A Replication Study on the Usability of Code
Vocabulary in Predicting Flaky Tests

Guillaume Haben
University of Luxembourg
guillaume.haben @uni.lu

Maxime Cordy
University of Luxembourg
maxime.cordy @uni.lu

Abstract—Industrial reports indicate that flaky tests are one
of the primary concerns of software testing mainly due to the
false signals they provide. To deal with this issue, researchers
have developed tools and techniques aiming at (automatically)
identifying flaky tests with encouraging results. However, to
reach industrial adoption and practice, these techniques need
to be replicated and evaluated extensively on multiple datasets,
occasions and settings. In view of this, we perform a replication
study of a recently proposed method that predicts flaky tests
based on their vocabulary. We thus replicate the original study
on three different dimensions. First, we replicate the approach
on the same subjects as in the original study but using a different
evaluation methodology, i.e., we adopt a time-sensitive selection
of training and test sets to better reflect the envisioned use
case. Second, we consolidate the findings of the initial study
by building a new dataset of 837 flaky tests from 9 projects
in a different programming language, i.e., Python while the
original study was in Java, which comforts the generalisability
of the results. Third, we propose an extension to the original
approach by experimenting with different features extracted from
the Code Under Test. We find that a more robust validation
consistently decreases performance on the reported results of
the original study, but, fortunately, the model remains capable
to decently predict flaky tests. We find re-assuring results that
the vocabulary-based models can also be used to predict test
flakiness in Python. Finally, we find that the information lying in
the Code Under Test has a limited impact on the performance
of the vocabulary-based models.

Index Terms—Software testing, regression testing, flakiness

I. INTRODUCTION

Regression testing is an important step of software develop-
ment that ensures the stability of existing software features and
allow multiple developers to work on a shared codebase. In
typical large scale development workflows, test suites are run
after code changes to highlight any misbehaviour and validate
new software releases. Unfortunately, software tests do not
always give consistent results. This inconsistent behaviour is
often referred to as test flakiness. Flaky tests exhibit a non-
deterministic nature, i.e. they pass and fail for the same version
of a program and the test [1]].

Flakiness plagues Continuous Integration (CI) as tests are
generally expected to pass in order to merge code changes [2].

Sarra Habchi
University of Luxembourg
sarra.habchi @uni.lu

Mike Papadakis
University of Luxembourg
michail.papadakis @uni.lu

Yves Le Traon
University of Luxembourg
yves.letraon @uni.lu

Thus, flakiness introduces uncertainty, meaning that testers
cannot be sure whether failures are true or not. Besides,
flakiness affects productivity as developers invest time in
reproducing and debugging flaky failures. Developers may also
lose trust in their test suite and stop relying on it if there are
too many false signals. Consequently, they could ignore failing
tests that are caused by real defects in the program.

Several studies and reports from industrial actors have
highlighted the prevalence and impact of flakiness [3]]—[5]]. For
instance, at Google, there are 150 million test executions per
day, and almost 16% of their 4.2 million test cases have some
level of flakiness [6]. Perhaps worse, over 80% of observed
transitions (false Failures or Passes) at Google workflow are
caused by flaky tests [4f], indicating an important level of
uncertainty in the test signal.

A common approach to deal with flakiness is to re-
run a failing test several times, hoping to expose non-
deterministic behaviour. Unfortunately, these reruns imply
cost both computationally- and time-wise. In the case of
Google, this leads the company to spend between 2 and 16%
of its computer resources rerunning flaky tests [6]. Many
other companies report having problems dealing with flaky
tests, including Huawei [7]], Mozilla [8], Facebook [9] and
Spotify [10].

To mitigate this problem, several strategies have been devel-
oped to detect flakiness. These can be divided into two main
categories; the dynamic approaches that involve running the
tests and analysing their outputs and logs over time, and the
static approaches that attempt to identify flaky tests without
any test execution.

Micco and Memon [[11]] presented a dynamic approach that
identifies flaky tests by looking for specific patterns at the
test execution outcomes observed in the recent development
history (Pass to Fail, Fail to Pass), thereby proposing a simple
pattern matching approach that achieves a 90% accuracy in
classifying tests [[11]. A similar approach was also presented
by Apple [5]], but the reality is that rerunning tests is still the
main dynamic approach used to detect flakiness [12].

Pinto et al. [13]] developed a prediction modelling approach
that statically identifies flaky tests by analysing their code (test

code only). This approach is appealing compared to the current
practice due to its static nature that a) does not require any
test execution logging and analysis that is usually hard to
implement on the fly, and usually are not supported by the
test infrastructures, and b) the low overhead it entails, i.e., it
reduces the execution cost caused by test reruns.

The original study (Pinto et al.) evaluated the performance
of different machine learning models on different represen-
tations of the test code and found that the vocabulary of
tests can predict test flakiness with 95% of accuracy (F1
score). Although encouraging, the original study was per-
formed in a dataset covering one programming language
(Java), evaluated in a time-insensitive manner and left open
many additional questions related to the vocabulary of source
code. Considering the importance of the problem we decided
to perform further investigations. We believe that extensive and
independent evaluations are also necessary to reach industrial
adoption and practice.

Replication is essential to verify experimental results from
previous studies. They are a key aspect of empirical software
engineering as they bring evidence that observations made
can hold (or not) under other conditions. Different types of
replication exist [14], [[15]. An exact replication attempts to
reproduce the experiments following as closely as possible the
initial procedures. By doing so, we learn that the first results
were not caused by uncontrolled random factors. In concep-
tual replication, one or more dimensions can be changed to
investigate to what extent the results hold.

In this paper, we present a conceptual replication of the
study of Pinto et al. [[13]. We start by considering a different
validation methodology than the one used in the study of Pinto
et al. [13]]. We thus adopt a time-sensitive validation setting
that better reflects the envisioned use case of the approach; at
a given point in time, we train our predictor with historically
identified flaky tests and inspect the model performance in
predicting unseen flaky tests, i.e., with the subsequent ”future”
tests. We argue that this procedure is important to confirm the
results and avoid biasing the predictions by considering future
data.

Another aspect our study aims to evaluate is the general-
isation of Pinto et al.’s findings, in particular to a different
programming language. Therefore, we mine Python projects
from GitHub and build a new dataset of 837 flaky tests. Then,
we use it in order to evaluate the vocabulary-based flakiness
prediction. This part of the analysis aims at re-validating the
Pinto et al. findings on new and different data.

Finally, we go beyond the original study by considering an
extended set of features. In particular, we attempt to predict
flakiness using not only the vocabulary of test code (like Pinto
et al. did) but also the Code Under Test (CUT). This endeavour
follows the findings of many reports [1f], [16], [[17] revealing
that much flakiness manifests in the CUT. Hence, we conduct a
comparative study that highlights the impact of the two feature
sets, i.e., sources of vocabulary on flakiness prediction.

All in all, our results demonstrate that a more robust, time-
sensitive validation has a consistent negative impact on the

reported results of the original study (performance degrades
by 7% on average) but, fortunately, do not invalidate the
key conclusions of the study, i.e., predictions are significantly
better than random selections.

Additionally, we find re-assuring results that vocabulary-
based models are more successful in Python than in Java
(average performance of 80% in Python in contrast to 61%
in Java), and perhaps surprisingly, that the information lying
in the Code Under Test has a limited or no impact on the
model performance. Taken together, these results corroborate
the conclusion that the vocabulary of tests is indeed a viable
and robust solution to the test flakiness problem.

II. THE PINTO et al. STUDY

This work is a replication of the study by Pinto et al. [[13]]. In
this section, we briefly summarise the approach they presented
for flakiness prediction. We first present the dataset of existing
flaky tests which they used in their study. Then, we explain
their source code representation and prediction model. Finally,
we recall their evaluation methodology and results.

A. Dataset

In their original study, Pinto et al. relied on the DeFlaker
dataset, which was proposed by Bell et al. [18]]. This dataset
includes 1,874 flaky tests identified using the DeFlaker tool
on multiple revisions of 24 open-source Java projects. Pinto
et al. selected 1,403 flaky tests from this dataset to build their
set of flaky tests. They also randomly selected tests that were
not flagged as flaky by DeFlaker to form a set of a priori
non-flaky tests. To mitigate the problem of class imbalance,
both sets had the same size.

B. Prediction model

In order to prepare the classification inputs, Pinto et al.
extracted identifiers that represent the test vocabulary and
complexity. This extraction takes several steps. First, they
localise the file where the test is defined. Then, they select all
identifiers contained in this test, pre-process them by splitting
them according to their camel-case syntax and converting
them in lower-case. Finally, they remove stop words from the
obtained set. Each flaky and non-flaky test is represented as
follows:

e A vector of booleans indicating for each token if it is
present in the test or not;

e The number of lines of code;

o The number of Java keywords contained in the test.

The last two features are used as a proxy for code complexity.
The authors used these vectors as inputs for their prediction
models. In particular, they evaluated the performance of five
machine learning classifiers: Random Forest, Decision Tree,
Naive Bayes, Support Vector Machine, and Nearest Neighbour.

C. Evaluation

1) Evaluation methodology: The authors follow a standard
methodology to train and evaluate the five classifiers. That
is, they split the whole set of test cases into a training set

containing 80% of the tests and a validation (“test”) set
containing the remaining 20%.

They report the standard precision, recall and F1-score met-
rics. The precision shows the proportion of correctly classified
flaky tests. The recall shows the proportion of flaky tests found
out of all existing ones. They focus their analysis on the F1-
score, which combines precision and recall to assess the model
performance. Detailed results for their different models are
listed in Table [

2) Results: Among the five trained models, the most
promising one was Random Forest, having a performance as
high as 0.95 for the Fl-score. Altogether, the five models
showed great performance on their dataset.

III. REPLICATION SETUP

Our key goal is to investigate whether the conclusions of
Pinto et al. generalize to different flakiness scenarios, viz., (1)
a time-sensitive prediction use case where flakiness informa-
tion about past tests are used to predict flakiness in future
(new) tests, (2) flakiness prediction in different programming
languages, (3) the use of different sets of features involving
both test code and code under test. Each of these scenarios
gives rise to a research question that we answer in our study.
In all scenarios, we use the model presented in the original
study that gave the best performance. The model is based on
a bag of words and a Random Forest of 100 trees i.e., the
model which gave the best results in the original study. Our
replication package containing code, models and datasets is
available onlind!|

A. Research Questions

We aim at answering the following research questions:

e RQ1: How well do vocabulary-based models identify
flaky tests when using a time-sensitive validation?

e RQ2: How well do vocabulary-based models identify
flaky tests in other programming languages?

o RQ3: Is the vocabulary of Code Under Test useful for
flakiness prediction?

B. RQI: How well do vocabulary-based models identify flaky
tests when using a time-sensitive validation?

In the real world, one can picture different usages for
a flaky test prediction model. For instance, in Continuous
Integration (CI) environments where new changes (commits)
making some tests fail are typically rejected, developers can
ignore those failing tests that are likely to be flaky and isolate
them for further investigation.

In another setting, the prediction model can also come as
an IDE plugin hinting at tests that use keywords related to
flakiness.

These scenarios illustrate the importance of the temporality
of tests and code, as the model can be trained only on
flaky tests detected previously to predict new occurrences.
Moreover, the fact that the vocabulary of code changes as

Uhttps://github.com/GuillaumeHaben/MSR202 1-ReplicationPackage

Training set Test set

r, rs r, r, Revisions
} f f f f f f f f f
o0 00 oo [e 00 oo [[]
[J [J
[[]
[]
® Flaky Test o

B Non Flaky Test

Fig. 1. Time-sensitive validation

new commits are introduced makes it challenging for models
trained on older data to predict flakiness in future code
versions that are temporarily distant.

The model can also be limited to flaky tests detected in
one project, e.g., when the vocabulary linked to flakiness can
differ from one project to another. Indeed, as reported in the
literature [[1]], [3]], different sources of flakiness exist such as
concurrency issues, usage of date/time, I/O actions, API or
network calls, etc. Thus, based on the project, the flakiness
sources can differ and the vocabulary associated with it varies
accordingly.

For all these reasons, we propose a novel, intra-project,
time-sensitive setup for validating flakiness prediction models.
This setup evaluates a model on its ability to predict new flaky
tests with data that is assumed to be known from the past of
the project.

To compare this setup with the one from Pinto et al., we rely
on the DeFlaker dataset, which was also used in the original
study. For each project, we select tests that were found flaky
at any revision of the change history to form the Flaky Tests
set I'T'. DeFlaker does not provide explicit information about
tests that did not flake, as the tool can not guarantee that a test
that did not fail (yet) is not flaky. We define Non Flaky Tests
NFT as tests that were not found as flaky in any revision,
that is, NFT = Tporqr — FT.

Figure[T] explains how FT and NFT are selected in our time-
sensitive validation. We split our dataset in order to have 80%
of the FT from earlier revisions for our training set and 20%
of the FT from “future” revisions for our test set.

We select the NFT from the revision where the last
FT,qin are selected for the training set and from the last
revision where F'T;.,; are selected for the test set.

To assess the impact of this new setup on model per-
formance, we compare it with a classical setup where the
model is trained and tested with flaky tests regardless of their
observation date (i.e., the setup followed by Pinto et al.). In
such setup, all flaky and non-flaky tests are grouped without
accounting for their observation date. Then, the groups are
randomly split into training and test sets following an 80/20
ratio.

To perform this comparison, we selected six projects from
the DeFlaker dataset based on their numbers of flaky tests.
These projects have at least 30 flaky tests, which we consider
as a minimum necessary for training and testing a model. Table
presents these projects with their numbers of flaky and non-

https://github.com/GuillaumeHaben/MSR2021-ReplicationPackage

TABLE 1
MODEL PERFORMANCE OF THE PINTO et al. STUDY [|13]]

Algorithm Precision Recall F1 MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 0.93 0.80 0.86 0.74 0.93
Support Vector 0.93 0.92 0.93 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

TABLE II
DETAILS ABOUT THE JAVA PROJECTS USED IN OUR STUDY
Project | Earliest revision latest revision #FT #NFT
achilles 2015-10-30 2016-09-05 51 392
hbase 2010-05-17 2010-06-21 98 120
okhttp 2014-03-06 2015-01-30 102 1178
oozie 2013-03-20 2013-05-31 1039 44
oryx 2015-01-06 2015-02-27 38 286
togglz 2016-01-23 2016-06-17 20 256

flaky tests. We also present the dates of the first and last flaky
tests identified in these projects. We split this dataset according
to the two validation setups, then we build our prediction
model, train it and contrast the results of both setups.

C. RQ2: How well do vocabulary-based models identify flaky
tests in other programming languages?

1) Predicting flaky tests in Python: Another goal of our
study is to evaluate the generalisability of the original study to
other programming languages. For this purpose, we propose
to assess the performance of flakiness prediction models on
Python projects. We chose Python because it is the most pop-
ular language used in modern projects and it is commonly used
for machine learning, web development, game development,
and many other applications.

Python comes with its set of testing frameworks. We focus
our study on Pytest [[19]]. Pytest is the equivalent of Junit
for Python and enables developers to write tests for their
programs. It is one of the main testing frameworks used in the
open-source community and in the industry. Pytest comes with
its lot of features and plugins. Especially, a specific module to
handle flaky tests can be used with Pytest: flakyP} This module
allows developers to annotate tests as flaky to automatically
rerun them in case of failure. The developer can also configure
the maximum amount of reruns to attempt and the minimum
number of passes required. This annotation can be added to
a test function or directly to the test class, giving its property
to all of its tests. Figure [2| shows an example of a test marked
as @flaky taken from the Typed_python projec

We mined GitHub using the source-graph APIEL searching
for Python projects containing the annotation @flaky. This

Zhttps://pypi.org/project/flaky/
3https://github.com/APriorilnvestments/typed_python
4https://sourcegraph.com/search

75
@flaky (max_runs=3, min_passes=1)
def test_sort_perf_simple(self):
X = List0f(float) (numpy.random.uniform(size=1000000))

sorting.sorted(x[:10])
t0 = time.time()
sorting.sorted(x)

tl = time.time()
sorted(x)

t2 = time.time()

speedup = (t2 - t1) / (t1 - t0@)

I get about 3
self.assertGreater(speedup, 1.5)

Fig. 2. Example of a test labelled @flaky

TABLE III
PYTHON PROJECTS USED IN OUR STUDY
Project SHA #FT #NFT
bokeh ddc22b8 100 2505
cassandra-dtest 8cbbbd2 72 4221
celery 0833a27 54 2890
jira 7fa3a45 131 59
pipenv 8e64873 32 1612
python-amazon 84cl6f5 35 15
python-telegram-bot | 8e7c0d6 186 1382
spyder 413c994 173 1086
typed-python 96e7ebd 54 6034

process yielded 110 projects with a total of 1,304 tests marked
as flaky. Similarly to our first experimentation, we only select
projects in which we have enough flaky tests to train and test a
model, i.e. 30 flaky tests. This results in a dataset of 9 projects
and 837 tests marked by developers as flaky. Table shows
these projects with their number of flaky and non-flaky tests.
Compared to the Java dataset, we were able to obtain more
projects with more flaky tests for our study. To the best of our
knowledge, this is the first dataset of flaky tests in Python.

It is worth noting that in this research question, we evaluate
the performance of the model to predict flaky tests in a single
revision. Therefore, we reuse the typical 80/20 dataset split
as followed by Pinto et al.. That is, we are rather focusing

https://pypi.org/project/flaky/
https://github.com/APrioriInvestments/typed_python
https://sourcegraph.com/search

TABLE IV
CLASSIFIER PERFORMANCE FOR PYTHON PROJECTS WITH MANIFEST
FLAKY TESTS

Project #ireruns #@flaky #manifest FT
bokeh 200 100 1
celery 300 54 2
python-telegram-bot 300 186 20

on confirming that the approach works as well in Python and
that a model can learn features differentiating tests labelled as
@flaky from the ones that are not. To extract these features,
we use a bag of words representation of the test, as in Java.
We also carefully remove the @flaky annotations, as keeping
it in the vocabulary would bias our model towards recognising
this annotation rather than the code vocabulary.

2) Predicting manifest flaky tests: We perform further anal-
ysis in Python to assess the usefulness of a vocabulary-based
model. Our objective is to evaluate the ability of a model
to identify manifest flaky tests based on training with tests
labelled as flaky by developers. We consider as manifest flaky,
every test for which we are able to observe non-deterministic
behaviour dynamically. This means that the test fails and
passes at least once after several reruns. To identify these
manifest flaky tests, we reran 200 to 300 times the test suite of
the three projects Bokeh, Celery and Python-telegram-bot. We
run the test suites on a Mac machine with a 2,4 GHz 8-Core
19 processor and 32Gb of RAM. The results of these reruns
are presented in the table The column #@flaky shows the
number of tests labelled as flaky in each project.

We observe that despite the high number of reruns (800),
only 23 tests have a flaky behaviour. This outcome is not
surprising as flaky tests are, by nature, difficult to reproduce.
To assess the model performance in detecting manifest flaky
tests, we focus on the only project that has a reasonable
amount of manifest flaky tests, namely Python-telegram-bot.
We use the 20 manifest flaky tests found during our reruns as
a test set, completed by 20 randomly selected tests that are
not labelled as flaky. For the training set, we use the flaky and
non-flaky tests minus the tests present in the test set.

D. RQ3: Is the vocabulary of Code Under Test useful for
flakiness prediction?

So far, the flakiness prediction is only based on features
taken from the test code. However, flaky tests can be due to
infrastructure or environmental issues (e.g. lack of available
resources in the CI, service or network unavailable, etc), to the
test itself (e.g. usage of dates, randomness, order dependency,
etc), or to the CUT (e.g. non-determinism, concurrency, etc).
Notably, Luo et al. [[1] showed that 24% of the fixes for
flaky tests were applied to the CUT and that among them,
94% fixed a bug in the CUT. Hence, it can be judicious to
consider information from the CUT in flakiness prediction
models. We propose to extend the original study by including
the vocabulary of the CUT in test representation.

The main issue when considering the CUT is that computing
the code coverage of each test during each revision would
bring significant overheads. Besides, retrieving the exact code
coverage dynamically goes against the goal of the static
prediction, which is to reduce dynamic costs. To avoid this
overhead, we propose a lightweight approach that relies on
Information Retrieval (IR) to estimate the CUT.

IR techniques have been used to solve different software
engineering problems [20]-[22]. IR aims at quickly and au-
tomatically retrieving relevant information among a set of
documents based on keywords taken from a user query. In
our case, the query is the tokens of a test and the set of
documents is the set of all functions (or methods) defined in
the project. Our hypothesis is that functions from the CUT of
a test are likely to use similar keywords (i.e. variable names,
API calls, etc) as the test. We are then looking for the most
similar functions to our test function. To do so, we use a cosine
similarity between a test case and a function from the CUT.
Cosine similarity is defined with:

Tc- Func

cosSimilarity = cos(Te, Func) = el Fanc]
c||Func

where T'c is the vector representing the test code and Func
is the vector representing the function code. The result of a
cosine similarity ranges from -1, meaning that the query - our
test case - is completely different from the document - our
function - to 1, where the query is perfectly similar to the
document. In our case, we select the top three most similar
functions for each test.

Algorithm 1: Cost effective retrieval of the CUT

Inputs:

Test([]

Function[]

Outputs:

TestWithCUT([]

Procedure CUT_SELECTION(Test[], Function[])

foreach test T € Test[] do
similarityMeasures][]
Tvector = transform(T)
foreach function F € Function[] do
fit(T + F)
Fvector = transform(F)
cosTF = cosSimilarity(Tvector, Fvector)

similarityMeasures.Append(cosTF)
end

similarityMeasures.Sort()
similarityMeasures.Slice(0, 2)
T.append(similarityMeasures)
TestWithCUT.append(T)

end
return TestWithCUTJ]

Algorithm [T] describes the process of associating the CUT to
each test. In order to compute the cosine similarity between
the test and a function, we use the Text tokenisation utility

class from the Keras libraryﬂ We first fit the Tokeniser with the
vocabulary from all tests and functions. Then, we transform the
text of test and function bodies by creating a vector for each
one of them of a length equal to the size of the vocabulary.
In this vector, each element represents the number of times
a word appears in the body. After extracting the vectors, we
compute the cosine similarity between the current test and
all functions and store results. We finally filter to only keep
functions that have a high score, i.e. that they are the closest
to the test. The body representation of the selected functions
is used as a new set of features for the flakiness prediction
model.

IV. RESULTS

A. RQI: How well do vocabulary-based models identify flaky
tests when using a time-sensitive validation?

In this research question, we compare prediction model
performance using a time-sensitive validation and a classical
validation. The accuracy of a model is sensitive to the class
imbalance. In particular, the precision and recall metrics can
easily be impacted when one class is under (or over) repre-
sented. To alleviate this issue, we also report the Matthews
Correlation Coefficient (MCC). In our case, we focus on the
MCC as it takes into consideration all four entries of the
confusion matrix, True Positives (TP), True Negatives (TN),
False Positives (FP) and False Negatives (FN). MCC is given
by:

TN xTP—FPxFN
V(TN + FN)(TP + FP)(TN + FP)(FN +TP)

The MCC score ranges from 1, where the classifier did a
perfect job (FP = FN = 0) to -1, where the classifier always
predicted the wrong class (TP = TN = 0). An MCC value of
0 would indicate that the model is no better than a random
guess.

Figures [3}5] show the performance of our Random Forest
classifier under time-sensitive and classical validation.
Overall, we observe that the validation setup has an impact
on the classifier performance. This impact varies significantly
depending on the project, its size, and history of flaky tests.
The projects Achilles, Hbase, OkHttp, and Togglz observe
a decrease in their MCC score. The largest performance
drop is observed in the OkHttp project, where the MCC
dropped from 39% to 18%. The two exceptions are for Oozie
and Oryx, where MCC increased respectively by 10% and
13%. In the case of Oryx, this can be explained by the fact
that most of the flaky tests come from one revision, thus,
the time-sensitive validation has little to no impact. The
difference can then be explained by the random selection
of the samples when splitting the training and test set. The
phenomenon is only present for this project. In the case of
Oozie, there is a considerable imbalance between the number
of flaky tests (1039) and non-flaky tests (44). Hence, the

Shttps://keras.io/api/preprocessing/text/

B Non time-sensitive [l Time-sensitive

1.00

0.50

Precision

achilles hbase okhttp oozie oryx togglz

Projects

Fig. 3. Precision under classical and time-sensitive validations.

B Non time-sensitive [ll Time-sensitive

0.75

Recall

achilles hbase okhttp oozie oryx togglz

Projects
Fig. 4. Recall under classical and time-sensitive validations.

B Non time-sensitive [Time-sensitive
1.00

Mmcc

achilles hbase okhttp oozie oryx togglz

Projects

Fig. 5. MCC under classical and time-sensitive validations.

test set contains only 9 non-flaky tests, which might not be
enough to draw conclusions.

The performances of a vocabulary-based model de-
crease under a time-sensitive validation (up to 21%
drop for MCC). Nonetheless, the approach is still able
to decently predict flaky tests.

B. RQ2: How well do vocabulary-based models identify flaky
tests in other programming languages?

1) Predicting flaky tests in Python: Table [V]reports on the
model performance when predicting flaky tests in 9 Python
projects.

First, we observe that for 5 projects out of 9, the model
reaches a great performance with MCC and F1 scores greater

https://keras.io/api/preprocessing/text/

TABLE V
CLASSIFIER PERFORMANCE FOR PYTHON PROJECTS

Project Precision Recall F1 MCC AUC
bokeh 1.00 091 0.95 0.95 0.95
cassandra-dtest 0.96 043 0.58 0.63 0.71
celery 0.85 0.54 0.64 0.66 0.77
jira 0.98 099 0.99 0.95 0.98
pipenv 0.78 0.19 030 0.37 0.60
python-amazon 0.97 1.00 0.99 0.95 0.96
python-telegram-bot 1.00 0.99 1.00 0.99 1.00
spyder 0.92 0.77 0.83 0.82 0.88
typed-python 1.00 0.86 0.91 0.92 0.93

TABLE VI

CLASSIFIER PERFORMANCE FOR MANIFEST FLAKY TEST IN THE
PYTHON-TELEGRAM-BOT PROJECT

Recall F1
1.00 1.00

MCC AUC
1.00 1.00

Precision
1.00

Project
python-telegram-bot

than 90%. For the rest of the projects, these scores are always
higher than 50%, except for Pipenv, which shows the lowest
results with an MCC of 37%. Similarly, all the studied projects
have a precision greater than 78% and 7 out of the 9 studied
projects have a precision higher than 90%. These observations
show that the vocabulary-based model is able to predict flaky
tests with decent performance in Python projects.

2) Predicting manifest flaky tests: Table [VI| shows the
model performance in detecting manifest flaky tests based on
tests marked as flaky by developers. The results show a perfect
performance with a MCC and F1-score values of 100%, con-
firming that a model trained on tests labelled by developers can
be used to predict manifest flaky tests. Interestingly, 2 of the 20
manifest tests were not labelled as flaky by the developers and
were only identified with the reruns. Yet, the model was able to
predict them by only learning from tests marked by developers.
In a real-world scenario, we could picture the model finding
those tests and automatically annotating them.

Figure |§| shows the test test_idle () from the class
TestUpdaterﬂ Over 300 reruns, this test failed intermit-
tently because of a concurrency issue where a scheduler
has been shut down. Indeed, the test body contains several
keywords related to time and concurrency, which are common
causes of flakiness, e.g. Thread, sleep, idle. In order
to understand how the model predicted that this test is flaky,
we analyse the most important features of the model. These
features do not completely reflect the model prediction and
they can be biased [23|], but they give us an idea of the
vocabulary that the classifier is using for its predictions. In the
project Python-telegram-bot, we found that the top ten features
include the keywords: process, timeout, duration,
seconds, which are also related to time and concurrency.
Hence, the model’s ability to predict the test flakiness based
on the vocabulary.

Shttps://github.com/python-telegram-bot/python-telegram-bot

@signalskip

def test_idle(self, updater, caplog):
updater.start_polling(0.01)
Thread(target=partial(self.signal_sender, updater=updater)).start()

with caplog.at_level(logging.INF0):
updater.idle()

rec = caplog.records[-2]
assert rec.getMessage().startswith('Received signal {}'.format(signal.SIGTERM))
assert rec.levelname == "INFO'

rec = caplog.records[-1]
assert rec.getMessage().startswith('Scheduler has been shut down')
assert rec.levelname == 'INFO'

If we get this far, idle() ran through
sleep(0.5)
assert updater.running is False

Fig. 6. A manifest flaky test not labelled @flaky

Figure |Z] shows the test test_to_dict () from the class
TestStickerSet, which is also manifestly flaky but the
developers did not mark it as such. Unordered collections have
been identified as a cause of flakiness by several works as
developers can wrongly assume that elements of a collection
will be returned in a specific order [1]], [24]. In Python,
the return order of dictionaries has varied over the different
versions [25[], [26]]. In our case, we found that the keyword
dict, which is present in a large number in this test, was
among the first eight most important features of our classifier.
This feature allowed the vocabulary-based model to predict
that this test is flaky.

def test_to_dict(self, sticker):
sticker_dict = sticker.to_dict()

assert isinstance(sticker_dict, dict)

assert sticker_dict['file_id'] == sticker.file_id

assert sticker_dict['file_unique_id'] == sticker.file_unique_id
assert sticker_dict['width'] == sticker.width

assert sticker_dict['height'] == sticker.height

assert sticker_dict['is_animated'] == sticker.is_animated
assert sticker_dict['file_size'] == sticker.file_size

assert sticker_dict['thumb'] == sticker.thumb.to_dict()

Fig. 7. A manifest flaky test not labelled @flaky

We conclude that the approach is extendable to the
Python language, supporting the idea that the vocabulary-
based prediction can be generalisable to other projects and
programming languages. Moreover, we saw that we can take
advantage of a flaky tests classifier using vocabulary-based
features in order to identify vocabulary linked to flakiness
and help developers write better quality tests.

Vocabulary-based models can be generalised to other
projects and programming languages. Besides, these
models can leverage annotated flaky tests to predict
and annotate manifest flaky tests that were not known
to developers.

C. RQ3: Is the vocabulary of Code Under Test useful for
flakiness prediction?

Figures show the results of our prediction model in
Java projects, while figures [ITHI3] present the model perfor-
mance in Python projects.

M Testonly [Test+CUT

Precision

achilles hbase okhttp oozie oryx togglz

Projects

Fig. 8. Precision score in Java projects

B Testonly [Test+CUT
1.00

Recall

0.00
achilles hbase okhttp oozie oryx togglz

Projects

Fig. 9. Recall score in Java projects

B Testonly [Test+CUT

MccC

achilles hbase okhttp oozie oryx togglz

Projects

Fig. 10. MCC score in Java projects

In figures [8}I0} we observe that the impact of including the
CUT does not have a consistent impact on the model perfor-
mance in Java projects. Adding the CUT improves the model
performance in Hbase, Okhttp and Togglz, with an increase of
the MCC score between 1% and 7%. However, the opposite
effect is observed in the projects Achilles and Oryx where the
MCC dropped by 6% and 2% respectively. As for the Oozie
project, including the CUT does not seem to impact the model
performance. Nonetheless, these performance improvements
and losses remain minor in all the studied Java projects.

Figures [IT{I3] show a similar effect of the CUT usage in
Python projects. Out of the nine studied, six projects report

B Testonly [Test+CUT

8
]
E 025
0.00
> o @ o . 5
O ¢ & s e S
s &8 4
(7,? V\\D(\' ‘\0(\'
& &
Projects.
Fig. 11. Precision score in Python projects
B Testonly [Test+CUT
1.00
0.75
0.50
© 025
0.00
& > & Q - & o
& & N A
& & & &
s &)
<Q <
Projects.
Fig. 12. Recall score in Python projects
B Testonly [Test+CUT
1.00
0.75
0.50
Q
o
= 025
0.00
& & & . - 5 S
A A
& & >3
& s & «
&S

Fig. 13. MCC score in Python projects

a lower performance when adding the CUT to the features.
This performance loss is up to 13% in the projects Jira and
Python-amazon. On the other hand, the projects Cassandra-
dtest, Pipenv, and Typed_python have better predictions when
the CUT is used — an increase in the MCC value by 2%, 6%
and 2% respectively. Based on the observations in both Java
and Python, we conclude that including the CUT does not
consistently improve the performance of a vocabulary-based
model for predicting flaky tests.

Surprisingly, the vocabulary of the Code Under Test,
which is commonly considered as a source of flaki-
ness, does not improve the performance of flakiness
prediction models.

V. THREATS TO VALIDITY

A. Construct Validity

One possible threat to the study’s construct validity is our
choice and selection of flaky tests in Python. It is possible that
tests that are marked as flaky by developers are not actually
flaky. In particular, developers could abuse of the annotation
and mark non-flaky tests to forecast flaky behaviour. To
inspect this point, we manually analysed projects from our
dataset to check if this behaviour is prevalent. We found
that some projects (like Jira and Python-telegram-bot) use
the annotations to mark all class tests as flaky. However,
this usage seems judicious as the class tests performed GUI
testing, which is known for being a major cause of flakiness.
Moreover, an abusive usage of this annotation by developers
seems unlikely considering the rerun costs. When running the
test suites, we observed that one pass can take a long time.
Hence, it is not in the best interest of developers to mark as
many tests as flaky to anticipate flakiness as this would largely
increase the execution time as soon as there are test failures.
We believe that the usage of annotated flaky tests in our study
is reasonable given the lack of large datasets of flaky tests,
especially for programming languages other than Java. Ideally,
the annotated flaky tests would be validated by rerunning them
and exhibiting their non-deterministic behaviour. Nevertheless,
the reproduction remains very challenging for flaky tests in
general and even tests identified in other datasets are hardly
reproducible [13]], [27].

Another threat to construct validity could be our approach
for retrieving the CUT. Intending to design a fast and
lightweight approach, we used Information Retrieval to esti-
mate the real code coverage of each test. This approximation
can be responsible for the noise brought in the features. To
investigate this point, we assessed the CUT effect when using
other retrieval approaches. First, we retrieved an approxima-
tion of the CUT by using Static Call Graph. We selected
all functions called by the test as the CUT and we do not
explore what those functions call. Even if this approach only
includes a subset of the CUT and flakiness can be caused by
functions deeper in the call graph, we believe that keywords
in the top functions should serve as proxy. Results for this
approach were similar to the ones presented in RQ3. The
performance scores slightly decrease or increase from one
project to another without showing a significant impact on the
prediction performance. Furthermore, we computed the code
coverage for projects where we managed to build and run the
test suite. This task is challenging, especially in Java where the
flaky revisions are from several years ago and dependencies
are easily missing from central repositories. We successfully
retrieved the real code coverage for revisions of Togglz and
Oryx using the GZoltar tool [28]. This tool allows us to get
a coverage matrix representing each line covered by the test
case. We used this matrix to retrieve the exact CUT and include
it as a feature for our prediction model. For both projects,
the CUT inclusion had an impact on the model performance,
which is very similar to the one observed with the CUT

retrieved with IR. Hence, we believe that the results observed
in RQ3 are not flawed by the CUT retrieval.

B. Internal Validity

One possible threat to internal validity is the definition of
non-flaky tests. The datasets that we used for both Java and
Python, only mark flaky tests and do not provide information
about non-flaky tests. Consequently, we considered all tests
that were not marked as flaky to be non-flaky. Yet, some of
these tests can be flaky even though DeFlaker or the developer
did not mark them as such. This limitation is not unique to
our study as it is theoretically impossible to prove that a test is
not flaky. To the best of our knowledge, there are no datasets,
neither in formal nor in grey literature, that mark explicitly
non-flaky tests. On top of that, our study results show that
there is a clear distinction between the classes of flaky and
non-flaky tests. Accordingly, it is unlikely that a significant
fraction of the non-flaky tests is actually flaky.

One common threat to the internal validity of replication
studies is potential errors in the reproduction (e.g. settings and
library usage). To alleviate this threat, we carefully examined
the GitHub repository of the original work [29] to understand
and reproduce their implementation details. Besides, the goal
of our study is not to exactly reproduce the original work and
our results align well with the original findings.

C. External Validity

The main threat to our external validity is the size and nature
of our datasets. For Java, we relied on the DeFlaker dataset
since it is the largest open-source set of flaky tests and it has
already been used in many flakiness studies [[13], [30]]. As for
Python, we built a dataset of 837 flaky tests from 9 projects by
mining GitHub repositories. For the sake of generalisability,
it would have been preferable to include more projects and
flaky tests. Nevertheless, our intra-project setting required a
minimum number of flaky tests per project and limited our
choices. We encourage future studies to replicate this study
on larger datasets, including industrial projects.

VI. RELATED WORK

Studies on flakiness. Luo et al. [1] conducted the first
extensive study that aims to understand the root causes of
flakiness. They analysed 201 commits from 51 open source
projects to explore the fixing strategies adopted by developers.
Their analysis showed that the top categories for flakiness
are async wait, concurrency, and test order dependency. Lam
et al. [1'7] also carried a large-scale study on flaky tests,
attempting to understand when tests first become flaky. They
ran detectors on 55 Java projects and found that 75% of the
245 detected flaky tests were flaky as soon as introduced in the
test suite, indicating potential benefits for developers to run
flaky-tests detectors when adding new tests. Eck et al. [31]]
conducted a survey with 121 professional developers. They
found that flakiness is indeed perceived as an important issue
by developers as it wastes developers time and breaks the
trust in test suites. They also report that test flakiness can be

caused by the code under test. Researchers also investigated
flakiness in different application domains. For instance, Thorve
et al. [16] reproduced the study of Luo et al. for Android
applications and identified new flakiness root causes. Other
studies [32]]-[34]] measured the impact of flakiness on mutation
testing and automated program repair. They showed that this
impact can be significant.

Industrial studies. Several studies have been carried out in
the industry, showing the need for new solutions to reduce
the flakiness impact. Leong et al. [4] studied the effects
of test flakiness in Google regression testing practices, test
selection in particular, and reported that more than 80% of test
transitions are due to flaky tests. The study also investigated
the impact of test flakiness when evaluating regression testing
techniques and found that flakiness significantly overestimate
evaluations’ performance. Lam ef al. [3] conducted a study
about flaky tests in Microsoft projects and show that even if
the number of flaky tests in a project is low, the number of
build failures caused by flakiness can still be significant. They
also presented a tool, RootFinder, which attempts to mitigate
flaky tests by analysing differences in their logs. A follow-
up study by Lam er al. [35], still at Microsoft, proposed an
automated solution, FaTB, in order to decrease the runtime of
their test suite by modifying tests timeouts and waits without
changing their flake rate. Kowalczyk et al. [5] were able to
reduce flakiness by 44% by implementing a flakiness scoring
system at Apple.

Tools & Datasets. Other works introduced frameworks for
flaky test detection alongside their dataset. iDFlakies [36] can
detect flaky tests by rerunning test suites several times in
different orders. Using iDFlakies, the authors built a dataset
of 422 order-dependent tests in Java projects. Shi et al. [37]]
presented iFixFlakies, a framework to automatically patch
order dependent flaky tests using delta-debugging. Silva et
al. [38]] proposed SHAKER, a technique to reveal flaky tests
in a more efficient way than reruns by adding noise in
the environment. Dutta et al. [24]] presented a technique,
FLASH, to detect flaky tests caused by random seeds used
in probabilistic programming systems and machine learning
frameworks. DeFlaker [18]] finds tests that are likely to be flaky
if they happen to fail without having executed any changed
code. DeFlaker was used to build a dataset of 1,874 flaky
tests from 24 open-source projects. We partially rely on this
dataset in our study of Java projects.

Flakiness prediction. A few works explored the possibility
of using machine learning to predict flakiness based on training
data. King et al. [39] presented a bayesian network model
for classifying and predicting flaky tests. In their work, they
view the test flakiness as a disease with its symptoms and
common effects. They built their model on top of factors that
can cause flakiness (e.g. high assertion count, explicit wait
count, high cyclomatic complexity) and train their bayesian
network classifier on historical data from the Ultimate Soft-
ware company. They presented a flakiness prediction accuracy
of 65.7%. Bertolino et al. [30] presented FLAST, a static
prediction model based on K-nearest neighbours that aims

to identify similar (flaky) tests. Finally, Pinto et al. [13]]
presented the study that we replicate in this paper. They
presented a bag of words approach for representing tests and
trained five different machine learning models to evaluate
their performance. They show that detecting flaky tests with
reruns is challenging. To do so, they relied on the data of
all DeFlaker projects, whereas in our replication, we focus
on an intra-project analysis. They also question the impact
of different features used for their models like the use of
stemming, lower-casing, splitting, stop word removal, in the
goal of optimising their classifier performance. In comparison,
we also explore additional features by exploring the effect
of including the CUT on the performance of the prediction
model. Finally, they examine the vocabulary that is associated
with flakiness in order to show that their approach can give
hints to developers based on some keywords. Their study
was done using Java projects, whereas we performed our
study in Java and Python to increase the confidence in the
generalisation of the approach.

VII. CONCLUSION AND FUTURE WORK

This paper explored the usability and performance of
vocabulary-based models in predicting flaky tests. We pre-
sented a conceptual replication of the study of Pinto et al.,
following three axes.

« First, we evaluated the prediction performances under a
time-sensitive validation setting that better reflects the
envisioned use case for the approach. We found that a
more robust validation has a consistent negative impact on
the reported results of the original study (performance de-
grades by 7% on average). Fortunately, this performance
degradation does not invalidate the key conclusions of
the study as the model predictions are significantly better
than random selections.

« Second, we evaluated the generalisability of a vocabulary-
based model to other programming languages. We found
re-assuring results that vocabulary-based models are more
successful in Python than in Java (average performance
of 80% in Python in contrast to 61% in Java). We
also showed that these models can leverage flaky tests
annotated by developers to predict and annotate manifest
flaky tests that were not known to developers.

o Third, we conducted a comparative study that highlights
the impact of features lying in the CUT on the prediction
performance. Surprisingly, we found that the vocabu-
lary of the CUT, which is commonly considered as a
source of flakiness, does not improve the performance of
vocabulary-based models.

On top of these findings, this paper presents a new large
dataset of flaky tests mined from developer annotations in
Python projects on GitHub. This dataset and our experiment
toolset are available in a comprehensible replication package.

ACKNOWLEDGEMENTS

This work is supported by the Facebook 2019 Testing and
Verification research awards and PayPal.

[1]

[2

—

[4]

[5

=

[6]
[7]

[8

[t}

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, vol. 16-21-November-2014.
Association for Computing Machinery, nov 2014, pp. 643-653.

M. Rehkopf, “What is continuous integration — atlassian,” https://www.
atlassian.com/continuous-delivery/continuous-integration, (Accessed on
01/12/2021).

W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root Causing Flaky Tests in a Large-Scale Industrial Setting,” in
Proceedings ofthe 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA '19). Beijing, China: ACM Press,
2019, pp. 101-111.

C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco,
“Assessing transition-based test selection algorithms at google,”
in Proceedings of the 4l1st International Conference on Software
Engineering: Software Engineering in Practice, ICSE (SEIP) 2019,
Montreal, QC, Canada, May 25-31, 2019, H. Sharp and M. Whalen,
Eds. IEEE / ACM, 2019, pp. 101-110. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2019.00019

E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and ranking flaky tests at apple,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering in Practice, ser. ICSE-SEIP °20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 110-119.
[Online]. Available: https://doi.org/10.1145/3377813.3381370

J. Micco, “The State of Continuous Integration Testing Google,” 2017.
H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
automatic cause analysis for test alarms in system and integration
testing,” in Proceedings of the 39th International Conference on
Software Engineering, ser. ICSE *17. 1EEE Press, 2017, p. 712-723.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.71

M. contributors, “Test verification - mozilla mdn,” |https://
developer.mozilla.org/en- US/docs/Mozilla/QA/Test_Verification, March
2019, (Accessed on 01/12/2021).

M. Harman and P. O’Hearn, “From Start-ups to Scale-ups: Opportunities
and Open Problems for Static and Dynamic Program Analysis,” in
2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM). 1EEE, sep 2018, pp. 1-23.
[Online]. Available: https://ieeexplore.ieee.org/document/8530713/

J. Palmer, “Test flakiness - methods for identify-
ing and dealing with flaky tests Spotify engi-
neering,” https://engineering.atspotify.com/2019/11/18/

test- flakiness- methods-for-identifying-and-dealing- with- flaky-tests/,
November 2019, (Accessed on 01/12/2021).

A. Micco, John & Memon, “Gtac 2016: How flaky tests in continuous in-
tegration - youtube,” https://www.youtube.com/watch?v=CrzpkF1-VsA|
December 2016, (Accessed on 01/12/2021).

J. Listfield, “Google testing blog: Where do our flaky
tests come from?” https://testing.googleblog.com/2017/04/
where-do-our-flaky-tests-come-from.html, April 2017, (Accessed
on 01/12/2021).

G. Pinto, B. Miranda, S. Dissanayake, M. D’ Amorim, C. Treude, and
A. Bertolino, “What is the Vocabulary of Flaky Tests?” Proceedings
- 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories, MSR 2020, pp. 492-502, 2020.

F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in Empirical Software Engineering,” Empirical Software
Engineering, vol. 13, no. 2, pp. 211-218, 2008.

0. S. G6émez, N. Juristo, and S. Vegas, “Understanding replication of
experiments in software engineering: A classification,” Information and
Software Technology, vol. 56, no. 8, pp. 1033-1048, 2014.

S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” Proceedings - 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018, pp. 534-538, 2018.
W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-
scale longitudinal study of flaky tests,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, pp. 1-29, 2020.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically Detecting Flaky Tests,” in Proceedings of the
40th International Conference on Software Engineering - ICSE ’18.
New York, New York, USA: ACM Press, 2018, pp. 433—444. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3180155.3180164

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]
[29]

[30]

(31]

[32]

[33]

[37]

(38]

[39]

“Pytest documentation,” https://docs.pytest.org/en/stable/, (Accessed on
03/18/2021).

R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “REPiR : An In-
formation Retrieval based Approach for Regression Test Prioritization,”
FSE ’14, Hongkong, 2014.

F. Palomba, A. Zaidman, and A. De Lucia, “Automatic test smell
detection using information retrieval techniques,” Proceedings - 2018
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2018, pp. 311-322, 2018.

M. Azizi and H. Do, “ReTEST: A Cost Effective Test Case Selection
Technique for Modern Software Development,” Proceedings - Inter-
national Symposium on Software Reliability Engineering, ISSRE, vol.
2018-October, pp. 144-154, 2018.

“Permutation importance vs random forest feature importance (mdi)
- scikit-learn 0.24.0 documentation,” https://scikit-learn.org/stable/auto_
examples//inspection/plot_permutation_importance.html, (Accessed on
01/12/2021).

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Mis-
ailovic, “Detecting flaky tests in probabilistic and machine learning
applications,” ISSTA 2020 - Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 211—
224, 2020.

P. S. Foundation, “What’s new in python 3.1 - python 3.9.1
documentation,” https://docs.python.org/3/whatsnew/3.1.html#
pep-372-ordered-dictionaries, March 2021, (Accessed on 01/12/2021).

A. Barnert, “python - how should i test that dic-
tionaries will always be in the same order? - stack
overflow,” https://stackoverflow.com/questions/50475966/

how-should-i-test-that-dictionaries- will-always- be-in-the-same-order/
50476093#50476093, May 2018, (Accessed on 01/12/2021).

W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, “Under-
standing Reproducibility and Characteristics of Flaky Tests Through Test
Reruns in Java Projects,” pp. 403-413, 2020.

(2020) Gzoltar - automatic testing & debugging using spectrum-based
fault localization (sfl). https://gzoltar.com/. (Accessed on 01/11/2021).
M. d’Amorim. (2020, April) damorimrg/msr4flakiness. https://github.
com/damorimRG/msr4flakiness/. (Accessed on 01/11/2021).

A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia, “Know Your
Neighbor: Fast Static Prediction of Test Flakiness,” Proceedings of
the International Conference on Software Engineering (ICSE), 2020.
[Online]. Available: https://ieeexplore.ieee.org

M. Eck, M. Castelluccio, F. Palomba, and A. Bacchelli, “Understanding
Flaky Tests: The Developer’s Perspective,” arXiv, pp. 830-840, 2019.
M. Cordy, M. Papadakis, R. Rwemalika, and M. Harman, “FlakiMe:
Laboratory-controlled test flakiness impact assessment. A case study on
mutation testing and automated program repair,” arXiv, 2019.

A. Shi, J. Bell, and D. Marinov, “Mitigating the effects of flaky tests on
mutation testing,” ISSTA 2019 - Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 296-306,
2019.

Y. Qin, S. Wang, K. Liu, and X. Mao, “On the Impact of Flaky Tests
in Automated Program Repair,” no. February, 2021.

W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A study on
the lifecycle of flaky tests,” Proceedings - International Conference on
Software Engineering, pp. 1471-1482, 2020.

W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “IDFlakies: A
framework for detecting and partially classifying flaky tests,” Proceed-
ings - 2019 IEEE 12th International Conference on Software Testing,
Verification and Validation, ICST 2019, pp. 312-322, 2019.

A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies : A
Framework for Automatically Fixing Order-Dependent Flaky Tests,”
in 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations ofSoftware Engineering (ESEC/FSE
’19), 2019.

D. Silva, L. Teixeira, and M. D’Amorim, “Shake It! Detecting Flaky
Tests Caused by Concurrency with Shaker,” Proceedings - 2020 IEEE
International Conference on Software Maintenance and Evolution, IC-
SME 2020, pp. 301-311, 2020.

T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
Bayesian Network Model for Predicting Flaky Automated Tests,” 2018
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 100-107, 2018.

https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://doi.org/10.1145/3377813.3381370
https://doi.org/10.1109/ICSE.2017.71
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Test_Verification
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Test_Verification
https://ieeexplore.ieee.org/document/8530713/
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://www.youtube.com/watch?v=CrzpkF1-VsA
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
http://dl.acm.org/citation.cfm?doid=3180155.3180164
https://docs.pytest.org/en/stable/
https://scikit-learn.org/stable/auto_examples//inspection/plot_permutation_importance.html
https://scikit-learn.org/stable/auto_examples//inspection/plot_permutation_importance.html
https://docs.python.org/3/whatsnew/3.1.html#pep-372-ordered-dictionaries
https://docs.python.org/3/whatsnew/3.1.html#pep-372-ordered-dictionaries
https://stackoverflow.com/questions/50475966/how-should-i-test-that-dictionaries-will-always-be-in-the-same-order/50476093#50476093
https://stackoverflow.com/questions/50475966/how-should-i-test-that-dictionaries-will-always-be-in-the-same-order/50476093#50476093
https://stackoverflow.com/questions/50475966/how-should-i-test-that-dictionaries-will-always-be-in-the-same-order/50476093#50476093
https://gzoltar.com/
https://github.com/damorimRG/msr4flakiness/
https://github.com/damorimRG/msr4flakiness/
https://ieeexplore.ieee.org

	Introduction
	The Pinto et al. Study
	Dataset
	Prediction model
	Evaluation
	Evaluation methodology
	Results

	Replication Setup
	Research Questions
	RQ1: How well do vocabulary-based models identify flaky tests when using a time-sensitive validation?
	RQ2: How well do vocabulary-based models identify flaky tests in other programming languages?
	Predicting flaky tests in Python
	Predicting manifest flaky tests

	RQ3: Is the vocabulary of Code Under Test useful for flakiness prediction?

	Results
	RQ1: How well do vocabulary-based models identify flaky tests when using a time-sensitive validation?
	RQ2: How well do vocabulary-based models identify flaky tests in other programming languages?
	Predicting flaky tests in Python
	Predicting manifest flaky tests

	RQ3: Is the vocabulary of Code Under Test useful for flakiness prediction?

	Threats to validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion and Future Work
	References

