Probabilistic bisimulations for quantum processes

Yuan Feng® Runyao Duan?® Zhengfeng Ji® Mingsheng Ying®
aState Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and
Technology, Tsinghua University, Beijing, 100084, China
bState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, 100084, China

Abstract

Modeling and reasoning about concurrent quantum systems is very important for both dis-
tributed quantum computing and quantum protocol verification. As a consequence, a general
framework formally describing communication and concurrency in complex quantum systems is
necessary. For this purpose, we propose a model named qCCS. It is a natural quantum extension
of classical value-passing CCS which can deal with input and output of quantum states, and
unitary transformations and measurements on quantum systems. The operational semantics of
qCCS is given in terms of probabilistic labeled transition system. This semantics has many
different features compared with the proposals in the available literature in order to describe
the input and output of quantum systems which are possibly correlated with other components.
Based on this operational semantics, the notions of strong probabilistic bisimulation and weak
probabilistic bisimulation between quantum processes are introduced. Furthermore, some prop-
erties of these two probabilistic bisimulations, such as congruence under various combinators,
are examined.
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1. Introduction

Much attention has been devoted to quantum computation and quantum informa-
tion theory (QCQI) in the last two decades since Feynman [8] proposed the idea that a
quantum mechanical system can be used to perform computation. Benefiting from the
possibility of superposition of different basis states and the linearity of quantum opera-
tions, quantum computing may provide considerable speedup over its classical analogue

Email addresses: feng-y@tsinghua.edu.cn (Yuan Feng), dry@tsinghua.edu.cn (Runyao Duan),
jizhengfeng98@mails.tsinghua.edu.cn (Zhengfeng Ji), yingmsh@tsinghua.edu.cn (Mingsheng Ying).

Preprint submitted to Information and Computation



[33,12,13]. To provide techniques of considering computational problems in a conceptual
way, rather than focusing on the details of low-level implementations, some authors be-
gan to study the design and semantics of quantum programming languages. Knill made
the first step by proposing a set of basic principles for writing quantum pseudo-codes
[17], while the first real quantum programming language, QCL, is due to Omer [25,26]. A
quantum programming language in the style of Dijkstra’s guarded-command language,
qGCL, was designed by Sanders and Zuliani in [28,39,40]. They also presented a proba-
bilistic predicate transformer semantics and a refinement calculus for their language. A
quantum extension of C++ was proposed by Bettelli et al [5], and it was implemented in
the form of a C++ library. The first functional quantum programming language, QPL,
was proposed by Selinger [32] based on the idea of classical control and quantum data.
For detailed surveys on quantum programming languages and related researches, we refer
to [31] or [9].

The languages presented so far are, however, mostly designed for sequential quantum
computing, where no communication between physically separated parties is considered.
Design and investigation of languages which can describe quantum concurrent systems
and their communication behaviors have just begun. On the other hand, although con-
structing real quantum computers in which quantum programming can be applied is very
difficult, quantum cryptography [7,2,1], which can provide absolute security in principle
even when it has been attacked by a potential quantum eavesdropper, has been developed
so rapidly that quantum cryptographic systems became commercially available recently
[27]. So, to some extent the need for a language describing concurrent systems is more
urgent than that for sequential computations in the realm of quantum computation.
Furthermore, a framework of modeling and reasoning about quantum concurrent sys-
tems will provide techniques to prove the properties, such as correctness and security, of
quantum cryptographic protocols, just as we have noticed in classical world.

The first step of constructing such a general framework of modeling quantum con-
current systems was made independently by Jorrand and Lalire [16], and Gay and Na-
garajan [10]. In [16], a process algebra for quantum processes was proposed which can
describe both classical and quantum information passing. Later on, Lalire presented for
their language a probabilistic branching bisimulation which identifies quantum processes
associated with process graphs having the same branching structure [19,20]. In [10], a
language called CQP (Communicating Quantum Processes), which combined the com-
munication primitives of pi-calculus from [22] with primitives for unitary transformations
and measurements, was defined. One distinctive feature of CQP is a type system which
can guarantee the physical realizability of quantum processes. However, no equivalence
notions between processes were presented there.

The main purpose of this paper is to propose a different model for quantum con-
current systems. This model, which we call qCCS, is a quantum extension of classical
value-passing CCS [14,15]. To avoid no-go operations such as quantum cloning in syntac-
tical level, we explicitly introduce the notion of free quantum variables, which intuitively
denote the quantum systems a process can reference. When constructing more compli-
cated processes from simpler ones, this type of variables must be taken into consideration.
For example, if ¢ is one of the free quantum variables of P then the process clq.P is in-
valid because we cannot reference a quantum system when it has been output. This is
in sharp contrast with classical variables, as classical values can be copied arbitrarily so
that we can use them even after they have been output. As a consequence, the syntax of
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qCCS is more complicated than those in [10] and [16]. But a type system as introduced
in [10] is not necessary in qCCS. Note also that in [16], there was no such mechanism to
avoid invalid quantum processes.

In classical process algebra, both call-by-value and call-by-name strategies can be
adopted in the design of semantics. This flexibility is partially due to the fact that
classical information can be cloned arbitrarily, and so we can talk about classical infor-
mation without explicitly referring to the physical carrier of the information. Quantum
information, however, cannot be perfectly cloned unless it is known. So the only universal
way to realize quantum information transmission is to transfer the physical system which
carries the information. As a consequence, only call-by-name semantics can be given in
quantum process algebra.

To present the operational semantics of qCCS, we introduce the notion of configuration
which is a pair consisting of a quantum process and an accompanied context instantiating
all free quantum variables of the process. Intuitively, the context describes the quantum
environment in which the process is performed. The operational semantics of qCCS is
then given as a probabilistic labeled transition system consisting of configurations. There
are some differences between our approach and the previous ones presented in literature.
The first one is that in our semantics, transitions are from configurations to probability
distributions over configurations, i.e.

—C Con x Act x D(Con)

where Con is the set of configurations and D(Con) is the set of finite-support distri-
butions on Con. Notice that in [16] and [10], probabilistic choice induced by quantum
measurement was resolved in each step. This was achieved by introducing a new kind of
transition —, to represent an evolution which is caused by an internal action and occurs
with probability p. In this paper, however, we do not resolve any probabilistic choice in
intermediate steps but instead keep the probability information all the time. The moti-
vation for us to make such a design decision is as follows. First, transitions defined in this
way make our operational semantics much simpler and more CCS-like; second, it gives us
a convenient way to define combined transitions (resp. combined weak transitions) which
are obtained by probabilistically taking different transitions with the same source con-
figuration and the same actions (resp. observable actions). That is, the nondeterminism
resulting from the non-probabilistic choice ‘+’ can be resolved in a probabilistic manner.
This is exactly the basis of strong bisimulation and weak bisimulation defined in this pa-
per. Finally, by defining transitions in this way, many notions and techniques introduced
in [29] and [30] for classical probabilistic processes can be extended to investigate the
properties of probabilistic bisimulations between quantum processes.

The second difference between our approach of semantics and the previous ones is the
ways of dealing with quantum input, quantum output, and quantum communication. The
quantum input rule presented in [16] can only describe the case when the input system is
initially not correlated with the systems the process holds. We introduce a new inference
rule in this paper to deal with the general case where these systems are correlated. The
rule for quantum output is also refined to keep track of possible correlation between an
output system and the retained systems. As a consequence, the quantum communication
rule in our qCCS has a very simple and CCS-like form. Note that in [10], no rules for
quantum input and output were introduced because the authors took the viewpoint
that any input action is necessarily accompanied with an output action (no matter from
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another process or the environment). However, we still think it necessary to present rules
describing input and output, since they give us a compositional way to describe quantum
communication between different components.

The main contribution of this paper is a new notion of (strong and weak) probabilistic
bisimulation between quantum processes. As mentioned above, Lalire [19] has proposed
a notion of probabilistic branching bisimulation. Our bisimulations, however, are based
on different probabilistic labeled transition system and motivated by different considera-
tions: First, for two bisimilar configurations, any action performed by one configuration
can be simulated by a combined action of the other. That is, different transitions with
the same source configuration and the same action can be chosen simultaneously with
different probabilities to simulate a single transition. Second, the final states of the quan-
tum contexts when all matching actions have been executed must be the same when we
want to check if two configurations are bisimilar. We add this requirement because uni-
tary transformations and measurements are both considered as internal actions, and the
effects of these kinds of actions can be fully reflected only by the state change of quantum
contexts. Finally, note that in qCCS, a transition from a configuration generally leads to a
finite-support distribution over configurations, and from each resulted configuration, dif-
ferent configurations can again be derived with different probabilities. As a consequence,
the execution of a sequence of actions from a quantum configuration typically forms a
tree rather than a linear path as in classical non-probabilistic case; any internal actions
along any branch of the tree should be ignored when weak probabilistic bisimulation is
concerned.

1.1. Owerview of this paper

This paper is organized as follows: in Section 2, we review some basic notions from
linear algebra and quantum mechanics which will be used in this paper. The syntax and
operational semantics of qCCS are presented in Section 3. First, we define inductively
quantum processes and at the same time free quantum variables associated with each pro-
cess. Then the notion of configuration is introduced in which free quantum variables are
instantiated by the accompanied quantum context. The operational semantics of qCCS
is given in terms of probabilistic labeled transition system consisting of configurations.
To show the expressive power of qCCS, we describe the well-known quantum telepor-
tation protocol with qCCS and show that it indeed teleports any qubit from one party
to another. Finally, ordinary one-step transitions are extended to combined multi-step
transitions by probabilistically taking different transitions at each intermediate step.

Section 4 and Section 5 are the main parts of the present paper. We define the notions
of strong and weak probabilistic bisimulations between configurations and then lift them
to bisimulations between quantum processes. Some properties of these two bisimulations
are also derived. Particularly, we show that probabilistic bisimilarity is the largest prob-
abilistic bisimulation on Con; a weak version of the congruence property is proved in
which bisimilarity of P and @ implies bisimilarity of P||R and Q| R for any quantum
process R, if either P and @ are free of quantum input or R is free of unitary trans-
formation and quantum measurement. An example is also presented to show why the
standard proof technique for establishing the preservation of bisimilarity under parallel
combinator in classical CCS cannot be used to prove the result in general quantum case
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when the (non-commutative) quantum operations performed by parallel processes can
be interweaved, although it works well in the two special cases mentioned above.

Section 6 is the concluding section in which we outline the main results and point out
some problems for further study.

2. Preliminaries

For convenience of the reader, we briefly recall some basic notions from linear algebra
and quantum theory which are needed in the sequel. We refer to [24] for more details.

2.1. Basic linear algebra

A Hilbert space H is a vector space equipped with an inner product which in turn is
a mapping (-|-) : H x H — C satisfying the following properties:

(1) (¢)¥) > 0 for any |¢) € H, with equality if and only if |1)) = 0;

(2) (6l) — (lo)";

(3) (6130, Milths) = 3, Al

where C is the set of complex numbers, and for each A € C, \* stands for the complex
conjugate of \. For any vector |¢)) € H, its length |||¢}|| is defined to be y/(¥|)), and it is
said to be normalized if ||[¢))|| = 1. Two vectors |[¢)) and |¢) are orthogonal if (1)|¢) = 0.
An orthonormal basis of a Hilbert space H is a basis {|i)} where each i) is normalized
and any pair of them are orthogonal.

Let L(H) be the set of linear operators on H. For any A € L(#), we have the following

definitions:

(1) A non-zero vector |1) € H is an eigenvector of A with the corresponding eigenvalue
A€ Cif Aly) = A|¢). We write spec(A) for the set of eigenvalues of A, and call it
the spectrum of A.

(2) Ais Hermitian if A" = A where AT is the adjoint operator of A such that (1| Af|¢) =
(| Aly)* for any |¢),|#) € H. The fundamental spectrum theorem states that the
set of all normalized eigenvectors of a Hermitian operator in £(H) contains an
orthonormal basis for H. That is, there exists a so-called spectral decomposition
for each Hermitian A such that

A= Z/\M(ZI = Z AP

i€spec(A)

where the set {|¢)} constitute an orthonormal basis of 1, and P; = 3, 45—, 17) ]
is the projector to the corresponding eigenspace of ;.

(3) Ais positive if (1| Alyp) > 0 for all |¢) € H; it is positive-definite if for any nonzero
vector |¢), (|Al) > 0. Note that a positive operator is also Hermitian.

(4) A is unitary if ATA = AAT = I; where Iy is the identity operator in £(#). In
the examples of this paper, we will use some well-known unitary operators listed
as follows: the CNOT operator performed on two qubits such that
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1000
0100

CNOT = ,
0001

0010

and the 1-qubit Hadamard operator H and Pauli operators og, 01, 092,03 defined
respectively as

I 1 11 7 10
= — ’0‘0: =
V2 |11 01
01 0 —2 10
o1 = , 02 = , 03 =
10 1 0 0 -1

(5) The trace of A is defined as tr(A4) = >,(i|Ai) for some given orthonormal basis
{|i)} of H. It is worth noting that trace function is actually independent of the
orthonormal basis selected. It is also easy to check that trace function is linear and
tr(AB) = tr(BA) for any operators A, B € L(H).

Let H; and Hs be two Hilbert spaces of dimensions n; and no, respectively. Then
their tensor product H; ® Hs is defined as an nins-dimensional vector space consisting
of linear combinations of the vectors |th1102) = [11)|th2) = |¢1) ® |1h2) with |¢1) € Hq and
|th2) € Ho. Here the tensor product of two vectors is defined by a new vector such that

(Z)\i|1/}i>>® Zug‘|¢j> = i) @ 16)).

5]

Then H; ® Ho is also a Hilbert space where the inner product is defined as the following:
for any [1), |¢1) € H1 and |¢)2), |¢2) € Ha,

(Y1 @ 2|p1 @ p2) = (Y1l ), (V2|P2) w0,

where (-|-), is the inner product of H;. For any A; € L(H1) and Ay € L(Hz), A1 ® As is
defined as a linear operator in £L(H; ® Hsz) such that for each |1)1) € H1 and |[¢)2) € Ha,

(A1 ® A2)[th11ha) = Ai|tn) @ As|1a).

The partial trace of A € L(H1 ® Hz) with respected to H; is defined as try, (4) =
> (iA]i) where {|i)} is an orthonormal basis of 7{;. Similarly, we can define the partial
trace of A with respected to H,. Partial trace functions are also independent of the
orthonormal basis selected.

A linear operator £ on L(H) is completely positive if it maps positive operators in
L(H) to positive operators in £L(H), and for any auxiliary Hilbert space H’, the trivially
extended operator Zz ®E also maps positive operators in £L(H' ® H) to positive operators
in L(H' ® H). Here Z4 is the identity operator on L(H'). The elegant and powerful Kraus
representation theorem [18] of completely positive operators states that a linear operator
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£ is completely positive if and only if there are some set of operators {E;,i = 1,...,d}
with appropriate dimension such that

d
E(A) =) EAE]
=1

for any A € L(H). The operators E; are called Kraus operators of £. A linear operator
is said to be a super-operator if it is completely positive and trace-preserving. Here an
operator € is trace-preserving if tr(£(A)) = tr(A) for any linear operator A. Then a super-
operator is just a completely positive operator with its Kraus operators F; satisfying
SLEIE =1

2.2. Basic quantum mechanics

According to von Neumann'’s formalism of quantum mechanics [34], an isolated physical
system is associated with a (finite-dimensional) Hilbert space which is called the state
space of the system. A pure state of a quantum system is a normalized vector in its
state space, and a mixed state is represented by a density operator. Here a density
operator p on Hilbert space H is a positive linear operator such that tr(p) = 1. Another
equivalent representation of density operator is probabilistic ensemble of pure states. In
particular, given an ensemble {(p;, [1;))} where p; > 0, >°.p; = 1, and [1);) are pure
states, p = Y. pilti) (¢ is a density operator. Conversely, each density operator can be
generated by an ensemble of pure states in this way. In this paper, we denote by D(H)
the set of density operators on Hilbert space H.

The evolution of a closed quantum system is described by a unitary operator on its
state space: if the states of the system at times ¢; and t; are p; and po, respectively, then
p2 = Up U for some unitary operator U which depends only on ¢; and t,. In particular,
if p1 and po are pure states |11) and |¢)2), respectively, then we have |2) = Uly1).

Observation of a quantum system is a quantum measurement represented by a Hermi-
tian operator M on the associated state space. Suppose M has the spectral decomposi-
tion M =3 mP,,, where P, is the projector onto the eigenspace of M associated with
eigenvalue m. Then the probability of obtaining measurement result m when the system
is initially in the state p is p,, = tr(Pmnp), and if p,, > 0 then the post-measurement
state of the system given the outcome m becomes

PppPp,

Pm
For the case that p is a pure state |1), we have p,,, = (¥| P, [¥)), and the post-measurement
state is P, [1)/\/Dm-

The state space of a composite system (for example, a quantum system consisting of
many qubits) is the tensor product of the state spaces of its components. For a mixed
state p on H; ® Ha, partial traces of p have explicit physical meanings: the density
operators try, p and try, p are exactly the reduced quantum states of p on the second and
the first component system, respectively. Note that in general, the state of a composite
system cannot be decomposed into tensor product of the reduced states on its component
systems. A well-known example is the so-called EPR state
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in 2-qubit system. This kind of states is called entangled states. To see the weirdness
of entanglement, suppose a measurement M = X|0)(0| + A1|1)(1]| is applied on the first
qubit of the EPR state. Then after the measurement, the second qubit will definitely
collapse into state |0) or |1) depending on whether the outcome Ay or A; is observed. In
other words, the measurement on the first qubit changes the state of the second qubit in
a way. This is an outstanding feature of quantum mechanics which has no counterpart
in classical world, and is the key to many quantum information processing tasks such as
teleportation [3] and superdense coding [4].

(100) +[11))

2.3. Quantum no-cloning theorem

Classical information can be arbitrarily cloned. However, the linearity of quantum
operations prohibits the possibility of perfectly cloning an unknown quantum state [35].
The formal argument goes as follows. Suppose a quantum cloning device is possible, i.e.
there is a physically realizable procedure such that the transformation

[)E) — [9)1) (1)

holds for any |¢) € H. Here |X) is a standard state which is independent of [¢). In
particular, for two orthogonal states |0) and |1), we have

0)2) —10)[0)  and  [1)[X) — [1[1).

Now let |¢)) = «|0) + 8]1). Because of the linearity of quantum operations imposed by
basic principles of quantum mechanics, we have

[9)[5) = al0)[X) + B[1)[X) — a]0)[0) + S[1)[1). (2)
On the other hand, Eq.(1) can be rewritten as
[)[%) — @?]0)]0) + B%[1)]1) + aB(|0)[1) + [1)[0)). 3)

Comparing the right-hand sides of Eq.(2) and Eq.(3), we deduce that & = 0 or 8 = 0.
That is, the universal cloning procedure presented in Eq.(1) does not exist. This is the
well-known quantum no-cloning theorem.

Quantum no-cloning theorem has been shown to be connected with some other no-
go principles such as no-signaling principle which states that signals can not be sent
faster than the speed of light [6,11]. No-cloning theorem was also used to argue for
the security of quantum cryptography [2]. In the scenario of communication, because
unknown quantum states can not be perfectly cloned, transferring of quantum datum
must be done by sending the physical system which carries the information, unless the
datum to be transmitted is already known to the sender. This is in sharp contrast with
the case in classical world where to send an unknown datum, one need only produce a
copy of it and then transmit the copy. The sender needs not know the classical datum
since perfect cloning is always possible.



3. Basic Definitions of qCCS

In this section, we give the basic definitions of qCCS. Subsections 3.1 and 3.2 are
devoted to the syntax and the operational semantics, respectively. In subsection 3.3, we
extend ordinary one-step transitions to combined multi-step transitions.

3.1. Syntax

For the sake of simplicity, we consider only two types of data: the set of real numbers
Real for classical data, and the set of qubits Qbt for quantum data. We denote by cVar
(ranged over by z,y,...) and gVar (ranged over by g, r,...) the set of classical variables
on Real and quantum variables on Qbt, respectively. The set of expressions with the value
domain Real is denoted by Fxp and ranged over by e. Let cChan be the set of classical
channel names, ranged over by ¢, d, ..., and gChan the set of quantum channel names,
ranged over by c,d,.... Let Chan = cChan U qChan. A relabeling function f is a one to
one function from Chan to Chan such that f(cChan) C cChan and f(¢Chan) C qChan.

From these notations, we now propose the syntax of qCCS as follows. For simplicity, we
often abbreviate the indexed set {q1,...,qn} to § when q1,...,q, are distinct quantum
variables and the dimension n is understood.

Definition 1 (quantum process) The set of quantum processes gProc and the free quan-
tum variable function qv : ¢Proc — 29V are defined inductively by the following for-
mation rules:

nil € gProc, and qv(nil) = §;

c?x.P € qProc, and qu(c?x.P) = qu(P);

cle.P € qProc, and qu(cle.P) = qu(P);

c?q.P € qgProc, and qu(c?q.P) = qu(P) — {q};

If ¢ € qu(P) then clq.P € gProc, and qu(clq.P) = qu(P) U {q};

Ulg).P € qProc, and qu(U[q].P) = qu(P) U g;

M]|g; z].P € qProc, and qu(M|[g; z].P) = qu(P) U g;

P + Q@ € gProc, and qu(P + Q) = qu(P) U qu(Q);

If qu(P) N qu(Q) = 0 then P||Q € gProc, and qu(P||Q) = qu(P) U qu(Q);

P[f] € gProc, and qu(P[f]) = qu(P);

P\L € gProc, and qu(P\L) = qu(P);

(12) if b then P € ¢Proc, and qu(if b then P) = qu(P),

where P, Q € qProc, ¢c € cChan, z,y € cVar, c € qChan, q,q1,.-.,q9, € ¢gVar, e € Exp,
f is a relabeling function, L C Chan, b is a boolean-valued expression, U is a unitary
operator, and M is a Hermitian operator.

The process constructs we give here are quite similar to those in classical CCS, and
they also have similar intuitive meanings: nil stands for a process which does not perform
any action; ¢?x and cle are respectively classical input and classical output, while c?¢
and clq are their quantum counterparts. U|[g] denotes the action of performing a unitary
transformation U on the qubits ¢ while M[g; z] measures the qubits g according to M and
stores the measurement outcome into the classical variable x. + models nondeterministic
choice: P 4+ @ behaves like either P or @) depending on the choice of the environment. ||
denotes the usual parallel composition. The operators \L and [f] model restriction and
relabeling, respectively: P\L behaves like P as long as any action through the channels

—~
N =
~—
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in L is forbidden, and P[f] behaves like P where each channel name is replaced by its
image under the relabeling function f. Finally, if b then P is the standard conditional
choice where P can be executed only if b is true.

For any quantum process P, qu(P) is exactly the set of quantum variables which P
can reference. Note that in the process clg.P, the assumption g & qu(P) guarantees that
a quantum system will not be referenced after it has been output. This is a requirement
of quantum no-cloning theorem. For the same reason, we assume ¢, ..., q, distinct in
Ulg].P and M|g;z].P (Recall that the notation g implies that qi,..., g, are distinct).
Furthermore, since we intend to use parallel combinator || to model separate parties
which can perform actions locally on their own systems and communicate with each
other through channels, the assumption qu(P) Nqv(Q) = 0 guarantees that P and @ will
never reference a quantum system simultaneously.

The notion of free classical variables in quantum processes can be defined in the usual
way with a unique modification that quantum measurement M [7; ] has binding power on
x. A quantum process P is closed if it contains no free classical variables, i.e., fo(P) = 0.

3.2. Operational semantics of ¢qCCS

To present the operational semantics of qCCS, we first introduce the notion of con-
figuration. Note that for any P € gProc with fuo(P) C {z1,...,2,} and any indexed
set ¥ = {vy,...,v, } of real values, the process P[t/Z] obtained by instantiating classical
variables  with v is closed. The following definition introduces a corresponding instan-
tiation for free quantum variables. Similar notions were also presented in [16] and [10] in
a somewhat different way.

Definition 2 (Configuration) For any closed quantum process P, if qu(P) C q then a
pair of the form

<Pig=p> (4)

is called a configuration, where p is a density operator in 2"-dimensional Hilbert space
and n is the length of G. The set of configurations is denoted by Con and ranged over by
C,D,.... In the configuration C =< P;q = p >, ‘G = p’ is called the quantum context of
C and denoted Context(C).

Intuitively, quantum context describes the ‘quantum environment’ in which a process
lives. All of the quantum systems which a process can reference must be included in the
accompanied quantum context.

Let D(Con) be the set of finite-support probability distributions over Con, i.e.

D(Con) ={u: Con — [0,1] | u(C) > 0 for finitely many C, and Z w(C) = 1}.
n(C)>0

For any p € D(Con), we denote by supp(u) the support set of u, i.e. the set of configu-
rations C such that u(C) > 0. When p is a simple distribution such that supp(p) = {C}
for some C, we abuse the notation slightly to denote p by C. Just as in [16] and [10],
sometimes we find it convenient to denote a distribution p € D(Con) by an explicit
form pu = Hicrp; @ C; (or p = Hp; e C; when the index set I is understood) where
supp(p) = {C; | i € I} and u(C;) = p; for each i € I. Given pq, ..., pu, € D(Con) and
p1,---,pn € (0,1], Y, pi = 1, we define the combined distribution, denoted by >, p; s,
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to be a new distribution ¢ € D(Con) such that for any D € supp(p), p(D) =Y, pipi(D).

It is obvious that supp(d_, pipi) = U; supp(is)-
As usual, the operational semantics of qCCS is given in terms of probabilistic labeled

transition system. Let

Act ={c?v,clv | ¢ € cChan,v € Real}
U {c?r,c?r: p,clr | c € ¢qChan,r € ¢Var,p € D(H,)} U {7}

where 7 is the silent action, and D(H,) is the set of density operators on a 2-dimensional
Hilbert space. Then the semantics of qCCS is given by the probabilistic labeled transition
system (Con, Act, —), where —C Con x Act x D(Con) is the smallest relation satisfying
the rules defined in Definitions 3.3 through 3.13. (For brevity, we write C % y instead of
(Cya, ) €—).

Definition 3 (Classical rules)

C-Inp : > for all v € Real
< c?r.P;C > < Pl/x];C >

C-Outp : ' where v is the value of e
<ce.P;C>Z < P;C >

? |
< PC>H < PC>, <PyC >3 <Py >

C-Com =
< P||Py;C > < PJ||Py; C >

< P;;C >C—“>’<P1’;O > < Py C >Cl’>’<P2’;C>
< P||Py;C >5 < P{||Py; C >

These three rules describe the passing of classical messages; they are almost the same
as in classical value-passing CCS. Contexts remain untouched in these rules since they
include only the accompanied quantum systems, which will not be changed by classical
input and output. Other classical rules are incorporated into Definitions 3.9 through 3.13
below.

Definition 4 (Quantum-input rules)

Q-Inpl : o where r ¢ ¢ and 0 € D(H,)
<c?q.P;g=p>—=<Plr/qlir,j=0®p>

Q-Inp2 : where r € § — qu(c?q.P)

<c?q.P;(j=p>d—§<P[7“/Q];Q=p>

In [16], only a rule similar to the first one was presented for quantum input. This
rule makes sense when the input system (denoted by the quantum variable r) is initially
not correlated (neither entangled nor classically correlated) with the quantum systems
in q. However, one of the essential features which distinguish quantum mechanics from
classical mechanics is that different systems can lie in an entangled state which can not
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be determined by the reduced states of individual systems. This argument leads naturally
to the following inference rule:

<clq.P;g=p S < Plr/ql;r,g=0 > wherer € q, trgo = p/, and tr,.o = p.

Any quantum input can be characterized by this rule since no constraints are made on
the new state o except tr,o = p which means that the state of initial systems remains
untouched. This rule is, however, also problematic. First, it is not image-finite in the
sense that from the source configuration < c?q.P;§ = p > and the action c?r : p’, there
are infinitely many derived configurations which satisfy the rule. Second, in general the
effect of this transition on the accompanied context is not a super-operator independent
of p. This will make some proofs in Sections 4 and 5 infeasible.

In consideration of the above arguments, we present rules Q-Inpl and Q-Inp2 which
describe the input of a qubit from the outside and the inside of the context, respectively.
Note that the context is kept untouched in rule Q-Inp2. The intuition behind is that
when the system to be input has already been described in the context, the input action
is merely a declaration that the process can reference this system, which of course does
not change the state of the whole system.

Definition 5 Q-Outp (Quantum-output rule)

|
<cgPig=p>F <Pig=p>

The quantum output rule presented in [16] was of the following form (rewritten with
our notations):

!
<c!q.P;cj:p>CJ<P;(j—{q}:trqp>

with the intuition that we do not care about the state of a quantum system when it
has been output. The information about how the output system is correlated with the
systems remained in the context is, however, totally lost; problems will arise if we input
again the system which was just output. The Q-Outp rule presented above can deal with
this problem since the quantum context remains unchanged so that any information is
kept.

Definition 6 Unit (Unitary transformation rule)

<U[Fl.P;g=p>5 < P;g=UpUS >

where U;pUTir denotes the application of unitary transformation U on the system con-
sisting of 7. To be specific, let length() = k and length(q) = n. Then Uy = HL(U ®
I®(”_k))H,—. where Il is a permutation which places 71, ..., r; at the head of ¢, and I is
the identity transformation. Similar notations were also introduced in [16].

In our framework of qCCS, performing a unitary transformation is modeled by a 7-
action which is unobservable from outside. The same treatment is applied to measurement
on quantum systems.

Definition 7 Meas (Measurement rule)

< M[r;2].P;q = p > Bierpio < P[Ni/z);q = Py rpPir/pi >

12



where M is a Hermitian operator with the spectral decomposition M = >7._; A\iP;,
P; = denotes the projection P; performed on the system consisting of 7, i.e., P =

Hi—(Pi ® 2R, and p; = tr(P; #p).
Definition 8 Q-Com (Quantum-communication rule)

< P;C >°—(”>”<P1’;C > < Py C >d—>T<P25;C>
< Pi||Py;C >5 < P|||Py; C >

< P C >ﬂ<P1’;C > <P C >ﬁ<P§;O>
< P||Py;C >5 < P[||Py; C >

It may be surprising at first glance that there is no communication rule in which
the participating action of either parallel process is of the form c?r : p. In other words,
quantum input from outside the accompanied context cannot lead to quantum communi-
cation. The reason is as follows. To make < Py ||Py; C > a valid configuration, the context
C must involve all the free quantum variables occur in P; and P,. As a consequence,
any qubit which will be input by P; or P, during the quantum communication between
them is from the context C.

Definition 9 (Interleaving rules)

)
< P;C>Z<P;C >
?
< P||Py; C > < PJ||Py; C' >

Inp-Int : where r & qu(Py)

)
< Py;C>Z< Py >
?
< Pi||Py; C > < Py||Py; C" >

where r & qu(Py)

< P;;C > Hp,e < Pf;Ci >
< Py||Py; C > Hp;e < Py||Py; C; >

Oth-Int : where « is not of the form c?r

< Py C > Hp,e < Pzi;Ci >

= _ where « is not of the form c?r
< P1||P2,C>—> Hp;e < P1||PQZ,CZ >

The side conditions r & qu(P) and r € qu(P;) in Inp-Int rules are presented to
exclude the possibility that one process inputs a qubit which is referencing by another
parallel process. Other interleaving rules, including those dealing with quantum output
and classical actions, are incorporated into Oth-Int rules.

The following rules are similar to their classical counterparts.
Definition 10 Sum (Summation rule)

<P;C>%pu <Q;C>5p
<P+Q:C>% <P+Q;C>%pu
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Definition 11 Rel (Relabeling rule)

< P;C >5 Hp,e < P;; C; >
< Pl ¢ >Yampe < P10 >

Here we extend the definition of relabeling function to actions and quantum processes
in an obvious way.
Definition 12 Res (Restriction rule)

< P;C > Hp;e < P;; C; >

— where cn(a) € L
< P\L,C >— BE‘]DZO < PZ\L, C’l >

Here the function c¢n returns the channel name used by an action.
Definition 13 Cho (Choice rule)

<P;C>5%p

—— where b is true
< if b then P;C >— pu

When b is false then the configuration < if b then P;C > cannot perform any action.

The following lemma can be easily observed from the inference rules defined above.
Lemma 14 Suppose < P;G= p > p where p € D(H). Then
(1) if « = c?r : o for some c € qChan, r ¢ G, and o0 € D(H,), then there exists
P’ € qProc such that for any o' € D(H), < P;G=p >3<Pir,g=0®p >,
(2) if a is not of the form c?r : o, then there exist an index set I, a set of quantum
processes {P; : 1 € I} , and a set of super-operators {&; : i € I} which only act
nontrivially on L(Hqy(p)) such that for any p' € D(H), < P;q=p' >3 Bicrpie <
Pi;q = &(p') >. Here Hqy(py denotes the associated Hilbert space of the quantum
systems in qu(P).
Proof. Obvious. O

The transition graph of a configuration is defined as usual where each transition C =
M7, p; @ C; is depicted as and each transition of the form C % D is simply depicted as
Example 15 We now present a simple example to show the expressive power of our
qCCS. This example is concerned with quantum teleportation [3], a famous protocol in
quantum information theory which can make use of an entangled state shared between the
sender and the receiver to teleport an unknown quantum state by sending only classical
information. This example was also considered in [16] and [10].

Let M be a 2-qubit measurement such that M = Z?:o \i|2)(i|, where 7 is the binary
expansion of 7. Let CNOT, H, and o;, i =0,...,3 be as defined in Section 2. Then the
participating quantum processes in teleportation protocol are defined as follows:

Alice:=CNotlq,q1].H[g].M|q, q1; z].clz.nil,
Bob := c?x.Uy[go) nil,
Telep := (Alice||Bob)\{c},

where
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Fig. 1. Quantum teleportation.

Uzlge]-nil:=if © = A\ then o¢[ge].nil + if x = A\; then o1[ge].nil +
if = Ao then o3[ge].nil + if x = A3 then o3[ge].nil.

The transition graph of the configuration

< Telep; ¢ = [(«|0) + 5]1)) © —=(]00) +[11))] >

€
V2
is shown in Fig.1 where g is the abbreviation of the indexed set {q,qi,¢2}, and for any
pure state [¢), [|¢)] is the abbreviation of |¢)(1)|. Note that in the whole procedure, Alice
holds the qubits ¢ and ¢; while Bob holds g2. So the process Telep indeed teleports the
quantum state «|[0) + §]1) from Alice’s side to Bob’s side with the aid of an EPR state.
(I

3.3. Combined transitions

There are two kinds of nondeterminism in qCCS: non-probabilistic nondeterminism

caused by summation combinator ‘4’ and probabilistic nondeterminism caused by quan-
tum measurements. To define probabilistic bisimulations between quantum processes, we
need a way to resolve the first kind of nondeterminism numerically. This is achieved in
[19,20] by treating non-probabilistic nondeterminism as equiprobability. In this paper
however, motivated by [29] and [30], we adopt a more flexible way of allowing combining
different nondeterministic choices in any probabilistic way. To achieve this goal, a notion
of adversary is introduced. With the help of adversaries, we extend ordinary transitions
to combined transitions (resp. combined weak transitions) which is the basis of strong
probabilistic bisimulation (resp. weak probabilistic bisimulation) defined later. Some def-
initions in this subsection are motivated by or borrowed directly from [29] and [30] where
classical probabilistic processes were considered.
Definition 16 An ezecution fragment f = Coa1Cy ... a,Cyy is a finite sequence of alter-
nating configurations and actions starting and ending with configurations, such that for
eachi=0,...,n—1, there exists a transition C; “3' tit1 with pir1(Cip1) > 0. We call
n the length of f, and denote by head(f) and tail(f) the first and the last configurations
of f , respectively.

The set of all execution fragments is denoted by frag. For any f € frag, we let Pre(f)
be the set of execution fragments which are prefixes of f.

Definition 17 An adversary A is a function from execution fragments to finite-support
distributions over tramsitions, i.e.

A : frag — D(—),

such that for any f € frag, if A(f) = Bicrp; o (Ci, v, i) then C; = tail(f) for anyi € 1.
Intuitively, an adversary provides a mechanism to resolve nondeterminism probabilis-

tically by deciding next transition based on the execution history.

Definition 18 Suppose f = CoarCy ... a,Cy is an execution fragment and A is an ad-

versary. We say that f coincides with A if for anyi=10,...,n—1, A(Coa1Cy ...;C;) =

Hjcsp; ® (Ci, By, 1tj) such that the set J, = {j € J | Bj = ait1 and pj(Ciz1) > 0} is

nonempty.

15



We denote by Py(f) = ZjeJi Pt (Cit1) the probability of the i-th choice in f accord-
ing to the adversary A.
For any adversary A, let F CA_m be the set of execution fragments with head C and tail

D which coincide with A. If f = Cya1C ... a,Cp € Fc“:w then we denote by

Paf) = [ Pah)
1=0

the probability of the execution fragment f according to A. When f does not coincide
with A, we simply let P4(f) = 0.

With the above definitions, we are now ready to define the notions of combined tran-
sitions.
Definition 19 For any C € Con, s = ay ... ay, € Act*, and u € D(Con), we say that C
can evolve into p by a combined (resp. a combined weak) s-transition, denoted by C ¢ p
(resp. C =¢ ), if there exists an adversary A such that for any D € supp(u),

(1) > Palf)=uD),

A
feFCHD

(2) for any f = CoB1C1 ... BmCm € FCA—>’D’ the string By ...Bm = s (resp. B1...0Bm has
the form m*cq7m* .. T, T*).

In the following, we prove two lemmas which are useful for the next sections. The first
lemma shows that any convex combination of combined s-transitions is also a combined
s-transition.

Lemma 20 For any fi1,...,ptn € D(Con) and py,...,pn € (0,1) such that C >c
(resp. C S wi) and 3, p; = 1, we have C ¢ p (resp. C =c ) for p =3, pifsi.
Proof. We only prove the result for combined weak transitions in the case of n = 2. The
general case can be proved similarly by induction.

Suppose an adversary corresponding to C =¢ p; is Aj;, i = 1,2. We construct a new
adversary A, which will be proven to be a corresponding adversary of C =¢ p, as follows.
For any f € frag,

pPa, (f) _ pPa,(f) :
| B a) e #o 5
pA(f) + (1 —p)A2(f) otherwise.

Note that P4(C) = 1 for any adversary A and any C € Con, and P4(f) is dependent
only on the set {A(f") | f' € Pre(f), f' # f}. The definition Eq.(5) is meaningful and
is an inductive one. Now we show that for any f € frag with head(f) =C,

Pa(f) = pPa,(f) + (1 = p)Pa,(f) (6)
by induction on the structure of f.
When f =C, we have
Pa(€) =1=p+ (1—p)=pPa(C)+ (1= p)Ps,(C).

Now suppose Eq.(6) holds for f = CayCy...a,Cpn. Then for f/ = CayCy ... an11Chyi,
there are two cases to consider.
(i) PA(f) =0. Then from Eq.(6) we also find that Pa, (f) = Pa,(f) = 0. So we have
PA(f") = Pa,(f") = Pa,(f') =0, and Eq.(6) holds trivially for f’.

16



(ii) Pa(f) # 0. In this case, we derive that

Pa(f") = Pa(f)PA(f) Definition
pP.A1(f) n ! _pPAl(f) n /
—‘PITAl(f)f?KI(f') (Pa(f) — pPa, ()P4, (f")
=pPa, (f)PL, (f') + (1 = p)Pay (f) P4, (f) Eq.(6)
=pPa, (f') + (1 = p)Pay(f). Definition

So for any D € supp(u),

> Paf)= > [pPa(f) + (1= p)Pa(f)]

ferd o feFL, L
=p Z Pa(f)+(1— Z Pa,(f)
feFM feFC%D
=ppa(D) + (1 = p)u2(D)
= (D).
Here for the second equality, we have used the fact
Felip = Felp UFES (7)

which is direct from Eq.(6) and the observation that f € F CA_>D if and only if P4(f) > 0.

Furthermore, from Eq.(7) we deduce that for each f = Co51Cy ... LmCm € FCHD, the
string B ... B has the form 7*a7* ... 7%, 7* since any execution fragment in FC_l>D
and FcAiD does. (]

Lemma 21 Suppose C >¢ p (resp. C >c p), s = a1...q, € Act*, and A is a corre-
sponding adversary. Let A(C) = B;crp; ® (C, Bi, ;). Then for anyi € I,
(1) Bi = ay (resp. B; =T or ay),
(2) for any C' € supp(u;), there exist pcr and s’ such that C’ s%/c per (resp. C’ 5;0 ter)
and B;s' = s (resp. 5/@\8’ = 3. Here for any s € Act*, § denotes the string obtained
from s by deleting all the occurrences of ),

() p=> > pimCuc-
i€l C'esupp(pi)
Proof. We only prove the result for combined weak transitions. (1) is obvious. To prove
(2), for any C" € supp(;), let

Jer={j €1 B; =3 and u;(C") > 0},
rer =5, Pilti(C'), and per € D(Con) such that for any D € Con,

per (D Z{| PA(f) | f € Fgl,p and CBiC" € Pre(f) [}.

Here {|...|} stands for the multi-set brackets. Let s’ = s or as...«a, depending on

whether 8; = 7 or ay. Then E\s’ = Sas required. We now prove C’ = ¢ ¢/ by constructing
a corresponding adversary Acs as follows. For any f € frag, let
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Ao () = A(CB;i f) if head.(f) =,
A(f) otherwise.

Then when head(f) = C’, we have PA(CB;f) = ¢/ Pa,, (f). Thus for any D € supp(uc),

> PAC,<f>: > PalCBif)

Ao Aoy
C C
fch’*»D fEFC’A‘D

—Z{\ PA(f') | f € F&,p and CB,C’ € Pre(f') |}

= pc (D).
Finally, to prove (3), we need only to check that for any D € Con,

= > Palf)

A
feFCHD

= Y Y SUPA) | feF, and CBC € Pre(f) |}

C'eU;supp(p;) 1€1¢qr

— Y Y e

C'eU;supp(pq) 1€1¢ar

= > > pini(Cpc(D)

C'eU;supp(p;) 1€1cr jEJ 1

=> > piw(C)ue (D)

JEI C’esupp(py)
where Ior = {i € I : p;(C") > 0}. O
To illustrate the definitions and lemmas in this subsection, we present a simple example
as follows.
Example 22 Suppose My 1 = Ag|0)(0] + A1|1)(1] is a one-qubit measurement according

to the computational basis, H is the Hadarmard transformation, and |+) = (]0)£[1))/v/2.
Let

P = My 1]q; z].H[q].clg.nil + clg.nil

be a quantum process which can either perform sequentially the measurement M and
the transformation H on ¢ before outputing ¢, or output ¢ directly. Now consider the
configuration

C=<P;qg=|+){+|>.
The transition graph of C can be depicted as where
C1 =< Hlq].clg.nil; ¢ = |0)(0] >, C2 =< H]g].clg.nil;q = |1)(1] >,
C3 =< clg.nil; g = |4+)(+] >, Cy =< clgmil; g = |-)(—] >,
Cs =<milig = [+)(+| >, Co =<milig = |-)(~| >.

18



Then by taking an adversary .A; such that

1
Al(c):(C,T,§.ClaH%.CZ)7 AI(CTCI):(C17T763)7
.Al (CTCQ) = (CQ,T, C4), Al(CTclTCS) = (037(:!(];05)7

and
Al (CTCQTC4) - (C4, C!q766)7

we have the combined (weak) transitions
T7c! 1 1 | 1 1

On the other hand, the adversary A, satisfying A2(C) = (C, clg, Cs) leads to the combined
weak transition C igc Cs. Thus for any p € [0, 1], we have

c%@cu—g).csaag.cﬁ

by combining the above two weak clg-transitions. The corresponding adversary A is
constructed as

A(C) = pAI(C) + (1= p)A3(C) = po (€7, 5 0 Ci B 5 0 Co) B (1-p) ¢ (€, ),
A(CTCl) =A1(CTC1) = (C1,7’,Cg),
|

4. Strong probabilistic bisimulation between quantum processes

This section is devoted to the notion of strong probabilistic bisimulation between
quantum processes and its properties such as congruence under various combinators.

Given an equivalence relation R C Con x Con, two distributions g and v on Con
are said to be equivalent under R, denoted by u =g v, if for any equivalence class
M € Con/R it holds u(M) = v(M). Two quantum contexts § = p and ¥ = o are equal
if there exists a permutation II such that I1(g) = 7 and at the same time IpIl" = 0. We
denote C % if there exists no u € D(Con) such that C % u; we simply write C - if C %
for all o € Act.

Definition 23 An equivalence relation R C Con x Con is a strong probabilistic bisim-
ulation if for any C,D € Con, (C,D) € R implies that

(1) whenever C = u for some o and p, there exists v such that D 5S¢ v and p =g v,

(2) if C -, then Contex(C) = Contex(D).

As mentioned in Section 1, one of the purposes of qCCS is to provide a theoreti-
cal framework to describe quantum concurrent systems such as quantum cryptographic
protocols. As a consequence, not only the observable actions but also the quantum oper-
ations such as unitary transformations and measurements performed by processes must
be taken into consideration when bisimulation relations are investigated. For example,
we cannot in any sense regard a quantum process which can merely sequentially perform
5 7 actions and then terminates as bisimilar to the teleportation process Telep defined in
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Example 3.1. Furthermore, because of the possible entanglement between different quan-

tum systems, the effect of quantum operations can be fully reflected only by state change

of the whole quantum context. This is the reason why we need clause (2) in Definition

23. The clause (1) is originated from [21] and [29].

Definition 24 (1) Two configurations C and D are strongly bisimilar, denoted by C ~.
D, if there is a strong probabilistic bisimulation R such that (C,D) € R.

(2) Two processes P and Q are strongly bisimilar, denoted by P ~, Q, if for any

context C' and any indexed set U of values, < P[v/Z];C >~.< Q[v/Z]; C >. Here
T 1s the set of free classical variables contained in processes P and Q.

We usually omit the subscripts of ~. and ~, when no confusion arises.

The difference between our notion of probabilistic bisimulation and the probabilistic
branching bisimulation defined in [19,20] can be best illustrated by the following example.
Example 25 Suppose My 1, H, and |[+) are given as in Example 22, and U = o1 H.
Suppose

C =< Hlg]-nil + Ulg].nil + My 1[¢; z].nil; ¢ = |[+)(+] >
and
D =< Hlg].nil+ Ulg].nil; ¢ = |[+)(+| >

with transition graphs depicted as

() (=)

/2 1/2

where
C1 =< nil;¢ =|0)(0] > and Cy; =< nil;q = |1)(1] > .

Then C and D are bisimilar in our notion of strong probabilistic bisimulation, since D can
simulate the action Mg 1[g; z] of C by choosing its actions H[g] and Ul[g] with respective
probabilities one half.

Note that in the sense of probabilistic branching bisimulation presented in [19,20],
the configurations C and D are also bisimilar. But the reason is that state change of
contexts caused by quantum operations is not considered there. As a consequence, the
configurations C; and Co, which are not bisimilar in our sense of bisimulation, are treated
to be bisimilar in [19,20]. O

In the following, we derive some properties of strong probabilistic bisimulation. The
proofs are similar to but much simpler than those of the corresponding results for weak
probabilistic bisimulation in the next section except for Theorem 28 (2), so we omit them
here.

Theorem 26 ~ is the largest strong probabilistic bisimulation on Con.
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Theorem 27 For any C,D € Con, C ~ D if and only if for any s € Act™,

(1) whenever C ¢ 1 for some p, then there exists v such that D S¢ v and p = v,

(2) whenever D 3¢ v for some v, then there exists i such that C >¢ p and p =~ v,

(8) if C -+ and D -, then Contex(C) = Contex(D).

Theorem 28 If P ~ (Q then

(1) a.P ~ a.Q, for any a € {c?z,cle,c?q,clq,U|q], M|q; z|};

(2) P+ R~ Q+ R for any R;

(8) PR ~ Q| R provided that R is free of unitary transformation and measurement,

or P and Q are free of quantum input;

(4) Plf] ~ Q[f], for any relabeling function f;

(5) if b then P ~ if b then Q, for any boolean expression b.

Proof. The cases other than (2) are simpler than the counterparts for weak probabilis-
tic bisimulation. In the following, we prove (2) by showing a stronger result: for any
contexts C and D, if < P;[v/z];C >~< Q;[v/Z]; D > for i = 1,2, then < Pi[0/Z] +
Py[o/z];C >~< @Q1]0/Z] + Q2[0/Z]; D >. Here T is the set of free classical variables
contained in processes P; and Q);.

Suppose < Pi[0/Z] + Py[v/7]; C > u for some a and p. Then from Sum rule, we
have < Py[0/Z];C >3 por < Py[0/Z];C >3 . By the assumption < P;[0/%]; C >~<
Q:[0/7]; D > and Theorem 27, it holds that < Q;[0/Z]; D >%¢ v or < Q2[v/]; D >S¢
v for some v such that p =. v. In either case, using Sum rule again, we have <
Q1[v/7] + Q2[0/]; D >%c v

Similarly, if < Q1[0/Z] + Q2[0/7]; D > v for some a and v, we can also find a y such
that < P,[0/7] + Py[0/7];C >S¢ pand p = v.

Finally, if < P[0/Z] + P2[v/z];C >—» and < Q1[0/Z] + Q2[0/Z]; D >, then we
have < P1[0/z];C > and < Q1[0/Z; D] >—. Hence C' = D from the assumption that
< P[/%]; C >~< Q1]0/Z); D >. Then the result follows from Theorem 27. O
Theorem 29 For any P,Q, R € qProc,

(1) P+mnil~ P,

(2) P+P~P,

(3) P+Q~Q+P,

() P+(Q+R)~(P+Q)+R,

(5) P|nil ~ P,

(6) PlQ ~Q|P,

(1) PIQIR) ~ (P|Q)|R.

5. Weak probabilistic bisimulation between quantum processes

As in classical CCS, the notion of weak probabilistic bisimulation which abstracts from
unobservable internal actions is more useful in implementation and verification. In this
section, based on the notion of combined weak transition introduced in Section 3.3, we
present weak probabilistic bisimulation for our qCCS.

Definition 30 An equivalence relation R C Con x Con is a weak probabilistic bisimu-
lation if for any C,D € Con, (C,D) € R implies that

(1) whenever C > p for some o and p, there exists v such that D ¢ v and p = v,
(2) if C -+ and D -, then Contex(C) = Contex(D).
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The following lemma shows that the ordinary transition in clause (1) of the above
definition can be strengthened to combined weak transition.
Lemma 31 Let R C Con x Con be a weak probabilistic bisimulation and (C,D) € R.

Then for any s € Act*, if C =¢ p, then D ¢ v for some v such that i =g v.
Proof. Let A be an adversary corresponding to C =¢ . Since there are no recursive
constructs in qCCS, we can prove this lemma by induction on the maximal length A of
the execution fragments in UDESupp(u)Fé“_,D-
If h = 0, then s is the empty string and g = C. In this case, we need only to take
v="D.
Suppose the result holds for h < n. We now prove that it also holds for h = n + 1. Let
A(C) = Bicrpi ® (C, i, p1;). Then for each i € I we have C %% p;, and so there exists v;

such that D Z¢ v; and p; =g v;. Furthermore, from Lemma 21, for any C’ € supp(p;)
there exist pue and s’ such that C' 2 ¢ per, a;s' =3, and
H= Z Z pinti(C)picr
i€l C'esupp(pi)
Now take arbitrarily D’ € supp(v;). Let [D']r denote the equivalence class of R in which
D' lies. Then supp(p;) N [D']r # 0 from p; =r v;. For any C' € supp(p;) N [D']wr, we
can choose an adversary Ac: corresponding to C' = ¢ pe: such that the maximal length

of the execution fragments in Upegypp( )F’L}c_'m is less than n + 1. So by induction we

Her
TN c’ c’ — c’ : N

have D' =¢ v§, for some vy, and per =g v5,. From Lemma 20 it holds D' =¢ vp

where

i(C! :
Vpr = Z H ( ) U%/.

. ] 7
C’esupp(pi)N[D' = 'U’Z(supp(/u'z) N [D }R)

o~

It is now direct to check that D = v for
V= Z Z ini(D/)V'D’-
i€l D’ esupp(v;)
Finally, we show that u =g v. For any M € Con/R,

v(M)=>" > pwi(D)p (M)

i€l D' Esupp(v;)

— S / 'uZ(C/) I/C/
= Z Z pivi(D') Z ui(supp(ui) N [D/]R) & (M)

1€l D’ esupp(v;) C'esupp(pi)N[D’1r
I/i(D/)
=2, 2. pm@pen , AT
i€l C'Esupp(pi) D’ €supp(vi)N[C’ R pi(supp(pi) O [C']=)

= Z Z pifti(Cper (M)iyi([a]n)

. I
i€1 C'€supp(ps) ra([CR)

=Y > pipi(C)per (M)

i€l C'esupp(pqi)
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= p(M).

Here the third equality is due to the fact that pue =g Vg, for any D’ € supp(v;) and
C' € supp(pi) N [D']gr; the fifth equality holds because p; =g v; for any i € I. O
Lemma 32 Let R C Con x Con be a weak probabilistic bisimulation and (C,D) € R.
(1) IfC - then D % for any o € Act — {1}.
(2) Foranys € Act*, if C =¢ p such that C' —+ for some C' € supp(u), then there exists

v such that D ¢ v and D' - for some D' € supp(v). Furthermore, Contex(C') =
Context(D').

Proof. (1) is easy. To prove (2), from C =¢ p we first find some v such that D ¢ vy
and p =g vy. If there exists a Dy € supp(v1) N [C']r such that Dy - then we are done.
Otherwise, for any D; € supp(v1) N [C']r, from C’ - and (1) we have D; = vy for some
vy such that C'RDsy for any Dy € supp(vz). Then we check if there exists a Dy € supp(va)
such that Dy —. Note that the quantum processes we consider in this paper are all finitely

derivable. Tt follows that we will finally find a distribution v such that D = v and there
exists some D’ € supp(v) satisfying C'RD’ and D’ —». Furthermore, from Definition 30
(2) we have Context(C') = Context(D’). O

Since the union of equivalence relations is not necessarily an equivalence relation, the
union of weak probabilistic bisimulations is not necessarily a weak probabilistic bisimu-
lation either. Nevertheless, we can prove that the reflexive and transitive closure of the
union of weak probabilistic bisimulations is also a weak probabilistic bisimulation.
Theorem 33 IfR;,i € I, is a collection of weak probabilistic bisimulations on Con, then
their reflexive and transitive closure (U;R;)* is also a weak probabilistic bisimulation.
Proof. By definition, R; is symmetric for any i € I. So (U;R;)* is also symmetric and
hence an equivalence relation. Now suppose (C, D) € (U;R;)*. Then there exist an integer
n and a series of configurations Cy, . .., C, such that Cy = C, C,, = D, and (C;,Cit1) € Ry,
for some k; € I, i =0,...,n — 1. There are two cases we should consider:

(i) C 2 1o for some o and pio. Then from CR,C1, there exists p; such that C; 20
w1 and po(Mo) = pi(My) for any My € Con/Ry,. Furthermore, from C;Ry,Co

and Lemma 31, we have Cy =¢ po for some pg, and i (My) = pa(My) for any

My € Con/Ry,. In this way, we can derive that C;q; 2o ;41 for some p;49 such
that p;(M;) = piv1(M;) for any M; € Con/Ry,, i = 0,...,n — 1. Now suppose
M € Con/(U;R;)*. Notice that for any ¢ =0,...,n — 1, M is the disjoint union of
some equivalence classes of Con/Ry, since Ry, C (U;R;)*. It follows that p;(M) =
tit1(M) for any i =0,...,n — 1. Thus we have po(M) = pn(M).

o~

(ii) C - and D —. Then from CRy,C; and Lemma 32 we have C; = p1, and there
exists some D; € supp(p1) such that Dy - and Contex(C) = Context(Dy). Simi-

larly, for any i = 2,...,n we can derive that C; =¢ p;, and there exists some D; €
supp(p;) such that D; - and Contex(D;_1) = Context(D;). Finally, from the fact
D -», it is the only case that D,, = D and so Context(D) = Context(D,_1) =

... = Context(C).
From (i) and (ii), we know that (U;R;)* is also a weak probabilistic bisimulation. O
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Definition 34 (1) Two configurations C and D are weakly bisimilar, denoted by C =,
D, if there is a weak probabilistic bisimulation R such that (C,D) € R.
(2) Two quantum processes P and Q are weakly bisimilar, denoted by P ~, Q, if for
any context C' and any indezed set U of values, < P[v/z];C >~.< Q[v/Z];C >.
Here T is the set of free classical variables contained in processes P and Q).

We usually omit the subscripts of ~. and ~, when no confusion arises.

We now show that the weak bisimilarity relation & is a weak probabilistic bisimulation;
it is in fact the largest weak probabilistic bisimulation on Con.
Corollary 35 = is a weak probabilistic bisimulation on Con.
Proof. By definition, we have

= U{R | R is a weak probabilistic bisimulation on Con}.

From Theorem 33, the reflexive and transitive closure ~* is also a weak probabilistic
bisimulation. Hence ~*Cas. On the other hand, we have obviously ~Ca*. So we derive
that ~==*, and then =~ is also a weak probabilistic bisimulation. O

The next theorem gives us a necessary and sufficient condition to decide whether a
pair of configurations are weakly bisimilar.
Theorem 36 For any C,D € Con, C = D if and only if for any s € Act™,

(1) whenever C = u then there exists v such that D =¢ v and 1 =~ v,

(2) whenever D = v then there exists pu such that C =¢ p and p =~ v,

(8) if C - and D -, then Contex(C) = Contex(D).
Proof. First, we define a new relation ~’ on Con such that C ~' D if and only if for any
s € Act*, the conditions (1), (2), and (3) hold. It is obvious that &’ is an equivalence
relation. Furthermore, from Corollary 35 and Lemma 31, we have ~C=/. Then &' is also
a weak probabilistic bisimulation on Con since y =~ v implies ;1 =~ v. Hence we have
~'C= and then ~=r'. O

5.1. Congruence of weak probabilistic bisimilarity

This subsection is devoted to the congruence property of weak probabilistic bisimilarity.
Lemma 37 If P =~ Q, then P[r/q] = Q[r/q] for any r € qu(P) U qu(Q).
Proof. Tt is direct to check that for any quantum contexts C' and D, < P[r/q]; C >~<
Q[r/q}; D > if and only if < P;C[q'/q]lq/r] >~=< Q; D[¢'/q]lg/r] > where ¢ & qu(C) U
qu(D). Then the lemma follows. O
Theorem 38 If P ~ Q then a.P =~ a.Q) for any a € {c?x,cle,c?q,clq,U[F], M[F;z]}.
Proof. Assume that T is the set of free classical variables contained in processes P and
Q. For any context C' and any indexed value set U, we need to prove < a.P[0/Z]; C >~<
a.Q[v/7];C >. Suppose < a.P[v/z];C > p and C is of the form ¢ = p. We only
consider the cases where a has the form c?q or M[F; z]; other cases are simpler.

(i) a = c?q. There are two subcases to consider.

Case 1: a = c?r for some r € § — qu(c?q.P). Then p =< P[v/Z][r/q]; C >. From Q-
Inp2 rule, we have < a.Q[v/7];C >3< Q[v/%][r/q]; C >, and furthermore,
< P[o/z][r/q]; C >=< Q[v/Z][r/q]; C > from the assumption that P ~ @ and
Lemma 37.
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Case 2: a = c?r : o for some r ¢ § and o € D(H,). Then p =< P[v/z|[r/q];r,q =
o ® p >. From Q-Inpl rule, we have < a.Q[v/7]; C >3< Q[v/|[r/q;r,q =
o ® p >. Furthermore, we can check that < P[v/Z][r/q];r,§ = 0 @ p >=<
Q[v/z][r/q];7, @ = 0 ® p > from the assumption that P = @ and Lemma 37.
(i) @ = MIr;x], M has the spectral decomposition M = 3 . A\;P;. Then a = 7 and
= Hp;e < P[v/z, \;/x];§ = Pi7pP;7/pi >, where p; = trP, 7p. From Meas rule,

we derive

< a.Q[v/7];C > v =Mp;e < Q[v)T,\;/2];§ = P, rpP;r/pi > -
Furthermore, for any N € Con/ =,

u(N) = Z{I pi | < P[o/Z,)\i/z);q = PirpPis/pi >€ N|}

and
v(N)=> {Ipi | <Q[v/T,\i/z];q@= P,zpP;r/pi >€ N|}.

By the assumption P =~ @, we have for any context D, < P[v/Z, \;/z]; D >€ N if
and only if < Q[v/Z, \;/z]; D >€ N. Thus u(N) = v(N).
Symmetrically, we can prove that if < a.Q[v/%]; C > v for some o and v, then there
exists a transition < a.P[0/Z]; C >% psuch that u =~ v. Then the result of this theorem
holds by using Theorem 36. (]

For the sake of simplicity, in the rest of this subsection we only consider closed quantum
processes. The same results can be extended easily to the case of quantum processes with
free classical variables.

Theorem 39 If P ~ Q then P[f] =~ Q[f] for any relabeling function f.
Proof. Let

R ={(<P[fl;C > <QfliD>) | <P;C>=~<@;D >,
and f is a relabeling function}  (8)

and R = (R'U ~)* be the equivalence closure (i.e. the reflexive, symmetric and transitive
closure) of R'U . We prove in the following that R is a weak probabilistic bisimulation
on Con.

Suppose (C,D) € R. We may assume that (C,D) € R’ because the extension to the
equivalence closure is straightforward. So we can suppose further that C =< P[f];C >
and D =< Q[f]; D > for some < P;C >~< Q;D >, and f is a relabeling function.

(i) If < P[f];C >3 u, then by Rel rule, there exists a transition < P;C >4 H =
Hp;e < P;; C; > such that a = S[f] and u = Hp;e < P;[f]; C; >. By the assumption

that < P;C >~< @Q;D >, we have < Q; D >:B>c v, = Hgje < Qj; D; > such that
1 =~ v1. Then by Rel rule, it holds that

< Q[f); D >=¢ v =Hg;e < Q[f); D; >
and furthermore, y =% v by the fact that p; =~ v1 and the definition of R.
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(ii) If < P[f];C >-» and < Q|[f]; D >-», then we have < P;C >-» and < Q; D >-».
Hence C' = D from the assumption that < P;C >~< Q; D >.
From (i) and (ii) we know that R is a weak probabilistic bisimulation on Con. Since
P ~ @, we have < P;C >=< @Q;C > for any quantum context C, and so (< P[f];C >
,< Q[f];C >) € R. Hence < P[f];C >=< Q[f];C >, and P[f] =~ Q[f] from the

arbitrariness of C. (]
Theorem 40 If P ~ @ then if b then P ~ if b then Q for any boolean expression b.
Proof. Obvious. O

Theorems 38 — 40 imply that weak probabilistic bisimilarity is preserved by prefix,
relabeling, and conditional choice. However, it is not preserved by restriction. An example
is as follows. Let Uy, Us, V1, Vo be unitary transformations such that UsU; = VoV but
U1 7é Vl. Let

P = Us[q].cl0.Uz[q].nil, @ = Vi[g].c!0.V2[g].nil.

It is easy to check that P ~ Q but P\{c} % Q\{c}.

Now we turn to the congruence property of weak probabilistic bisimilarity under the
parallel combinator. First, we have some lemmas.
Lemma 41 For any configuration < P;q = p > and any super-operator £ acting on
Hag—qu(p), we have

c’rio

(1) < P;g=p > Pir,g=0c®p > ifandonlyif < P;q = E(p) > =<
Pl;r7q:0®5(p> >,
(2) < P;g=p > Hpe < Pi;q=p; > ifand only if < P;q = E(p) > Hpe <
Pi; G = E(pi) >, where « is not of the form c?r : o.
Proof. (1) is obvious. For (2), we need only to prove the case where @ = 7 and the
transition is due to a measurement. In this case, if < P;§ = p >— Bp;e < P;;q = p; >,
then p; = P, 7pP; 7/p; for some projector P, 7 and p; = tr(P; 7p), where 7 C qu(P). So
we have
< P;qg=E&(p) > Bgie < Pi;q = P, :£(p)Pir/q; >
where ¢; = tr(P; +E(p)). Notice that £ is acting on Hg_g(py and 7 C qu(P). We deduce
that
qi = tr(Pi#E(p)) = &€ (P, rpPi ) = tr(Prp) = pi

and P; ;E(p)Pir/q; = E(P;rpP;r/q;). That completes the proof of the necessity part.
The proof of the sufficiency part is similar. O
Lemma 42 If < P;§ = p >=< Q;7 = p' >, then ¢ = @, and tryp = trzp’ where
7= qu(P)Uqu(Q).
Proof. Suppose G; and Gs are the transition graphs of < P;g=p > and < Q;q7 = p’ >,
respectively. Take a leaf < P’;C" > (so < P';C’ >-») of Gy such that there exists a
directed path from < P;q3 = p > to < P’;C" > along which none of the actions has the
form c?q. Intuitively, this path denotes an execution where any quantum input action
is realized by inputting a new qubit from outside the context. As a result, the quantum
system in § — qu(P) is kept untouched in this path.

From the assumption that < P;§ = p >~< Q;7 = p’ >, we can find a leaf < Q’; D’ >
of Gy such that < P;C" >=< @Q'; D' > (so ¢’ = D’'), and furthermore, there exists a
directed path from < Q;7 = p’ > to < Q'; D’ > which has the same observable actions
as the path taken in G;. Notice that the set of quantum variables in the accompanied
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context cannot be changed by 7 actions. We deduce ¢ = ¢’ from the fact that C' = D’.
Furthermore, we can show trzp = trzo since the quantum systems outside 7 are untouched
during these two execution paths. O
Lemma 43 Suppose < P;q=p >~< Q;q=p" >, r € q and o € D(H,). Then

(1) <Pir,g=0@p>=< Qir,q=0®p >.

(2) If P and Q are free of quantum input and & is a super-operator acting on

Ha—qu(P)—qu(Q), then < Pir,q =0 @ E(p) >=< Qsr,g=0 R E(p) >.

Proof. We only prove (1). The proof of (2) is simpler since P and @Q are free of quantum
input and as a result, the super-operator £ commutes with the quantum operations
performed by P and Q. Let

R ={(<Pir,j=0c@p><Qir,=0c®p >) | <P;g=p>=<Q;7=/p >,
r¢q, and o € D(H,)}. (9)

We prove in the following that R = (R'U ~)* is a weak probabilistic bisimulation.
Suppose (C,D) € R. We may assume further that C =< P;r,§ = 0 ® p > and
D=<@;r,g=0®p > forsome < P;g=p>=<Q;q=p > r¢&q and o € D(H,).
(i) If < P;r,§ =0 ® p > p, there are two cases to consider.
Case 1: a = c?r for some ¢ € ¢qChan. Then p =< P';r,§ = 0 ® p > for some P’.
By Q-Inpl rule, we have < P;q = p > w. Now from the assumption
< P;q=p>=<Q;7=p >, there exists a transition < Q;q = p’ >C?:T>:oc v
such that g =~ v. Thus it holds < Q;7,§ =0 ® p’ >C?:>Tc v, and p =g v from
the fact that ~C R.
Case 2: o # c?r for any ¢ € qChan. Then we have < P;§ = p > 1 = Hp;e <
P;;q@ = p; > such that r € § and u = Hp;e < Pj;7r,§ = 0 ® p; >. From the
assumption < P;q = p >~< Q;q = p’ >, there exists a transition < Q;q =

P >Sc v = Hgje < Q;;7 = p;- > such that u; =~ v1. So we have

<@Qirg=o0®p >Scv=Hge <Q;ir,d =0®p;>,

and pu =g v from p; =~ v1 and the definition of R.

(i) < P;r,g=0®p>»and < Q;r,§ =0 ® p >, then we have < P;§ = p >—»
and < Q;7 = p' >—». Hence p = p’ from the assumption that < P;q = p >=<
Q;g=p > andthenoc®@p=0®p'.

From (i) and (ii) we know that R is a weak probabilistic bisimulation on Con. That

completes the proof of (1). O

From the above lemmas, we are now ready to prove that weak probabilistic bisimilarity
is preserved by the parallel combinator in two special cases, as the following two theorems
state.

Theorem 44 If P~ @, and P and Q are free of quantum input, then P||R =~ Q||R.
Proof. Let

R'={(<P|R;g=¢&(p) > < QIR q=E(p') >) | <P;qg=p>=<Q;q=p >,
P and @ are free of quantum input,

and & is a super-operator on Hg_gu(P)—qu(Q) }-
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We prove in the following that R = (R'U =)* is a weak probabilistic bisimulation. Let
(<PIR;g=E(p) > < QR:g=E(p') >) €R'.
(i) Suppose < P||R;q = E(p) > p. Since P is free of quantum input, we have four
cases to consider.

Case 1:

Case 2:

Case 3:

Case 4:

There exists a transition < P;§ = p >— p; = Hp;e < P;;§ = p; > where
qu(P;) C qu(P) for each i, and

w=Hp;e < P||R;q=E(p;) > .
Here we have used Lemma 41 (2). From the assumption < P;§ = p >~<

Q;q = p' >, it holds that < Q;q = p’ >>¢ v = Hgje < Q;;7 = pj > and
p1 =~ v1. Using Lemma 41 (2) again, we derive

<QIR;qg=E(p) >3c v ="Hgje < Q;||R;q=E(p)) >,

and g =g v from the fact that qu(P;) C qu(P) for each 4, 1 =~ 11, and the
definition of R.

There exists a transition < R;q = £(p) ><Ime R';r,g =0 ®E&(p) > for some
c € qChan, r € q, 0 € D(H,), and p =< P||R';r,q§ = 0 ® E(p) >. Then
from Q-Inpl and Inp-Int rules, we have < R;7 = £(p/) >0 < Rir,qg =
o®E&(p') > and so

<QIR;a=E(p) > < QIR .G =0 @ E(p) > .

Furthermore, we can prove (< P||R';r,§ = 0 ® E(p) >, < Q||R;r,§ = 0 ®
E(p') >) € R by Lemma 43 (2).
There exists a transition < R;q = E(p) > Bp;e < Ri;q = E(E(p)) >
where « is not of the form c?r : o, & is a super-operator on L(H4,(r)), and
w=Hp;e < P||R;;7 = &(E(p)) >. Here we have used Lemma 14. Then from
Lemma 42, we derive < R;q = &£(p') > Bp;e < Ri;q = E(E(p')) >. Thus

<QIR;q=E() >SS v=Hpe<Q|R;q=E(E(P)) > .

Notice that for any 7, we have (< P||R;; ¢ = E(E(p)) >, < Q||Ri; ¢ = E(E(P)) >
) € R since the composite map E° o £ is also a super-operator acting on
Hi—qu(P)—qu(@)- Then it follows that p =x v.

«a = 7, and the action is caused by a communication between P and R. With-
out loss of any generality, we assume that

<Pig=E(p)>H <Pig=€(p) >, <Ri=E(p) >N <Riq=Ep) >
where qu(P’) = qu(P) and u = < P'||R';G=E(p) >. Then < P;q = p >
< P';q=p>, and from the assumption < P;q = p >=< Q;q7 = p' >, we
derive that )
<Q;q=p > Bpie < Qi;q=p) >,

and for any i, < P;q = p >=< Q;;q = p; > . Notice that from < R;q =
Ep) >N Rg = E(p) > we can deduce that < R;C >N R C > for any
context C. Thus

<QIR;qg=p >Zcv="Hpe<QlR;q=7p,>
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by using C-Com rule. Furthermore, we have u =x v since (< P'||R';q =
E(p) >, < Qil|R';3 = E(p}) >) € R for each 4, which in turn can be be proved
by the facts that qu(P’) = qu(P) and < P';§ = p >~< Q;;q = p} >.

(ii) If < P|R; 3 = E(p) >» and < Q|| R;§ = E(p’) >, then we have < P;§ = p >—»

and < Q;q = p’ >-» . Hence p = p’ from the assumption < P;§ = p >~< Q;q =
p' >. So we derive E(p) = E(p').

From (i) and (ii) we know that R is a weak probabilistic bisimulation on Con. For
any quantum context § = p, by P &= @ we have < P;q = p >~< @;q = p > and then
(< P||R;g=p >, < Q||R;G = p>) € R since the identity transformation is also a super-
operator on Hg_qu(p)—qu(@)- Then it follows that < P||R;q = p >~< Q||R;q = p >, and
so P||R =~ Q||R from the arbitrariness of the context. O

The constraint that P and @ are free of quantum input is vital for the proof of this
theorem: it guarantees that for any derivative < P’; C' > (node in the transition graph) of
< P;qg=p >, qu(P’") C qu(P), and then, any super-operator £ acting on Hg_g,(p) is also
a super-operator acting on Hq_qv( P)- As a result, any quantum unitary transformation
or measurement performed by < P’;C > commutes with £. When P and () are not free
of quantum input, an example (see Example 46 below) will be presented to show why
the proof technique used in this theorem fails.

Although we only consider in Theorem 44 a special case where neither P nor @ will
ever have the power to input a qubit, this case covers an important scenario called LOCC
(local operations and classical communication) in quantum information field. When com-
municating parties are spatially separated, they are usually restricted to performing local
(quantum) operations on their own subsystems and transmitting classical information
(say, the outcomes of measurements) to coordinate the local operations. This restriction
is partially due to technological consideration: noiseless long-distance quantum commu-
nication is often very difficult to realize. LOCC restriction is also widely required in the
study of quantum entanglement [23,24].

Theorem 45 If P ~ @, then P||R =~ Q||R provided that R is free of unitary transfor-
mation and quantum measurement.

Proof. Let

R ={(< P|R;C >, < Q||R;D >) | < P;C >~< Q;D >,
R is free of unitary transformation and quantum measurement}.
We prove in the following that R = (R'U =)* is a weak probabilistic bisimulation.
Suppose (< P||R;C >, < Q||R; D >) e R'.
(i) If < P||R;C > p, there are four cases to consider.

Case 1: There exists a transition < P;C >3 p; = Hpe < P;;C; > and p =
Hp;e < P;|R;C; >. By the assumption that < P;C >~< Q;D >, we have

<@Q:D>2cv = Hg;e < Q;; D; > such that p1 =~ v1. So it holds

< Q|R;D >2¢ v =g < Qj||R;D; > .
Furthermore, we can prove y =g v from p; =4 v7 and the definition of R.

Case 2: There exists a transition < R;q = p > R;r,qg = 0 ® p > for some
c € ¢qChan, r ¢ G, 0 € D(H,), and p =< P||R';r,§ = 0 ® p >. Here we
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assume that C' and D are of the forms ¢ = p and ¢ = p/, respectively. Then
from Q-Inpl and Inp-Int rules, we have

<Q|R;qg=/ ><Ime QIR ;rg=0c®p >,
and (< P|Rsr,g=0®p > < Q||R;r,g=0®p >) € R from Lemma 43
(1) and the fact that R’ is also free of unitary transformation and quantum
measurement.

Case 3: There exists a transition < R;C >3< R’;:C > where «a is not of the form
c?r: o, and p =< P||R’;C >. Here we have used the assumption that R is
free of unitary transformation and quantum measurement. Then it holds that
< R;D >3< R'; D > and then

<Q|R;D >3< Q||R;D > .

Furthermore, we have (< P||R’;C >, < Q||R’; D >) € R by the definition of
R.

Case 4: o = 7, and the action is caused by a (classical or quantum) communication
between P and R. We assume that

<P.C>H<P.C> <RC>Z<R.,C>

and = < P'||R’;C >. Other cases are similar. From the assumption that
< P;C >=< @Q; D >, we have

<@;D >C?:>Tc Hp;e < Qi;D; > and for any i , < P';C >~=< Q;; D; > .

Notice that from < R;C > < R';C > we can deduce that < R;G >
< R'; G > for any context G involving the qubit 7. Thus from Q-Com rule,

< Q|R;D >Z¢ v =Mpe < Qi||R;D; > .

In order to show p =x v, we need only to prove that for any 4, (< P'|R/;C >
,< Qi|R';D; >) € R, which is direct from the fact that < P’;C >=<
Qi; D >.
(ii) If < P||R;C >-» and < Q||R; D >-», then we have < P;C >-» and < Q; D >-».
Hence C' = D from the assumption < P;C >~< @Q; D >.

From (i) and (ii) we know that R is a weak probabilistic bisimulation on Con. So by
P =~ @, we can deduce that < P;C >~< @;C > for any context C'. Then (< P||R;C >
, < Q||R;C >) € R and hence < P||R;C >~< Q|| R;C >. Finally, we derive P||R = Q|| R
by the arbitrariness of C. a

As we know, the standard technique in classical process algebra for proving that bisim-
ilarity is preserved by static combinators such as relabeling, restriction, and parallel com-
binators is to construct a relation consisting of pairs of configurations having the con-
sidered static structure, and prove that it is a bisimulation. This technique is also used
in the proofs of Theorems 38, 39, and 44. It will fail, however, to prove the congruence
property under parallel combinator when general quantum processes are considered. The
following example illustrates how entanglement between different quantum systems and
the non-commutativity of quantum operations make the technique fail. Particularly, we
will construct quantum processes P, @, R, and context C, such that < P;C >~< @Q;C >
but < P||R;C >#%< Q||R;C >.
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Example 46 Let My 1, 09, 01, and |+) be given as in Section 2 and Example 22. Suppose
P = c?q.My 1[¢; z].nil, and

Q = c?q.(Mo 1[q; x].04[q]-nil + My 1[g; z].01—2[q]-nil)
is the process which inputs a qubit and then nondeterministically sets it to |0) or |1).
Let C =< P;q = |[4+)(+| > and D =< Q;q = |+)(+| >. Then the transition graphs of C
and D can be depicted respectively as

where p = (0|c|0) and

C1 =< My [r;z]milir, g = 0 @ [+){(+] >, C2 =< My [g; x].nil; g = [+)(+] >,

C3 =< nil;r, ¢ = [0)(0] @ |[+)(+] >, Cy=<nmilir, g = [1)(1| @ [+)(+] >,
Cs =< mil; ¢ = [0)(0] >, Co =< mil; g = [1)(1] >,
Dy =< Q'[r/q;r,q =0 @ [+)(+| >, Dy =< Q'5q = [+)(+] >,
Doi =< oi[r]nil;r, ¢ = [i)(i| ® [+)(+] >, Dy =< o1i[r]nilyr, ¢ = [i) (i @ [+)(+] >,
Dy; =< o3[q].nil; g = |i)(i] >, D}, =< o1-i[g]mil; g = [i)(i] >,
and
Q' = My 1[q; x].0.[q]-nil + My 1[g; z].01 - [q]-nil.
Take

R ={(C, D), (C1,D1),(C2,D2),(Cs, Do), (Ca, Djy;), (C5, D1s), (Co,Dy;) =4 = 0,1}

It is easy to check that R is indeed a weak probabilistic bisimulation. Thus C =~ D.
Now let R = c?r.CNOT|g,r].c!¢.nil. Then we have

< PlR;q = [+)(+] >#< Q|IR; ¢ = [+)(+| >
because < P||R;q = |+)(+| > has a transition sequence

< P|Riq = [+)(+] > "W < pl(eNOTg, ] clgnil);r, g = [[0)|+)] >

1
ﬁ(\()o) + 1)) >

- s 1
— < Mya[g; «]nil||nil;r, ¢ = [—2(|OO> +[11))] >

5 < P|clgnil;r,q = |
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1 -
- 5e< nil||nil; r, ¢ = [|00)] >
1
EE|§o < nil||nil;r, ¢ = [|11)] >

while the only form of combined weak c?r : |0)(0|-transitions of < Q|| R;q = |[+){+]| > is

< QIRiq=[+)] >R so < nill|nil;r, ¢ = [|00)] >

BH(1 — s)e < nil||nil;r, ¢ = [|01)] >
where s € [0, 1]. O

5.2. Fquality relation between quantum processes

As in classical process algebra, ~ is not preserved by summation combinator ‘+’. To
deal with it, we introduce the notion of equality between quantum processes.
Definition 47 Two configurations C and D are said to be equal, denoted by C ~ D, if
for any a € Act,

(1) whenever C = i then there exists v such that D =c v and p =~ v,

(2) whenever D = v then there exists u such that C ¢ p and p =~ v,

(8) if C » and D -, then Contex(C) = Contex(D).

The only difference between the definitions of ~ and ~ is that in the latter D = v is
replaced by D 2 v, i.e., the matching action for a 7-move has to be a real 7-move.

Furthermore, we lift the definition of equality to quantum processes as follows. For
P,Q € gProc, and T is the set of free classical variables contained in P and ), P ~ Q if
P[v/z] ~ Q[v/z] for any indexed set © of values.

The following properties are direct from definition. So we omit the proofs here.
Theorem 48 P ~ @ implies P ~ Q, and P ~ Q implies P =~ Q.
Theorem 49 If P =~ Q then a.P ~ a.Q for any a € {c?x,cle,c?q,clq,U[q], M[g; z]};
Theorem 50 For any P,Q € qProc, P ~ @ if and only if P+ R ~ Q + R for all
R € gProc.

Finally, a congruence property similar to Theorem 28 is also satisfied by the quality
relation.
Theorem 51 If P~ () then

(1) a.P ~ a.Q, for any a € {c?z,cle,c?q,clq,Ulq], M[g; x|},

(2) P+ R~Q+ R, for any R € qProc,

(8) P||R ~ Q||R, provided that R is free of unitary transformation and measurement,

or P and @ are free of quantum input,

(4) P[f] = Ql[f], for any relabeling function f,

(5) if b then P ~if b then Q for any boolean expression b.
Proof. (2) is direct from Theorem 50. Others are similar to the proofs of corresponding
results for ~. |

6. Conclusions and further work

In this paper, we propose a framework qCCS to model and reason about the behav-
iors of quantum concurrent systems. This framework is a natural quantum extension of
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classical value-passing CCS. To make qCCS consistent with the laws of quantum me-
chanics, some syntactical restrictions on valid quantum processes are introduced. The
operational semantics of qCCS is given in terms of probabilistic labeled transition sys-
tem. This semantics has many different features compared with the proposals in literature
in describing input and output of quantum systems which are correlated with other sys-
tems. We make the design decision of keeping the probability information resulting from
quantum measurements instead of resolving probabilistic choice in each intermediate step
as is done in [16] and [10]. Based on this operational semantics, we define the notions
of strong (weak) probabilistic bisimulation and equality between quantum processes and
examine some properties such as congruence of them.

The congruence property we proved in this paper is, however, a weak one in which
bisimilarity is preserved by the parallel combinator when some constraints are put on
paralleled processes. New techniques must be invented when general processes are consid-
ered, since we have presented an example to show why standard proof techniques do not
work because of the entanglement between quantum systems and the non-commutativity
of quantum operations. A potential way to tackle this problem, motivated by Theorem
50, is to define a new relation, say ~’, between quantum processes such that P ~’ Q if and
only if for any R, P||R ~ Q|| R. Obviously we have ~'C~, and ~/ is also an equivalence
relation. Furthermore, we can show that this relation is preserved by all combinators
defined in this paper except for restriction. So the problem of whether strong probabilis-
tic bisimilarity is preserved by the parallel combinator is equivalent to the problem of
whether or not ~'=~.

Another direction along this line is to give up the notion of bisimulation and instead
search for other coarser order relations among quantum processes which are preserved
by the combinators defined in this paper. For example, we can drop the symmetry of
bisimulation and instead define a notion of simulation which relates processes P and @)
if for any context C, each action of < P;C > can be simulated by a (combined) action
of < @;C >, and the resulted configurations also satisfy this order relation.

Recursive definitions are very useful in modeling infinite behavior of processes. Fur-
thermore, uniqueness of solutions of recursion equations provides a powerful tool for
reasoning about the correctness of implementations with respect to specifications. How-
ever, there are some technical difficulties in introducing recursive constructs into qCCS.
For example, if we allow the process defined by

A:=clqg.A (10)

to be valid, then problems will occur when we attempt to assign free quantum variables
to A: on one hand, from Definition 1 (5), to make clg.A meaningful we must have ¢ &
qu(A); on the other hand, also from Definition 1 (5), we know ¢ € guv(clq.A). This is a
contradiction because we will naturally require qu(clq.A) C quv(A) in definition equation
(10). However, the difficulty does not exist in the following recursively defined quantum
process

A :=c?q.U[q].clg.A (11)

which consequently inputs a qubit through quantum channel c, applies a predefined
unitary transformation U on it, and outputs it through c. Here we can freely let qu(A) =

0.
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In order to provide some useful mathematical tools for describing approximate cor-
rectness and evolution of concurrent systems, one of the authors has tried to develop
topology in process algebras [37]. In particular, he and Wirsing [36] introduced the no-
tions of A-bisimulation and approximate bisimulation in CCS equipped with a metric
on its set of action names, and further applied them to probabilistic processes [38]. To
extend these notions to the quantum setting is a direction worthy of future investigation.
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