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ABSTRACT

Qualitative Spatial and Temporal Reasoning (QSTR) provides a human-friendly

abstract way to describe and to interpret spatial and temporal information. To

describe the qualitative information, QSTR makes use of qualitative relations

between entities and usually stores them in a qualitative constraint network

(QCN). The QCNs are then used as the basis to process qualitative spatial and

temporal information, including qualitative reasoning and query answering.

Time efficiency of reasoning techniques in QSTR is critical for applica-

tions to deal with qualitative spatial and temporal information in large-scale

datasets. In this thesis, we present a special family of tractable subclasses of

relations, called distributive subalgebras. We show that several efficient al-

gorithms are applicable to the QCNs over distributive subalgebras for solving

important reasoning problems. We also identify maximal distributive subalge-

bras for popular relation models in QSTR and point out their connections with

several previously identified important subclasses.

Regarding the network representation in QSTR, there are two important

problems, which in turn affect the time efficiency of other applications.

First, the network representation can have redundant relations, which will

significantly increase the efforts needed for tasks whose efficiency is strongly

related to the number of relations in a network. Fortunately, for any QCN over

distributive subalgebras of qualitative calculi PA, RCC5, and RCC8, we show

that essentially it has a unique subset consisting of non-redundant relations,
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which expresses the same qualitative information as the original QCN. We also

devise an efficient algorithm to construct such subsets.

Second, the network representation sometimes requires a large storage

space when encoding large-scale data. This could severely limit the ability

of relation retrieval for any two given spatial entities. In fact, when the size of

a QCN becomes large, it might be too costly or even infeasible to fit the QCN

into fast accessible storage and relation retrieval will become inefficient. We

propose two alternative representation techniques to compactly encode qual-

itative spatial relations between regions. For this purpose, the first technique

uses minimum bounding rectangles (MBRs) to encode both topological rela-

tions and directional relations, while the second technique focuses on encoding

topological relations by generating axis-aligned rectangles for spatial entities.

We show that for large real-world datasets of regions, these two techniques

can significantly reduce the storage size of qualitative spatial information and

in the meantime the relations between regions can be efficiently inferred from

those simple geometric shapes.
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