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Abstract

Objective. Steady-state visually evoked potential (SSVEP)-based brain–computer interfaces

(BCIs) allow healthy subjects to communicate. However, their dependence on gaze control

prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been

designed but have shown a drop in accuracy and have not been tested in brain-injured patients.

In the present paper, we propose a novel independent SSVEP-BCI based on covert attention

with an improved classification rate. We study the influence of feature extraction algorithms

and the number of harmonics. Finally, we test online communication on healthy volunteers

and patients with locked-in syndrome (LIS). Approach. Twenty-four healthy subjects and six

LIS patients participated in this study. An independent covert two-class SSVEP paradigm was

used with a newly developed portable light emitting diode-based ‘interlaced squares’

stimulation pattern. Main results. Mean offline and online accuracies on healthy subjects were

respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to

communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline

accuracy above the chance level, illustrating a response to a command. One out of four LIS

patients could communicate online. Significance. We have demonstrated the feasibility of

online communication with a covert SSVEP paradigm that is truly independent of all

neuromuscular functions. The potential clinical use of the presented BCI system as a

diagnostic (i.e., detecting command-following) and communication tool for severely

brain-injured patients will need to be further explored.

Keywords: SSVEP-BCI, locked-in Syndrome, gaze-independent, feature extraction, harmonic

1. Introduction

Brain–computer interfaces (BCIs) [1] translate measures of

brain activity into messages or commands and provide a direct

6 Both authors contributed equally.

connection between the human brain and a computer. The

most favorable noninvasive brain imaging method employed

in BCI is electroencephalography (EEG), in which electrical

signals of high temporal resolution are recorded from the

scalp. The existing EEG-based BCI designs rely on a variety

of different EEG signal features, for example slow cortical
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potentials [2], mu rhythms [3], P300 potentials [4] and steady-

state visually evoked potentials (SSVEPs) [5, 6]. In SSVEP-

based BCIs, one or more stimuli oscillating at different

constant frequencies are presented to the subject. When the

subject focuses his attention on the stimulus, EEG activity

is detected at the corresponding frequency over occipital

areas [7]. The SSVEP-based BCI has many advantages over

other EEG-based BCI systems, including (i) a high signal-to-

noise ratio , (ii) a high information transfer rate [8], (iii) less

susceptibility to eye movements and blink artifacts [9] as well

as to electromyographic artifacts [10], and (iv) they require

very little training since the SSVEP is an inherent response of

the brain.

BCIs have been proposed as a diagnostic tool for the

detection of consciousness and/or a communication tool for

severely brain-injured patients, and especially patients with

locked-in syndrome (LIS) [11, 12]. Following a brainstem

lesion, these patients often remain comatose for some days

or weeks, needing artificial respiration, and then gradually

wake up but remain paralyzed and voiceless. In acute LIS, the

difficulty to recognize unambiguous signs of consciousness,

the extreme motor disabilities, the apparent similarity with the

vegetative state/unresponsive wakefulness syndrome (i.e., eyes

opening and motor immobility without signs of awareness)

[13] and the fluctuations of arousal levels [14] often result

in the diagnosis being delayed or even missed [15]. In the

chronic stage, computer-based communication could improve

a patient’s quality of life and increase interaction with their

environment.

Current BCIs relying on VEPs depend on gaze control

[16, 17] and thus fall into the category of dependent BCIs [1].

Therefore, these BCIs are not applicable to those whose severe

disabilities extend to impaired or nonexistent ocular motor

control, such as LIS patients in which (i) eye movements may

be inconsistent, very small and easily exhausted in the acute

stage and (ii) deteriorated or nonexistent oculomotor control

could be observed in the chronic stage. Independent SSVEP-

BCIs based on covert attention have been proposed [18–20]

but have shown a drop in robustness in healthy subjects and

have never been tested on patients.

The SSVEPs have the same fundamental frequency (first

harmonic) as the stimulating frequency, but usually they also

include higher [21] and/or sub-harmonic frequencies [22].

Previous SSVEP-based BCIs were implemented on the basis

of the first [7] or on the first and second harmonic detection

[5, 6, 23]. Recent research studied the impact of harmonic

frequency components in the classification accuracy and

showed that the use of higher harmonics positively influence

classification in overt SSVEP [16]. The influence of harmonics

in covert SSVEP has never been studied.

The aim of the present work was to develop a novel covert

SSVEP-BCI with an improved classification rate enabling

functional communication. To achieve this goal, we have: (i)

proposed a new portable covert stimulation pattern enabling a

better discrimination between two stimuli, (ii) tested different

feature extraction algorithms, (iii) studied the influence of the

number of harmonics (which has never been tested in covert

SSVEP), and (iv) developed and tested on 12 healthy subjects

an online covert SSVEP-BCI which allows synchronous

communication without ocular motor control. The potential

use of the system as an offline diagnostic tool and/or online

communication system for the disabled was then assessed in

six patients with LIS.

2. Materials and methods

2.1. Subjects

Twelve healthy subjects (five men; age range 22–43 years;

mean ± SD: 28.2 ± 5.7), hereinafter called group A,

participated in the offline study. Analysis on group A was

used to determine the best feature extraction algorithm and to

study the influence of parameters (i.e. the automatic channel

selection algorithm (ACSA), the number of harmonics and the

classifiers). Then, the parameters defined from group A were

applied online to a second group, hereinafter called group

B, composed of 12 different healthy subjects (two men; age

range 21–30 years; 24.1 ± 3.0) and six LIS patients (four men;

age range 23–74 years; 49.0 ± 19.7; see table 3). None had

prior experience with BCI. The study was approved by the

ethical committee of the University Hospital of Liège and all

participants or their legal representatives provided informed

consent.

2.2. Data collection

EEG signals were recorded from 12 Ag/AgCl ring electrodes

at locations P3, P1, P2, P4, PO7, PO3, POz, PO4, PO8, O1,

Oz and O2, referenced to Pz, based on the international 10–20

electrode system. A ground electrode was placed behind the

right mastoid. All impedances were kept below 5 kÄ. Eye

movements were monitored with four electrodes: two on the

left and right temples; the remaining two over and under the

supra-orbital ridge respectively. The electroencephalograms

were recorded using a BrainVision V-Amp amplifier with a

band pass filter set between 0.01 and 100 Hz and a sampling

frequency of 250 Hz.

2.3. Paradigms

2.3.1. Group A. The visual stimulation was delivered via

a custom made stimulation unit, which can be decomposed

into a control unit and a stimulation panel, based on the

paradigm introduced in [24]. The panel, placed at 30 cm

from subject’s head, is a 7 × 7 cm2 ‘interlaced square’ made

of red and yellow 1 × 1 cm2 light emitting diode (LED)-

squares with a white fixation cross in the middle (see figure 1).

The interlaced square pattern showed a 10% improvement

in accuracy in comparison with a ‘line’ pattern [19]. The

control unit is an electronic embedded system used for precise

control of red and yellow flickering frequencies, which can be

varied independently between 1 and 99 Hz by a programmable

integrated circuit microcontroller. During the experiments, the

yellow and red squares were programmed to flicker at 10 Hz

and 14 Hz respectively (duty cycle = 0.5). This stimulation

system has the advantages of being small, portable and easy

to use at the patient’s bedside. Each subject underwent a total
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Figure 1. Electronic visual stimulation unit. The yellow squares
(represented by white squares here) flicker at the frequency of 10 Hz.
The red squares (represented by gray squares here) flash at 14 Hz.

Figure 2. Overt block pattern. The yellow square (represented by the
white square) flashes at 10 Hz. The red square (represented by the
gray square) flashes at 14 Hz.

of six runs, each lasting about 5 min. Each run contained ten

7 s trials [24], separated by 23 s periods (7 s of rest and 16 s of

auditory instructions delivered via headphones). During a run,

the interlaced squares pattern was continuously flashing and

an equal number of both stimuli was presented in a random

order. The subject was instructed to fix his/her gaze on the

white cross in the middle and to focus attention on one of

the flashing colors. The inter-run rest periods were left at the

discretion of the subject and lasted between 2 to 10 min.

2.3.2. Group B. Previous to the training session, three

healthy subjects and four LIS patients from group B performed

an overt session. The subjects were seated about 30 cm from

a block pattern (see figure 2), containing a yellow and a red

stimulus flashing at f1 = 10 Hz and f2 = 14 Hz (duty cycle

= 0.5) respectively. This pattern was composed of two 2 × 2

cm2 blocks made of 1 × 1 cm2 LED squares separated by

12 cm with a white fixation cross in between. Then, the

subjects had a training session identical to group A. After

a short break to train the classifier, they performed an online

communication session. Thirty-three yes/no questions were

asked synchronously to the subject (e.g. ‘is your name Paul ?’,

‘are you 25 years old ?’). Answers needed to be unambiguous

and were known a priori. The subjects had to focus their

attention over 7 s on the yellow flashes to answer ‘yes’ or on

the red for ‘no’. The stimulation panel was activated during

the question/response time only to avoid tiredness.

2.4. Data analysis

EEG signals were preprocessed with a Butterworth fourth-

order low-pass filter with a cutoff frequency of 60 Hz and

a Butterworth fourth-order high-pass filter with a cutoff

frequency of 5 Hz. An IIR notch filter (fc = 50 Hz, Q =

35) was also applied to the data. Epochs of 7 s were used as a

unique window.

For group A, frequency features were extracted from each

epoch with four state-of-the-art feature extraction algorithms

proposed in the literature: (1) discrete-time Fourier transform

(DFT), (2) multitapers spectral analysis (PMTM) [25, 26],

(3) canonical correlation analysis (CCA) [8] and (4) lock-

in analyzer system (LAS) [16, 17, 27]. The first, second

and third harmonics of each stimulation frequency were

extracted. Several feature sets were tested with one, two or all

harmonics. An ACSA based on distinction sensitive learning

vector quantization (DSLVQ) [28] selected an optimal channel

set specific to each subject. Inside the classification process,

this algorithm first computed the relevance of the monopolar

input channels for all points in time during the course of a

trial. If the mean classification accuracy inside the DSLVQ

system was greater than random [29], the time series of

relevance values were scaled and combined into one single

relevance value for each channel. If this mean accuracy was at

chance level, a subset of channels could not be extracted from

the complete set of channels. Finally, channels with the highest

relevance were automatically selected and features associated

to these channel subsets were extracted for classification.

Classification performances were computed with a linear

discriminant analysis (LDA) or a linear support vector machine

(SVM, linear kernel), and assessed with a 10 × 10 fold cross

validation. A SVM classifier was used to study the influence

of the number of harmonics. Note that increasing the number

of features to process with a constant number of training

trials prevented the use of LDA with three harmonics. The

significance of the change in classification accuracy with the

different approaches was assessed with a paired permutation

test (results were considered significant at p < 0.05) [30].

Optimal parameters defined offline in group A were

applied online in group B. For group B, the classifier was

trained on features extracted with PMTM on the first harmonic

at channels selected by ACSA. A real-time auditory feedback

‘the response to your question is YES/NO’ was presented to

the subject after each question.

Mean power spectra from O2 during the 10 Hz 7 s trials

were extracted offline with multitaper spectral analysis to

illustrate typical SSVEP responses for healthy subjects and

LIS patients during overt and covert conditions (see figure 3).

All analyses were done with custom-made codes using Matlab

and Graz DSLVQ toolbox (Laboratory of Brain–Computer

Interfaces, Institute for Knowledge Discovery, Graz University

of Technology, Austria). BCI2000 software package [31] and

Fieldtrip Toolbox [32] were used for data acquisition and

presentation of the auditory instructions.
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Figure 3. Mean power spectra, estimated with multitaper spectral analysis, recorded in a healthy subject (upper) and a patient with locked-in
syndrome (lower) from electrode O2 during an ‘overt’ run using a block pattern (left) and a ‘covert’ run using an ‘interlaced squares’ pattern
(right). Power spectrum obtained when the subject passively looked at the pattern (full line) and when the subject actively focussed attention
on the target stimulus (dotted line). Note the attentional modulation in the control subject and the LIS patient in the two conditions (block
and interlaced squares).

3. Results

Assessment of the electrooculogram did not show any eye

movement during the covert trials for both groups. A binomial

test [33] evaluated the chance level at 63% (α = 0.05, 60 trials).

An online correct response rate (CRR) of 70% was considered

the lowest rate of performance necessary to achieve efficient

communication in a BCI with binary choice [37].

3.1. Overt versus covert conditions

Figure 3 (upper) shows typical overt and covert power spectra

for a healthy subject. When a subject overtly focused on a

stimulus, the power at the stimulation frequency and its second

harmonic were clearly increased (see figure 3, left). In the

‘covert’ condition (see figure 3, right), the power at the target’s

harmonic was smaller and could not be differentiated from

surrounding frequencies. A peak at the non-target frequency

could be observed with an amplitude close to the target

amplitude. The same frequency behavior could be observed

in patients with LIS (see figure 3, lower).

3.2. The influence of frequency feature extraction algorithm,

automatic channel selection algorithm, number of harmonics

and classifiers

The impact of the feature extraction algorithms was evaluated

in ten out of 12 subjects from group A. Subjects SC11A and

SC12A were rejected as all analyses showed classification

accuracies at chance level (see tables 1 and 2). Significant

differences were assessed with a two-tailed permutation test

(1000 permutations).

First, we compared the results obtained by the feature

extraction methods using all channels and a single harmonic.

PMTM obtained the maximum accuracy of 77.0 ± 3.4%

averaged among subjects, while LAS produced a not

significantly different mean accuracy of 74.4 ± 3.2% (see

tables 1 and 2). DFT and CCA gave significantly worse results

than PMTM and LAS with respectively 69.4 ± 3.4% and

58.4 ± 3.9%.

Second, we compared the results obtained by the feature

extraction methods using the ACSA and a single harmonic.

PMTM and LAS produced significantly greater accuracy than

DFT and CCA, with an accuracy of 84.7 ± 2.0% and 83.1 ±

2.3% respectively. DFT obtained a 79.3 ± 2.7% accuracy. CCA

reached 72.4 ± 1.6% but in only five out of the ten subjects (the

electrodes subset could not be extracted in the five remaining

healthy subjects). The performance with and without ACSA

could therefore not be compared with CCA. Using the ACSA

significantly increased the accuracy with PMTM, LAS and

DFT. For a single harmonic, we obtained a significant mean

accuracy increase of 7.8% for PMTM, 7.9% for LAS and 7.6%

for DFT (see figure 4).

Studying the influence of the number of harmonics

(Nharm), LDA showed a decrease of accuracy when tested

on all electrodes, and a stable accuracy with ACSA (maximal

deviation of 2.4%). LDA without ACSA could not compute

the classification accuracy with three harmonics. With an SVM

classifier, adding the second and the third harmonics resulted

in no significant difference (two-tailed permutation test, 1000

permutations) and classification accuracies were similar to

those previously described with LDA. Then, we analyzed the

results obtained with the second and the third harmonics alone

(i.e. without including preceding harmonics). Results showed

4
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Table 1. Mean and standard deviation of classification accuracy (in percent) obtained with the Thomson multitaper method (PMTM) for
different numbers of harmonics with (ACSA) and without (AC) the use of automatic channel selection algorithm.

Nharm = 1 Nharm = 2 Nharm = 3

Subject AC ACSA AC ACSA AC ACSA

SC1A 78.4 ± 3.4 85.7 ± 1.8 73.9 ± 4.7 94.3 ± 1.8 / 94.4 ± 2.2
SC2A 92.3 ± 2.4 94.8 ± 1.0 76.5 ± 4.9 91.3 ± 1.6 / 92.6 ± 1.1
SC3A 78.4 ± 3.4 84.4 ± 2.1 73.9 ± 4.7 84.9 ± 2.6 / 80.6 ± 3.0
SC4A 67.8 ± 3.5 76.0 ± 2.3 51.7 ± 4.7 76.7 ± 3.7 / 78.6 ± 3.2
SC5A 62.4 ± 3.9 78.9 ± 2.3 51.6 ± 4.8 77.4 ± 2.4 / 70.5 ± 3.2
SC6A 71.6 ± 3.8 85.8 ± 2.6 62.6 ± 5.0 81.9 ± 3.3 / 85.6 ± 2.9
SC7A 89.5 ± 2.4 94.5 ± 1.4 76.0 ± 3.9 92.8 ± 2.4 / 92.6 ± 1.9
SC8A 82.7 ± 3.3 89.2 ± 2.3 77.3 ± 4.3 94.4 ± 1.9 / 87.2 ± 1.7
SC9A 91.1 ± 2.3 94.6 ± 1.6 84.0 ± 4.3 91.7 ± 1.1 / 91.8 ± 1.3
SC10A 56.6 ± 4.4 63.5 ± 1.8 58.3 ± 4.7 67.5 ± 3.0 / 68.4 ± 2.4
SC11A 57.0 ± 3.8 / 43.1 ± 5.0 / / /
SC12A 44.5 ± 3.8 / 43.2 ± 5.8 / / /

Total 77.0 ± 3.4 84.7 ± 2.0 68.6 ± 4.6 85.3 ± 2.5 / 84.2 ± 2.4

Table 2. Mean and standard deviation of classification accuracy (in per cent) obtained with the lock-in analyzer system (LAS) for different
numbers of harmonics with (ACSA) and without (AC) the use of automatic channel selection algorithm.

Nharm = 1 Nharm = 2 Nharm = 3

Subject AC ACSA AC ACSA AC ACSA

SC1A 76.7 ± 3.1 85.0 ± 1.9 73.2 ± 4.9 93.9 ± 1.8 / 94.7 ± 1.2
SC2A 86.5 ± 2.1 93.5 ± 0.8 74.8 ± 5.2 95.4 ± 0.9 / 95.0 ± 1.7
SC3A 76.7 ± 3.1 82.5 ± 2.7 73.2 ± 4.9 79.4 ± 2.7 / 74.6 ± 2.6
SC4A 61.0 ± 4.2 73.6 ± 3.5 58.3 ± 4.5 73.6 ± 2.2 / 77.6 ± 1.9
SC5A 69.7 ± 2.9 80.2 ± 2.4 54.2 ± 4.6 76.1 ± 2.8 / 72.8 ± 1.9
SC6A 61.4 ± 3.6 76.2 ± 2.0 60.8 ± 4.7 79.0 ± 2.2 / 77.7 ± 3.3
SC7A 85.2 ± 2.8 90.0 ± 2.2 76.5 ± 4.7 91.2 ± 2.4 / 94.0 ± 2.4
SC8A 83.0 ± 2.9 87.4 ± 2.2 75.9 ± 4.4 94.3 ± 2.2 / 91.5 ± 2.6
SC9A 90.5 ± 2.4 92.9 ± 1.7 75.9 ± 4.2 90.9 ± 2.1 / 91.5 ± 1.8
SC10A 53.7 ± 3.8 70.1 ± 2.4 61.7 ± 4.7 70.9 ± 3.0 / 71.4 ± 2.9
SC11A 57.8 ± 4.3 / 48.5 ± 5.1 / / /
SC12A 49.7 ± 4.3 / 54.0 ± 5.0 / / /

Total 74.4 ± 3.2 83.1 ± 2.8 68.4 ± 4.7 84.5 ± 2.3 / 84.1 ± 2.3

Table 3. Demographic and clinical data of patients with locked-in syndrome.

Gender Age Etiology Interval (years) MRI Communication code

LIS1 M 23 Traumatic Right cerebellar, right frontal and left Yes (looks right) and no
brainstem lenticular lesions. Diffuse axonal injury in no (eyes closure)
lesion frontal and parietal lobes and the lenticular communication.

capsula. Global cerebral atrophy with
quadriventriculaire hydrocephalus.

LIS2 F 56 Brainstem 15 Ponto-mesencephalic, middle cerebellar and Yes-no head movements
stroke occipital lesions. communication

(nystagmus).
LIS3 M 64 Brainstem 12 Pontine/diffuse peri-ventricular lesions. Yes-no head

stroke movements
communication.

LIS4 F 30 Stroke 9 Cerebellar and brainstem lesions. Yes (eyes closure) and
no (looks up) communication
(nystagmus).

LIS5 M 47 Brainstem 3 Cerebellar and ponto-mesencephalic lesions. Verbalization via
stroke tracheostomy.

LIS6 M 74 Brainstem 3 Ponto-mesencephalic and occipital lesions. Yes (head movement) and
stroke no (eyes closure)

communication.
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Figure 4. Recognition accuracies on 10 healthy subjects for
different feature extraction algorithms and all channels (AC, white)
or automatic channel selection algorithm (ACSA, gray).

a global decrease in accuracies when using the second (10%

for H1 to H2) or third harmonic (5% for H2 to H3) alone, in

comparison with the first harmonic, and this with and without

ACSA.

3.3. Online communication

Optimal parameters defined offline in group A were applied

online to group B. For real-time communication, a PMTM

feature extraction algorithm was used to retrieve the amplitude

of the first harmonic at channels selected on the training set

by ACSA. The mean offline training accuracy on all subjects

of group B was 77.7 ± 2.4%. Results showed online accuracy

greater than chance level for eight out of 12 healthy volunteers

of group B (see figure 5). The mean online accuracy on all

subjects of group B was 74.0 ± 12.5%. Considering only the

eight subjects with an online accuracy higher than 70%, the

mean online accuracy was 80.3 ± 8.6%. In particular, control

SC5B could answer correctly 32 questions out of 33. The

patients LIS5 and LIS6 preferred to stop the assessment after

the training session due to fatigue. Offline accuracy of these

patients were 70.5 ± 3.9% and 58.0 ± 5.5% respectively.

Patient LIS3 answered successfully 70% of the questions.

Patient LIS2 reached 64%. Two patients (LIS1 and LIS4)

achieved accuracy below chance level with a score of 52%

(see figure 5).

4. Discussion

Eight out of the twelve healthy subjects succeeded in reaching

a communication accuracy higher than the 70% CRR required

for an efficient communication. In particular, one healthy

subject achieved 32 out of 33 correct responses. Mean online

accuracy on healthy subjects able to communicate was 80.3 ±

8.6%. Offline analysis showed that healthy subjects succeeded

in reaching an average accuracy of 85% (with three subjects

out of ten reaching more than 94%), which exceeds accuracies

of previous covert SSVEP-based BCIs [18–20]. Moreover,

the proposed ‘interlaced squares’ stimulation pattern is small,

portable, easy to use and adapted for bedside use with patients,

features which are not shared by other covert stimulation

devices requiring a cathode ray tube screen. Four out of the

twenty-nine subjects involved in previous [24] and present

studies showed performance at chance level. This illustrates

that covert SSVEP-BCI systems may not be used by all

subjects, as previously reported [34]. In group A, LAS

and PMTM feature extraction algorithms obtained higher

accuracies than classical Fourier transform, in accordance with

previous observations [17]. CCA did not work when used

in conjunction with ACSA. The achievement of this feature

extraction algorithm depended on the input (all the channels

together versus each channel separately), which could explain

the decreased performance. We here suggest the use of an

ACSA based on DSLVQ which leads to an 8% increase of

accuracy.

While the use of higher harmonics has been shown

to positively influence classification in overt SSVEP [16],

adding the second and/or third harmonic did not improve the

classification accuracy in our covert SSVEP paradigm. For

healthy subjects and patients with LIS, the study of overt and

covert power spectra illustrated the difference between the two

conditions and the difficulties associated with covert SSVEP.

We observed a decrease of the power at the target stimulation

frequency, at the target’s harmonic (at the level of intrinsic

activity) and the presence of a peak at the non-target frequency

with an amplitude close to the target amplitude (see figure 3).

Therefore, adding harmonics did not add extra information.

In patients with LIS, two out of six obtained accuracies

above chance level in the training session and one out of four

was able to functionally communicate online. This low success

rate can be partly explained by the clinical conditions of these

patients: two patients stopped the test due to fatigue ; two

other patients had a persistent nystagmus preventing effective

perception of the stimuli. Concerning the ergonomics of the

system, the patients LIS1, LIS2, LIS3 and LIS5 expressed

that the system was easy to use and did not report visual or

attentional problems (patients LIS4 and LIS6 expressed that

the training part was too long). Future studies are needed to

further assess the clinical pertinence of a fully independent

system based on covert SSVEP in the LIS population. Our

system should also be tested in a broader population of

patients, including total LIS patients. The learning effect

on communication performances, mental workload and user

satisfaction should also be part of future researches. The

accuracies obtained in patients are lower than those presented

by (1) Parini et al [35] on patients with Duchenne muscular

dystrophy using a four-class overt SSVEP-BCI and (2)

Combaz et al [36] using an overt SSVEP speller in patients

with incomplete LIS. Kübler and Birbaumer tested a visual

P300 speller with patients [37]. Two out of five LIS patients

were able to communicate with the system. However, all

these systems were gaze-dependent, hence excluding patients

without gaze control. This represents an important limitation

for patients in which (1) a loss of gaze control is often observed

in the chronic setting [38] and (2) eye movements in the acute

setting may be inconsistent, very small and easily exhausted

[15]. P300-based BCI have been studied to enable motor-

independence. Kübler et al tested an auditory P300-speller

in three patients with LIS [39]. While nine of the fourteen

healthy subjects achieved spelling accuracy above 70%, the

patient’s performance was poor. An auditory four-choice P300-

speller BCI was proposed by Lulé et al and was tested in two

6
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Figure 5. Recognition accuracy for healthy subjects (group B) and LIS patients. Dark gray represents online accuracy and light gray the,
training accuracy. The horizontal full line represents the chance level for the training set.

patients with LIS [40]. One of the two patients showed an

offline accuracy higher than chance level but neither of them

showed an online performance higher than 70%. Kübler and

Birbaumer [37] also used slow cortical potential (SCP) and

sensorimotor rhythms (SMR) as independent modalities. After

a training period of a few months to years, three out of four

classical LIS patients reached the 70% criterion level with

SCP-BCI while none of the six complete LIS patients could

communicate. Only one classical LIS and one complete LIS

patient tried the SMR-BCI; the first reached a 77% accuracy

and the second remained at chance level. Limitations of these

BCIs are the long user training required and the long sustained

attention times needed for answering the questions. With a

few seconds of focussed attention (7 s in our system) and none

or little user training required, SSVEP-BCI could be a more

adapted solution for clinical use than SMR and SCP-BCIs.

It is important to stress that SSVEP-based BCIs could

evoke seizures. To avoid this potential risk, we here monitored

EEG signals during each assessment in real-time. An EEG

expert was present during all sessions to detect abnormal

paroxystic electrical activity. We recorded no seizures in the

present study. Using higher stimulation frequencies (i.e. 30–

60 Hz) are less epileptogenic but reduce SSVEP amplitudes

[41].

5. Conclusion

We here demonstrated the feasibility of online communication

with a covert SSVEP paradigm that is truly independent

of neuromuscular function and gaze control [1]. We could

functionally communicate with eight out of twelve healthy

subjects. One out of four LIS patients could answer questions

with the SSVEP-BCI system. The short sustained attention

time (7 s), the concise training period and the robustness

of our method could also make it a diagnostic tool

for detecting command-following in severely brain-injured

patients. Future studies should focus on improving patient

accuracy and implementing an automated user-friendly online

and asynchronous version of these novel BCI technologies.
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