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Three years experiment with the sametin oxide sensor arraysfor the
identification of malodor ous sourcesin the environment
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Abstract: The paper discusses the ability of recognition e®tb classify malodours in the environment 3 gear
after their calibration, with the same sourcesasilgg odours. Two methodologies applicable eithénhé lab or

in the field are used. The effect of the long teinift of the sensors is highlighted on the resaftgrincipal
component analysis (PCA) and of discriminant fumcinalysis (DFA).

The paper examines also the applicability of sonife@bunteraction methods proposed in the literatu

Handled with some care, a correction based onrifteddection in the principal components subspabkeuld be
applicable to the classification of real odorousrses in the field.
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1. Introduction

The performance of electronic noses equipped with,Sensor arrays is strongly dependent of severat othe
factors than the odorous mixture under investigafig?]. Particularly, the identification of malodls in the
environment in dynamic conditions is concerned wlianges of the sensor properties due to the ageithghe
gradual poisoning of the sensor material.

The short-and long-term drift of the instrumensa@sated with the irreversible degradation of theser, have
been studied [3-7].

Many exchange programmes within scientific grougal avith sensor drift problems and many works am a
counteracting the parameter drift [8-11].

To track the long-term drift, the change of thessgs responses with time is usually checked sysiealig,
using pure substances or synthetic odorous mixt&rask et al. [7] investigate the sensor drifeef on
classification results by simulating a linear detathe sensors sensitivity.

Now, the problem, well known in the scientific commnity, is crucial for final users of electronic ess such as
those working in the environment with real malod@samples.

The present paper presents how a Ssgbsor array and its recognition models behaveaBsyafter the first
measurements with the same sources in the envimtreme with the same methodologies.

It focuses on the requirements of environmentaliegiions which make the use of reference gases some
compensation techniques difficult. It deals withlredours, measured in uncontrollable conditionghat the
concept of reproducibility hasn't the same meaamthe one applicable for rigorous and controlbgEeements
with stable samples.

2. Experimental
Four odorous sources [12] covering a range of gl@avironmental odours are analysed.

Those are a paint shop in a coachbuilding, a waater treatment plant (near the fresh sludge aetobatment
work), urban waste composting facilities (nearacbenpost deposit area, which is under a shelterpanting
houses (there were two different printing housegHat study).

Two methodologies are used for the odour souragtifitation, one in the lab and the second ondénfield.
The first is based on the malodours sampling indr@bags. The bag is filled by a passive samphireghod
without direct pumping of the air into the bag. Toeey is placed in a stiff container in which thegsure is
lower than the ambient pressure. The decreasipgeskure in the container is realised by a vacuumppwith a
constant flow-rate of 3 NI/min during 20 min. Thedlar® bag is in contact with the sampling air ooyya
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PTFE tube. The volume of the collected gas is aboutni.

Samples are taken at various distances from theedu various atmospheric and operational conakticll
samples are analysed in the lab, by an array domsisf 12 individual commercial tin oxide gas serss(Figaro
Engineering Inc.), placed in a cubic chamber. Astant voltage is supplied to the sensor heaterdginzmusly
during 3 years. The sensor resistance, the temyperahnd the humidity of the chamber are recorded by
computer controlled acquisition board.

A complete measurement cycle is applied. First ddes air is drawn across the sensor chamber (basel
phase) then the sampled odour is pumped (anallgaisep.

The humidity value for the baseline air is similathat of the sampled odour with the maximum vamaof
30%. The reference air is bubbled into saturatéatisa (KC1 in melting ice). The relative humiditgeasured
in the chamber varies from 15 to 25% RH.

The useful signal in this methodology is the staéd resistance value.

The second methodology consists in simply placitig 8xide sensors soldered on an electronic bivasthtic
contact with the ambient odorous air. The signabistinuously recorded in the field, at variousaltians, either
next to the source or far from it, but without aeference air. The qualitative evaluation of thewds made in
real time by the operator who is the one and oalyellist. Afterwards, data are off-line processgd b
commercial software packages (Statistica and Mpatlab

For the data analysis, the sensor parameter usled issistance of each sensor, normalised bygiers root of
the sum of all the sensor resistance values squatsth normalisation reduces the dependency adritag
response to the odour concentration, and also esdslightly the effect of sensors' drift. For thb tests, the
best classification is always obtained with the ragistance, and not with the difference betweersignal and
the base line. This is probably due to the smaditélations in the chemical quality of the refereaird13].

Three classical pattern recognition techniquesiaeel: principal component analysis (PCA), discranin
function analysis (DFA) and artificial neural netlk@ ANN) with backpropagation (BP) learning algabrit.

Unsupervised methods, such as PCA, provide bagiaglerformance evaluation of the whole measurement
system during the development phase. Superviseldoahesuch as DFA or BP are used to assign, afer th
training process, an unknown odour to one of the ¢lasses (compost, printing, paint shop, wastervea
odourless air).

Tests are performed during three periods in 1998909 and in 2001 (field monitoring only in 1998dan
2001).

3. Reaults

After the first measurement campaign, in 1998 réseilts were quite promising [12-15], in spite lod t
environmental constraints (temperature and humidftyence [14], wind speed effect, odour variatiomature
and in concentration, ever changing backgroundcch&mical interference, difficulties of the mairdece).

Fig. 1 shows the scores of 48 observations in kueepof the two first factors of a PCA for the lalsts with the
12 sensor array in 1998 (for a 7 months period eetwMarch and October). The scatterplot showsta goiod
clustering of the observations among the four sEgr©nly some observations from the paint shopen t
coachbuilding and one observation around the waater treatment plant are far from their main @ust

Similar results are obtained with the observatimasie with the field instrument in 1999, notablyward the
compost area. The resistance from the eight seisoositinuously recorded during about 2 h wittDas3torage
interval. A total of 388 such data are recorfladthe malodoursround the four sources and for odourless air far
from any source. The total data set concerns I€rdiit days for a 2 months period, during JuneJamyl 1999.
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Fig. 1: Scatterplot in the plane of the two first princigalmponents of the scores of the 48 observatioie fima
1998 with the lab instrument from the four odorsosrces.
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Fig. 2: Scatterplot in the plane of the two first princigalmponents of the scores of the 388 observatiae m
with the field instrument in 1999.
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Fig. 2 shows the scatterplot of the scores in theeof the two first principal components. It cers 127
observations made around the compost area, 112valisas with odourless air and 149 observatiorthién
vicinity of the three other odorous sources.

Three groups can be distinguished. The overlapgpirtige clusters "compost" and "odourless air" isnmal since
some measurements around the compost area areretatileely far from the source.

The supervised methods provide also rather goasifilzation model. Out of the 48, 40 lab measurdmare
used to calibrate a model with DFA and the 8 remagisamples are tested for validation: results@khi0o0%
of correct classification.

A discriminant function model is also trained wiild data and the so calibrated classificatiorcfions are
further used for validation purpose around the anshprea [15]. Five classification functions (ooedach
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source and one for the odourless air) are provigeldFA to assign a new case into one of the knowenigs: a
case is classified into the group for which it Haes highest classification score. In Fig. 3, twdhafse functions
are used to identify the odour in the field. Thebit@detector is moved to various spots arouncttirepost area
and, at each sampling time of the data loggerdéta from the sensor signals are inserted into pemhously
calibrated function. The figure shows the graph@adiution of the two functions: "compost" and "kgound"
or odourless air.

The function corresponding to the compost has ifjleelst value when the detector is near the soarwkthe
function characterising the background air is maximwhen the detector is far from the source. Such
classification functions can thus be used as "oduwlexes" to identify a global odour in the field.

These first results are thus very encouragingthmyt are not sufficient. Spot validation during Is@cshort
period, even if data extends over 7 months, issnough. In order to examine more deeply the alilitthe
electronic nose principle to identify and to monitaalodours in the environment, the final user seechave
some information about the time behaviour of thesees.

The same sources are, thus, investigated withaitme snstruments 2 or 3 years after the first measants in
order to evaluate the effect of the sensor driftt@nrecognition. The question is: the sensor aaraiythe
classification techniques are they able to perflamg term prediction, i.e. is the recognition modalibrated in
1998 still applicable to classify observations 602?

Concerning the hardware, only 6 out of the 12 senfsom the lab instrument are still operationdieTother 6
are either damaged or they reveal an importanasigariation which should not be considered asrpl& drift.
In addition, more than 30% of the base line vasiats recorded. For the measurements of 1999 add, 20y
the six remaining sensors are then used. Besidet8tlobservations of 1998, 44 additional measur&ar
made in 1999 and 5 more in 2001 near the sameesurc

Fig. 3: Evolution of the classification functions relatitcethe compost and to the background air when ngpvin
the detector around the compost area.
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PCA is carried out with the whole data set of 9%esbations made during the 3 years. Fig. 4 shows th
scatterplot of the scores in the plane of the tiwg principal components.

For the 48 observations of 1998, the data cluggi@emains rather good (filled black symbols, sunaed by
closed curves, drawn for a clearer visual impregsieven with only the six sensors. However theotlata
points (open symbols of two different sizes), cepanding to more recent observations, does not show
interpretable clusters. This is due to the sensfiy dhich induces a spread of the scatter of t®in a general
direction indicated by the arrow on the drawing.

Additionally, the classification model calibrategd BFA in 1998 with 12 sensors is no longer appliedbr
validation of more recent observations. A new frajrwith the same 48 observations of 1998 must be
performed with the six remaining sensors.
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The DFA results obtained from those data are tisexd in order to classify the 49 new observatioits. 5
shows the scatter diagram of data points in theeptd the two first discriminant functions.

The figure shows obviously a long time drift effedtich excludes the possibility of accurate rectigniof the
sources.

The total percentage of correct classification dases from year to year: 97.9% for the observatidi998
which were used for the model calibration, 81.8%:tlfi@ observations of 1999, used for validatiorppse, and
only 20% for the observations of 2001.

Better results are obtained with the methodologdun the field: the eight sensors of the deteaterstill
functioning and the classification results are ggibod, even 2 years after the first measurements.

Fig. 4: PCA results for 97 observations around four odorsaosrces from 1998 until 2001.
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Fig. 5: DFA results for 97 observations around four odorsoarces: model calibrated with data of 1998 and
validated with all observations, from 1999 untild20
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Fig. 6: PCA results for 497 observations with the fieldedédr around odorous sources, in 1999 and 2001.
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The Fig. 6 shows the scatter diagram of score49@robservations for 1999 and 2001 in the plarteefwo
first principal components: the three clusterssditewell distinguished, and the drift effect istras apparent as
on Fig. 4.

A classification model is calibrated by DFA with@Bbservations made with the field detector in 199&ill
provides good predictions for 88 observations ftbe2001 measurement period.

The percentage of classification of the data 0f912&ed for the model calibration (a total of 9786 o
observations correctly classified), is sufficidntspite of the sensor drift, in the phase of \atiioh, the 2001
data are correctly classified (95.7%).

4. Discussion

The classification of field measurements is bdtian the one obtained with the lab instrument. Harethe
application is easier: there are only three clas$eslour sources in place of five, the possibié dffect should
concern only 2 years of measurements in placereétand finally, as the instrument is very simpie Sensor
array is directly in contact with the ambient aiithout any sampling apparatus and any pumps)etaer less
disturbing factors in the system.

Anyway, the long term drift has actually a negagfiect on the classification performances of rexton
models: clusters overlap each other and have ilmeghapes. Therefore the drift must be countefaioe tin
oxide sensor array is to be used for real malodaunsitoring for more than 2 years.

Using standard gases to calibrate the instrumerttieasy for environmental applications of elestmoses.
Indeed, it will never be possible to extrapolate blehaviour of the sensor array in the presenegpofe
substance to its response when it is placed inghleenvironmental ambience. The olfactory polluti® the
result of a complex mixture of gases, and the eatine number and the concentration of each contboamn
change from day to day. Therefore selecting thieglaipose" standard gas, typical of all environraéotlours
is more than a challenge. The response of thaimsints used in the present study periodically dewith
ethanol, in order to evaluate the drift importafarethat specific compound, but it is difficult teeduce from it a
general law valid for any gaseous mixture.

Calibrating a classification model with a superdiseethod, like DFA or BP, does not perform weltliisters
overlap.

In order to assess the importance of the driftupasvised methods, like PCA, should be appliedesthey
highlight the underlying general structure of tla¢ad A drift counteraction method has been propbsddartin
Holmberg [16]. The drift direction is estimatedfi@eneral trends underlined by the scores scatigrain in
the subspace of first principal components. Theeggtmn of the points on the drift direction is theemoved
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from the data before the pattern recognition stage.original method assumes that the drift dicecti
highlighted by PCA is obtained from measurementa ogference gas. In our case, such a method sheudtll
applicable if the general spread of the scattgroaits could be extracted from the measurementsain
environmental sources over a long time period.

However, it must be pointed out that such maindfioas are not always obviously shown up in theelaf the
two first principal components. Many other factioan the sensor drift can indeed influence the statecture
(climate, operational conditions, gas concentratiop Sometimes, the time drift is shown by thiedt or the
fourth principal component. Very often, the direatis an oblique line in the PC subspace. Moredterdrift
directions are not always identical for all sour¢Hsen, it could be suggested to calculate a diffealgorithm
of drift compensation for each individual sourcacls an approach could not however be applied fiihdu
recognition of unknown source in the environmertticl algorithm should be selected when the sowce i
unknown?

When the spread due to the time drift presentsyanan general direction for every source, such datetan
nevertheless be applicable for the recognitiondwfrous sources in the environment.

In this case, it must be always applied in two stép the first step, the PCA (or other unsupedvisethod) is
used to highlight the main drift direction and tdaulate the correction to apply to the scoreshénsecond step,
the new score values or the original data, recaledlby taking the drift correction into accoumg ased to
calibrate a classification model (with DA, ANN)..The latter can be then used for further on\iakdation on
unknown data.

Such recognition model should be regularly updatethe drift effect increases.
5. Conclusion

It is possible to use tin oxide sensor arraysHerrhonitoring of real malodours in the field durimgre than 2
years. However, since the life time of sensorsnig#éd, some spare sensors must be added in thg arr

Moreover, the long term drift must be taken into@mt in data processing. As the correction algorg
calculated with standard gases cannot be genatdtis¢he complex gas mixtures in the environmadgptive
drift compensation models must be calibrated. M®dsing the general trends highlighted by unsupedvi
techniques, like PCA or SOM, can be applied, btihware. Further studies will be devoted to thesttgyment
of counteraction methods. They may be relevanttferrecognition of odorous sources in the enviramme
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