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Abstract

We introduce techniques for the processing of motion and animations
of non-rigid shapes. The idea is to regard animations of deformable objects
as curves in shape space. Then, we use the geometric structure on shape
space to transfer concepts from curve processing in R™ to the processing
of motion of non-rigid shapes. Following this principle, we introduce a
discrete geometric flow for curves in shape space. The flow iteratively re-
places every shape with a weighted average shape of a local neighborhood
and thereby globally decreases an energy whose minimizers are discrete
geodesics in shape space. Based on the flow, we devise a novel smoothing
filter for motions and animations of deformable shapes. By shortening the
length in shape space of an animation, it systematically regularizes the de-
formations between consecutive frames of the animation. The scheme can
be used for smoothing and noise removal, e.g., for reducing jittering arti-
facts in motion capture data. We introduce a reduced-order method for
the computation of the flow. In addition to being efficient for the smooth-
ing of curves, it is a novel scheme for computing geodesics in shape space.
We use the scheme to construct non-linear “Bézier curves” by executing
de Casteljau’s algorithm in shape space.

1 Introduction

Many problems in geometric modeling and more generally in graphics are deal-
ing with deformable, flexible or non-rigid shapes. The idea of geometric modeling
in shape space, introduced by Kilian et al. [KMP07], is to equip the manifold of
shapes relevant for a problem with a Riemannian metric and to use the resulting
geometric structure on such a shape space for modeling tasks. A Riemannian
metric on a shape space provides a quantitative measure for the deformation
of shapes and concepts from Riemannian geometry, like the Riemannian expo-
nential map and parallel transport, have been applied for designing powerful
tools for modeling tasks such as shape deformation and interpolation, shape
space exploration, deformation transfer, shape correspondences, and the design
of measures of shape similarity. Due to the non-linear nature of shape spaces,
geometric modeling in shape space leads to high-dimensional non-linear prob-
lems that have to be solved. For example, evaluating the distance between two



shapes requires computing a geodesic in shape space. Therefore, efficient solvers
for these optimization problems are of central importance.

The main contributions of this work are twofold. The first contribution is
a novel approach for processing motion and animations of non-rigid shapes.
We regard sequences of deformations of shapes as curves in shape space and
use the geometric structure on shape spaces to transfer concepts from curve
processing in R™ to the processing of motion of deformable shapes. Following
this principle, we introduce a geometric flow for curves in a shape space of
meshes. The flow smoothes a curve by decreasing its length in shape space.
Our analysis of the flow shows that the limits are discrete geodesics in shape
space (as defined in [HRWW12]). The definition of the flow involves elastic
shape averaging. In every iteration, every shape of the curve is replaced by a
weighted average shape of the shape itself and its predecessor and successor.
Since the limits are geodesics, the flow establishes a connection between shape
averaging (or interpolation) and geodesics in shape space.

Based on the flow, we devise a scheme for the fairing of curves in shape
space. The fairing scheme shortens the (shape space) length of the curve and
thereby decreases the energy stored in the deformations between consecutive
shapes. This means that the scheme is using knowledge of how elastic objects
deform to faithfully filter the motion. For example, artifacts, like shrinkage of
parts of an object, are avoided because the formation of such artifacts would
require additional deformation energy. As of yet, no other temporal filter for
mesh sequences with such properties has been introduced. We apply the scheme
for removing jittering artifacts in motion capture data and for smoothing non-
differentiable transitions that occur when concatenating different motions of an
object.

The second main contribution is a reduced-order method for the efficient
computation the flow. After a preprocess, the scheme has a computational cost
that is independent of the (spatial) resolution of the meshes to be processed.
Since the processing of sequences of meshes results in high-dimensional opti-
mization problems, this method is essential for an efficient processing of curves
in shape space. Moreover, the scheme provides a novel algorithm for the com-
putation of geodesics in shape space. Compared to timings reported in previous
work, this algorithm significantly accelerates the computation. Additionally, it
allows for computing geodesics with much higher temporal resolution than pre-
vious approaches, which is due to the fact that our scheme performs only local
operations in the temporal domain and the dimensional reduction in the spatial
domain. Our experiments indicate that the combination of spatial reduction
and higher temporal resolution yields a better approximation of the continuous
geodesics.

We use the fast computation of geodesics for constructing nonlinear “Bézier
curves” in shape space that are controlled by sets of poses. The curves are
generated by applying de Casteljau’s algorithm in shape space. This example
follows the construction of Bézier curves in shape spaces of images that was
recently introduced by Effland et al. [ERS*15].

Using Riemannian geometry on shape spaces for geometric modeling tasks
is a powerful concept. Crucial for these methods is the efficient computation
of geodesics. We are convinced that the proposed reduced-order method (as it
allows for faster computation and for higher spatial and temporal resolutions)
is a step forward in this development.



2 Related Work

Riemannian metrics on shape spaces of curves proved to be effective for various
problems in Computer Vision. We refer to the textbook of Younes [Youl0] for
an in-depth discussion.

Riemannian metrics on the shape space of triangular surface meshes (with
a fixed connectivity) have been introduced by Kilian et al. [KMPO07]. These
metrics measure the stretching of the edges of the triangles, hence, the metric
distortion of the surface. Heeren et al. [HRWW12, HRS*14] propose a metric
that in addition to the metric distortion measures the change of bending of
the surface. Their framework includes a model of elastic materials, which leads
to Riemannian metrics on spaces of elastic shells. A Riemannian metric on
the space of elastic solids was introduced by Wirth et al. [WBRS11]. Kurtek
et al. [KKG*12,KSKL13] introduce Riemannian metrics on spaces of surfaces
parametrized over the unit sphere. Berkels et al. [BFH*13] introduce an ap-
proach for computing geodesic regression curves in shape spaces. Important
for the application is the efficient computation of the geodesics between pairs
of points in these shape spaces. This requires solving non-linear optimization
problems, which are high-dimensional as the search space consists of curves in
shape space. Specialized multi-grid Newton’s solvers have been developed for
this problem in [KMP07, HRWW12].

Figure 1: An illustration of a discrete geodesic in shape space consisting of 256
poses of a shape with 40k vertices is shown.

The problem of shape interpolation (or averaging, morphing, blending) has
many applications in graphics. Early work concerned the morphing of planar
shapes [SGWM93, ACOLO00]. For recent work on the interpolation of planar
shapes, we refer to [CWKBC13] and references therein. Approaches for the
interpolation of surface meshes are either based on linearized deformation mod-



els, like Poisson reconstruction [SP04, XZWBO05] and linear rotation invariant
coordinates [LSLCOO05], or on non-linear deformation models [SK04, WDAH]10,
FB11,LG15, vTSSH15]. Linearized deformation models are limited to small
deformations, see [BSO08] for a detailed discussion. Fast approximation algo-
rithms for the shape interpolation problem have been proposed. Frohlich and
Botsch [FB11] use a combination of mesh coarsening and deformation-transfer
to avoid solving the shape interpolation problem for the fully-resolved surfaces.
A model reduction approach that yields real-time computation times for shape
interpolation has recently been introduced by von Tycowicz et al. [vTSSHI15].
Compared to the Riemannian structure on the shape space, shape interpolation
is a simpler concept. For example, elastic shape averaging does not lead to a
distance measure that satisfies the triangle inequality [RW11]. A comparison
of results of shape interpolation techniques and geodesics can be found in Sec-
tion 7. Since our discrete flow is based on shape interpolation and has geodesics
in shape space as its limits, this paper establishes a connection between shape
interpolation and geodesics, which were separate concepts before.

Smoothing filters for mesh sequences are typically applied directly to the
trajectories of the individual vertices. Vlasic et al. [VBMPO08] use bilateral filter
in the temporal domain for each of the vertex trajectories. Li et al. [LLV*12]
smooth the frames of an animation using a mix of constraints from points on
the current, next and previous frames. These filters smooth the motions of the
individual vertices, but neglect the shape formed by the set of vertices. Thus
they are unable to prevent unnatural deformations of the shape. An example is
shown in the supplementary video as well as in Section 7.

Related to shape interpolation and geodesics in shape space is the problem
of keyframe interpolation in computer animation. The spacetime constraints
paradigm, introduced by Witkin and Kass [WK88|, provides a variational frame-
work for physically-based keyframe interpolation. The goal is to help animators
in creating plausible motion by combining physical simulation with keyframe
interpolation. Spacetime optimization of the motion of deformable objects has
been consider in [BASP09, HSvTP12]. Recently, schemes for interactive editing
of simulations and animations [BSG12,LHdG*14] and for creating motion using
sets of partial keyframes [SvTSH14] have been proposed.

3 Background: Deformation Energies and Shape
Averaging

In this section, we briefly introduce deformation energies and the elastic shape
averaging. Our presentation restricts to the discrete case. For an introduction
to elasticity, we refer to [MH94] and for a background on elastic shape averaging
to [RW09, vT'SSH15].

Discrete deformation energies We consider a deformable object consisting
of a hyperelastic material. A material is elastic if the (inner) forces acting on
the object depend only on the current configuration and are independent of
the deformation path and speed. This means that the forces can be described
by a vector field on the space of configurations of the object. The material
is hyperelastic if this field is conservative. Then, the function whose negative



gradient equals the force field, is the deformation energy. This function is only
determined up to a constant. The constant is chosen such that the neutral
configuration stores no deformation energy.

In this paper, we restrict our attention to the discrete setting and consider
triangle meshes for representing elastic shells and tetrahedral meshes for elastic
solids. After the choice of materials and a discretization, the discrete deforma-
tion energy is a function

E:R"xR" — Rzo.

Here n is the number of degrees of freedom of the discrete object. In our set-
ting, we keep the connectivity of the meshes fixed and n is three times the
number of vertices. The first entry specifies the neutral configuration and the
second the deformed configuration. The value E(Z,z) measures the energy
stored in the deformable object when it is deformed from the neutral config-
uration T to the configuration z. In our experiments, we are using Discrete
Shells [GHDS03]. However, other deformation energies like PriMo [BPGKO6],
As-Rigid-As-Possible [SA07,CPSS10], or finite elements discretizations of elastic
solids or shells could be used as well.

Elastic shape averaging We consider a set of u + 1 example configurations
{yo,y1, ...,y } and positive weights {wo, w1, ...,w, }. Elastic shape averaging, in-
troduced by Rumpf and Wirth [RW09], provides a way to compute weighted
averages of the examples. The weighted average shape is defined as the config-
uration that minimizes the weighted sum of the energies E(y;,y) and E(y, y;)

n
AW, Y05 +ory Wpy Yp) = argglinzwi (E(yi,9) + E(y, 4:)) - (1)
yeR™ -0

This is a non-linear and elasticity-based approach for shape averaging that has
a number of desirable properties. For example, the scheme can deal with larger
deformations and the weighted average shape does not change if the example
shapes are rigidly transformed.

4 Discrete Curve Flow in Shape Space

In this section, we introduce a curve smoothing flow in shape space and discuss
its application to the fairing of curves in shape space.

Curve smoothing flow in shape space We consider a discrete curve in
shape space given by a sequence of m + 1 configurations (xg,x1, ..., ;). The
curve can either be closed or have a boundary. In the latter case, we fix the
first and last configurations. In the case of a closed curve, the indices are to be
read modulo m + 1.

The discrete curve smoothing flow is defined by the iterative procedure

T T
.Z'erl :A<§,J}fil,1—7',xf,§,$§+1)- (2)

The parameter 7 € (0, 1] controls the size of the steps. It can be a fixed value
or varied in every step. As we will discuss in the next section, controlling



the stepwidth allows to guarantee that every step decreases an energy whose
minimizers are discrete geodesics in shape space. In every iteration, the flow
deforms every shape of the curve towards an average of the shape itself and
its two neighbors and thereby smoothes the deformations between successive
shapes of the curve.

Curve fairing in shape space The smoothing flow combines two smoothing
effects. It decreases the (shape space) length of the curve (this is discussed in
the following section) and it regularizes the parametrization by equalizing the
lengths of the individual segments. Decreasing the shape space length smoothes
the curve in a way that avoids the formation of artifacts (like linearization
artifacts or shrinkage of parts of the shape) because this would require additional
deformation energy and hence make the curve longer. For example, the limit of
a closed curve is a static “mean” shape (Figure 4 illustrates this). The second
effect means that the curves evolve towards a more uniform motion in which
the deformations between successive shapes store the same amount of energy.
If this effect is not desired, it can be reduced by altering the weights for the

shapes 2% | and z¥,, in (2). For example, one can use the weigths

7'11;1 and ’Tli
lici+1; Lici +1;

where I; = \/E(x;,z;4+1), in order to better preserve the original proportions of
the energy stored in the deformations between successive shapes.

Figure 2: Applying our flow to animations exhibiting artifacts can remove them:
The hand animation from the supplementary video contains frames with strong
artifacts (left, visible on the fingers), after smoothing the animation, the shape
looks artifact-free again, while the motion is kept intact due to the restoring
force.
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Figure 3: The bending block sequence (exhibiting a C!-discontinuity) before
smoothing (left) and after 50 smoothing iterations (right).

5 Analysis of the Flow and the Computation of
Geodesics

In this section, we analyze the relation of the smoothing flow and geodesics in
shape space. First, we show that the stationary points of the flow are discrete
geodesics. Then, we prove that the flow decreases an energy whose minimizers
are discrete geodesics (as defined in [HRWW12]). As a consequence, the discrete
flow can be used for the computation of discrete geodesics.

Stationary points of the flow As a first step, we characterize the stationary
points of the flow in the following lemma. By 0, E(z,y) and 2 E(x,y) we denote
the derivatives of the energy E with respect to the first and the second argument.

Lemma 1 A stationary point (xg,x1,...,Zm) of the discrete flow (2) satisfies
ONE(vi, 1) + 0 E(xi1,7;) + 01 E(zi, 2it1) + O2E(wiy1, 7)) =0 (3)
for all interior shapes x;.

Proof. Assume (xg, 1, ...,Z,,) is a stationary curve. This means

T T
Ty = A(§7xi—1a 1- T, Ti, 5,{131‘_1,_1)

for all (interior) i. Using (1), we see that x; has to satisfy
% (81E(xi, .Ti_1> + 82E($i_1, JJ,)) + (1 — T) (81E(l‘i, J,‘Z) + 82E(37¢, xl))
T
+§(51E($i7$i+1) + 02 E(xi41,2;)) = 0.

This implies (3) since E(z,z) = 0 for all configurations . O

Limits are discrete geodesics in shape space Different Riemannian met-
rics on the spaces of shapes have been defined. We consider the physically-based
metric introduced by Heeren et al. [HRWW12]. It uses viscous dissipation re-
quired to deform physical objects for measuring the distance of shapes. After a



spatial discretization (which is the setting considered here) the discrete geodesics
(0,1, ..., Ty ) are defined as the minimizers of the functional

m

Z(E(xi—hil?i) + E(2i, zi-1)) (4)

i=1
for fixed configurations xy and x,, and with respect to variations of the other
configurations x;. The relation of the energy (4) to the Riemannian distance on
the (continuous) shape space is that E(z;,x;+1) is a second-order approximation
of the squared Riemannian distance between z; and z;41, see [ HRWW12]. The
Euler-Lagrange equation satisfied by the minimizers of (4) is exactly equation
(3), which is satisfied by the stationary points of the discrete flow.

olls

YAy
Ty

Figure 4: A periodic curve evolves to a constant curve. Top: Original sequence,
middle: after 1 smoothing step, bottom: after 10 smoothing steps.

This shows that discrete geodesics are stationary points of the flow. However,
this does (in general) not guarantee that curves evolve towards geodesics. The
following lemma shows that for every configuration of the curve, a small enough
step of the flow decreases the energy (4). As a consequence, if we control the
stepwidth, the limits of the flow are discrete geodesics in shape space.

Lemma 2 For any non-stationary curve (o, T1,...,Tm) and small enough
T > 0, an iteration of the flow (2) decreases the energy (4).

Proof. Let us consider 7 as a variable and denote the next iterate by

(zd (1), 27 (7), ...,z (7). To prove the claim, we show that the derivative

(o (), (1), (1) Q



at 7 = 0 points into a descent direction of the energy (4). From the definition
of the flow, (2), it follows that (zg (1), 2] (7), ..., 2% (7)) satisfies

g(alE(ﬂ?T(T),%—l) + 02 E(xi1, 2] (1)) + (1 = 1) (01 E(zf (1),2:)  (6)

+0 B (i, 4 (7)) + %(&E(m?—(ﬂaxi-&-l) + hE(@i1,2] (1) =0

We use these equations as an implicit function that determines z; (7). To

compute (5), we need the derivatives of the left-hand side of (6) at 7 = 0 with
respect to 7 and ;. The former is

%(5115(%?(0),%71) + OBz, 27 (0)) (7)
+ 01E(z](0), %i41) + 02 E(wi41, 27 (0)))

and the latter is
8181E(a:;r(0),xi) +8282E($i,$+(0)). (8)

The configuration x; (0) equals ;. Plugging this into (7) and (8), we see that (7)
is the gradient direction of (4) at x;. Furthermore, the matrices 9,01 E(x;, x;)
and 0902 F(x;, ;) are positive definite (modulo rigid transformation of the
shape) because E(x;, ;) is a minimum of E for variations of the first and of
the second argument. This implies that (8) is positive definite. The implicit

function theorem implies that the derivatives in (5) satisfy

1
=3 (O E(xiszio1) + OB (i1, ;) + O E(2i, Tig1) + 2B (w41, 7)) -

Since the right-hand side is the gradient direction of (4) and the matrix
OO E(x;, x;) + 0202 E(x;, x;) on the left-hand side is positive definite,

a%xj(O) points into a descent direction of (4). This implies that for small
enough 7 an iteration of the flow will decrease the energy (4). [

6 Efficient Computation of the Flow

Integrating the discrete flow requires solving a number of shape averaging prob-
lems. We use a reduced-order technique for this, which combines dimensional
reduction in the spatial domain and a scheme for the efficient evaluation of the
reduced deformation energy and its gradient. Before we introduce the reduction
strategy, we first discuss an asymmetry in the elastic potential and its effect on
the definitions of elastic shape averaging and geodesics in shape space.

Remark on shape averaging and geodesics The elastic potentials are not
symmetric in their two arguments, i.e., in general we have E(z,y) # E(y,z).
This means the energy stored in an object with rest shape y that is deformed
into configuration x is not the same as the energy stored in an object with rest
shape x that is deformed into configuration y. Because of this asymmetry, we
have defined the elastic shape averaging using both terms E(y,y;) and E(y;,y)
in (1). As an alternative, one can use only one of the terms to define the



Figure 5: Applying our flow to concatenated animations (like the centaur anima-
tion shown in the supplementary video) results in a visually smooth animation
without visible “corners” in the motion.

averaging. For example, in [RW09, vI'SSH15] only the terms E(y;,y) are used.
Then the averaging is

m
A(w07y07"'7wu7yu) = arggﬁnzwi E(yzay) (10)
yeR™ oo

In the same spirit, we define the geodesics in shape space using E(x;_1, ;) and
E(z;,z;-1) in (4). In [HRWW12], only the terms F(x;_1, ;) were used to define
geodesics. This introduces a slight asymmetry in the definition. The discrete
geodesic from shape x to y is not exactly the same as that from shape y to x.
However, the difference is small and reduces with temporal refinement of the
geodesic.

We have used the symmetric definitions involving both of the energy terms
for shape averaging and geodesics in shape space in Sections 4 and 5 because
in this case the connection between averaging and geodesics in shape space
established by the proposed discrete smoothing flow is exact. The geodesics are
exactly the limits of the flow. This makes the presentation simpler and easier
accessible.

In our experiments, we have not noticed significant differences between the
results obtained with the different definitions, which matches the observations
reported in [RW09]. Experiments concerning the issue can be found in Table 2
in Section 7. The computation, of course, is faster if only one of the energy terms
is used. Therefore, we used (10) for shape averaging in most of our experiments.

10



Dimensional reduction For the dimensional reduction, we are restricting
the variations of every shape to a low-dimensional affine subspace of R™. We
have used two subspace constructions for our experiments. If the input is a
curve in shape space, a good candidate is the affine span of all shapes of the
curve. This space can be represented as a linear space attached to one of the
shapes. To further reduce the dimension, we select one shape z, and compute
a principle component analysis (PCA) of the displacement vectors to all other
shapes. The new affine space is the d-dimensional linear subspace spanned by
the left singular vectors (of the matrix formed by the displacement vectors) with
the highest singular value attached to z,. This affine space does not contain
all shapes anymore. Therefore, we use for every shape x; the affine span of
this space and the vector representing x; itself. To represent these spaces, we
only need to store one subspace basis, which is augmented with the missing
vector (the difference of the shape z; and z,) for each shape at runtime. The
additional vectors can be orthonormalized against the basis in the preprocess.

If the curve to be processed is very coarse, e.g., less than 20 frames, using on
the affine span of the shapes would provide enough flexibility. In such a case, we
use the flow tangent directions, a%xf (0) in equation (9) for every shape as an
additional input for constructing the space. In the case, that only two shapes
x and y are given and we want to compute a geodesic joining them, we follow
the subspace construction in [vIT'SSH15]. The starting point is the affine space
spanned by the two shapes. This space is enriched with additional vectors.
First, two vectors, v; and vs, obtained from linearizing the deformation from x
to y and from y to = are computed. Then, further vectors are generated using a
Krylov sequences that involves the Hessians of the elastic potentials, the mass
matrices and v; and vo. For details, we refer to the original work.

Energy and force approximation In addition to dimensional reduction,
we are using a scheme for the efficient approximation of the reduced energy
and force. Since we are working in a reduced space, the deformations of the
individual vertices are correlated. The approximation schemes aim at exploiting
this structure. Different schemes have been proposed in the literature.

We adapt the mesh coarsening technique introduced in [HSvTP11] to our
setting. The idea is to create a coarse mesh and a subspace V for the coarse
mesh that is isomorphic to the subspace V for the fine mesh. To approximate the
energy at a point in V', the energy of the coarse mesh at the corresponding point
in V is evaluated. To evaluate the gradient of the energy, the gradient of the
coarse mesh is projected onto V. The corresponding vector in V is the vector
that has the same reduced coordinates (however this vector is not explicitly
computed, as we only work with the reduced coordinates). Explicitly, we use an
edge-collapse scheme to generate a coarse version z, of the selected shape x,.
Edge-collapse schemes implicitly generate a map from the vertices of the fine to
the vertices of the coarse mesh, see [HSvIP11] for details. We use this map to
get subspace basis vectors for the coarse mesh.

An alternative approach for reduced force approximation is the optimized
cubature [AKJO08, vTSSH13]. A second alternative is polynomial restriction
[BJO5], which allows for exact evaluation of a finite elements discretization of
St. Venant—Kirchhoff materials for elastic solids at costs depending only on
the subspace dimension. By combining the dimensional reduction and the re-
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Animation #u | H#vg | #s | |V] #£steps Ts T,
Twisting Block 450 — 6 | 24 10 0.26 | 3.44
Bending Block 450 — | 155 | 20 |10/50/200 1.02 | 0.16
Centaur 15768 | 1252 | 138 | 15 50 2.13 |12.08
Finger Geodesic (short)| 2046 — 5| 14 214 0.03 | 3.51
Finger Geodesic (long) | 2046 | 1252 | 81 7 115 0.17 | 3.48
Elephant Geodesic 39969 | 1246 | 256 | 14 270 1.09 |82.18
Hand Linear Artifacts 6094 | 1252 | 49 | 14 100 [0.92/0.94* | 0.56
Hand Temporal Noise | 6094 | 1252 | 49 | 14 100 [0.91/0.94* | 0.54
Motion Capture 2502 | 1252 | 91 | 20 50 1.81 | 0.34

Table 1: Data for the experiments. #v / #v, = number of vertices in fine/ghost
mesh, #s = number of shapes, |V| = size of subspace, Ty = seconds per step
on average, T, = seconds for precomputation, *: flow with restoring force.

duced energy and force approximation, we obtain a computational cost for the
integration of the flow that is independent of the resolution of the meshes.

Solving the reduced problem To solve the reduced problems, we use the
BFGS scheme (see [NWO06]). This is a quasi-Newton scheme that maintains an
approximation of the inverse Hessian of the objective functional. Approximating
the inverse Hessian avoids costly solving of a linear system to get the Newton
direction. It is efficient to initialize the BFGS scheme with an inverse Hessian
approximation to get a warm start. In the preprocess, we once compute the
inverse Hessian (of the energy of the ghost mesh) of the mean shape of the
predecessor and successor (on the initial curve) for every shape.

For the computation of the geodesic between two shapes, we use a coarse-to-
fine strategy in the temporal domain. Starting with the two boundary shapes,
we perform a two-step procedure. First the temporal domain is refined by
inserting a fixed number (two or three in our experiments) of new shapes between
every pair of successive shapes x; and x;y;. These shapes are initialized as
interpolating shapes between z; and x;11. Secondly, the geometric flow (2) is
iterated until the squared norm of the reduced gradient of (4) is below 1~ times
the degrees of freedom.

7 Applications and Experiments

First, we want to point to the supplementary video that shows curves in shape
space computed with our method. Details of the experiments and computation
times are shown in Table 1. The implementation was done in Java and the
experiments were performed on a custom laptop (Intel Core i7-4600U, 2.1GHz).
The precomputation times shown in the table (7},) include the construction of
the subspace, the initialization of the deformation energies and the initialization
of the minimizer (computing initial Hessian approximations as a warm start for
the BFGS minimizer). The precomputation time is significantly lower when
the subspace can be constructed from a PCA on the shapes of the input curve,
and not via the more involved subspace construction from [vI'SSH15]. For our
experiments, we used the Discrete Shells energy [GHDS03] as the elastic energy
E, where we set the parameters to kg = 1 and kz, = k4 = 1/2 (following the

12



notation from that paper).

Basic examples The twisting block sequence (Figure 4) is meant as a simple
demonstration of how a periodic sequence converges to a single point (or con-
stant curve) when we perform several smoothing steps, akin to the contraction
of closed curves to single points under the curve shortening flow. Since the orig-
inal sequence consists of few shapes, the limit is reached after a few iterations
(explicitly after 10 iterations with 7 = 0.6).

4.5

35

2.5

2 5 10 2 5 100 2 s 1000 2

Figure 6: Plot of the length of the bending block geodesic (y-axis) with a varying
number of intermediate shapes (z-axis).

We demonstrate the ability of our smoothing technique to get rid of sudden
jumps in the object’s velocity (i.e. C'-discontinuities in the temporal domain):
the bending block sequence shows a block starting from a bent-over position,
getting into an upright position and back into a bent-over position, this time
bending to a different direction (cf. Figure 3). The animation has a visible jump
in the velocity around the frame where the block stands upright, since there is
a sudden change in the direction of the motion. Applying smoothing steps to
this animation leads to a smoother motion: the block does not get into a fully
upright position anymore, and the direction of the motion evenly changes across
the full animation.

The usefulness to this type of animation smoothing becomes clear when used
on a more complex animation: the centaur animation (cf. Figure 5) was created
by concatenating interpolation curves to 6 successive poses of the centaur shape.
This results in an animation with visible jumps in the moving direction at the
input poses. After some steps of the discrete flow, to the animation is visibly
smoother and without discontinuities. This can be made precise in the following
sense: we can look at the part of the gradient of the energy functional (4) of the
animation (as a curve in shape space) that corresponds to a certain frame of the
animation, in particular at the norm of the Lh.s. of (3). In case of the centaur
sequence, we can make the observation that the norms of these individual parts
of the gradient are much larger at the discontinuities than at the other shapes.
This leads to large spikes in the norm of the gradient parts corresponding to
these frames. In Figure 7, we plot the norm of these individual parts of the
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gradients after various iterations of smoothing. One can observe how the spikes
become less sharp while smoothing the animation.
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Figure 7: The norm of the energy gradients of the individual shapes (left-hand
side of (3)) for the centaur sequence after various smoothing iterations.

Computing geodesics As explained in Section 5, we can use our technique
to compute geodesics. The advantage of only having to solve optimization prob-
lems involving one unknown shape at a time and the application of the model
reduction techniques lead to a significant speed-up when comparing to the times
stated in [HRWW12]: when computing the discrete geodesic of the finger mesh
on 8 shapes, Heeren et al. report a computation time of 628s for a multilevel
optimization. For the same setting, our technique needed 6,42s, including the
precomputation time (subspace construction and computation of initial Hes-
sians). To justify our reduced-order modeling, we computed the same geodesic
using the full-order model in the space R™ and compared the lengths of both
curves, which differed by less than 0.1% of the length of the full geodesic, as
well as the Lo-distances of all shapes, which differed by less than 173 % of the
summed lengths of the shape vectors.

The dimensional reduction of the spatial domain and the fast computation
times allow for computing discrete geodesics with finer time discretizations:
the finger geodesic on 64 shapes leads to a computation time of 19.55s, the
elephant geodesic (cf. Figure 1) on 256 shapes (40k vertices per shape) leads to
a computation time of 376s.

To demonstrate the convergence of our flow to a geodesic, we plot the squared
length of the curve and the length of the gradient of functional (4) in Figure 9 for
the computation of the elephant geodesic on 100 shapes, where we initialize the
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Figure 8: A frame of the smoothed centaur sequence. Left: Our technique.
Right: bilateral filtering of the vertex trajectories [VBMPOS8], where the head
appears to be shrunken.
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Figure 9: Plot of the squared curve length (blue) and size of the gradient of
functional (4) (orange) while smoothing a sequence of 12 elephant shapes (ini-
tialized as the interpolation curve). The z-axis denotes the number of smoothing
iterations in both plots.

geodesic with 100 interpolation shapes right away (instead of using the adaptive
scheme). The plot shows that the length of the curve decreases monotonically.
While the loss of precision due to model reduction is very low, we actually
gain accuracy by being able to compute discrete geodesics with more shapes. In
Figure 6, we plot the length of the geodesic between the bent over and upright
block on a varying number of shapes. The plot demonstrates that the length
differs significantly when comparing a geodesic with 10 to a geodesic with 100
shapes. This shows the benefit of computing geodesics on many shapes.

De Casteljau algorithm in shape space The fast computation of geodesics
makes it possible to evaluate geometric constructions that require repeated com-
putation of geodesics. As one example, we construct nonlinear “Bézier curves”
in shape space by executing the de Casteljau algorithm with respect to the
shape space metric. This means the straight lines used in Euclidean space are
replaced by geodesics in shape space. In [ERS*15], Effland et al. applied the de
Casteljau algorithm in a shape space of images to obtain smooth curves from a
few input images, we refer to this paper for further details on the algorithm.
To compute a point of the “Bézier curves” controlled by four shapes, we need
to compute the three geodesics between each successive pair of boundary shapes
once and three additional geodesics per shape of the final curve. The supple-
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Figure 10: Visualization of the de Casteljau algorithm in shape space: the
straight lines are geodesics between shapes.

mentary video and Figure 10 show an example of such a “Bézier curves” with
four control poses of a block shape. The computed curve consists of 32 shapes
and each auxiliary geodesic was also computed on 32 shapes. The computation
time for the whole procedure (which requires the computation of almost 100
geodesics) was 241s. This could be drastically reduced by using coarser time
discretizations for the auxiliary geodesics.

Denoising and animation repair Our smoothing technique is also able to
enhance and repair noisy data: an animation of a hand bending its fingers with
temporal noise becomes completely denoised after 100 smoothing steps. The
shape of the fingers remains plausible even after applying a large amount of
smoothing. However, the motion itself has also changed: before smoothing, the
index finger and thumb touched, whereas after the smoothing, the fingers stay
far away from each other throughout the whole animation.

If the flow is used for noise removal, curve shortening can lead to over-
smoothing. To reduce this effect, we use a restoring force that pushes the curve
towards its initial state. To achieve this, we modify the flow equation (2):

y?=xi
B A1 = p) Sk (L= p) (1 —7),45, (1= p) T
yz (( p)27y1—17( p)( T)vyzz( p)2

that is, in addition to the current shape and its neighbors, we take the original
shape into the local averaging processes. The parameter p € [0, 1] controls the
strength of the restoring force. The restoring force can be used for all shapes of
the curve or just for some selected shapes.

With this force, the animation is denoised, while articulation of the motion
remains intact. We perform a similar experiment with an animation obtained by
linear blending of a coarse set of keyframes (cf. Figure 2). By adding a restoring
force to the keyframes, we are able to remove the linear-blending artifacts, while
keeping the overall motion intact.

In addition, we tested our method on motion capturing data from Gall
et al. [GSA*09], which exhibits temporal and spatial noise. Again, using our
smoothing technique with restoring force, we are able to acquire a smooth ani-
mation, which at the same time keeps its main characteristics. An advantage of

k
ayi+17p7 J:i)v
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Bending Block Centaur Elephant
» |
-
Length of (10)-geodesic 0.3680 142.1023 368.5427
Length of (1)-geodesic 0.3648 141.7774 348.3585
Length of interpolation curve 37.4360 155.9907 613.1286
Rel. La-error of geodesics 5.23757° 1.417375 4.25127°

Table 2: Geodesics computed using the symmetric (1) and the asymmetric
averaging operator (10).

using our smoothing flow to denoise motion capturing data is that each smooth-
ing step regularizes the motion of the whole mesh instead of individual vertex
positions. This implies that unwanted deformations and artifacts due to strong
noise can be filtered without smoothing the mesh itself.

Averaging operators As discussed in Section 6, we used the formulation
(10) of the shape averaging in most of our experiments to enhance computation
speed. We observe that the choice of the operator used for shape averaging,
(1) or (10), does not lead to significantly different geodesics. Table 2 shows the
results of an experiment performed in this regard: We computed three different
geodesics using both formulations (1) and (10). We state the energy (4) of these
geodesics (with the energy of the interpolation curve as a comparison) as well
as their relative Lo-error. This error was computed by first registering each pair
of corresponding shapes via a best rigid fit, and then taking the ratio of the
norm of the difference of both geodesics (interpreted as vectors in R™™) and
the norm of the (1)-geodesic.

Comparisons

For comparisons to the timings and accuracy of computing geodesics using our
technique as opposed to [HRWW12] see the paragraph above.

To prevent confusion, we first want to stress that our flow formulation is
based on shape averaging, which is closely related to shape interpolation. This
being the case, every interpolation technique can be used to define a smoothing
flow using our formulation. However, not every interpolation scheme exhibits
the properties of elastic shape averaging required to prove existence of a metric
and convergence of our flow to geodesics in shape space.

Nonlinear shape interpolation While our model reduction and flow formu-
lation allow for a fast computation of geodesics, interpolation curves can be pro-
duced even faster. The reason is that each interpolating shapes can be computed
directly (without the need to compute all interpolating shapes). This cannot be
done for geodesics, we always have to compute the whole curve. Hence, the op-
timization problem for geodesics is more involved. On the other hand, the more
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complex problem couples the shapes of a geodesic to each other, which is not
the case for shape interpolation. For example, if the computations of interpolat-
ing shapes end in different local minima, we can get a stuttering interpolation
curve. Due to the coupling of the shapes such effects are smoothed out during
the computation of geodesics. We demonstrate this in the supplementary video.
To produce the shown examples, we used the same elastic deformation energies,
reduction techniques and minimization schemes, for both the geodesic and the
interpolation curve.

Poisson-type shape interpolation We also compare to a Poisson interpo-
lation curve (see supplementary video, cf. [XZWB05]). We show that our tech-
nique does not suffer from problems that arise in Poisson interpolation when
elements are rotated by more than 180 degrees. Also, as can be seen in our
video, while offering a smooth deformation over time, linear interpolation of the
vertex positions leads to strong artifacts, even for very small deformations.

Comparison to other smoothing and denoising techniques Tempo-
ral filtering of the vertex positions, as proposed in [VBMPO08], also leads to a
smoother motion, but since a lot of filtering is required, the shape undergoes
unnatural deformations, similar to linearization artifacts, as can be seen in Fig-
ure 8. Additionally, in the supplementary video, we compare our results for
denoising the motion capture data to applying a temporal filter to the vertex
trajectories. As can be seen, with the latter type of smoothing, the noise is
converted to a wiggling surface, since it does not include a physical model of
deformations of objects.

8 Conclusion

In this paper, we are proposing techniques for the processing of curves in shape
space. In particular, we introduce a discrete geometric flow for curves in shape
space. The flow iteratively computes local weighted average shapes and thereby
decrease the magnitude of the deformation between consecutive shapes of the
curve. Based on the flow, we design a novel type of smoothing filter for motions
and animations of shapes. In contrast to previous work, the filter only smoothes
the deformations between the shapes and thereby minimizes the distortion of
the shapes themselves. One application of this filter is the smoothing of motions
and animations of objects. We use the filter for reducing jittering artifacts in
motion captured data and for smoothing transitions that appear when different
motions are concatenated.

Our analysis shows that the flow converges to geodesics in shape space. To
compute the flow, we propose a reduced-order scheme that combines a dimen-
sional reduction with a scheme for reduced energy and force approximation.
The approach significantly accelerates the computation of geodesics in shape
space. In addition, it allows for finer temporal discretizations, which improves
the approximation quality. We think that these two benefits are important for
an effective processing of curves in shape space. We demonstrate results ob-
tained with our scheme for the computation of geodesics that blend between
two shapes as well as the computation of nonlinear “Bézier curves” in shape
space that are controlled by a coarse polygon in shape space.
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Future work We introduce techniques for the processing of curves in shape
space. We think that this is a promising direction for processing motion and
animation and we expect to see more algorithms that transfer techniques from
the processing of curves in R™ to curves in shape space. For example, analogous
to the example of De Casteljau’s algorithm, curve subdivision schemes like cor-
ner cutting could be transferred to shape space. Another example is the fairing
of curves in shape space. The proposed smoothing filter is the first of this kind
and we expect that more filtering techniques for curves in Euclidean space will
be transferred to filters for motion and animation of deformable shapes.

Furthermore, we think that reduced-order modeling has a great potential
for geometry processing in shape space and other applications using Rieman-
nian metrics on shape spaces. Fast approximation algorithms for shape space
computations can be designed and larger data sets can be processed.

With a growing market for devices which are able to directly capture de-
forming geometry, processing of motion and animation becomes more and more
important. The concept of curves in shape space provides powerful and the-
oretical sound tools for processing this data (in particular for template-based
approaches).
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