilcoxon signed-

rank test on the metric of TPR in Table 6.4, that B MLP is not superior to

single MLP.

Even though the average performance of B MLP is not superior to a

single learner MLP, it has similar results to the single learner MLP on 10

imbalanced data-sets. On the WDBC data-set especially, both B MLP and

the single learner MLP perform extremely well on nine different imbalanced

levels, as all nine pairs of FPR and TPR are close to the “ROC Heaven”,

the upper left point (0, 1), and present almost 100% true positive and zero

false positive.

Figure 6.3 indicates the group of comparisons of ROC curves between

bagging and single learners to examine whether bagging is superior to single

learners on the Diabetes data-set. Each sub-figure shows two ROC curves:
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Figure 6.2: Comparisons of ROC curves between a B MLP and a single

learner MLP on 12 imbalanced data-sets, where the x-axis denotes FPR,

the y-axis denotes TPR for each sub-figure.
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Figure 6.3: The group of comparisons of ROC curves between 12 bagging

predictors and single learners on the Diabetes data-set, where the x-axis

denotes FPR, the y-axis denotes TPR for each sub-figure.
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for example, bagging NB (B NB) and single NB, on the same data-set. Each

ROC curve represents the average performance of bagging or a single learner

at nine different levels of class distribution, plotted by nine pairs of FPR

and TPR. It can be seen that the bagging performance of ROC is not

superior to the single learners SVM, DStump, NB, KNN, and OneR. Even

though the average performance of bagging is not superior to the five single

learners, it has similar results to the five single learners and is superior to the

rest of the seven single learners on the Diabetes data-set. These results are

consistent with the results of the Wilcoxon signed-rank test on the metric of

TPR in Table 6.4, expect that for bagging DTable (B DTable) and B MLP

are superior to the single learner.

6.4.3 Comparison of the Performance of All Bagging

Predictors

Subsection 6.4.3 compares bagging predictors based on Friedman with post-

hoc Nemenyi tests for comparison of all bagging predictors with three eval-

uation measures, Gmean, TPR, and AUC of ROC, respectively.

The Friedman test is used to compare of multiple learners over multiple

data-sets. For example, the bagging predictors are first ranked on each data-

set according to their Gmean metric from 1 to 12, respectively, e.g., the best

performance of the bagging predictor with the largest value of the Gmean is

signed as ranking 1, with the second largest value signed as ranking 2, and

so on; if there are ties, the averaged value of their ranking orders is signed as

their ranking. The Friedman test is then performed to obtain the mean rank

of all bagging predictors, which are presented in ascending order in Table

6.6.

Table 6.6 indicates the ascending order the average rank of bagging

predictors based on an evaluation measure Gmean. The third and the last
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rows indicate the mean rank of bagging predictors from the Friedman test

results. The Friedman test is used to compare of multiple learners. First,

the Gmean measure of 12 bagging predictors on each data-set is ranked,

then the Friedman test is performed to obtain the mean rank of bagging

predictors over multiple imbalanced data-sets. As the Null Hypothesis is

rejected, the Friedman test indicates there is at least a difference between

the mean ranks of bagging predictors; therefore, the corresponding post-hoc

Nemenyi test is required for additional exploration of the differences

between the mean rank to provide specific information on which mean rank

is significantly different from another.

Table 6.6: Mean rank of the Friedman test for Gmean performance of bagging

predictors

Mean rank of the Friedman test for Gmean performance of bagging predictors

Bagging B PART B MLP B NBTree B J48 B RdTree B SVM
Mean Rank 3.83 3.92 4.67 5.58 5.67 6.33

Bagging B NB B KNN B RepTree B DTable B Dstump B OneR
Mean Rank 6.5 6.83 7.08 8.75 9 9.93

Figure 6.4 reports the results of the Friedman with post-hoc Nemenyi

tests to compare the performance of all bagging predictors based on the

average rank of Gmean metric on multiple imbalanced data-sets. The group

of the most robust base learners, PART and MLP, contributes to the best

bagging predictors, whereas the group of the weakest learners, OneR and

DStump, leads to the worst bagging predictors. The performance of two

bagging predictors is significantly different when the horizontal bars do not

overlap. There is a statistically significant difference between the two

groups: the group of bagging predictors based on the most robust base
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Figure 6.4: Comparison of the performance of all bagging predictors with

post-hoc Nemenyi test, where x-axes indicate the mean rank of Gmean for

bagging, the y-axes indicate the ascending ranking order of the bagging

predictors and the horizontal error bars indicate the “critical difference”.

Table 6.7: Mean rank of the Friedman test for TPR performance of bagging

predictors

Mean rank of the Friedman test for TPR performance of bagging predictors

Bagging B NBTree B MLP B PART B SVM B RdTree B RepTree
Mean Rank 3.92 4.92 5.92 6.08 6.23 6.54

Bagging B DTable B J48 B KNN B NB B OneR B Dstump
Mean Rank 6.65 6.65 7.54 7.62 7.65 8.27
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learners, PART and MLP and the group of bagging predictors based on the

weakest learners, OneR and DStump. As a result, one can conclude that

the robustness of the base learners is an important factor for building

accurate bagging predictors, at different degrees of imbalanced class

distribution.

Table 6.7 indicates the average rank of bagging predictors from the

results of the Friedman test based on an evaluation metric TPR. As the

Null Hypothesis is accepted, the Friedman test indicates that there is no

difference between the mean ranks of the bagging predictors. Therefore, the

corresponding post-hoc Nemenyi test is not required for additional

exploration of the differences between mean ranks to provide specific

information on which mean ranks are significantly different from one

another.

Figure 6.5 presents the mean ranks of TPR for all bagging predictors

and demonstrates that NBTree, MLP, and PART are the learning algorithms

with the best bagging performance on imbalanced data-sets, while DStump

and OneR are the learning algorithms with the worst bagging performance

on imbalanced data-sets. However, the mean ranks of TPR for bagging

predictors are not significantly different from one another.

Table 6.8: Mean rank of the Friedman test for AUC performance of bagging

predictors

Mean rank of the Friedman test for AUC performance of bagging predictors

Bagging B DTable B RepTree B OneR B RdTree B J48 B PART
Mean rank 3.00 4.14 4.17 5.36 5.43 6.36

Bagging B NBTree B DStump B SVM B KNN B MLP B NB
Mean rank 6.50 7.07 7.64 9.00 9.21 9.57
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Figure 6.5: Comparison of the TPR performance of all bagging predictors

with the Nemenyi test, where the x-axes indicate the mean rank of TPR for

bagging predictors, the y-axes indicate the ascending ranking order of the

bagging predictors, and the horizontal bars indicate the “critical difference”.
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Figure 6.6: Average ranks of AUC performance for 12 bagging predictors

with the Nemenyi test, where the x-axis denotes the ranking order of the

bagging predictors, while the y-axis denotes the average rank of the AUC

performance of the bagging predictors. The error bars present the “critical

difference” of the Nemenyi test.
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Table 6.8 reports the average rank of AUC of the bagging predictors.

As the Null Hypothesis is rejected, the Friedman test indicates there is at

least a difference between the mean ranks of bagging predictors. Therefore,

the corresponding post-hoc Nemenyi test for additional exploration of the

differences between the mean ranks provides specific information on which

mean rank is significantly different from another.

Figure 6.6 presents an empirical comparison of the AUC performances

of 12 bagging predictors, where the x-axis denotes the ranking order of the

bagging predictors, and the y-axis denotes the average rank of the AUC

value of the bagging predictors. The error bars indicate the “critical

difference” of the Nemenyi test. The AUC performance of two bagging

predictors is significantly different if the corresponding error bars do not

overlap. Overall, the group of Bagging DTable and RepTree has the best

average ranks of AUC performance, while the group of bagging NB, MLP

and KNN has the worst average ranks of AUC performance. In addition,

there are statistically significant differences between the two groups. The

two dimensional robustness and stability decomposition is introduced in

Chapter 4 to classify base learners into different categories. According to

the experimental results, DTable and RepTree are categorized as unstable

base learners, while NB, MLP and KNN are categorized as stable learners.

We therefore demonstrate that based on AUC performance, the unstable

base learners, DTable and RepTree contribute to the best bagging

predictors; while the stable base learners, NB, MLP and KNN lead to the

worst bagging predictors, when the imbalanced levels of class distribution

are changed at nine different levels on each data-set, over all data-sets.

Table 6.9 presents the average AUC performance of bagging predictors

on 14 data-sets. Mean and Variance indicate the average value of the AUC

performance of bagging predictors and the corresponding value of error bars

in Figure 6.7, respectively.
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Table 6.9: Average AUC performance of bagging predictors on 14 imbalanced

data-sets

Average AUC performance of bagging predictors

Bagging B DTable B RepTree B OneR B RdTree B J48 B PART
Mean .668 .598 .585 .561 .552 6.36
vaiance .48 .097 .037 .065 .082 .071

Bagging B NBTree B DStump B SVM B KNN B MLP B NB
Mean .519 .511 .510 .453 .435 .420
vaiance .064 .075 .084 .042 .082 .055
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Figure 6.7: The average AUC performance of bagging predictors over 14

data-sets, where the x-axis indicates the name of the bagging predictors, the

y-axis indicates the average value of AUC and the error bar indicates the

variance value.
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Figure 6.7 presents the summary of the observed average AUC

performance of bagging predictors over multiple imbalanced data-sets in

Table 6.9. In this plot, the vertical axis indicates the average value of the

AUC performance of bagging predictors, while the horizontal axis indicates

the sorted average AUC performance of bagging predictors in descending

order over the total benchmark of imbalanced data-sets, and the error bar

indicates the variance of the observed average AUC performance. We note

that Figure 6.6 and Figure 6.7 present a similar ranking order of bagging

predictors, with the exception of NBTree.

6.5 Conclusion

We empirically investigated the impact of class distribution on 12 bagging

predictors based on three evaluation metrics on imbalanced data-sets. The

under-sampling technique was utilized to alter the class distribution at

different imbalanced levels. This chapter has used both graphical and

statistical methods to analyze the experimental results to provide a full

comparison of the performances of bagging predictors with 12 underlying

base learners at different levels of class distribution.

Based on both Gmean and TPR evaluation metrics, we observe that 4

out of 12 bagging predictors are statistically superior to single learners,

including tree family learners, J48, RepTree and randTree, and a rule

learner PART. In addition, the experimental results indicate that the AUC

performances of bagging are statistically superior to single learners, except

for SVM and DStump over multiple data-sets. Comparing the AUC

performances of bagging shows that, the group of unstable learners,

DeciTable and RepTree is the learning algorithms with the best average

bagging performance, while the group of stable learners, NB, MLP and

KNN, leads to the worst bagging predictors; there also are significant
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differences between the two groups. The graphical comparison of the ROC

curve between bagging and single learners demonstrates that the ROC

performance of bagging is not superior to single learners SVM, DStump,

NB, KNN, and OneR, but it has similar results to the five single learners on

the Diabetes data-set, while it is superior to the rest of the seven single

learners. In addition, we observe that the strongest base learners PART,

MLP and NBTree can be used to build the best bagging predictive models,

whereas the weakest learners, OneR and DStrump, result in the worst

bagging predictive models in the context of imbalanced learning.
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Chapter 7

An Empirical Investigation of

Bagging on Domain Specific

Data

This chapter investigates the performance of bagging predictors in terms of

learning from medical data, which includes two parts: (1) part one presents

a graphic comparison of the performance between 12 bagging predictors and

12 single learners with respect to learning from the natural class distribution,

and reports the best performance of the prediction model based on the Gmean

evaluation measure on eight individual medical data-sets, and (2) part two

presents a comparison of the performance of bagging predictors of natural

class distribution and the best achieved bagging performance of altered class

distribution on individual medical data-sets.

It is important for data miners to achieve highly accurate prediction

models, and this is especially true for imbalanced medical applications. In

these situations, practitioners are more interested in the minority class than

the majority class; however, it is hard for most of the traditional supervised

learning algorithms to achieve a highly accurate prediction on the minority
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class, even though it might achieve better results according to the most

commonly used evaluation metric, overall accuracy (Acc). Bagging is a

simple yet effective ensemble method which has been applied to many

real-world applications. However, some questions have not been well

answered, e.g., whether bagging outperforms single learners on medical

data-sets; which learners are the best predictors for each medical data-set;

and what is the best predictive performance achievable for each medical

data-set when we apply sampling techniques.

This study empirically investigates the performance of bagging

predictors with 12 underlying base learners on eight medical data-sets

based on four performance measures: True Positive Rate (TPR), True

Negative Rate (TNR), Geometric Mean (Gmean) of the accuracy rate of the

majority class and the minority class, and overall accuracy (Acc) as

evaluation metrics. In addition, the statistical analyses performed instil

confidence in the validity of the conclusions of this research.

The chapter is organized as follows. Section 7.1 provides an introduction

to the chapter. Section 7.2 presents the outlines of the designed framework.

Section 7.3 presents the experimental setting and Section 7.4 presents the

experimental results analysis. Section 7.5 concludes this chapter.

7.1 Introduction

Bagging (Breiman 1996a) is a simple and effective ensemble learning

method. Due to its promising capabilities in improving the performance of

classification prediction models using a combination of sampling and voting

techniques, it has been widely used in many applications. The effectiveness

of bagging has been investigated empirically and it has been demonstrated

that bagging is very effective for decision trees (Breiman 1996a, Opitz &

Maclin 1999, Quinlan 1996, Bauer & Kohavi 1999, Dietterich 2000b), and
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neural networks (Opitz & Maclin 1999, West et al. 2005, Kim &

Kang 2010). Even though the existing studies demonstrate the effectiveness

of the bagging predictor, it is not clear whether bagging is superior to single

learners in the context of imbalanced medical data-sets, nor which predictor

is the best performing learning method on individual imbalanced medical

data-sets.

Our previous works investigated the performance of bagging predictors in

general terms (Liang et al. 2011a) and in imbalanced class distribution terms

(Liang & Zhang 2011a, Liang et al. 2011b). However, the previous conclusions

are based on statistical tests that aggregate over multiple data-sets and do

not show which learners are the best prediction models for individual medical

data-sets, as various prediction models might behave differently for different

kinds of data-sets. They also do not show the best achievable predictive

performance for each medical data-set using a sampling technique.

In the literature, an empirical study of combined classifiers on medical

data (Lopes et al. 2008) compared the performance of three classification

methods, C4.5 (Quinlan 1986), bagging (Breiman 1996a), and boosting

(Freund & Schapire 1996) on 16 medical data-sets and 16 generic data-sets.

The evaluation was based on the accuracy of these learning methods as a

performance measure; their research did not address the challenging issues

of medical data-sets, namely, imbalanced class distribution and the unequal

costs of mis-classification errors in different classes. Moreover, accuracy is

an inappropriate performance measure for evaluating imbalanced data-sets

(Chawla 2010, Chawla et al. 2002).

The majority of medical applications involve learning from imbalanced

binary classification data-sets in which the proportion of the class distribution

is skewed, the number of instances of the majority class is higher than those of

the minority class, and practitioners are more interested in the minority class

than the majority class, such as Breast cancer early detection, in which the
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minority class is quite small with an unequal high cost associated with mis-

classification errors in different classes. If a patient with Breast cancer is mis-

classified as normal, the patient will miss the opportunity for his/her earlier

stage cancer detection and treatment, while if a patient without Breast cancer

is mis-classified as having cancer, it will cause unnecessary stress and the

extra cost of treatment. Traditional supervised learning algorithms perform

poorly in predictive accuracy over the minority class, even though they may

produce high overall accuracy (Chawla 2010, Maloof 2003, Ng & Dash 2006,

Phua et al. 2004, Su & Hsiao 2007). We therefore employ four evaluation

metrics, True Positive Rate (TPR), True Negative Rate (TNR), geometric

mean (Gmean) of the accuracy rate of the majority class and minority class,

and overall accuracy (Acc) to assess the performance of bagging in terms of

learning from medical data-sets.

To solve the problem of imbalanced class distribution and increase the

Acc of the prediction model, the most commonly used methods are sampling-

oriented methods and algorithms-oriented methods (Liu & Chawla 2011).

In this study, we utilize random under-sampling (RUS) techniques to

investigate the performance of bagging predictors at different levels of class

distribution and report the best achieved performance of bagging by using

sampling techniques based on the Gmean evaluation metrics.

The main contributions of this chapter are threefold: (1)to determine

whether bagging is superior to single learners in the context of specific

domain, imbalanced medical data-sets; (2)to determine which learners give

the best performance on each medical data-set with natural class

distribution; and (3)to report the best achieved performance of the bagging

predictors on each medical data-set by using sampling techniques.

102



7.2 Designed Framework
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Figure 7.1: Designed framework
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7.2 Designed Framework

Figure 7.1 presents the designed framework. The evaluation of bagging pre-

dictors on medical data-sets is broken down into four tasks as follows:

• Compare bagging predictors with single learners: the Wilcoxon signed-

rank test is used to compare two learners to determine whether bagging

outperforms a single learner on multiple medical data-sets.

• Compare the performance of all bagging predictors against each

another: the Friedman test with the corresponding post-hoc Nemenyi

test are used to compare multiple learners to determine which bagging

predictors have the best performance over multiple medical data-sets.

• Compare the performance of 24 prediction models and report the best

performance models with natural class distribution on individual

medical data-sets based on four evaluation metrics: Gmean, TPR,

TNR and Acc.

• Compare the performance of bagging predictors between the natural

class distribution and the best achieved bagging performance with

certain levels of altered class distribution on individual data-sets.

7.3 Experimental Setting

This section includes data-sets, software and parameter settings. 10-trial 10-

fold cross-validations are performed to evaluate bagging and single learners

on eight medical data-sets in Table 2.4, which are collected from the UCI

Machine Learning Repository (Merz & Murphy 2006). The bagging predictor

is implemented in Java platform for this study. WEKA implementation of the

12 algorithms with their default parameter settings is used in this empirical

study (Witten & Frank 2005).
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To reduce uncertainty and obtain reliable experimental results, all the

evaluations of bagging performance are assessed under the same test

conditions using the same randomly selected bootstrap samples with

replacements in each fold of 10-trial 10-fold cross-validation on each

data-set.

7.4 Experimental Results Analysis

Section 7.4 presents the experimental results analysis including four

subsections as follows: Subsection 7.4.1 presents a comparison of bagging

with single learners; Subsection 7.4.2 presents a comparison of all bagging

predictors against one another on medical data-sets; Subsection 7.4.3

provides a graphical comparison of the performance of 24 prediction models

and a report on the best prediction model on individual medical data-sets;

and Subsection 7.4.4 presents a comparison of the performance of bagging

predictors between natural class distribution and the altered class

distribution on individual medical data-sets.

7.4.1 Comparison of Bagging with Single Learners

Subsection 7.4.1 compares the performance of bagging with single learners

over multiple medical data-sets to determine whether bagging is superior to

single learners based on Gmean.

The Wilcoxon Signed-Rank Test is used to compare two learners, for

example, to compare bagging SVM and a single learner SVM over multiple

data-sets to determine whether bagging is superior to a single learner.

Table 7.1 presents the summarized results of the Wilcoxon signed-rank

test based on Gmean for the comparison of the two learners, bagging and each

of the single learners, i.e., to compare bagging J48 and single learner J48 to
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determine whether bagging J48 is superior to single learner J48 over multiple

imbalanced medical data-sets. If the p-value is equal to or greater than α

value .05, we accept the Null Hypothesis and thep-value are highlighted and

marked in red. Table 7.1 indicates that bagging is statistically superior to

the single learners J48, RandTree, OneR, PART and MLP on eight medical

data-sets based on the evaluation metric, Gmean.

Table 7.1: Compare bagging with each single learner based on Wilcoxon

signed-rank test on Gmean. The significance level is .05.

Wilcoxon Signed-Rank Test on Gmean

Learners J48 RepTree RandTree NB SVM Dstump

p-values .036 .161 .036 .069 .093 .866

Learners OneR DTable PART KNN NBTree MLP
p-values .017 .779 .036 .327 .484 .012

7.4.2 Comparison of All Bagging Predictors

Friedman test and post-hoc Nemenyi test: Both tests are

non-parametric for comparing multiple bagging predictors over multiple

imbalanced medical data-sets.

The Friedman test is used to compare the average rank of all bagging

predictors, and the post-hoc Nemenyi test is used to check whether there is

a statistically significant difference between the mean ranks as follows:

1. All the bagging predictors are ranked on each data-set, giving the best

performing algorithm the rank of 1, the second best rank 2, and so on.

If there are ties, average values are assigned.
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2. The Friedman test is used to calculate the average rank of all the bag-

ging predictors.

3. The Null Hypothesis of this test states that the performances of all

bagging predictors are equivalent. If the Null Hypothesis is rejected, it

does not determine which particular algorithms differ from one another.

Because the test result does not show exactly where that significant

difference occurs, a post-hoc Nemenyi test is required to calculate the

“critical difference”.

The post-hoc Nemenyi test is required for additional exploration of the

differences between mean ranks to provide specific information on which

mean ranks are significantly different from other ranks. The critical

difference is calculated. If the mean ranks are different by at least the

critical difference, the performance of learners is statistically significantly

different. More detail how to calculate the critical difference of the Nemenyi

test is presented in Chapter 2 Subsection 2.3.2.

Table 7.2 presents the ranking order of the performance of Gmean. The

first and 11th rows present the ascending order of the name of bagging

predictors according to their mean rank of the Gmean measure in the 10th

and 20th rows. The second to ninth and the 12th to 19th rows present the

ranking order of the bagging predictors on each individual medical data-set,

e.g., bagging MLP performs best on the Diabetes data-set ranking as 1,

followed by bagging NBTree ranking as 2, and bagging OneR ranked 12 is

the worst bagging predictor on the same data-set. The 10th and 20th rows

present the mean rank of the Gmean metric of the bagging predictors over

all eight medical data-sets. On the other hand, we observe that different

bagging predictors behave differently for different medical data-sets, e.g.,

bagging MLP performs well on most of these medical data-sets, except for

Sick data-set which is an extremely imbalanced, high dimensional, and
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Table 7.2: Ranking order of the performance of bagging based on Gmean and

mean ranks.

Gmean MLP NB NBTree SVM PART RdTree

Breastc 2 1 7 6 5 8

Diabetes 1 3 2 8 7 5

Sick 10 9 5 12 3 7

Heart-c 3 2 4 1 5 7

Heart-h 3 1 4 2 5 6

StaHeart 3 1 4 2 5 7

WBreastc 3 1 2 4 6 5

WDBC 2 10 4 1 3 6

Mean Rank 3.375 3.5 4 4.5 4.875 6.375

J48 RepTree DStump KNN DTable OneR

Breastc 9 11 3 4 12 10

Diabetes 4 6 10 11 9 12

Sick 1 4 2 11 8 6

Heart-c 6 8 10 11 9 12

Heart-h 10 11 7 8 12 9

StaHeart 10 6 12 9 8 11

WDBC 7 8 11 5 9 12

Mean Rank 6.75 7.875 8.375 8.375 9.625 10.375
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large data-set; bagging NB performs best (ranking as 1) on four medical

data-sets, Breastc, StatlogHeart, Heart-h and WBreastc, but performs

poorly on the other two data-sets, Sick and WDBC, which have high

dimensional attributes or extremely imbalanced class distribution data-sets;

while bagging J48 and DStump perform well on the extremely imbalanced,

high dimensional, and largest medical data-set, Sick.
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Figure 7.2: Comparison of the Gmean performance of all bagging predictors

with post-hoc Nemenyi test, where the x-axes indicate the mean rank of

each bagging predictor, the y-axes indicate the ascending ranking order of

the bagging predictors, and the vertical error bars indicate the “critical

difference”.

Figure 7.2 presents the results of the mean rank ofGmean metric of bagging

predictors over all eight medical data-sets based on the Friedman and post-

hoc Nemenyi tests. The results indicate that bagging MLP and NB are the

best bagging predictors, while bagging OneR is the worst bagging predictor.

The performances of bagging predictors are statistically significantly different

if the vertical bars do not overlap; therefore, there is a statistically significant

difference between the two best bagging predictors, MLP and NB with the

worst bagging predictor OneR. However, there is not a statistically significant

difference between the remaining bagging predictors.
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7.4.3 Comparison of the Performance of Prediction

Models on Individual Medical Data-sets

Subsection 7.4.3 graphically compares the performance of the 24 prediction

models on eight individual medical data-sets.

Figures 7.3 to 7.10 inclusive present a graphical comparison of the

performance of the 24 prediction models on eight individual medical

data-sets. Each graph presents the summarization of the observed

performance of the prediction models based on four evaluation metrics,

Gmean, TPR, TNR and Acc on individual data-sets. For each plot, the

horizontal axis indicates the descending ranking order of the Gmean metric,

while the vertical axis indicates the value of the four performance measures.
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Figure 7.3: The performance of prediction models on Breastc data-set.

Figure 7.3 shows that both single learner NB and bagging NB perform

better than the other prediction models, followed by the simple learner

DStrump and bagging MLP. By contrast, bagging DTable, bagging

RepTree, RepTree, OneR and bagging OneR are the worst prediction

models for the Breastc data-set based on the evaluation metrics, Gmean and

TPR. Even though the performance of Acc seems reasonably good for all

the prediction models, but it is influenced by the TNR, this observation is

consistent with the existing research.
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Figure 7.4: Comparison of the performance of prediction models on Diabetes

data-set.
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Figure 7.5: Comparison of the performance of prediction models on Sick

data-set.
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Figure 7.6: Comparison of the performance of bagging predictors and single

learners on Heart-h data-set.
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Figure 7.4 presents the comparison of the performance of the prediction

models on the Diabetes data-set. Bagging MLP, NBTree, MLP and bagging

NBTree are the best prediction models on this data-set, followed by NB and

bagging NB. By contrast, bagging KNN, KNN, OneR and bagging OneR are

the worst prediction models on this data-set.

Figure 7.5 presents a comparison of the performance of the prediction

models on the extremely imbalanced Sick data-set. We observe that Acc and

TNR perform well for all the prediction models, because Acc is influenced

by TNR on this extremely imbalanced data-set. However, regarding the

performance measures, TPR and Gmean, we observe that bagging J48 and

PART perform best, followed by single DStump, bagging DStump, J48 and

bagging PART. By contrast, SVM, bagging SVM, bagging KNN and KNN

are the worst prediction models for this medical data-set.

Figure 7.6 presents a comparison of the performance of prediction models

on the almost balanced Heart-h data-set. Most prediction models perform

well on this data-set, e.g., NB, bagging NB, bagging SVM, and SVM are the

best prediction models on this data-set.

Figure 7.7 presents a comparison of the performance of prediction models

on the moderately imbalanced WDBC data-set. Most prediction models

perform well on this data-set, except for the weak learners, DStump, OneR,

bagging OneR, and bagging DStump. By contrast, bagging SVM, bagging

MLP and MLP are the best prediction models on this data-set.

Figure 7.8 presents a comparison of the performance of prediction

models on Heart-c data-set. Bagging SVM, bagging NB, and NB are the

best prediction models on this data-set, followed by SVM and bagging

MLP. By contrast, weak learners, OneR and Dstump are the worst

prediction models on this data-set.
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Figure 7.7: Comparison of the performance of the bagging predictors and

single learners on WDBC data-set.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

heart-c G-mean Accuracy TPR TNR

Figure 7.8: Comparison of the performance of the bagging predictors and

single learners on Heart-c data-set.
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Figure 7.9: Comparison of the performance of the bagging predictors and

single learners on WBreastc data-set.
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Figure 7.10: Comparison of the performance of the bagging predictors and

single learners on StatlogHeart data-set.

Figure 7.9 presents a comparison of the performance of the prediction

models on the WBreastc data-set. NB, bagging NB, NBTree, and bagging

NBTree are the best prediction models on this data-set, followed by bagging

MLP. By contrast, Dstump and bagging Dstump are the worst prediction

models on this data-set.

Figure 7.10 presents a comparison of the performance of prediction models

on the almost balanced StatlogHeart data-set. NB and bagging NB are

the best prediction models on this data-set, followed by bagging SVM and

bagging MLP. By contrast, weak learners, OneR and Dstump are the worst

prediction models on this data-set.

Table 7.3 reports the best prediction models for the natural class

distribution on individual medical data-sets. Bagging predictors MLP and

J48 are the best prediction models for Diabetes, and Sick data-sets,

respectively; moreover, bagging SVM is the best prediction model for

Heart-c and WDBC data-sets; by contrast, single learner NB is the best

prediction model for Heart-h, StatlogHeart, WBreastc and Breastc

data-sets.
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Table 7.3: Best Gmean performance prediction models for the natural class

distribution on individual medical data-sets

Data-sets Best Performance Models

Index Name Gmean ErrorRate TPR TNR Learners P%

1 Breastc 0.6142 0.2703 0.4435 0.8507 NB 0.29

2 Diabetes 0.7188 0.2384 0.6153 0.84 MLP B 0.34

3 Heart-c 0.831 0.1624 0.779 0.8867 SVM B 0.45

4 Heart-h 0.8239 0.1578 0.7679 0.8840 NB 0.36

5 StatlogHeart 0.8492 0.1474 0.8233 0.876 NB 0.44

6 Sick 0.932 0.0117 0.9959 0.8723 J48 B 0.06

7 WBreastc 0.9767 0.0262 0.9672 0.9863 NB 0.34

8 WDBC 0.97 0.0236 0.9462 0.9944 SVM B 0.37

Table 7.4 presents the best achieved bagging prediction models with the

altered class distribution on individual medical data-sets. Bagging RdTree

performs best on four out of eight medical data-sets, Diabetes, Heart-c,

Heart-h, and WDBC. Bagging NBTree performs best on three of eight

medical data-sets, Sick, WBreastc, and WDBC. Bagging MLP performs

best on two of eight medical data-sets, StatlogHeart and WDBC. Bagging

KNN performs best on Breastc data-set. Bagging predictors, PART ,

NBTree, RdTree, and MLP perform best with Gmean metric, 0.979 on

WDBC data-set.
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Table 7.4: The best Gmean performance of the bagging prediction models

achieved with altered class distribution on individual data-sets

Data-sets Best Performance Model

Index Name Gmean TPR TNR Learners P%

1 Breastc 0.802 0.782 0.822 KNN B 0.50

2 Diabetes 0.876 0.844 0.909 RdTree B 0.40

3 Heart-c 0.913 0.905 0.921 RdTree B 0.50

4 Heart-h 0.904 0.873 0.935 RdTree B 0.40

5 StatlogHeart 0.912 0.883 0.941 MLP B 0.40

6 Sick 0.974 0.964 0.984 NBTree B 0.30

7 WBreastc 0.983 0.983 0.984 NBTree B 0.30

8 WDBC

0.979 0.977 0.981 PART B 0.40

0.979 0.976 0.981 NBTree B 0.50

0.979 0.972 0.985 MLP B 0.50

0.979 0.971 0.986 RdTree B 0.40
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7.4.4 Comparison of the Performance of Bagging

between Natural Class Distribution and

Altered Class Distribution on Individual

Medical Data-sets

Subsection 7.4.4 reports the performance of bagging predictors between the

natural class distribution and the best achieved results by using sampling

techniques on each medical data-set.

Tables 7.5 to 7.8 present a comparison of the performance of the

bagging predictors between natural class distribution and the best achieved

results of altered class distribution on eight medical data-sets. The first

column indicates the name of a medical data-set and the bagging

predictors, respectively; the second, fourth, and sixth columns present the

results from the natural class distribution and the third, fifth, and seventh

columns present the best achieved results from altered class distribution for

evaluation metrics, Gmean, TPR, and TNR, respectively; the eighth column

presents the proportion of the positive instances (P%), which refers to the

level of the altered class distribution when bagging achieves the best

performance on the Gmean measure. We also note that if the proportion of

positive instances increases, the TPR will also increase but the Gmean may

reduce.

The experimental results in the second and third columns indicate the

comparison of Gmean performance of bagging predictors between natural class

distribution and the best achieved results from altered class distribution: the

level of the class distribution is mostly about 50% on Breastc, Heart-c, and

StatlogHeart data-sets. This finding is consistent with previous research.

However, the levels of class distribution are mostly 40% onDiabetes, WDBC

and Heart-h data-sets, 30% on Sick data-set, and 60% on WBreastc data-

set, when the best bagging performance on the Gmean measure is achieved.
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Table 7.5: Comparison of the performance of bagging predictors on Breastc

and Heart-c data-sets

Breastc Gmean TPR TNR

Bagging Natural Sampling Natural Sampling Natural Sampling P%

J48 0.481 0.724 0.247 0.717 0.941 0.737 50%

RepTree 0.356 0.678 0.138 0.651 0.937 0.709 50%

RdTree 0.503 0.796 0.292 0.837 0.867 0.580 40%

NB 0.605 0.675 0.428 0.644 0.854 0.709 50%

SVM 0.516 0.690 0.308 0.695 0.865 0.685 50%

DStump 0.552 0.630 0.355 0.486 0.868 0.824 50%

OneR 0.431 0.619 0.207 0.505 0.904 0.769 50%

DTable 0.186 0.662 0.037 0.527 0.993 0.835 50%

PART 0.534 0.746 0.326 0.760 0.877 0.733 50%

KNN 0.546 0.802 0.338 0.782 0.887 0.822 50%

NBTree 0.509 0.731 0.284 0.732 0.915 0.732 50%

MLP 0.584 0.790 0.406 0.682 0.841 0.916 70%

Heart-c

J48 0.801 0.887 0.768 0.880 0.836 0.894 50%

RepTree 0.798 0.850 0.728 0.82 0.875 0.881 50%

RdTree 0.801 0.913 0.756 0.905 0.849 0.921 50%

NB 0.831 0.840 0.798 0.802 0.866 0.882 40%

SVM 0.831 0.846 0.779 0.883 0.887 0.811 60%

DStump 0.768 0.778 0.723 0.745 0.816 0.812 40%

OneR 0.761 0.764 0.711 0.741 0.814 0.789 50%

DTable 0.780 0.847 0.665 0.790 0.917 0.908 50%

PART 0.814 0.906 0.783 0.896 0.846 0.917 50%

KNN 0.766 0.898 0.731 0.901 0.803 0.896 50%

NBTree 0.822 0.904 0.780 0.88 0.866 0.929 50%

MLP 0.823 0.909 0.796 0.907 0.852 0.911 70%
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Table 7.6: Comparison of the performance of bagging predictors on Heart-h

and StatlogHeart data-sets

Heart-h Gmean TPR TNR

Bagging Natural Sampling Natural Sampling Natural Sampling P%

J48 0.767 0.855 0.681 0.854 0.863 0.856 50%

RepTree 0.756 0.828 0.650 0.881 0.877 0.779 60%

RdTree 0.778 0.904 0.698 0.873 0.868 0.935 40%

NB 0.824 0.837 0.768 0.808 0.884 0.868 50%

SVM 0.797 0.835 0.699 0.879 0.908 0.794 60%

DStump 0.776 0.796 0.667 0.741 0.902 0.859 60%

OneR 0.767 0.795 0.657 0.801 0.896 0.790 60%

DTable 0.725 0.830 0.575 0.805 0.917 0.857 50%

PART 0.787 0.867 0.697 0.828 0.888 0.908 40%

KNN 0.771 0.895 0.709 0.873 0.839 0.918 40%

NBTree 0.788 0.873 0.694 0.835 0.894 0.913 40%

MLP 0.790 0.893 0.716 0.860 0.872 0.928 40%

StatlogHeart

J48 0.773 0.870 0.731 0.878 0.819 0.863 50%

RepTree 0.799 0.860 0.745 0.859 0.857 0.862 50%

RdTree 0.797 0.900 0.756 0.895 0.841 0.905 50%

NB 0.846 0.854 0.821 0.844 0.873 0.865 50%

SVM 0.839 0.865 0.789 0.853 0.891 0.877 50%

DStump 0.758 0.780 0.716 0.716 0.803 0.854 30%

OneR 0.764 0.740 0.705 0.726 0.828 0.756 50%

DTable 0.781 0.836 0.708 0.872 0.862 0.803 50%

PART 0.803 0.892 0.760 0.855 0.849 0.931 40%

KNN 0.778 0.891 0.737 0.863 0.822 0.919 40%

NBTree 0.814 0.900 0.763 0.856 0.869 0.946 40%

MLP 0.837 0.912 0.793 0.883 0.883 0.941 40%
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Table 7.7: Comparison of the performance of bagging predictors on Diabetes

and Sick data-sets

Diabetes Gmean TPR TNR

Bagging Natural Sampling Natural Sampling Natural Sampling P%

J48 0.707 0.861 0.597 0.834 0.837 0.890 40%

RepTree 0.705 0.824 0.581 0.878 0.855 0.871 40%

RdTree 0.705 0.876 0.597 0.844 0.833 0.909 40%

NB 0.707 0.726 0.597 0.740 0.837 0.712 60%

SVM 0.691 0.741 0.534 0.700 0.894 0.785 50%

DStump 0.672 0.696 0.558 0.620 0.809 0.892 40%

OneR 0.620 0.719 0.435 0.723 0.883 0.716 50%

DTable 0.674 0.776 0.515 0.778 0.882 0.774 50%

PART 0.695 0.852 0.563 0.824 0.859 0.881 40%

KNN 0.656 0.848 0.538 0.816 0.801 0.881 40%

NBTree 0.710 0.840 0.593 0.803 0.849 0.879 40%

MLP 0.719 0.812 0.615 0.833 0.840 0.793 50%

Sick

J48 0.932 0.973 0.872 0.967 0.996 0.979 30%

RepTree 0.912 0.965 0.834 0.954 0.997 0.976 30%

RdTree 0.881 0.972 0.778 0.964 0.997 0.980 40%

NB 0.848 0.880 0.765 0.864 0.939 0.898 20%

SVM 0.107 0.892 0.013 0.857 0.999 0.930 30%

DStump 0.930 0.934 0.892 0.896 0.970 0.974 70%

OneR 0.887 0.934 0.807 0.898 0.974 0.971 30%

DTable 0.874 0.941 0.771 0.902 0.991 0.982 30%

PART 0.922 0.973 0.854 0.967 0.995 0.979 30%

KNN 0.738 0.912 0.552 0.908 0.986 0.915 40%

NBTree 0.910 0.974 0.833 0.964 0.995 0.984 30%

MLP 0.832 0.951 0.698 0.964 0.993 0.938 50%
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Table 7.8: Comparison of the performance of bagging predictors on WDBC

and WBreastc data-sets

WDBC Gmean TPR TNR

Bagging Natural Sampling Natural Sampling Natural Sampling P%

J48 0.951 0.974 0.931 0.968 0.972 0.981 40%

RepTree 0.943 0.968 0.917 0.959 0.970 0.978 40%

RdTree 0.953 0.979 0.931 0.971 0.975 0.986 40%

NB 0.926 0.937 0.897 0.905 0.956 0.970 10%

SVM 0.970 0.977 0.946 0.966 0.994 0.987 50%

DStump 0.900 0.925 0.849 0.940 0.955 0.910 70%

OneR 0.900 0.929 0.852 0.900 0.950 0.959 40%

DTable 0.942 0.958 0.906 0.961 0.980 0.954 40%

PART 0.957 0.979 0.940 0.977 0.975 0.981 40%

KNN 0.953 0.980 0.937 0.980 0.969 0.981 50%

NBTree 0.955 0.979 0.932 0.976 0.978 0.981 50%

MLP 0.964 0.979 0.947 0.972 0.982 0.985 50%

WBreastc

J48 0.950 0.964 0.941 0.967 0.990 0.961 40%

RepTree 0.948 0.961 0.934 0.964 0.961 0.958 50%

RdTree 0.955 0.982 0.942 0.983 0.968 0.981 40%

NB 0.976 0.981 0.986 0.985 0.967 0.976 60%

SVM 0.958 0.979 0.945 0.988 0.971 0.970 80%

DStump 0.897 0.908 0.974 0.981 0.827 0.840 30%

OneR 0.918 0.935 0.882 0.962 0.957 0.908 60%

DTable 0.920 0.960 0.878 0.981 0.965 0.940 60%

PART 0.954 0.964 0.949 0.969 0.959 0.958 40%

KNN 0.948 0.981 0.922 0.982 0.975 0.981 60%

NBTree 0.972 0.983 0.976 0.983 0.967 0.984 30%

MLP 0.962 0.979 0.957 0.990 0.966 0.968 60%
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In addition, there are interesting findings on both WDBC and Sick data-

sets in that when bagging NB achieves the best performance on the Gmean

measure, the levels of class distributions are 10% and 20%, respectively. Both

data-sets have high dimensional features. This finding may be inconsistent

with existing research, which assumes that traditional learning algorithms

will perform better in a balanced situation than in an imbalanced situation.

The experimental results demonstrate that the sampling techniques can

improve the performance of bagging predictors on the Gmean metric over

most medical data-sets, except for bagging OneR on the StatlogHeart

data-set whose result is highlighted and marked in red. The bagging

performance on the TPR and TNR measures also improves at the same

level of class distribution, except for NB on Heart-h data-set whose TNR

measure is highlighted and marked in red.

7.5 Conclusions

This research investigates the performance of bagging predictors with 12

underlying different base learners on eight medical data-sets. We address

the imbalanced class distribution and unequal cost of mis-classification

error issues on medical data which may have high accuracy but poor

performance on the TPR of the minority class. We report the best

performance prediction model for the natural class distribution on each

individual medical data-set by comparing 12 single learners and 12 bagging

predictors. In addition, we utilize sampling techniques to alter the class

distribution at different imbalanced levels and report the comparison of the

bagging performance between the natural class distribution and the best

achieved performance based on the Gmean measure at a certain level of class

distribution. We note that by using sampling techniques to improve the

performance of the bagging predictors, the level of the class distribution is
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mostly at a 50% balanced level for three data-sets, Breastc, Heart-c, and

statlogHeart; however, it is mostly at 40% for the Diabetes, WDBC and

Heart-h data-sets, at 30% for the Sick data-set, and at 60% for the

WBreastc data-set. We also observe that the levels of class distribution for

bagging NB to achieve the best performance on the Gmean measure are 10%

for the WDBC data-set and 20% for the Sick data-set, while for bagging

NBTree to achieve the best Gmean performance they are 30% for the Sick

and WBreastc data-sets.

We investigated the effectiveness of bagging by using statistical tests.

We also compared the performance of 12 bagging predictors on each of the

medical data-sets; we observed that different bagging predictors behave

differently for different medical data-sets. Bagging MLP performs well on

most of these medical data-sets, except for the extremely imbalanced class

distribution and high dimensional attributes large data-set Sick; Bagging

NB has the best performance on four out of eight medical data-sets but

performs poorly on two medical data-sets: Sick and WDBC; Bagging J48

and Dstump perform well on the extremely imbalanced and large, high

dimensional Sick data-set. This full comparison of the performance of

bagging predictors will allow data mining practitioners to choose the most

favorable learners and to understand what to expect when using bagging

predictors for imbalanced medical applications.
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Chapter 8

An Effective Method for

Imbalanced Time Series

Classification: Hybrid Sampling

This chapter investigates effective methods for highly imbalanced time

series classification problems. Mining time series data and imbalanced data

are two of ten challenging problems in data mining research. Most

traditional supervised classification learning algorithms are ineffective for

highly imbalanced time series classification, which has received considerably

less attention than imbalanced data problems in data mining and machine

learning research. The structure-preserving over-sampling method (SPO)

(Cao et al. 2011) has been proposed for solving highly imbalanced time

series classification problems and has been reported as achieving better

performance than other over-sampling methods and the state-of-the-art

methods in a time series classification. The authors did not provide

statistical analysis for their experimental results, and it can be argued that

their claim is inappropriate from a statistical point of view. In addition,

they did not compare their results with any under-sampling methods.

124



Bagging is one of the most effective ensemble learning methods, yet it

has drawbacks on highly imbalanced data. Sampling methods are

considered to be effective to tackle highly imbalanced data problem, but

both over-sampling and under-sampling have disadvantages; thus it is

unclear which sampling schema will improve the performance of bagging

predictor for solving highly imbalanced time series classification problems.

This chapter has addressed the limitations of existing techniques of the

over-sampling and under-sampling, and proposes a new approach,

hybrid-sampling technique to enhance bagging (HBagging), for solving

these challenging problems. Comparing this new approach, HBagging with

previous approaches, over-sampling methods, SPO, and under-sampling

with various algorithms (Liang 2012) on benchmark data-sets, the

experimental results demonstrate that HBagging is able to dramatically

improve on the performance of previous approaches. Friedman and

Post-hoc Nemenyi statistical tests are used to draw valid conclusions. Note:

The over-sampling methods include repeating (REP), SMOTE (SMO)

(Chawla et al. 2002), Borderline SMOTE (BoS) (Han et al. 2005),

ADASYN (ADA) (He, Bai, Garcia & Li 2008), and DataBoost (DB) (Guo

& Viktor 2004); and state-of-the-art methods in TSC include Easy

Ensemble (Easy) (Liu et al. 2009), BalanceCascade (Bal) (Liu et al. 2009),

One nearest neighbor classifier using Euclidean distance (1NN) (Wei &

Keogh 2006), and One nearest neighbor classifier using dynamic time

warping distance (1NN DW) (Xi, Keogh, Shelton, Wei &

Ratanamahatana 2006).

The chapter is organized as follows. Section 8.1 gives an introduction.

Section 8.2 outlines the proposed new approach. Section 8.3 provides the

experimental setting and Section 8.4 presents the experimental results

analysis. Section 8.5 concludes by summarizing the significant results of the

chapter.
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8.1 Introduction

Imbalanced time series classification (ITSC) involving time serial

classification (TSC) and imbalanced problems can be widely observed in

many real-world applications in various domains, such as financial stock

market data analysis (Kim 2003), bio-informatics (Zavaljevski, Stevens &

Reifman 2002), and ECG beats classification (Acır 2005). Most traditional

supervised classification learning algorithms are ineffective for highly

imbalanced time series classification (HITSC). Due to its challenging issues

of high dimensionality, large scale, and uneven class distribution among

different classes, and considering the sequence of the numerical attributes

carrying special information as whole instead of individual attributes

(Hidasi & Gáspár-Papanek 2011), it has received considerably less attention

than imbalanced data problems in data mining and machine learning

research. HITSC refers to a situation in which the proportions of the

training examples of time series data are varied significantly among

different classes. This study mainly focuses on imbalanced binary TSC,

e.g., the proportion of positive examples that are far fewer than the

proportion of negative examples in the training data of the TSC.

Bagging (Breiman 1996a) is one of several effective methods for

classification, but it has limitations for solving highly imbalanced data

problems. Sampling techniques are considered to be one of the most

effective ways to tackle highly imbalanced problems, but since both

over-sampling and under-sampling techniques have their limitations, it is

unclear which sampling schema is able to enhance the performance of

bagging. These challenging issues have motivated me to propose a new

approach, hybrid-sampling techniques to enhance bagging (HBagging), for

solving HITSC problems.
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The proposed new approach, HBagging, randomly over-samples the

positives and under-samples the negatives to half of the original training

size, |P |+|N |
2

, respectively, to generate a set of balanced bootstrap samples

from the original training set to enhance bagging. Comparing the

performance of this new approach, HBagging with previous approaches, the

over-sampling methods and state-of-the-art methods in TSC, SPO (Cao

et al. 2011), and under-sampling with various algorithms (Liang &

Zhang 2012a) on the benchmark data-sets, the experimental results

demonstrate that the proposed new approach, HBagging is superior to, and

dramatically improves the performance of previous approaches. Friedman

and post-hoc Nemenyi statistical tests for comparing the performance of

multiple learning methods over multiple benchmark data-sets are applied to

draw valid conclusions.

The key contributions of this chapter are as follows. (1) This chapter

proposes a new approach, HBagging for improving the performance of

prediction models to solve the HITSC problems. (2) Empirically comparing

the performance of this new approach with previous approaches (Cao

et al. 2011, Liang & Zhang 2012b, Liang & Zhang 2012a) on the benchmark

data-sets, the experimental results demonstrate that the new approach,

HBagging integrating the unstable base learner, decision trees J48, is

effective for solving the HITSC problems and is dramatically superior to

previous approaches.

8.2 HBagging approach

Algorithm 3 outlines the proposed new approach, HBagging integrating

unstable learner decision trees J48. This new approach is different from

previous approaches (Cao et al. 2011, Liang & Zhang 2012a) because

H-sampling reduces the disadvantage of under-sampling, loosing to much
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Algorithm 3: HBagging

Input:

D, original training set, containing |P | positive
and |N | negative instances;

a learning scheme (algorithm, e.g., J48);

Output: A composite model, C∗.

Method:

for i = 1 to k do
Create balanced bootstrap samples of

size |Di| sub-sets, |Di| = |Pi|+ |Ni| where
Pi and Ni are randomly drawn with replacement

from original training set, P and N , respectively:

|Pi| = |Ni| = (|P |+|N |)
2

and;

end

return a set of bootstrap samples Di (containing k bootstrap samples);

Train each base classifier model Ci from Di;

To use the composite model, C∗ for a test set T on an instance x

where its true class label is y:

C∗(x) = argmaxy
∑
i

δ (Ci(x) = y)

Delta function δ(·) = 1 if argument is true, else 0.
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important information for training, and the disadvantages of over-sampling,

over-fitting, high computational cost and longer training time. This new

approach, H-sampling, randomly selects the positives and the negatives to

the balanced point at half of the original training size, |P |+|N |
2

. For example,

the positives are randomly selected with replacement from the entire

positive class to the size of the balanced point; the negatives are randomly

selected with replacement from the negative class of original training set to

the size of the balanced point.

For the proposed prediction model, suppose the size of an ensemble is k,

a set of classifiers Ci (for i = 1 to k) is built from a set of balanced bootstrap

samples Di; each new test example is classified by a set of classifiers Ci, and

the final prediction is made by majority votes to aggregate the predictions

of the set of classifiers Ci by using a delta function δ(·) = 1 if the prediction

of Ci is a true class label, else the delta function δ(·) = 0. Majority votes,

aggregating the set of predicted class labels, use the delta function to vote for

a class and the class label obtaining the highest number of votes is considered

as the output of the final prediction.

8.2.1 Statistical Tests

Friedman and post-hoc Nemenyi statistical tests are applied to compare the

performance of the multiple learning methods on multiple data-sets, where

it is inappropriate to compare their average value, because the average

values are susceptible to outliers (Demšar 2006, Liang & Zhang 2012a).

Therefore, average rank is preferred for evaluating the performance of

multiple learning methods. This work therefore performs statistical tests to

evaluate the performance of the multiple learning methods on multiple

data-sets. The Friedman test is utilized to obtain the average rank of the

performance of the multiple learning methods on multiple data-sets; the
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post-hoc Nemenyi test is utilized to check whether there is a statistically

significant difference between the learning methods at a 95% confidence

interval.

8.3 Experimental Setup

Java platform is used to implement the new approach, HBagging technique

integrated unstable learner, decision trees J48 (Witten & Frank 2005), and to

investigate the performance of the new approach and previous approaches.

31 bootstrap samples are used in the ensemble. A 10-trial 10-fold cross-

validation evaluation is performed for this study. The Friedman test is used

for the calculation of average rank.

Table 8.1: Time series data-sets

Data-sets Data Information Class Information

TS Instances Ratio Previous Altered

Index Name Length (P+&N−) P+ N− P+/N− Class Class

1 Adiac 176 781 23 758 0.0303 37 2

2 S-Leaf 128 1125 75 1050 0.0714 15 2

3 Wafer 152 7164 762 6402 0.0119 2 2

4 FaceAll 131 2250 112 2138 0.0524 14 2

5 Yoga 426 3300 1530 1770 0.8644 2 2

8.3.1 Data-sets

Table 8.1 shows a summary of the characteristics of the five time series data-

sets from the public UCR time series repository (Keogh, Zhu, Hu, Hao, Xi,

Wei & Ratanamahatana 2011), which were used as the benchmark data-sets.
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These data-sets were selected using different criteria, for instance the

number of instances from 781 up to 3300, the number of attributes from

128 up to 426, and the frequency of each class from almost balanced 0.86 to

extremely imbalanced 0.0303. The first column indicates the ID number

and the name of the data-sets. The second column presents the information

about the original time series data which includes the number of instances,

the TS Length referring to the number of attributes (excluding the class)

and the number of classes in each data-set, respectively. The third column

presents the information of the altered imbalanced time series data-sets,

which includes the number of positive class samples (P+), negative samples

(N-), ratio of positive samples with negative samples, and the number of

classes in each data-set.

We altered three out of five data-sets from multi-class change to binary-

class as follows. For the Adiac data-set, the second class with 23 samples is

considered as the positive class, and the remaining samples are considered

as the negative class. For FaceAll and S-Leaf data-sets, the first class is

considered as the positive class with 112 and 75 samples, respectively.

8.4 Experimental Results Analysis

This section contains three sub-sections: Subsection 8.4.1 evaluation of the

performance of SVM on HITSC, Subsection 8.4.2 comparison of the

performance of over-sampling methods, under-sampling with various

algorithms and HBagging method on HITSC; and Subsection 8.4.3

comparison of the performance of other state-of-the-art methods in TSC,

SPO, under-sampling with various algorithms, and HBagging method for

HITSC.
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8.4.1 Evaluation of the Performance of SVM

Table 8.2: Results of SVM on imbalanced time series data-sets

Data-sets Results of SVM on ITSC data-sets (without sampling method)

Index Name Error Rate TPR TNR Fvalue Gmean Ratio P+/N-

1 Adiac 0.029 0 1 0 0 0.030

2 FaceAll 0.014 .769 0.997 0.845 0.876 0.052

3 S-Leaf 0.067 0 1 0 0 0.071

4 Wafer 0.037 0.666 0.998 0.792 0.815 0.012

5 Yoga 0.423 0.538 0.611 0.541 0.573 0.864

Table 8.2 shows the performance of SVM (using SMO from WEKA [26])

to examine whether SVM performs well for imbalanced time series

classification. The experimental results indicate that SVM does not

perform well on four out of five imbalanced time series classification

data-sets. In the literature, overall estimated error rate is considered as an

ineffective evaluation measure for imbalanced classification (Liang

et al. 2011b, Maloof 2003, Qin 2005, Chawla et al. 2003, Weiss 2004, Sun

et al. 2007).

Both data-sets Adiac and S-Leaf, for example, have low error rate (or high

overall accuracy), however, their true positive rate and true negative rate are

0 and 1, respectively. This means that none of the minority class samples

have been correctly predicted and all of majority class samples have been

correctly predicted. These experimental results demonstrate that estimated

error rate is an ineffective measure for HITSC. Moreover, SVM is not a

suitable learning algorithm for HITSC, which is true for these HITSC, such

as Adiac and S-Leaf data-sets. In addition, SVM is not suitable for large and

high dimensional almost balanced TSC, such as Yoga data-set.
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8.4.2 Comparison of Over-sampling, Under-sampling,

and Hybrid-sampling Methods

Table 8.3: Comparison of the performance of over-sampling methods, under-

sampling with various algorithms, and HBagging method based on the

evaluation metrics Fvalue and Gmean.

Metrics

Data-set Results from Previous Research Results from previous Work This Work

(Cao et al. 2011) (Liang & Zhang 2012a)

Over-sampling Methods Under-sampling H-sampling

Name REP SMO BoS ADA DB SPO SVM J48 RTree KNN MLP HBagging

Fvalue

Adiac 0.375 0.783 0.783 0.783 0.136 0.963 0.967 0.883 0.903 0.918 0.947 0.975

S-Leaf 0.761 0.764 0.764 0.759 0.796 0.796 0.841 0.820 0.849 0.836 0.786 0.932

Wafer 0.962 0.968 0.968 0.967 0.977 0.982 0.891 0.929 0.956 0.999 0.933 0.980

FaceAll 0.935 0.935 0.935 0.935 0.890 0.936 0.957 0.876 0.863 0.909 0.919 0.995

Yoga 0.710 0.729 0.721 0.727 0.689 0.702 0.744 0.771 0.811 0.807 0.780 0.926

AverageValue 0.740 0.836 0.834 0.834 0.698 0.876 0.880 0.856 0.876 0.894 0.873 0.962

STD 0.236 0.108 0.110 0.109 0.332 0.122 0.110 0.061 0.055 0.075 0.083 0.031

AverageRank 8.90 6.90 7.30 7.70 8.70 4.50 7.40 7.80 6.40 4.40 6.60 1.40

CD 7.45

Gmean

Adiac 0.480 0.831 0.831 0.831 0.748 0.999 0.957 0.910 0.920 0.958 0.975 0.989

S-Leaf 0.800 0.861 0.861 0.849 0.898 0.898 0.902 0.809 0.812 0.887 0.856 0.976

Wafer 0.965 0.969 0.970 0.970 0.980 0.984 0.903 0.907 0.956 0.998 0.937 0.988

FaceAll 0.950 0.950 0.950 0.950 0.948 0.957 0.966 0.870 0.860 0.929 0.925 0.997

Yoga 0.741 0.756 0.750 0.755 0.724 0.735 0.630 0.807 0.803 0.808 0.774 0.976

AverageValue 0.787 0.783 0.872 0.871 0.860 0.915 0.872 0.861 0.870 0.916 0.893 0.985

STD 0.197 0.088 0.090 0.089 0.117 0.108 0.138 0.051 0.067 0.073 0.079 0.009

AverageRank 9.30 6.80 6.90 7.20 7.50 4.10 6.60 8.60 8.20 4.20 7.20 1.40

CD 7.45

Table 8.3 presents a comparison of the performance of this new

approach, HBagging with previous approaches, over-sampling methods and

the under-sampling with various algorithms based on the Fvalue and Gmean

measures. The experimental results indicate that this new approach,

HBagging achieves the best performance with Fvalue across all

over-sampling methods and the under-sampling with various algorithms on

average value and average rank of Fvalue. This new approach achieves the
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highest average value 0.962 with smallest standard deviation (STD) 0.031

and the best average rank 1.4, respectively, which are the best results

across all methods; while KNN with the under-sampling method achieves

the average value 0.894 with STD 0.075 and average rank 4.40, respectively,

which is the second best across all methods on Fvalue.

On average value and average rank of the Gmean measure, this new

approach, HBagging achieves the highest average value 0.985 with smallest

STD 0.009 and lowest average rank 1.40, respectively, which is the best

across all the compared methods; while, the SPO over-sampling method

achieves average value 0.915 with STD 0.108 and average rank 4.1,

respectively, which is the second best across all the compared methods on

average rank of the Gmean measure, whereas KNN with the under-sampling

method achieves average value 0.916 with STD 0.073 and average rank 3.4,

respectively, which is the second best across all the compared methods on

average of the Gmean measure. The results highlighted in red indicate the

correction of the previous work (Cao et al. 2011, Liang & Zhang 2012a).
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Figure 8.1: Comparison of average rank of the Fvalue with the Nemenyi test

for the over-sampling methods, under-sampling with with various algorithms,

and HBagging, where the x-axis indicates the ranking order of the average

rank of the Fvalue, the y-axis indicates the average rank of the Fvalue, and the

vertical bars indicate the “critical difference”.
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Figure 8.2: Comparison of average rank of the Gmean with the Nemenyi test

for all the over-sampling methods, under-sampling with various algorithms,

and HBagging method, where the x-axis indicates the ranking order of the

average rank of the Gmean, the y-axis indicates the average rank of the Gmean,

and the vertical bars indicate the “critical difference”.

Figs 8.1 and 8.2 present a comparison of this new approach, HBagging

with previous approaches, over-sampling and under-sampling with various

algorithms, with the Nemenyi test, where the x-axis indicates the ranking

order of the average rank of two evaluation measures, the y-axis indicates

the average rank of the Fvalue and Gmean performance, respectively, and the

vertical bars indicate the “critical difference”. Groups of sampling methods

that are no significantly different at a 95% confidence interval are indicated

when the vertical bars overlap. Comparing the performance of this new

approach with previous approaches, over-sampling (Cao et al. 2011) and

under-sampling with various algorithms (Liang et al. 2011b), based on Fvalue

andGmean, HBagging has the best average rank on both measures. KNN with

the under-sampling method has the second best average rank of Fvalue; while

the SPO over-sampling method has the second best average rank of Gmean.

Statistical tests indicate that there is no statistically significant difference

at a 95% confidence interval between over-sampling SPO, under-sampling

KNN, and HBagging on the average rank of Fvlaue and Gmean; however, there
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is a statistically significant difference at a 95% confidence interval between

HBagging and two over-sampling methods, DB and REP on Fvlaue measure,

and between HBagging and two over-sampling methods, J48 and REP on

Gmean measure.

8.4.3 Comparison of the Performance of State-of-the-

art Methods in TSC, SPO, Under-sampling, and

H-sampling Methods

Table 8.4 presents a comparison of the performance of previous work (state-

of-the-art methods in TSC, SPO (Cao et al. 2011), under-sampling with

various algorithms (Liang & Zhang 2012a)), and this work, HBagging based

on Fvalue and Gmean evaluation measures. The experimental results indicate

that HBagging achieves the best performance on Fvalue and Gmean across all

previous approaches. HBagging achieves an average value of 0.962 and 0.985,

and average rank of 1.40 and 1.40, respectively, which is the best average

value and average rank of Fvalue and Gmean across all previous methods. KNN

achieves an average value of 0.894 and 0.916, and an average rank of 3.0 and

2.4, respectively, which is the second best average value and average rank of

Fvalue and Gmean across all the remaining methods. The results highlighted

in red indicate the correction of the previous work (Cao et al. 2011).

Figs. 8.3 and 8.4 present a comparison of the performance of previous

work (state-of-the-art methods in TSC, SPO, and the under-sampling

method with various algorithms) and this new approach, HBagging, using

the Nemenyi test, where the x-axis indicates the ranking order of the

average rank of two evaluation measures; the y-axis indicates the average

rank of Fvalue and Gmean performance, respectively, and the vertical bars

indicate the “critical difference”. Groups of learning methods that have no

statistically significant difference at a 95% confidence interval are indicated
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Table 8.4: Comparison of the performance of state-of-the-art methods in

TSC, SPO, under-sampling with various algorithms, and HBagging based on

evaluation metrics: Fvalue and Gmean.

Metrics

Data-set Results from Previous Research Results from Previous Work This Work

(Cao et al. 2011) (Liang & Zhang 2012a)

state-of-the-art methods in TSC Under-sampling H-sampling

Name Easy Bal. 1NN 1NN DW SPO SVM J48 RTree KNN MLP HBagging

Fvalue

Adiac 0.534 0.348 0.800 0.917 0.963 0.967 0.883 0.903 0.918 0.947 0.975

S-Leaf 0.521 0.578 0.716 0.429 0.796 0.841 0.820 0.849 0.836 0.786 0.932

Wafer 0.795 0.954 0.949 0.857 0.982 0.891 0.929 0.956 0.999 0.933 0.980

FaceAll 0.741 0.625 0.802 0.959 0.936 0.957 0.876 0.863 0.909 0.919 0.995

Yoga 0.356 0.689 0.652 0.710 0.702 0.744 0.771 0.811 0.807 0.780 0.926

AverageValue 0.589 0.639 0.784 0.774 0.876 0.880 0.856 0.876 0.894 0.873 0.962

STD 0.179 0.218 0.112 0.215 0.122 0.092 0.061 0.055 0.075 0.083 0.031

AverageRank 10.4 9 8.4 7.2 4.6 4.6 6.6 4.6 3.8 5.4 1.4

CD 7.00

Gmean

Adiac 0.782 0.897 0.875 0.920 0.999 0.957 0.910 0.920 0.958 0.975 0.989

S-Leaf 0.721 0.898 0.798 0.572 0.898 0.902 0.809 0.812 0.887 0.856 0.976

Wafer 0.817 0.970 0.953 0.870 0.984 0.903 0.907 0.956 0.998 0.937 0.988

FaceAll 0.792 0.918 0.983 0.985 0.957 0.966 0.870 0.860 0.929 0.925 0.997

Yoga 0.464 0.688 0.695 0.741 0.735 0.630 0.807 0.803 0.808 0.774 0.976

AverageValue 0.713 0.874 0.861 0.818 0.915 0.872 0.861 0.870 0.916 0.893 0.985

STD 0.145 0.108 0.117 0.164 0.108 0.113 0.051 0.067 0.073 0.079 0.009

AverageRank 10.80 6.50 7.20 7.10 3.50 7.10 7.20 6.50 3.20 5.50 1.40

CD 7.00
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Figure 8.3: Comparison of average rank of the Fvalue metric with the Nemenyi

test for the state-of-the-art methods in TSC, SPO, under-sampling with

various algorithms, and HBagging, where the x-axis indicates the ranking

order of the average rank of Fvalue, the y-axis indicates the average rank of

Fvalue, and the vertical bars indicate the “critical difference”.
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Figure 8.4: Comparison of average rank of the Gmean metric with the

Nemenyi test for the state-of-the-art methods in TSC, SPO, under-sampling

with various algorithms, and HBagging, where the x-axis indicates the

ranking order of the average rank of Gmean, the y-axis indicates the average

rank of Gmean, and the vertical bars indicate the “critical difference”.
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when the vertical bars overlap. Comparing the previous approaches (Cao

et al. 2011, Liang & Zhang 2012a) and this approach, HBagging based on

Fvalue and Gmean, H-sampling with bagging has the best average rank, and

KNN with under-sampling method has the second best average rank. The

statistical Nemenyi test results demonstrate that HBagging is statistically

significantly better than 1NN, Bal. and Easy on Fvalue, and better than

Easy on Gmean at a 95% confidence interval; however, there is no

statistically significant difference between HBagging and previous

approaches, SPO, and under-sampling KNN at a 95% confidence interval.

8.5 Conclusion

This chapter has proposed a new approach, H-sampling schema to enhance

bagging for improving the performance of extremely imbalanced time series

classification. This new schema reduces the computational cost and

training time of over-sampling by using fewer positives in training, and

increases the capability of under-sampling by using more negatives for

training. We have empirically compared this new approach, HBagging with

the previous approaches of over-sampling methods, state-of-the-art methods

in TSC, SPO and under-sampling with various algorithms based on two

evaluation measures, Fvalue and Gmean on benchmark data-sets. The

experimental results demonstrate that HBagging dramatically improves the

performance of the previous approaches. HBagging achieves the highest

average value with the lowest STD and the lowest average rank on both

evaluation measures, and it is dramatically superior to previous approaches

on both evaluation measures. For future work, I would like to investigate

the impact of the performance of HBagging with other base learners:

unstable learners and stable learners.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This dissertation has proposed novel supervised ensemble learning

approaches, UBagging and HBagging to boost the prediction model for

solving extremely imbalanced classification and HITSC problems. It has

also empirically investigated the performance of bagging predictors with

respect to different algorithms on various types of data environments in

terms of learning from natural class distribution, and in terms of learning

from varying levels of class distribution approaches.

The novel supervised ensemble learning approach, UBagging, has been

tested on 32 public data-sets, and the experimental results have

demonstrated that UBagging is statistically significantly superior to

SingleJ48, SBagging, and BBagging. HBagging has been tested on the

benchmark data-sets of HITSC problems, and the experimental results have

demonstrated that HBagging performs the best and is superior to the

complex over-sampling SPO approach, to the under-sampling with various

learning algorithms, and the state of the art methods in time series

classification.
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In terms of learning from natural class distribution, a comprehensive

study was conducted to evaluate the performance of bagging with respect

to 12 different algorithms on 48 data-sets. A novel two dimensional

stability and robustness decomposition was proposed to rank base learners

into different categories to assess the performance of the bagging predictors,

which provided a clear picture of categorized base learners. The existing

research mainly concerns the fact that instability is an important factor for

bagging to improve the performance of a prediction model. This

dissertation has asserted that both stability and robustness are important

factors for ensuring that bagging predictors achieve high performance. The

experimental results demonstrate that bagging is influenced by the

combination of robustness and instability, and illustrates that robustness is

important for bagging to achieve a highly accurate prediction model. Our

observations support our claims: the most robust base learners, MLP,

NBTree and PART contribute to the best bagging prediction models; in

contrast, the weakest learners, OneR and DStump, lead to the worst

bagging prediction models.

In terms of learning from varying levels of class distribution, the

estimated error rate has been addressed as an ineffective evaluation metric

for learning from the imbalanced class distribution problem; consequently,

other evaluation metrics, such as AUC of ROC curve, TPR and Gmean

have been adopted to investigate the performance of bagging predictors on

imbalanced data as follows:

• The ROC curves present the average performance of bagging predictors

at 9 different levels of class distribution. Based on AUC of ROC curve

as an evaluation measure, the experimental results demonstrated that

the AUC performance of bagging is statistically superior to that of

single learners, except for SVM and DStump; when comparing the

AUC performance of bagging predictors, bagging with the unstable
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learners, DTable and RepTree, are the learning algorithms with the best

bagging average performance, while bagging with the stable learners,

NB, MLP and KNN, lead to the worst bagging average performance of

bagging predictors.

• Based on TPR and Gmean as evaluation metrics, the experimental re-

sults demonstrate that robustness is important for bagging to achieve

a highly accurate prediction model. For example, the most robust and

unstable base learners, PART, MLP and NBTree, can be used to build

the best bagging prediction models, whereas the weakest learners, On-

eR and DStump, result in the worst bagging prediction models.

• Consequently, this dissertation investigated the effect of varying levels

of class distribution on the sensitivity of bagging, and the experimental

results demonstrate that bagging MLP and bagging NB are the most

insensitive predictors when the levels of class distribution vary.

This dissertation investigated the performance of bagging on medical data

as follows:

• This work compared 24 prediction models, 12 bagging predictors and

12 single learners in terms of learning from natural class distribution

based on four evaluation metrics, TPR, TNR, Gmean and Acc, and

reported the best Gmean performance of prediction models on eight

individual medical data-sets. The experimental results indicate that

single learner NB performed best on four of eight medical data-sets;

bagging SVM performed best on three of eight medical data-sets; and

bagging J48 performed best on one of eight medical data-sets.

• This work compared the performances of bagging between natural

class distribution and the altered class distribution, and reported the

best achieved performance by using altered class distribution. It was
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observed that when the best performance was achieved at certain

levels of class distribution, which are varied depending on individual

medical data-sets.

Two limitations of this study are that only the default parameter settings

of 12 learning algorithms in WEKA are used, and only the empirical study

is adopted for this investigation.

9.2 Future Work

Although a comprehensive empirical study has been performed in terms of

learning from natural class distribution and altered class distribution, it is

unclear whether different parameter settings would affect the experimental

results and lead to different conclusions. In addition, although the proposed

new approaches UBagging and HBagging with underlying unstable learner

J48 perform well on imbalanced classification and ITSC problems,

respectively, we did not investigate the impact of the performance of these

approaches with other learners, such as KNN and MLP as base learners

with UBagging on these imbalanced problems. We also did not provide

theoretical justification for why these approaches perform well on

imbalanced problems.

In future work, we would like to explore different parameter settings of

algorithms in WEKA to identify whether they will affect the experimental

results; we would also like to empirically investigate whether these novel

approaches with other underlying learners are superior to the existing work on

these imbalanced problems; as well as making theoretical investigations into

why UBagging and HBagging approaches perform well on these imbalanced

problems.

143



Bibliography

Acır, N. (2005), ‘Classification of ECG beats by using a fast least square

support vector machines with a dynamic programming feature selection

algorithm’, Neural Computing & Applications 14(4), 299–309.

Banfield, R., Hall, L., Bowyer, K. & Kegelmeyer, W. (2007), ‘A comparison

of decision tree ensemble creation techniques’, IEEE Transactions on

Pattern Analysis and Machine Intelligence 29(1), 173–180.

Batista, G., Prati, R. & Monard, M. (2004), ‘A study of the behavior of

several methods for balancing machine learning training data’, ACM

SIGKDD Explorations Newsletter 6, 20–29.

Bauer, E. & Kohavi, R. (1999), ‘An empirical comparison of voting

classification algorithms: Bagging, boosting, and variants’, Machine

Learning 36(1), 105–139.

Bradley, A. (1997), ‘The use of the area under the ROC curve in

the evaluation of machine learning algorithms’, Pattern Recognition

30(7), 1145–1159.

Breiman, L. (1996a), ‘Bagging predictors’, Machine Learning 24(2), 123–140.

Breiman, L. (1996b), Bias, variance and arcing classifiers, Technical report,

Department of Statistics, University of California.

144



BIBLIOGRAPHY

Breiman, L. (2001), ‘Random forests’, Machine Learning 45(1), 5–32.

Buciu, I., Kotropoulos, C. & Pitas, I. (2006), ‘Demonstrating the

stability of support vector machines for classification’, Signal Processing

86(9), 2364–2380.
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