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Landslide inventory for hazard assessment in a data--
poor context: a regional-scale approach in a tropical
African environment

Abstract Landslide hazard remains poorly characterized on re-
gional and global scales. In the tropics in particular, the lack of
knowledge on landslide hazard is in sharp contrast with the high
landslide susceptibility of the region. Moreover, landslide hazard
in the tropics is expected to increase in the future in response to
growing demographic pressure and climate and land use changes.
With precipitation as the primary trigger for landslides in the
tropics, there is a need for an accurate determination of rainfall
thresholds for landslide triggering based on regional rainfall in-
formation as well as reliable data on landslide occurrences. Here,
we present the landslide inventory for the central section of the
western branch of the East African Rift (LIWEAR). Specific atten-
tion is given to the spatial and temporal accuracy, reliability, and
geomorphological meaning of the data. The LIWEAR comprises
143 landslide events with known location and date over a span of
48 years from 1968 to 2016. Reported landslides are found to be
dominantly related to the annual precipitation patterns and in-
creasing demographic pressure. Field observations in combination
with local collaborations revealed substantial biases in the
LIWEAR related to landslide processes, landslide impact, and the
remote context of the study area. In order to optimize data col-
lection and minimize biases and uncertainties, we propose a three-
phase, Search-Store-Validate, workflow as a framework for data
collection in a data-poor context. The validated results indicate
that the proposed methodology can lead to a reliable landslide
inventory in a data-poor context, valuable for regional landslide
hazard assessment at the considered temporal and spatial
resolutions.

Keywords Landslide processes . Inventory framework . Field
observations . Central Africa . Tropics

Introduction
Landslides present one of the most pervasive hazards in dissected
and tropical landscapes (Sidle et al. 2006). Landslide hazard de-
scribes the likelihood of landslide occurrence in time and space
along with the landslide’s magnitude (Guzzetti et al. 1999). Despite
its prominence, landslide hazard remains poorly characterized on
regional and global scales (Kirschbaum et al. 2012). In the tropics
in particular, the lack of knowledge on landslide hazard is in sharp
contrast with the high landslide susceptibility of the region due to
high precipitation and weathering rates, specifically in zones with
steep topography and tectonic activity (Sidle et al. 2006). More-
over, landslide hazard in the tropics is expected to increase in the
future in response to increasing demographic pressure, climate
change, deforestation, and other forms of land use changes

(DeFries et al. 2010; Gariano and Guzzetti 2016; Lorentz et al.
2016). In addition to this, climate change in tropical regions is
reported to be very likely associated with an increasing trend in
extreme rainfall intensity (IPCC 2013; Sillmann et al. 2013), which
is the primary trigger for landslides here (Sidle et al. 2006). Con-
sequently, increasing intensity and frequency of landslides is ex-
pected (Gariano and Guzzetti 2016). In this perspective, there is a
need for an accurate determination of rainfall thresholds for
landslide triggering, dependent on the involved landslide process-
es and their environmental conditions (Guzzetti et al. 2008). To
achieve this, regional rainfall information as well as reliable data
on landslide occurrence are needed.

With regard to regional rainfall data, the lack of adequate
rainfall records from ground monitoring networks in the tropics
can partly explain the scarcity of such threshold estimates in
tropical areas (Guzzetti et al. 2008; Kirschbaum et al. 2015a). In
recent decades however, climate models and satellite precipitation
products have been developed and exhibit great potential to fill the
void on precipitation data (Kirschbaum et al. 2009; Thiery et al.
2015). Currently, NASA’s Tropical Rainfall Measuring Mission
(TRMM: 1998–2015; ~ 25 km × ~ 25 km grid cell, 3-hourly temporal
resolution) and its successor, Global Precipitation Measurement
(GPM: 2014–present, ~ 10 km × ~ 10 km grid cell, half-hourly)
provide the longest temporal record of freely available, highly
homogeneous precipitation products over the tropics. The short
latency of the near real-time satellite rainfall estimates, i.e., 8 and
6 h for TRMM and GPM respectively, is highly desirable for hazard
assessment and disaster response.

With the emergence of satellite rainfall products, the main
bottleneck in the establishment of rainfall thresholds for land-
slide triggering in the tropics is the availability of detailed data
on landslide occurrences in time and space. The dearth of
spatiotemporal information on landslide occurrence has indeed
been repeatedly highlighted as one of the main factors limiting
landslide hazard assessment (e.g., van Westen et al. 2008;
Kirschbaum et al. 2010; Van Den Eeckhaut and Hervás 2012;
Taylor et al. 2015). Especially in the developing world, spatio-
temporal information on landslides is sparse even though most
casualties from landslide disasters are estimated to occur in
these areas (Petley 2012). An overview of the prevailing global
landslide inventories that are publicly available (even if partial-
ly) and contain information on the timing of landslide occur-
rences is presented in Table 1. Floodlist, PreventionWeb, and
Reliefweb are not strictly inventories but collections of reports
which proved to be useful for data collection on landslide
occurrences (Kirschbaum et al. 2015b). All of these inventories

Landslides

Original Paper



Ta
bl
e
1
Ov
er
vie
w
of
th
e
cu
rre
nt

pu
bl
icl
y
av
ai
la
bl
e
gl
ob
al
in
ve
nt
or
ie
s
co
nt
ai
ni
ng

da
ta
on

la
nd
sli
de

oc
cu
rre
nc
e,
di
vid

ed
in
to

BG
lo
ba
lL
an
ds
lid
e
In
ve
nt
or
ie
s^

co
m
pr
isi
ng

ex
clu
siv
el
y
da
ta
on

la
nd
sli
de
s,
an
d
BG
lo
ba
lD

isa
st
er
In
v-

en
to
rie
s^

co
m
pr
isi
ng

da
ta
on

la
nd
sli
de
sa
nd

ot
he
rd
isa
st
er
s.
Te
rm
in
ol
og
y
us
ed

in
BI
nc
lu
de
d
pr
oc
es
se
s^

co
m
es
fro
m
th
e
or
ig
in
al
so
ur
ce
s.
[N
.L
S]
is
th
e
to
ta
ln
um

be
ro
fl
an
ds
lid
es
(o
n
Ju
ne

20
17
)i
nc
lu
di
ng

th
os
e
w
ith

un
kn
ow

n
da
te

of
oc
cu
rre
nc
e.
[%

fro
m
to
ta
l]
is
th
e
pe
rc
en
ta
ge

of
la
nd
sli
de

ev
en
ts
.[
%
LS

Af
ric
a]
is
th
e
pe
rc
en
ta
ge

of
la
nd
sli
de

ev
en
ts
in
Af
ric
a.
[A
.]
ar
e
ap
pr
ox
im
at
io
ns

ba
se
d
on

la
nd
sli
de

re
po
rts

or
w
he
n
th
e
po
rti
on

fo
rd
isa
st
er
si
n
Af
ric
a
w
as
no
t

sp
ec
ifi
ed

fo
re
ac
h
di
sa
st
er
se
pa
ra
te
ly.

[N
.s
tu
dy
]i
s
th
e
nu
m
be
ro

fl
an
ds
lid
es

in
th
e
st
ud
y
ar
ea
.[
NA

]w
he
n
no

in
fo
rm
at
io
n
is
av
ai
la
bl
e.
On
lin
e
ac
ce
ss
ib
le
pl
at
fo
rm
s
ar
e
gi
ve
n
in
bl
ue

Na
m
e

In
st
itu
tio
n

(C
ou
nt
ry
/U
ni
on
)

In
clu
de
d
pr
oc
es
se
s

St
ar
t

(A
D)

En
d

(A
D)

N.
LS

%
LS

Af
ric
a

N.
St
ud
y

Gl
ob
al
La
nd
sli
de

In
ve
nt
or
ie
s

DF
LD

–
Du
rh
am

Fa
ta
l

La
nd
sli
de

Da
ta
ba
se

ht
tp
://
blo
gs
.ag
u.o
rg
/la
nd
sli
de
blo
g/

Un
ive
rs
ity

of
Du
rh
am

(U
K)

Fa
ta
ln
on
-se
ism

ic
tri
gg
er
ed

so
il/r
oc
k
fai
lur
es
,i
nc
lud
ing

sli
de
s,
flo
ws

an
d
fai
ls.
De
br
is
flo
ws

ar
e
inc
lud
ed

wh
en

th
em

ov
em

en
tc
an
be
cle
ar
ly
dif
fer
en
tia
te
d
fro
m
af
loo
d.

20
04

20
10

26
20

NA
3

GL
C
–
Gl
ob
al
La
nd
sli
de

Ca
ta
lo
g

ht
tp
s:/
/d
at
a.
na
sa
.g
ov
/E
ar
th
-S
cie
nc
e/
Gl
ob
al
-L
an
ds
lid
e-
Ca
ta
lo
g/
h9
d8
-n
eg
4/
da
ta

NA
SA

–
Na
tio
na
l

Ae
ro
na
ut
ics

an
d
Sp
ac
e

Ad
m
in
ist
ra
tio
n
(U
SA
)

Al
lt
yp
es

of
m
as
s
m
ov
em

en
ts
tri
gg
er
ed

by
ra
in
fa
ll.

19
68

Pr
es
en
t

67
90

2
15

Gl
ob
al
Di
sa
st
er
In
ve
nt
or
ie
s

Ca
tN
at
–
Ca
tta
st
ro
ph
es

Na
tu
re
lle
s

ht
tp
://
w
w
w
.ca
tn
at
.n
et
/

Ub
yr
isk

Co
ns
ul
ta
nt
s

(F
ra
nc
e)

Av
al
an
ch
es
,C
yc
lo
ne
s,
Co
ld
,D

ro
ug
ht
s,
Ea
rth
qu
ak
es
,

Er
up
tio
ns
,E
xt
ra
te
rre
st
ria
lE
ve
nt
s,
Fir
es
,F
lo
od
s,

Ha
il,
He
at
W
av
e,
La
nd
sli
de
s,
Lig

ht
ni
ng

an
d

Th
un
de
rs
to
rm
s,
Sn
ow

,S
to
rm
s,
To
rn
ad
oe
s,
Ts
un
am

i

20
01

Pr
es
en
t

86
8
(6
)

8
3

EM
-D
AT

–
Em

er
ge
nc
y
Di
sa
st
er

Da
ta
Ba
se

ht
tp
://
w
w
w
.e
m
da
t.b
e/

CR
ED

–
Ce
nt
re
fo
rr
es
ea
rc
h

on
th
e
Ep
id
em

io
lo
gy

of
Di
sa
st
er
,a
tt
he

Ca
th
ol
ic

Un
ive
rs
ity

of
Lo
uv
ai
n

(B
el
gi
um

)

Bi
ol
og
ica
l,
cli
m
at
ol
og
ica
l,
ge
op
hy
sic
al
,h
yd
ro
lo
gi
ca
l,

m
et
eo
ro
lo
gi
ca
l,
an
d
te
ch
ni
ca
ld
isa
st
er
w
hi
ch

ha
ve

kil
le
d
10

or
m
or
e
pe
op
le
,a
ffe
ct
ed

10
0
or

m
or
e

pe
op
le
,o
rr
es
ul
te
d
in
a
de
cla
ra
tio
n
of
a
st
at
e
of

em
er
ge
nc
y
or

ca
ll
fo
ri
nt
er
na
tio
na
la
ss
ist
an
ce

19
00

Pr
es
en
t

72
5
(3
)

6
13

Flo
od

Lis
t

ht
tp
://
flo
od
lis
t.c
om

/

Co
pe
rn
icu
s,
th
e
Eu
ro
pe
an

Un
io
n
(E
U)

Flo
od
-re
la
te
d
iss
ue
s
(w
ar
ni
ng

sy
st
em

,m
iti
ga
tio
n
an
d

co
nt
ro
l,
flo
od

re
co
ve
ry
,f
lo
od

da
m
ag
e
re
pa
ir
an
d

re
st
or
at
io
n,
flo
od

in
su
ra
nc
e)

19
95

Pr
es
en
t

A.
48
0
(2
4)

A.
6

3

GL
ID
E
–
Th
e
Gl
ob
al

Di
sa
st
er
In
de
nt
ifi
er

Nu
m
be
r

ht
tp
://
w
w
w
.g
lid
en
um

be
r.n
et

AD
RC

–
As
ia
n
Di
sa
st
er

Re
du
ct
io
n
Ce
nt
er

(Ja
pa
n)

Co
ld
W
av
e,
Co
m
pl
ex

em
er
ge
nc
y,
Dr
ou
gh
t,

Ea
rth
qu
ak
e,
Ep
id
em

ic,
Ex
tra
tro
pi
ca
lC
yc
lo
ne
,

Ex
tre
m
e
Te
m
pe
ra
tu
re
,F
am

in
e,
Fir
e,
Fla
sh
flo
od
,

Flo
od
,H

ea
tW

av
e,
In
se
ct
In
fe
st
at
io
n,
La
nd

Sl
id
e,

M
ud

Sl
id
e,
Ot
he
r,
Se
ve
re
Lo
ca
lS
to
rm
,S
lid
e,
Sn
ow

av
al
an
ch
e,
St
or
m
Su
rg
e,
Te
ch
no
lo
gi
ca
lD

isa
st
er
,

To
rn
ad
oe
s,
Tr
op
ica
lC
yc
lo
ne
,T
su
na
m
i,
Vi
ol
en
t

W
in
d,
Vo
lca
no
,W

av
e/
Su
rg
e,
W
ild

fir
e

A.
19
00

Pr
es
en
t

15
8
(3
)

7
2

Na
tC
at
SE
RV
IC
E
–
Na
tu
ra
l

ca
ta
st
ro
ph
e
lo
ss

da
ta
ba
se

ht
tp
s:/
/w
ww

.m
un
ich
re
.co
m
/e
n/
re
ins
ur
an
ce
/b
us
ine
ss/
no
n-
life
/n
at
ca
tse
rv
ice
/in
de
x.h
tm
l

M
ün
ich

Re
in
su
ra
nc
e

Co
m
pa
ny

(G
er
m
an
y)

Na
tu
ra
ld
isa
st
er
(e
xc
lu
di
ng

te
ch
no
lo
gi
ca
ld
isa
st
er
s):

Av
al
an
ch
e,
Dr
ou
gh
t,
Ea
rth
qu
ak
e,
Er
up
tio
n,

Flo
od
in
g,
La
nd
sli
de
,R
oc
k
Fa
ll,
St
or
m
s,
Su
bs
id
en
ce
,

Vo
lca
ni
c
Ex
tre
m
e
te
m
pe
ra
tu
re
s,
W
ild
fir
e

79
Pr
es
en
t

A.
61
49

(4
3)

A.
5

0

Original Paper

Landslides



have their specific constraints and limitations, to which incom-
pleteness in number and timing of the events can be attributed
(see BIncluded processes^ in Table 1). Africa has been estimated
to be underrepresented in all the inventories in Table 1, due to
the proportion of remote areas in this continent (Kirschbaum
et al. 2009). The fraction of landslides in Africa ranges between
2 and 10% (Table 1). None of these inventories has been vali-
dated nor provides any level of reliability for data entries.

The main objective of this paper is to collect spatiotemporal
information on landsliding in a remote and underrepresented
region to move towards regional hazard assessment. The latter,
however, is not within the scope of this paper. As region of interest,
we select the central section of the western branch of the East
African Rift (Fig. 1; hereafter referred to as WEAR). It is a
landslide-prone area representative of many other mountainous
regions in the tropics (Maki Mateso and Dewitte 2014; Jacobs et al.
2016a; Nobile et al. 2018). Moreover, it is a prime example of a
tropical region where landslides cause loss of life and livelihood
and damage to infrastructure on a yearly basis but where landslide
hazard remains poorly understood. Data collected at the global
level are not sufficient to perform hazard analysis in the study
area, with only 15 events reported by the Global Landslide Catalog
(Kirschbaum et al. 2015b) (Table 1). Therefore, within this work, a
methodological framework is presented to construct a landslide
inventory (referred to as LIWEAR) with specific attention for
spatial and temporal accuracy, reliability, and geomorphological
meaning of the data.

Study area
The study area covers about 200,000 km2 along the western
branch of the East African Rift (Fig. 1). Little attention has so far
been given to this area as a hazardous region for landslides (Maes
et al. 2017), although important predisposing factors are being
observed (Maki Mateso and Dewitte 2014; Jacobs et al. 2016a).
Both earthquakes and rain have been reported to trigger land-
slides, although the former only marginally (Maki Mateso and
Dewitte 2014; Jacobs et al. 2016a, 2017b; Nsengiyumva et al. 2018).
Experiences during fieldwork in the study area between 2014 and
2016 confirm these findings indicating that rainfall manifests as
the dominant trigger for recent landsliding. Additionally, human-
related parameters are found to be major drivers of increased
vulnerability to, and risk of, geo-hazards in the WEAR, namely
high population densities, land use changes, deforestation, high
poverty levels, and poor political stability (Karamage et al. 2016;
Michellier et al. 2016; Trefon 2016).

Currently, two regional spatiotemporal inventories cover all or
part of the study area: an inventory of 48 landslides in the
Rwenzori Mountains (Jacobs et al. 2016a) and a natural hazard
database for Central Africa (Vandecasteele et al. 2010) with 107
landslides located in the WEAR. Both lack consistent information
on the timing of landslide events and acknowledge the likelihood
of underestimated numbers of events due to limited communica-
tion opportunities (Internet, roads, etc.) in the region. Maki
Mateso and Dewitte (2014) mapped more than 600 landslides in
the study area, yet the lack of temporal information prevents
exploitation of this data set for hazard analyses. Still other studies
refer to landslide occurrence in the WEAR, without addressing
their temporal aspect (Munyololo et al. 1999; Moeyersons et al.
2004; Mavonga 2007; Wafula et al. 2007).
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Methodology
We propose a framework adapted from Taylor et al. (2015) to
optimize the collection of spatiotemporal landslide information
on a regional scale. The methodological workflow goes through
three successive phases: Search-Store-Validate (Fig. 2).

Sources for landslide data collection (Search)
As highlighted by Taylor et al. (2015), it is important to define
what is considered as a landslide event prior to landslide data
collection. Following Kirschbaum et al. (2010), a single
Blandslide event^ entry in the LIWEAR is defined as either a
single landslide or a group of landslides with a common trigger
over the same area. To separate local convective rainstorms
(Jackson et al. 2009; Thiery et al. 2015), we defined the Bevent
area^ by calculating the spatial representativeness for daily
precipitation anomalies as proposed by Orlowsky and
Seneviratne (2014). Precipitation anomalies are calculated by
subtracting the wet day (≥ 1 mm) seasonal cycle from the wet
day precipitation amounts. Constants for the Pearson correla-
tion threshold and ratio of similar points in the convex hull
were set at 0.6 and 90%, respectively. Hence, the spatial repre-
sentativeness of a pixel gives the area where minimum 90% of
the comprising pixels have a correlation coefficient of at least

0.6 with this pixel. This correlation is based on precipitation
anomalies during concurrent wet days. COSMO-CLM2-modeled
rainfall (1999–2008) was used for this analysis. It is currently
the best available model regarding performance and spatial
resolution (~ 7 km) over the study area (Thiery et al. 2015,
2016; Docquier et al. 2016), whereas TRMM and GPM data are
not yet validated over the WEAR. We found that most pixels
have a minimum spatial representativeness of 500 km2, i.e., a
circle area (approximation of the convex hull) with a radius of
~ 12 km (Fig. 3). Therefore, landslides are grouped in one event
if they occur at the same time at less than 12 km from each
other. The distance is calculated for each of the landslides
separately to the nearest landslide. Throughout the paper,
Blandslide event^ is used for a group of landslides, and
Blandslide^ systematically refers to a single landslide.

The Search phase is dedicated to an as exhaustive as possible
search through a broad variety of sources. Key websites and
terminology are determined for a systematical scanning of the
identified websites and the Internet, in both English and French,
the latter being the main language in this region of Central Africa.
This extensive search includes a wide spectrum of sources ranging
from gray literature such as eyewitnesses and blogs to scientific
papers. A search string using Boolean operators and wildcards (! =
wildcard of one or more characters) is created in Google Alerts

Fig. 1 Location of the study area in the western branch of the East African Rift. Left: tropical Köppen-Geiger climate types (Peel et al. 2007); source map for Africa from NaturalEarth
(2016). Right: spatial distribution of 156 landslides with known date and localization from 1968 to 2016 (yellow dots); topography from 90-m resolution SRTM DEM

Original Paper

Landslides



(Google Alerts 2016): [Terminology! AND (StudyArea! OR
MajorCities!) AND NOT (Constraints)], with

& Terminology = keywords for landslides;

& StudyArea andMajorCities = country and big city names in the
study area;

& Constraints = inventory’s restraints and context to be avoided
(e.g., electoral victory).

Search criteria are less strict than the criteria applied for the
inventories in Table 1. All landslides are included, regardless of
size, impact, date of occurrence, or trigger, except those in mining
and quarrying areas (see Store phase under BData tailoring for
inclusion in the inventory (Store)^ section). Even though flash
floods and landslides are different processes, we know from field
experience that confusion can ensue when defining Bflash flood,^
Blandslide,^ or Bdebris flow^ and that they often interact, such as
the supply of material or dam formation by landslides (Gill and
Malamud 2014; Jacobs et al. 2016a,b). Therefore, flash flood events
are included when linked to a depletion area on the hillslope.
Additional information is gathered through field observations,
local collaborations, and targeted hardcopy archive search.
Though the latter is a time-consuming resource with a low return

rate, it is indispensable in data-poor contexts. For this research, we
have been closely collaborating with the Université du Burundi
(Burundi), Université Polytechnique de Gitega (Burundi), Centre
de Recherche en Sciences Naturelles de Lwiro (DR Congo), Civil
Protection of South Kivu (DR Congo), Université Officielle de
Bukavu (DR Congo), and Meteo Rwanda (Rwanda).

Data tailoring for inclusion in the inventory (Store)
In the second phase, landslide information found in the Search
phase is evaluated for two constraints before inclusion. The first
constraint is the availability of information on the primary attri-
butes including Location and Date of Occurrence (Table 2). Both
are fundamental when anticipating the LIWEAR’s use for hazard
assessment. Landslide events lacking these attributes are excluded.
Given the limited data availability in the study area, landslide size
is not considered as a primary attribute, as we noticed that this
information is often lacking. Second, landslides in mining and
quarrying areas are excluded from the inventory. The reason for
exclusion is to be able to use this inventory in future research for
calibrating rainfall thresholds for a regional landslide hazard mod-
el, and therefore, input data is needed that is representative for the
overall characteristics of the region (i.e., no mining area). Thresh-
olds that include landslides in mining areas will be much lower
and not representative for the natural conditions (Gill and
Malamud 2017). We anticipate other human-induced biases such
as road networks (Kirschbaum et al. 2016; Tsangaratos and Ilia
2016) and deforested areas (Holcombe et al. 2016), which resulting
landslides are however not withheld from the inventory.

Fig. 2 Flow chart of the three-phase methodological framework to create a
landslide (LS) inventory, adapted from (Taylor et al. 2015) for a data-poor
context. Dashed arrows are used for BNo,^ and full arrows for BYes.^ Green fields
are optional steps when collaborations with local partners are established

Fig. 3 Area of spatial representativeness for daily precipitation anomalies
calculated with COSMO-CLM2-modeled rainfall at a horizontal resolution of
0.0625° (~ 7 km) (Thiery et al. 2015) for 1999–2008 with 0.60 rank correlation
threshold and 90% similar points (Orlowsky and Seneviratne 2014)
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Secondary attributes provide additional information when avail-
able, including Time, Number of Fatalities, Number of Injuries,
Cause, and Type. Note that Time is a precision to the primary
attribute Date (Table 2). Under BCause^ are recorded all factors that
are mentioned as having contributed to generate the landslide,
integrating what is considered as predisposing and triggering factors
in the scientific literature. In-depth hazard analyses are required to
identify the triggering and predisposing conditions that resulted in
the reported landslide, which is out of scope of this paper. General
terms are attributed to the sometimes subjective reported factors
related to the landslide event (e.g., Bheavy rain^ is recorded as
BRain^). Landslide Type is reported as terms copied from the sources
using both the original language and its translation to English when
applicable, to allow for deeper metadata analysis. We use the
terminology defined by Hungr et al. (2014) to discuss landslide
processes when background information is available.

A third category of attributes includes deduced variables: Location
Accuracy, Size, Report Category, Number of Unique Reports, and
Reliability Scoring. When no accuracy for the landslide location was
reported, we estimated Location Accuracy as the longest distance from
Location to the border of the smallest administrative entity that was
given. Owing to the uncertainties in fatalities and injured people

records (Petley 2012), we use the sum as a more reliable measure in
further analyses and assume zero when not reported. Number of
Fatalities and Injuries do not include people reported missing. The
qualitative landslide size categories are described in Table 2, based on
Kirschbaum et al. (2010, 2015b).

When no geographical coordinates are reported for the landslide
event, we use the following alternative sources of information (in order
of priority): GPS points that we collected in the field; published maps
(GeoNetwork 2015); data on administrative boundaries provided by
the government; Référentiel Géographique Commun (DR Congo)
(CartONG 2016); Global Administrative Areas (2012); GeoNames
(2016); and Google Earth Pro (2016). All the mentioned sources except
for the first are freely available.

Evaluation of the reliability (Validate)
Data stored in the inventory are validated in the last phase of the
methodological workflow (Fig. 2) using local information when
available from own fieldwork or collaboration with local partners.
Systematic validation of the LIWEAR is however challenging for a
number of reasons. Current security levels in most parts of the
WEAR preclude validation through systematic field observations
on a regional scale (Monsieurs et al. 2017). Moreover, analyses of

Table 2 Description of the attributes in the landslide inventory (Appendix). Primary and deduced attributes are underlined and italicized, respectively; the remaining are
secondary attributes

Attribute Description

ID Unique identification number composed of land code + number. Land code: Burundi (BU); DR Congo (DC); Rwanda (RW); Uganda
(UG); Tanzania (TA)

Date Date of the landslide event (MM/DD/YYYY), not when it was reported

Time Time of the landslide event, approximative (morning, afternoon, daytime, evening, night) or HH:MM (24 clock, local time). BNight^
refers to the night from the date shown to the date shown + 1

Lat Latitude landslide event (WGS 84, decimal)

Lon Longitude landslide event (WGS 84, decimal)

Loc. acc. Radius from the event coordinates (Lat; Lon) describing the area of uncertainty (in kilometers). This number is taken directly from the
original source or calculated as the longest distance of uncertainty (e.g., distance to administrative border when an administrative
zone was indicated)

Fat. Number of reported fatalities

Inj. Number of reported injured people

Cause All factors reported to have caused the event (more than one where applicable)

Type (orig.) Most specific (e.g., Bmudslide^ instead of Bmass wasting^)/frequently reported name of the event (shown in original language of
report)

Type (E) Type (orig.), translated in English

Size Identification of the relative size of the landslide based on Kirschbaum et al. (2010, 2015b):
Small: small landslide affecting one hillslope or small area. Minimal impact to infrastructure. No fatalities.
Medium: moderately sized landslide that could be either a single event or multiple landslides within an area and involves a large
volume of material. Moderate impact to infrastructure. May result in fatalities.
Large: large landslide or series of landslides that occur in one general area but cover a wide area. Substantial impacts to infrastructure.
Likely moderate to high number of fatalities.
Very large: very large landslide or multiple events that affect an entire region (entire village or large area). Catastrophic impact to
infrastructure. High number of fatalities.

Rep. cat. All different categories of reports that have described the event are listed here as numbers. Reports have been categorized under the following terms
(with their specific number): (1) (inter)governmental reports; (2) NGO reports; (3) (inter)national news sites; (4) international disaster relief websites;
(5) scientific literature; (6) eyewitness description, blogs, and local collaboration

Un. rep. Number of unique reports found for the same landslide event, where the content is not just a copy from another source

R Expert-based scoring for the reliability of the entry for hazard assessment purpose: (1) very reliable; (2) reliable; (3) little reliable; (4) not reliable
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multi-temporal satellite images is limited because evidence of
small landslides quickly vanishes due to modifications by subse-
quent erosional processes, reclamation for agriculture and other
anthropic influences, and high rates of vegetation regrowth in the
tropics (Malamud et al. 2004; Gourlet-Fleury et al. 2013). Further-
more, frequent cloud coverage over the tropics is a common
problem in the use of optical satellite imagery.

Therefore, a decision tree is developed using the attributes
Location Accuracy, Number of Unique Reports, and Report Cate-
gory to derive an expert-based reliability scoring to evaluate the
entry’s solidity (Fig. 4). We assume that an entry is more reliable
when multiple sources that are not exact copies from one another
confirm the same information. An entry is considered as most
reliable when published in a scientific paper. For example, an entry
with a location accuracy of 2 km, with three reports describing the
event (where the content is not a copy from one another), from
which one falls in the category of Bscientific literature,^ gets the
highest reliability score of 1 (Fig. 4).

Earlier studies found human presence to introduce the main bias
in landslide inventories (Guzzetti 2000; Kirschbaum et al. 2010;
Jacobs et al. 2016a). Therefore, an explanatory factor analysis is
performed using CIESIN (2016) open-source population density
data. In addition, we use the 1-km resolution global landslide sus-
ceptibility model developed by Stanley and Kirschbaum (2017) to
check how this factor affects landslide reporting. We also present
field observations for selected landslides in order to gain comple-
mentary insights into the geomorphological processes at work.

Results

Landslide event reporting
The LIWEAR includes 143 landslide events comprising 156 dated
and localized landslides over a span of 48 years between 1968 and
2016 (Fig. 1, Appendix). Landslide events have been reported

mainly in DR Congo, which covers about 50% of the study area,
followed by Uganda, Rwanda, and Burundi (Fig. 5(a)). No reports
were located in Tanzania within the limits of the study area (Fig. 1).
The relative number of landslide events per month has been
plotted in Fig. 6 against the average monthly rainfall, starting from
September. The latter was chosen to present the effect of the
accumulated rainfall throughout the two rainy seasons with re-
spect to the amount of landslide events. The highest number of
events was reported in May, during which relative low average
monthly rainfall occurs, but when the soils have become heavier
due to the higher water content. Fewer landslides are reported
during the driest season (June–August). Most recorded events
occurred after 2000, with only seven events prior to that year
(Fig. 7). The cumulative number of fatalities and injuries is mostly
attributed to two high-impact landslide events in 2006 in Rwanda
and 2010 in DR Congo (Fig. 7).

Reported Category, Number of Unique Reports, and the Reli-
ability Score are deduced attributes for all entries. The following
secondary and deduced attributes are only available for a portion
of the entire LIWEAR (in decreasing order): Location Accuracy,
Size, Fatalities, Cause, Time, and Injuries (Fig. 5(i)). For 126 out of
143 events, landslide Size could be estimated, with 74% categorized
as Medium or Large. Small and Very Large events are rather
exceptional (Fig. 5(b)). Landslides have been reported in very
general terms, grouped as (in decreasing order) Landslide,
Mudslide, Debris flow, Rockslide, and Complex (Fig. 5(c)). The
latter refers to the interaction of different processes, including
flash floods. Rain is the most frequently reported causal factor
for landslides, followed by Demographic Pressure which includes
derived impacts such as manipulation of natural drainage systems
and anarchic housing; only Deforestation and Water Canalization
are reported separately (Fig. 5(d)). Time is reported for ~ 50% of
all events, equally distributed over night- (25%) and daytime
(24%) hours (Fig. 5(e)). The fact that nocturnal landslides seem

Fig. 4 Decision tree for reliability scoring of the LIWEAR, i.e., evaluating an entry’s solidity for further use in landslide hazard assessment. Attributes in the decision tree
are specified in Table 2. NA = not available
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Fig. 6 Monthly distribution of landslide events in the LIWEAR as a percentage of total reported landslide events. The presented mean monthly rainfall is based on 17 years
(1999–2015) of TRMM (3B42) daily data, downloaded from http://giovanni.sci.gsfc.nasa.gov

Fig. 5 Statistics of landslide event reporting in the LIWEAR (attribute description in Table 2). a Distribution of events per country; b Proportion of event Size, based on Kirschbaum et al.
(2010, 2015b); c Proportion of reported Type; d Reported Cause; e Portion of reported Time of event occurrence; f Reliability scoring; g Used terminology in reporting; h Source
partitioning and language for data collection, with NGO as non-governmental organization; i Obtained portion for secondary attributes and deduced variables
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to cause on average larger number of fatalities and injuries than
diurnal ones, with mean fatalities and injuries of 43 and 18 respec-
tively, obviously results from the nocturnal occurrence of the 15
May 2010 event ((2) in Fig. 7). No Time estimate is available for the
28 November 2006 event ((1) in Fig. 7). Also, the Bsurprise effect^
of landslides happening during the night might play a role, similar
to that of night-time earthquakes which are generally considered
to be the most deadly (Allen et al. 2009). For each report, the
different names used to describe the landslide have been listed.
Based on this list, we found that the following terminology is
mostly used: Landslide(s), Eboulement(s), Glissement(s) de ter-
rain, and Mudslide(s) (Fig. 5(g)). While the French term
BGlissement de terrain^ literally means BLandslide,^ and
BEboulement^ is a vaguer term that can equally mean rockfall or
landslide. This list enhances targeted scanning of the Internet.

Thirty-four percent of all landslide reports were in French and
66% in English. (Inter)governmental and non-governmental orga-
nization reports have only marginally contributed to the invento-
ry, whereas the contribution of scientific literature, international
disaster relief websites, news websites, and eyewitness descrip-
tions, blogs, social media, and local collaboration are fairly equally
distributed (Fig. 5(h)). An important source of information, com-
prising 9% of all used sources and in many cases of otherwise
unmentioned landslides, comes from collaboration with local
partners in the study area.

Uncertainties and reliability of the inventory
Uncertainty in Time and Date arose when the indication for
morning/afternoon was missing or when the sequence of dates
was not mentioned for landslides that happened during the night.
Localization ambiguities are related to untraceable village names,
wrongly spelled locations, and vague reporting of the landslide
location. Reported Fatalities and Injuries are ambiguous due to the
assumption of zero fatalities or injuries when it was not reported.
For Cause and Type, terms are copied from reports knowing that
the scientific research required for ascertaining these terms was
most generally not conducted. Size estimation is constrained by
the uncertainties inherent to variables constituting this attribute

(Table 2). The Number of Unique Reports is also not an exact
figure since an exhaustive search for reports on landslide events is
impossible (Malamud et al. 2004) but the extensive search we
conducted allows us to assume that it is a good approximation.

Two thirds of the landslide reports show some degree of reli-
ability (Fig. 5(f)). Location Accuracy is ≤ 25 km (~TRMM grid size)
for most of the reported landslides (84%), ≤ 10 km (~GPM grid
size) for 72% of them, and the same proportion (72%) is found for
landslides with Location Accuracy ≤ 12 km (~COSMO-CLM2-based
spatial representativeness, Fig. 3). In some cases (8%), additional
information could be retrieved from a local partner living close to
the event, resulting in an average increase of 67% in the Location
Accuracy of these events. To test if Location Accuracy was affected
by other attributes, correlation coefficients were calculated with
Number of Fatalities and Injuries, Number of Unique Reports, and
the inclusion of a scientific report, but no significant correlation
was found.

The LIWEAR is found to be biased towards densely populated
areas, with 59% of landslide events falling in areas with more than
350 inhabitants per km2, which constitutes only 18% of the study
area (Fig. 8). According to the global landslide susceptibility model
of Stanley and Kirschbaum (2017), the study area is for 41% very
lowly to lowly, 35% moderately, and 24% highly to very highly
susceptible to landslides. Only few landslide events have been
reported in low-susceptibility classes (Fig. 8). In other words,
52% of landslide events occurred in the most landslide-prone
24% of the area.

We highlight four types of landslide events from field observa-
tions between 2014 and 2016 to illustrate the geomorphological
processes in the study area and how these events are reported
(Figs. 1 and 9):

& The 9 February 2014 event in Bujumbura, Burundi, has exten-
sively been reported in the media as a large Blandslide^ or
Bmudslide^ triggered by heavy rainfall that affected the north-
ern communities. Field investigation, however, showed that
this was a debris-rich flash flood that resulted from the meet-
ing of several flooded rivers sourcing from watersheds 5 km

Fig. 7 Cumulative amount of reported landslide events (Cum. LS events) and their respective cumulative sum of fatalities and injured people (Cum. F+I) in the LIWEAR.
Two high-impact landslide events are highlighted: (1) 28 November 2006: 2024 casualties in Kigali, Rwanda; (2) 15 May 2010: 1297 casualties in North Kivu, DR Congo
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upslope of the reported landslide location. We identified about
a hundred, sometimes very small, landslides in these water-
sheds that provided debris to the rivers (Fig. 9(a)). One land-
slide was big enough to create a temporary dam of which its
breaching contributed to the sudden component of the event.
The flash flood event had thus wrongly been reported as a
Blandslide^ or Bmudslide,^ and the upslope trigger area had
not even been noticed. The event has been categorized as
BComplex^ for landslide Type and the location of the upslope
trigger area is given for Location in the LIWEAR. Similar cases
have been reported at various moments in time for a debris
flow in DR Congo (Maki Mateso and Dewitte 2014) and a flash
flood in Uganda (Jacobs et al. 2016b).

& In Djikumbo, DR Congo, local inhabitants informed us (trans-
lated from Swahili) that heavy rain on 20 February 2016 had
caused large parts of their agricultural fields to be destroyed,
but without fatalities or injuries. The event had been reported
neither by the local media nor by the civil protection. We
observed big boulders up to ~ 2 m3 in size that had been
transported by a debris flow (Fig. 9(b)) and shallow planar
slides connected to the channel in the trigger area, 1 km up-
slope the affected area. While shallow slides and debris flows
are generally immediately triggered by high rainfall intensities

under the saturated conditions of the rainy season (Sidle and
Bogaard 2016), the closest (10 km apart) rainfall gauge showed
that the temporally closest intense rainfall event had occurred
1 week before the landslide date (Monsieurs et al. 2017). It
might be that the gauge site did not record a locally intense
rainfall event at the debris flow site on 20 February. We hy-
pothesize however that most probably the upslope planar
slides got unnoticed by inhabitants the previous week because
damming limited downstream mass transport until it was
breached by a smaller rainfall-triggered debris flow on 20
February. Similar to the case study in Bujumbura, the landslide
type is BComplex^ and the location of the upslope trigger area
is recorded in the LIWEAR. This is the only event in the
LIWEAR where information was derived from a language
other than English or French.

& In June 2016, a deep-seated rotational slide was observed in
Ikoma, DR Congo (Fig. 9(c)). Based on field observations
and interviews, we found that this slope progressively failed
based on traces of cracks and tilted trees observed in previ-
ous years before the main failure in 2015. This made the
identification of a triggering event more difficult. Despite its
large size, impact on several households, and proximity of ~
10 km to Bukavu, a major city of 800,000 inhabitants

Fig. 8 Left: LIWEAR with population density (CIESIN 2016). Right: LIWEAR with landslide susceptibility (Stanley and Kirschbaum 2017). Values in brackets are the portion
of landslide events for each category
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(Michellier et al. 2016), this event has not been reported so
far. We have no information on the date of this event and it
is therefore not included in the LIWEAR.

& Along the Ruzizi river in Rwanda, we observed debris slides
that occurred during the 2012–2013 wet season (Fig. 9(d)). The
Ruzizi gorge is frequently affected by landslides because of
deforestation on steep slopes related to the exponential pop-
ulation growth in the area. However, no specific dates could be
linked to these events precluding their inclusion in the
LIWEAR.

In addition to our own field observations, data collection by local
partners has proven to be useful. Yet, we found that the full potential of
this information source cannot be reached due to security issues
(Monsieurs et al. 2017). The region further west fromLakeKivu (Fig. 1),
for example, is known to be regularly affected by landslides, but event
dates could not be investigated because of continuous tension, road
blockage, and armed groups present in the area. Access to the Internet
is very limited, whereas the use of mobile phones significantly in-
creased in the late 1990s in theWEAR (Trefon 2016). First attempts for
data collection through crowdsourcing in the study area are promising
(Jacobs et al. 2017a) and we continue to explore the potential use of
mobile phones.

Discussion

Relevance of the three-phase inventory framework
The Search-Store-Validate approach (Fig. 2) is found to be effective
for landslide spatiotemporal data collection in remote areas, with
143 identified landslide events in the LIWEAR, compared to 15 in
the Global Landslide Catalog for the same area (Table 1). The focus

in this framework is on online sources, while following the general
trend that increasingly shapes academic research in Africa which
favors remote methodologies (Trefon and Cogels 2006). The ap-
proach differs from previous inventory research in the following
combination of methodological features:

1. applying a regional-scale approach in a data-poor context with
limited field access;

2. imposing fewer constraints for entry in the inventory, com-
pared to previous landslide inventory compilations (Table 1);

3. using a broad variety of sources (Fig. 5(h)), as earlier applied
by, e.g., Jacobs et al. (2016a);

4. including the local language more than marginally (Fig. 5(h));
5. focusing on open-source information throughout the compi-

lation and analysis procedure;
6. calculating a reliability score for inventory entries (Fig. 4).>

A possible future improvement in the Search phase of the
current framework would include the use of Big Data technology
that goes beyond the capacities of Google Alerts for screening the
Internet (Chen et al. 2014; Li et al. 2015).

The framework (Fig. 2) comprises building blocks that can be easily
applied in, or adapted for, other parts of the world. To optimize its
transferability to other contexts, attention should be paid to the
environmental and socioeconomic characteristics of the study area.
More specifically, knowledge on the geographical background is es-
sential to define the initial search key terminology and to understand
the types of landslide events that are described in the media. The
principal languages used should be defined and applied throughout
the three-phase workflow, as well as the use of different scales, i.e.,
local, regional, national, and international. Also, identifying potential

Fig. 9 Landslide case studies. a Planar debris slide in Bujumbura, Burundi. Photo taken in July 2014. b Transported debris during debris flow in Djikumbo, DR Congo. The
flow direction is indicated with an arrow. Photo taken in February 2016. c Deep-seated rotational slide in Ikoma, DR Congo. Photo taken by Thierry Bollen in June 2016. d
Debris slides along the Ruzizi gorges, Rwanda. Photo taken in May 2013

Landslides



spatiotemporal biases specific to the study area will elevate an effective
adoption of the inventory approach, e.g., spatial distribution of the
population and access to Internet and other digital media. Finally, the
inclusion of multiple collaborations with local institutions was found
in this study to be a great asset for gathering data in remote areas and
improving the location accuracy. These recommendations also apply
when adopting the proposed inventory framework in data collection
research related to other hazards such as earthquakes or floods.

Even though the LIWEAR comprises more landslide events
identified in space and time than ever recorded before in the
WEAR, we are aware that 143 landslide events over a span of
48 years largely underestimates the actual number of landslides.
No completeness estimate based on frequency-area distribution
(Malamud et al. 2004) could be calculated, because the size of
most landslides is only qualitatively estimated. The difficulty re-
lated to landslide size determination in a regional catalog has been
acknowledged in previous research (Kirschbaum et al. 2015a). Yet
overall, we found a satisfying degree of reporting for the given
attributes (Fig. 5(i)).

We propose in this study, a decision tree methodology to
estimate the reliability of the collected data (Fig. 4). Based on this
approach, documented landslide entries do not score very well,
with only 34% having a Reliable or Very Reliable score. Reporting
these uncertainties is important for the inventory’s further impli-
cation in hazard assessment, whereas previous studies rarely re-
port on the reliability of their landslide inventory (Guzzetti et al.
1999; Kirschbaum et al. 2010). We also emphasize the constraints
imposed by the particular conditions of the region (Monsieurs
et al. 2017), especially regarding communication and security
(Trefon 2016), which affect the reliability of the sources.

Biases and uncertainties specific to data-poor contexts were
identified, in addition to previously documented uncertainties
inherent to spatiotemporal landslide inventories (Guzzetti 2000;
Tschoegl et al. 2006; Kirschbaum et al. 2010; Van Den Eeckhaut
and Hervás 2012; Jacobs et al. 2016a). The most prominent bias is
related to the lack of a long-standing tradition of systematic data
recording in the study area (Michellier et al. 2016). The reported
location is biased towards the zone of impact, whereas somewhat
remote landslide trigger locations are mostly omitted. Also, small
landslides without fatalities or injuries are underrepresented. In-
formation collected with the help of local collaborators is spatially
biased towards these people’s living places and security con-
straints. Landslides tend to be relatively more reported in densely
populated areas. We assume this is not only related to the in-
creased number of people present to observe landslides, but also
because of human interferences with the environment which
makes those areas more prone to landslides (Gill and Malamud
2017). Reported landslides are also more frequent in areas which
have been estimated as moderately to highly susceptible to land-
slides (Fig. 8). In passing, we note that the latter result brings some
support to the susceptibility model of Stanley and Kirschbaum
(2017). One frequently highlighted bias towards English-language
media (Kirschbaum et al. 2010; Kirschbaum et al. 2015b) is largely
overcome by the LIWEAR, which used both English and French
sources (Fig. 5(h)). We acknowledge that the systematic inclusion
of vernacular languages (e.g., Swahili, Lingala) would make the
search still more comprehensive but we assume that the added
value would be marginal as even civil protection is writing their
reports in English or French.

Relevance of the LIWEAR for regional landslide hazard assessment
The main reason for establishing the LIWEAR collection was to
prepare a meaningful data set to anticipate its future use in
combination with the currently most accurate and freely avail-
able rainfall satellite products over the tropics in a regional-
scale landslide hazard assessment. Both earthquake- and
rainfall-triggered landslides have been reported in the WEAR,
although the latter dominate (Fig. 5(d)). This is confirmed in
Fig. 6 where reporting and rainfall patterns seem to be related.
The convective nature of rainfall in the study area causes storms
to be localized (Jackson et al. 2009; Fig. 3), which is echoed by
the resulting localized occurrence of slope destabilization. Haz-
ard analyses have now to be performed to clarify the impact of
rain on landsliding.

Seven events predate the TRMM data availability window
(Fig. 7) and five others are reported to be related to seismic
activity. In principle, these 12 events should be discarded from
the rainfall threshold analyses (Guzzetti et al. 2008). However, we
cannot rule out a possible role of (antecedent) rainfall for seismic
related events, given that these events were reported through non-
scientific sources. Information from the seismic network that was
installed by the RESIST project (http://resist.africamuseum.be/)
comprising 15 operational stations since 2015 in the WEAR will
improve the identification of recent landslides related to seismicity
(Oth et al. 2016).

Although Time could be deduced for only 49% of the events
(Fig. 5(e)), information on the date of landslide occurrence has
proven to be sufficient for regional landslide hazard assessment
(Kirschbaum et al. 2015a). The Location Accuracy of 127 landslides
is sufficient (i.e., ≤ 25 km) for regional-scale hazard analyses using
TRMM precipitation estimates, to be compared with 56 out of 79
landslides with the same location accuracy used for the landslide
hazard modeling in the study by Kirschbaum et al. (2015a). The
LIWEAR would still retain 108 landslides complying with the
stronger accuracy constraint when modeling landslide hazard
using GPM (i.e., ≤ 10 km). The Reliability Score could be used
either to weight the dependent variable in hazard analyses or to
spot events we should pay attention to when interpreting results
from hazard analyses.

Based on field observations (Fig. 9), we state that the actual
separation between landslide types is not represented in the
LIWEAR, with 79% of the occurrences being simply reported
as Blandslide.^ Reactivated landslides are difficult to distinguish
from new slope failures because of the lack of recorded land-
slide histories. We ascribe this bias to the limited geomorpho-
logical expertise of people reporting the event. We also found
that landslides in the study area may involve complex interac-
tions of different processes, whereas detailed information on
processes at play is rarely available. We suggest that most
reliable regional-scale hazard analyses will be obtained if no
discretization for landslide size or type is applied. Such a gen-
eral analysis is valuable, although we acknowledge that different
rain patterns may determine different hillslope processes (Sidle
and Bogaard 2016; Gariano and Guzzetti 2016). Moreover, ex-
plorative research is of utmost relevance in data-poor settings.

From Fig. 5(d), we mainly deduce trends people are aware of in
the region, stressing in particular that human-induced pressure
on slopes does not go unnoticed. This confirms studies by
Michellier et al. (2016) and Gariano and Guzzetti (2016), who
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found natural hazards to be related with increasing demograph-
ic pressure. This is an important factor to highlight in the
African context where population projections indicate a rapid
growth in the next decades, especially in urban areas (Cohen
2006; Seto et al. 2012). Using the LIWEAR, landslide hazard
analyses and susceptibility maps can be produced to identify
suitable disaster risk reduction measures to be implemented by
local decision makers, with whom interactions already exist
from the start of this inventory research (Maes et al. 2017).

Conclusion
The landslide inventory for the central section of the western
branch of the East African Rift (LIWEAR) presents the first
regional landslide inventory in a tropical African environment
that includes spatiotemporal landslide information. It comprises
143 dated and localized landslide events over a span of 48 years
from 1968 to 2016. Reported landslides are found to be distrib-
uted over the year in accordance with the rainfall pattern, more
in densely populated areas, and in areas that have been esti-
mated moderately to highly susceptible to landslides. Demo-
graphic pressure is second most reported after rain, as causal
factor for landslides, which is important to highlight in the
context of the African population growth projections. Based
on limited field observations, we found the actual number of
landslides and the identification of specific processes only part-
ly recognized in the LIWEAR (type, reactivation, interactions
with other hazards) and the landslide location can be biased
towards the impact zone at the expense of the actual trigger
areas. In order to optimize data collection and minimize biases
and uncertainties, a three-phase Search-Store-Validate method-
ological workflow is proposed. This methodology differs from
previous inventory studies in (1) applying a regional-scale ap-
proach to a data-poor context; (2) imposing no constraints on
landslide size, impact, date of occurrence, or trigger for entry in
the inventory; (3) using a broad variety of sources; (4) including
local languages, and here especially French, more than margin-
ally; (5) focusing on open-source information; and (6) calculat-
ing a reliability score for the inventory entries. Reliability is
scored on the basis of a decision tree in order to improve the
interpretation of hazard analyses. Location accuracy and num-
bers of events in the LIWEAR were substantially enhanced due
to input from local partners, proving the added value of such
collaborations in data-poor settings. We conclude that the
LIWEAR is a valuable data set for future application in regional
landslide hazard modeling in the East African Rift and that the
proposed inventory approach clearly improves data collection
for spatiotemporal information on landsliding.
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