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ABSTRACT

The cornerstone of secure electronic voting protocols lies in the principle of individual verifiability. This
thesis delves into the intricate task of harmonizing this principle with two other crucial aspects: ballot
privacy and coercion resistance.

In the realm of electronic voting, individual verifiability serves as a critical safeguard. It empowers
each voter with the ability to confirm that their vote has been accurately recorded and counted in the
final tally. This thesis explores the intricate balance between this pivotal aspect of electronic voting and
the equally important facets of ballot privacy and coercion-resistance.

Ballot privacy, or the assurance that a voter’s choice remains confidential, is a fundamental right in
democratic processes. It ensures that voters can express their political preferences without fear of retri-
bution or discrimination. On the other hand, coercion-resistance refers to the system’s resilience against
attempts to influence or manipulate a voter’s choice.

Furthermore, this thesis also ventures into an empirical analysis of the effectiveness of individual
voter checks in ensuring a correct election outcome. It considers a scenario where an adversary possesses
additional knowledge about the individual voters and can strategically decide which voters to target. The
study aims to estimate the degree to which these checks can still guarantee the accuracy of the election
results under such circumstances.

In essence, this thesis embarks on a comprehensive exploration of the dynamics between individual
verifiability, ballot privacy, and coercion-resistance in secure electronic voting protocols. It also seeks to
quantify the effectiveness of individual voter checks in maintaining the integrity of election outcomes,
particularly when faced with a knowledgeable adversary.

The first contribution of this thesis is revisiting the seminal coercion-resistant e-voting protocol by
Juels, Catalano, and Jakobsson (JCJ) [78], examining its usability and practicality. It discusses the cre-
dential handling system proposed by Neumann et al. [92], which uses a smart card to unlock or fake
credentials via a PIN code.

The thesis identifies several security concerns with the JCJ protocol, including an attack on coercion-
resistance due to information leakage from the removal of duplicate ballots. It also addresses the issues
of PIN errors and the single point of failure associated with the smart card.

To mitigate these vulnerabilities, we propose hardware-flexible protocols that allow credentials to be
stored by ordinary means while still being PIN-based and providing PIN error resilience. One of these
protocols features a linear tally complexity, ensuring efficiency and scalability for large-scale electronic
voting systems.
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The second contribution of this thesis pertains to the exploration and validation of the ballot privacy
definition proposed by Cortier et. al. [41], particularly in the context of an adversarial presence.

Our exploration involves both the Selene and the MiniVoting abstract scheme [21]. We apply Cortier’s
definition of ballot privacy to this scheme, investigating how it holds up under this framework. To ensure
the validity of our findings, we employ the use of tools for machine-checked proof. This method provides
a rigorous and reliable means of verifying our results, ensuring that our conclusions are both accurate
and trustworthy.

The final contribution of this thesis is a detailed examination and analysis of the Estonian election re-
sults. This analysis is conducted in several phases, each contributing to a comprehensive understanding
of the election process.

The first phase involves a comprehensive marginal analysis of the Estonian election results. We com-
pute upper bounds for several margins, providing a detailed statistical overview of the election outcome.
This analysis allows us to identify key trends and patterns in the voting data, laying the groundwork for
the subsequent phase of our research.

We then train multiple binary classifiers to predict whether a voter is likely to verify their vote. This
predictive modeling enables an adversary to gain insights into voter behavior and the factors that may
influence their decision to verify their vote. With the insights gained from the previous phases, an adver-
sarial classification algorithm for verifying voters are trained. The likelihood of such an adversary is cal-
culated using various machine learning models, providing a more robust assessment of potential threats

to the election process.
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CHAPTER 1

INTRODUCTION

In this introductory chapter, we will provide a brief overview of the research topic and its significance, as
well as a summary of the main research questions and objectives of the thesis. We will also provide a brief

overview of the methods and data used in the thesis, as well as the structure of the rest of the thesis.

1.1 Motivation

The growing prevalence of electronic voting systems, or e-voting, heralds a new era of convenience where
individuals can cast their votes remotely or via personal devices. Yet, this modern voting method also
unveils a host of new concerns linked to the security and integrity of the voting process. To uphold pub-
lic faith in the democratic process, it is critical to guarantee the precision and impartiality of e-voting
systems.

A salient concern in the realm of e-voting is the necessity for individual verifiability, which provides
each voter with the capacity to confirm the accurate recording and counting of their vote. This aspect be-
comes particularly crucial when voters are casting their votes remotely or through non-physical posses-
sion of devices, thus enabling them to validate that their vote has been accurately registered and remains
free from interference.

In this thesis, formal verification is leveraged to substantiate that a minivoting abstract voting scheme
adheres to a certain ballot privacy criterion. In addition, machine learning methodologies are deployed

to scrutinize an attacker’s ability to manipulate election results utilizing real-world data.

1.2 Aim

The aim of this thesis is to investigate ways to improve individual verifiability while preserving privacy or

even coercion-resistance voting systems. To achieve this goal, we will pursue three main research paths.
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1.2.1 Enhancing voter experience

We tackle the problem that has been previously acknowledged but not adequately resolved by Neumann
et al [92]. This issue relates to the frequent occurrence of PIN typos, which can inadvertently invalidate a
cast vote without the voter being aware of it. To address this, we devise innovative protocols that incorpo-
rate mechanisms to detect and rectify PIN errors, thereby safeguarding the voter’s intention and ensuring

their vote is accurately recorded.

1.2.2 Providing machine-checked proof for privacy

We aim to strengthen the assurance of privacy in the MiniVoting abstract scheme by exploring and validat-
ing the ballot privacy definition proposed by Veronique Cortier [41]. We specifically focus on evaluating
the resilience of the scheme against adversarial presence, ensuring that the privacy guarantees hold up

even in the face of potential attacks.

1.2.3 Using data analysis and machine learning

In our third research path, we embark on a journey to enhance the security and transparency of voting
systems by harnessing the power of data analysis and machine learning techniques. Our primary objec-
tive is to develop a robust machine learning classifier capable of predicting whether a voter is likely to
verify their vote or not. By pursuing this research direction, we aim to make significant contributions

toward the advancement of secure and transparent voting systems that prioritize individual verifiability.

1.3 Thesis structure

The structure of this thesis is as follows:

Chapter 1: Introduction In this introductory chapter, we will provide a brief overview of the research
topic and its significance, as well as a summary of the main research questions and objectives of the thesis.
We will also provide a brief overview of the methods and data used in the thesis.

Chapter 2: Introduction to Cryptographic E-Voting This chapter consists of a comprehensive litera-
ture review aimed at examining prior research on the subject matter. The chapter provides a foundation
for the subsequent research by highlighting areas requiring further investigation and structuring the re-
search questions to be addressed in the rest of the thesis. The literature review ensures that the thesis
builds upon existing knowledge and contributes to filling the identified gaps, leading to a well-informed
and relevant research approach.

Chapter 3: Introduction to Formal Verification via the Hoare Logic This chapter provides an overview
of the formal verification backgrounds, including Hoare Logic and Formal Verification. It introduces a
small programming language, covering assignments, sequences, conditionals, and WHILE-commands,
and summarizes their syntax. The chapter also discusses Hoare’s notation and the axioms and rules
of Hoare Logic, such as the assignment axiom, precondition strengthening, and postcondition weaken-
ing. This chapter establishes a foundation for the rest of the thesis, equipping readers with the necessary
knowledge and tools to engage with the formal verification techniques discussed in subsequent chapters.

Chapter 4: Introduction to Machine-Learning This chapter introduces the essential materials and
methodologies that lay the groundwork for our exploration of specific machine learning paradigms. While
the subsequent sections provide a thorough overview of the tools, frameworks, and principles employed

in this thesis for precise modeling, analysis, and implementation of complex machine learning systems,
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readers interested in more detailed definitions and discussions about machine learning concepts are re-
ferred to [57].

Chapter 5: Practical and Usable Coercion-Resistant Remote E-Voting In this chapter, we examine
the usability and security of the coercion-resistant e-voting protocol developed by Juels, Catalano, and
Jakobsson (JCJ) [78]. Previous work by Neumann et al. [92] attempted to make this protocol more prac-
tical by using a smart card with a PIN code to handle cryptographic credentials, but we identify several
vulnerabilities and problems with this approach, including an attack on coercion-resistance due to infor-
mation leakage and the risk of invalidated votes due to PIN typos. We propose alternative protocols that
address these issues and are hardware-flexible, allowing credentials to be stored using ordinary means,
while still providing PIN-based protection and error resilience.

Chapter 6: Machine-Checked Proofs of Privacy Against Malicious Boards In this chapter, we use
MiniVoting [21], a specific electronic voting scheme, as a case study to present a machine-checked proof
of privacy. Our proof shows that MiniVoting meets a specific privacy definition, which is an essential step
in improving the security and transparency of electronic voting systems. These systems play a crucial
role in ensuring the integrity of democratic processes. Additionally, our work extends beyond MiniVoting
to include the Selene electronic voting scheme. We offer a machine-checked proof of privacy for Selene,
which is a remote electronic voting scheme known for its appealing combination of security properties
and usability. Our formal verification of Selene’s computational privacy is a novel contribution, as no
prior work had formally verified it.

Chapter 7: Analysis of Estonian Election Margin In this chapter, we conducted a study of the Esto-
nian election results, examining several measures of competitiveness for two elections in 2015 and 2019.
Specifically, we calculated various metrics to assess the competitiveness of the elections and analyzed
the results to understand trends and patterns. Our analysis provides valuable insights into the electoral
landscape in Estonia and can inform future research and policy decisions.

Chapter 8: Identifying Voter Characteristics through ML-Assisted Models In this chapter, we will
explore the use of ML-assisted models to identify voter characteristics and their potential impact on vot-
ing behavior. Through a combination of empirical analysis and theoretical modeling, we aim to gain a
deeper understanding of this important topic and contribute to the development of more effective and

transparent Voting systems.

1.4 Contributions

This thesis is a culmination of original research papers, some of which are already published, submitted,
or in preparation for submission. In this section, I outline my specific contributions to each of these
papers, as well as the roles of my co-authors. The list of contributions is organized according to the

following structure:

Contribution I: Revisiting Practical and Usable Coercion-Resistant Remote E-Voting
¢ Co-authors: Thomas Haines, Kristian Gjasteen, Peter B. Ronne, Peter Y. A. Ryan, Najmeh Soroush

¢ Publication status: Published in Electronic Voting. E-Vote-ID 2020, Springer, Cham, 25 September
Journal/Conference name, DOI: 10.1007/978-3-030-60347-2_4 (Used in the thesis)
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¢ Contribution: In this paper, my co-authors and I critically analyzed the JCJ coercion-resistant e-
voting protocol and identified several attacks and security problems with existing implementa-
tions. We further highlighted the practical issues associated with handling cryptographic creden-
tials and presented several alternative protocols to repair these problems. My specific contributions
include the development of hardware-flexible solutions that allow for storing credentials by ordi-
nary means, ensuring PIN error resilience, and creating one protocol with linear tally complexity to
ensure efficiency with a large number of voters. We aimed to make e-voting more practical, secure,

and user-friendly while preserving essential properties such as coercion resistance.

Contribution II: Machine-Checked Proofs of Privacy Against Malicious Boards for Se-
lene & Co

¢ Co-authors: Constantin Catdlin Dragan, Francois Dupressoir, Kristian Gjesteen, Thomas Haines,

Peter Y. A. Ryan, Peter B. Ronne, Morten Rotvold Solberg

¢ Publication status: Published in 2022 IEEE 35th Computer Security Foundations Symposium (CSF),
DOI: 10.1109/CSF54842.2022.00021 (Used in the thesis)

¢ Contribution: In this work, we tackle the complex challenge of privacy in electronic voting schemes.
Recognizing the intricate nature of ensuring privacy in such systems, we define a new ballot privacy
notion that is applicable to a broader class of voting schemes. This novel definition advances the
field by considering the fact that verification in many voting systems occurs or must occur after the
tally has been published, contrary to previous definitions. Through a comprehensive case study, we
provided a machine-checked proof of privacy for Selene, a remote electronic voting scheme known
for its balance of security and usability. Prior to our research, the computational privacy of Selene
had not been formally verified. My specific contribution is that I proved that MiniVoting satisfies

the original definition of ballot privacy for malicious ballot boxes.

Contribution III: “Just for the sake of transparency”: Exploring Voter Mental Models
Of Verifiability
¢ Co-authors: Marie-Laure Zollinger, Peter Y. A. Ryan, Karola Marky

¢ Publication status: Published in Sixth International Joint Conference, E-Vote-ID 2021, DOI: 10.1007/978-
3-030-86942-7_11 (Not used in the thesis)

¢ Contribution: This paper delves into the human aspect of the Selene voting protocol, an electronic
voting scheme that offers plaintext vote verification while maintaining privacy. Through interviews
with 24 participants, we explored their mental models of Selene, categorizing them into four dis-
tinct levels: 1) understanding of the technology, 2) interpretation of the verification phase, 3) con-
cerns related to security, and 4) perception of unnecessary steps within the process. Our analysis
uncovers various misconceptions and provides unique insights into how voters perceive and inter-
act with Internet voting technologies. The findings have led us to propose specific recommenda-
tions for the future implementation of Selene and for the design of Internet voting systems at large.
Our research contributes to the field by bridging the gap between the technical complexities of ver-
ifiable voting schemes and the users’ perceptions, aiding in the development of more intuitive and

trustworthy electronic voting systems.
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Contribution IV: Machine-Checked Proofs of Privacy Against Malicious Boards for Se-
lene & Co (Journal Edition)

¢ Co-authors: Constantin Catalin Dragan, Francois Dupressoir, Kristian Gjgsteen, Thomas Haines,
Peter Y. A. Ryan, Peter B. Ronne, Morten Rotvold Solberg

¢ Publication status: Accepted. (Used in the thesis)

¢ Contribution: This paper is an extended and revised version of a paper presented at CSF’22(Second

Contribution).

Contribution V: Voter Verification and Adversarial Threats in Election with Machine
Learning Models

¢ Co-authors: Peter B. Ronne, Jan Willemson, Peter. Y. A. Ryan
¢ Publication status: In preparation

¢ Contribution: In this research, we conducted a rigorous marginal analysis of the Riigikogu elec-
tion in Estonia, a task vital to understanding the robustness of electoral systems. Recognizing the
intricate nature of the candidate selection process, we segmented our analysis into various stages,
allowing for a nuanced examination of the election margin, which signifies the number of votes
needed to shift the outcome. Subsequently, we trained several binary classifiers to predict the like-
lihood of voter verification and constructed an adversarial model with the ability to modify the nec-
essary quantity of votes to alter the election result. We evaluated the probability of such adversarial
activities using a range of machine learning models. Our work aims to enhance the security and
transparency of elections by analyzing margins, assessing vulnerabilities, and providing insights

that can guide improvements in electoral processes and systems.






CHAPTER 2

INTRODUCTION TO CRYPTOGRAPHIC
E-VOTING

In this chapter, we will recall the motivation and different security and cryptographic aspects of secure

electronic voting. This will lay a necessary foundation for the rest of the thesis.

2.1 Cryptographic Primitives Backgrounds

Cryptography is the study of techniques for secure communication in the presence of adversarial par-
ties. These techniques are based on mathematical algorithms and protocols that are designed to provide
various levels of security, such as confidentiality, integrity, authentication, and non-repudiation.

Cryptography is an essential component of modern computer security systems and is used in a wide
range of applications, such as secure communication, secure data storage, digital signatures, and access
control. There are two main categories of cryptographic algorithms: symmetric and asymmetric.

Symmetric algorithms use the same key for both encryption and decryption. They are fast and effi-
cient but require that both the sender and the recipient have a copy of the same key, which must be kept
secret. Examples of symmetric algorithms include AES, DES, and Blowfish.

In the context of e-voting, it is important to note that we mostly use asymmetric crypto. Asymmetric
algorithms, such as RSA, ECC, and ElGamal, employ different keys for encryption and decryption. The
encryption key is made public, allowing anyone to encrypt data, while the decryption key is kept private.
Although asymmetric algorithms are slower and more complex compared to symmetric algorithms, they
eliminate the need for exchanging a secret key. Therefore, when it comes to e-voting, the utilization of
asymmetric cryptography is prevalent.

Cryptography is a constantly evolving field, and new algorithms and protocols are being developed all
the time. Itis crucial to thoroughly evaluate the security of any cryptographic algorithm or protocol before
implementing it in a real-world application. Furthermore, it is worth noting that there is a long history of
security failures in cryptography. However, advancements have been made in terms of formal verification

methods, such as the symbolic model. In this thesis, we will employ a combination of paper-based and
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machine-checked proofs within the computational model to ensure the robustness and reliability of our

2.1.1 Interactive Zero Knowledge Proofs

Zero-knowledge proofs are a cryptographic concept that allows one party (the prover) to prove to another
party (the verifier) that they know a certain piece of information, without revealing what that information
is. This is achieved through the use of interactive protocols, in which the prover and verifier engage in a
series of exchanges. The prover’s goal is to convince the verifier that they have the necessary information,
while the verifier’s goal is to determine whether the prover is telling the truth.

The concept of zero-knowledge proofs was first introduced by Shafi Goldwasser, Silvio Micali, and
Charles Rackoff in a paper published in 1985 [58]. The key idea is to use a series of interactions between
the prover and the verifier to convince the verifier that the prover has the necessary information, without
actually revealing that information. This is achieved through the use of special protocols and mathemat-
ical techniques that ensure that the information remains hidden even during interactions.

The concept of zero-knowledge proofs has been extensively studied and applied in a variety of set-
tings, including cryptography, computer science, and mathematics. It has been used to design secure
protocols for a wide range of applications, including digital signatures, password authentication, and se-
cure multiparty computation.

Three properties are necessary for this kind of proof:

¢ Completeness: If the assertion is true, the prover can convince the verifier of its truth with high
probability.

* Soundness: If the assertion is false, the verifier will not be convinced of its truth, even if the prover
tries to cheat.

* Zero-knowledge: In the course of the interaction, the verifier learns nothing about the assertion
except whether it is true or false. This means that even if the verifier is convinced of the truth of the

assertion, they will not be able to extract any additional information about the claim.

In general, a protocol is said to have “zero knowledge” if, regardless of the result of the verifier fol-
lowing the protocol, it could have generated the same outcome without engaging with the prover. This
means that the verifier does not learn any additional information about the claim being proved beyond
what was already known before the protocol was executed.

Interactive zero-knowledge proofs are used at several stages in voting protocols. For example, author-

ities may use them to demonstrate their honesty to each other in order to proceed with the protocol.

2.1.2 Non-Interactive Zero-Knowledge Proofs

In the realm of cryptographic systems, particularly in the context of secure digital voting, the utilization
of non-interactive zero-knowledge proofs (NIZKPs) is of paramount importance. NIZKPs are a subclass
of zero-knowledge proofs that allow a prover, say P, to demonstrate to a verifier, say V, that they know a
secret value x, without revealing any information about x other than the fact that they know it. Formally,
given arelation R, a NIZKP system enables P to convince V that there exists a witness w such that (x, w) €
R, without any interaction between P and V after the proof is generated.

In the context of voting systems, these proofs are utilized to ensure the integrity and transparency
of the voting process. Given a set of ciphertext votes committed to a bulletin board, any individual can

verify that the tally is correctly determined by using the proof. Let ¢y, ¢z, ..., ¢;, denote the set of ciphertext
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votes and let T denote the tally. A NIZKP can be used to prove that T is a correct aggregation of the votes,
i.e., there exists a set of plaintext votes m, my, ..., m, such that Enc(m;) = ¢; forall i, and T = Z;‘zl m;,
without revealing any information about individual m;’s.

By guaranteeing both the correctness of the tally and the privacy of individual votes, NIZKPs enhance
trust in the voting process, ensuring the reliability and accuracy of digital voting systems.

They may also be used between authorities and voters, such as when people want to be convinced of
the validity of the tally (universal verifiability) or when a voter wants to be convinced of the correctness of
their vote’s encryption (individual verifiability).

2.1.3 Secret Sharing

Secret sharing [112, 110, 72] is a method in cryptography where a secret is divided into parts, giving each
participant its own unique part. To reconstruct the original secret, a minimum number of parts is re-
quired. In the threshold scheme of secret sharing, this minimum number is less than the total number of
parts. Otherwise, all participants are needed to reconstruct the original secret.

The concept of secret sharing was introduced by Adi Shamir in 1979 in a method now known as
Shamir’s Secret Sharing. It is a form of the threshold scheme and is based on polynomial interpolation.

Let’s consider a secret S that we want to share among 7 participants in such a way that any k of them
can reconstruct the secret, but k — 1 or fewer of them have no information about S. The procedure in

Shamir’s Secret Sharing scheme is as follows:

1. Choose a prime number p such that p > max(n, S).

2. Choose k - 1 random coefficients ay, a, ..., ax_ from Z,,.

3. Define a polynomial f(x) = S+ a1 x+ asX* +...+ ap_, x*71.

4. For each participant i (1 < i < n), compute f (i) and give him the pair (i, f (7).

Now, if any group of k participants pool their pairs, they can reconstruct the polynomial f(x) using
polynomial interpolation, and hence retrieve the secret S = f(0).

The basis of the scheme is that any k points on a polynomial of degree k — 1 uniquely define the poly-
nomial. Therefore, the polynomial (and hence the secret) can be reconstructed given k points. However,
k — 1 points give absolutely no information about the polynomial, making the secret safe if fewer than k
participants combine their shares.

Shamir’s Secret Sharing is a highly sophisticated and potent scheme, offering an ideal balance be-
tween the confidentiality of the information and the capability to reassemble it when needed. However,
a critical point of consideration is its lack of participant authentication measures; anyone possessing
k shares can reconstruct the secret. This aspect necessitates the integration of supplementary security
measures in real-world applications to verify participant identities.

One such commonly employed measure is threshold decryption, particularly in voting systems. In
threshold decryption, a minimum number of participants (threshold) is required to decrypt a message.
This adds an extra layer of security by ensuring that no single participant can access the information
without the necessary threshold of consensual participants. Thus, while Shamir’s Secret Sharing forms
the backbone of data security, its effective application often necessitates additional layers of security such

as threshold decryption to ensure participant authenticity and data integrity.
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2.1.4 Public Key Encryption Scheme

In the conventional paradigm of secure communication, commonly referred to as symmetric key encryp-
tion, the involved parties, Alice and Bob, utilize a shared secret key for both the encryption and decryption
processes. Consequently, they must exchange this secret key in advance and safeguard its confidential-
ity throughout their desired period of secure communication. In their influential paper [94], Diffie and
Hellman introduced the concept of a public-key encryption scheme, which distinguishes itself from sym-
metric encryption schemes by employing two distinct keys for encryption and decryption operations.
Within a public-key encryption scheme, the encryption key is represented by the public key, enabling
anyone possessing knowledge of this key to encrypt a message. On the other hand, the private key func-
tions as the decryption key, granting exclusive access to the original message solely to the owner of the
private key. Remarkably, an adversary attempting to decipher ciphertexts encrypted with the public key
finds it futile to utilize the encryption key. Consequently, the public key can be published or broadcasted
without concern for eavesdropping, facilitating secure communication without necessitating a private

channel for key distribution [80].

Definition 1. A public-key encryption scheme is a tuple of three probabilistic polynomial-time algorithms
P*e(K, gen» Enc, Dec) applied to three sets, the keyspace K, the message space M, and the ciphertext space C,

such that:

e Kgen(1Y) — (PK, SK): The key generation algorithm takes the security parameter, ¢, as an input and
returns a pair of keys (PK, SK) from the keyspace K. We refer to the first component, PK, as a public
key, which defines a message space, M, and the second SK as private (or secret key). It requires that

both keys have a length polynomial in terms of the security parameter.

e Enc(PK, m) — c: The encryption algorithm is a probabilistic polynomial-time algorithm that takes

as input a message m € M and the public key and returns a ciphertext c € C.

* Dec(SK,c) — MU{L}: Thedecryption algorithm is a deterministic algorithm that takes the ciphertext
c and the secret key SK as inputs and returns the message m' from the message space or | as denoting

failure.
Security Requirements. A public-key encryption scheme must possess the following properties:

* Correctness: The output of the decryption algorithm should be the original message, except with

negligible probability over the randomness of the key generation and encryption algorithms:

¢ Security: When considering security within a public-key encryption scheme, it is necessary to ad-
dress the “security guarantee” and the “adversarial model,” which define the adversary’s capabili-
ties. By doing so, precise definitions for different flavors of security notions can be established, such

as adaptive versus non-adaptive attacks, and chosen-plaintext versus chosen-ciphertext attacks.

The basic notion of security for a Public Key Encryption (PKE) is semantic security, which states that
no probabilistic polynomial-time (PPT) adversary, given two messages mg and m;, and a ciphertext ct,
can guess whether ct is the encryption of my or m, better than a random guess.

Semantic security is the fundamental security concept in a public-key system, asserting that an ad-
versary, who selects messages mg and m;, and receives the ciphertext ct, cannot differentiate whether ct
corresponds to the encryption of mg or m;. Hence, taking into account the adversary’s power, we define

the following security notions [9]:
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IND-CPA-Adaptive adversary

Challenger Adversary
(pk, sk) — ngn(lf)
pk
(mo,m1) — o/ (1%, pk)
(mg,my)
p 10,1
ct — Enc(pk, mg)
ct
ﬁ*

FIGURE 2.1: Experiments for CPA security

IND-CCA-Adaptive adversary

Challenger: Adversary:
(pk, sk) — Kgen(1 é)
pk
of ()™ 9D Dec()
(mo, m1) — </ (14, pk)
(mo,my)
s 10,1

ct — Enc(pk, mﬁ)
ct

M(Ct)ﬁ@ec(.)
g

FIGURE 2.2: Experiments for CCA security

¢ IND-CPA Security against an adaptive adversary: An adaptive adversary selects messages my and
m, after receiving the public key of the encryption scheme. A public-key encryption scheme is in-
distinguishable against chosen plaintext attacks (IND-CPA for short) if the advantage of any proba-
bilistic polynomial-time (PPT) adversary in Expf;a'nA(l[ ) (as shown in Figure 2.1) is negligible with

respect to the security parameter.

* IND-CCA Security against an adaptive adversary ensures a high level of security in which the ad-
versary has access to a decryption oracle. It means that the adversary can query some string ct to
the decryption oracle and receive some message m such that Dec(ct) = m or L. An adaptive adver-
sary can query after determining the message mg and m;, whereas non-adaptive adversaries can
only have access to the decryption oracle before selecting the messages. A public-key encryption
scheme is indistinguishable against chosen plaintext attacks (IND-CPA for short) if the advantage
of any PPT adversary in the experiment in Figure 2.2 would be negligible in terms of the security

parameter.

The ElGamal encryption system, named after its inventor Taher ElGamal, is one such public key
encryption scheme. It is based on the Diffie-Hellman key exchange protocol and is considered secure
against passive adversaries if the computational Diffie-Hellman problem is unsolvable.

The ElGamal system involves three steps:
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1. Key Generation: A large prime number p and a generator g of the multiplicative group of integers
modulo p are chosen. The private key x is a randomly chosen integer from {1, ..., p — 2}, and the

public key y is computed as y = g¥ mod p. The public key (p, g, y) is then published.

2. Encryption: To encrypt a message m into a ciphertext ¢, an ephemeral key k is randomly chosen
from {1,...,, p —2}. The ciphertext c is then a pair (cy, ¢p), where ¢; = gk mod p and ¢, = m * yk

mod p.

3. Decryption: To decrypt a ciphertext (cy, ¢z), the recipient uses their private key x to compute s = ¢y

mod p, then computes m = c,/s mod p.

The security of the ElGamal encryption system relies on the difficulty of the discrete logarithm prob-
lem. If an adversary can solve this problem efficiently, they could compute the private key from the public
key and decrypt any message.

For a more detailed description of the ElGamal encryption system, please see [49].

2.1.5 Homomorphic Encryption

Homomorphic encryption is a cryptographic scheme that allows computations to be performed on en-
crypted data without decrypting it. In other words, it enables performing mathematical operations di-
rectly on encrypted data, producing an encrypted result that, when decrypted, corresponds to the de-
sired result of the operations. This property makes homomorphic encryption a powerful tool for privacy-
preserving computation.

Let’s consider a simplified representation of a homomorphic encryption scheme using the Paillier
cryptosystem which is additively homomorphic.. In this scheme [99] , the public key consists of a mod-
ulus N and a public encryption key g, while the private key consists of a secret factorization of N into
its prime factors. Given a plaintext message m, the encryption process involves randomly selecting a

non-zero integer r and computing the ciphertext c as follows:

c=g"-r¥ mod N?

To perform computations on encrypted data, we can use the properties of the Paillier cryptosystem.
One important property is the homomorphic addition property, which states that multiplying two ci-
phertexts together corresponds to adding their respective plaintexts modulo N. Mathematically, given
ciphertexts c; and c; representing plaintexts m; and my, respectively, the multiplication of ciphertexts c;

and c, yields a new ciphertext c3 representing the sum of m; and my:

c3=cC1-c; mod N?

Similarly, we have the homomorphic scalar multiplication property, which allows multiplying a ci-
phertext ¢ by a plaintext m without decrypting the ciphertext. This operation results in a new ciphertext
¢’ representing the product of the plaintext m and the original plaintext represented by c:

¢ =¢™ mod N?

These properties enable performing computations on encrypted data without revealing the plain-
texts, ensuring privacy while obtaining valid results. In summary, homomorphic encryption allows com-
putations to be performed on encrypted data by leveraging mathematical properties of the encryption
scheme. This capability enables secure and private data processing in scenarios where sensitive informa-

tion needs to be kept confidential while still allowing useful computations to be carried out.
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As another example, we can mention the Boneh-Goh-Nissim (BGN) cryptosystem which is a pairing-
based cryptosystem that supports the evaluation of quadratic multivariate polynomials on encrypted
data. The BGN cryptosystem is semantically secure under the Decisional Composite Residuosity Assump-
tion (DCRA).

The BGN cryptosystem is defined over a bilinear group of composite order. Let N = pg be a composite
number where p and g are two large primes. Let G;, G2, and Gt be groups of order N, andlete: G; x Gy —
Gr be a bilinear map. The BGN cryptosystem is defined as follows:

1. Key Generation: Choose a random generator g € G; and a random element h = g° € G; for some
random s € Zy,. The public key is (g, h) and the private key is s.

2. Encryption: To encrypt a message m € Zy, choose a random r € Z}, and compute the ciphertext
c=g"h" € G.

3. Decryption: To decrypt a ciphertext ¢ € G;, compute m = logg (c/ h*) mod N.

The BGN cryptosystem supports the homomorphic evaluation of quadratic polynomials. Given the
encryptions of m;, my € Zy, one can compute an encryption of m;m, mod N as e(cy, ¢2) € Gr. For more

details, you can refer to the original paper [25].

2.1.6 Re-Encryption

Re-encryption is the process of generating a new encrypted version of a message from an existing en-
crypted version, without the need to decrypt the original message. This property is a direct result of the
homomorphic property, and it can be useful for electronic voting schemes that need to ensure the privacy
of individual votes e.g. for mix-nets, see next subsection.

For notation let, E,(m) represent the encryption of a plain-text message m using a secret key r, and
D(c) to represent the decryption of an encrypted message c. The re-encryption algorithm is defined as
RE;(c) = c®E,(1), where 1 is the plain-text identity element of the group of plain-texts. This means
that, if ¢ is an encrypted message and m is the corresponding plain-text message, then RE, (c) is a new
encrypted version of m that can be decrypted to obtain the same plain-text message m. Importantly, this
new ciphertext is indistinguishable from fresh encryption of the same plaintext, a property that can be
incredibly useful. This property can be useful for ensuring the privacy of individual votes in an electronic
voting system because it allows a voter to prove that they have cast a vote without revealing the actual

vote.

2.1.7 Mix-net

A mix-net is a type of network protocol that is often used in electronic voting systems to protect the
anonymity of voters. This system was initially proposed by David Chaum [34] in 1981 to ensure the
privacy of communications over public networks. Subsequently works including [1, 3, 26, 32, 60] have
used Mix-net or its variant in their constructs. Mix-nets work by routing data, such as ballots, through
a network of authorities, known as mix-servers, which shuffle the data before forwarding it to the next
authority. This process, known as mixing, conceals the order of the data, which protects the anonymity
of the voters who cast the ballots.

There are several different types of mix-nets, each with its own specific structure and features. Some
mix-net protocols use zero-knowledge proofs, re-encryption, or secret sharing to protect the anonymity
of the data being shuffled.
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In most mix-net protocols, the setup and operation of the mix-net follow a similar pattern. First, the
mix servers are chosen and their public keys are made available. Before the election, ballots are generated
using the mix-servers’ public keys. During the election, voters cast their ballots, which are encrypted and
sent through the mix-net. As the ballots pass through the mix-servers, they are decrypted using the mix-
servers’ secret keys and re-encrypted in a different order. This shuffling process protects the anonymity
of the voters. Finally, the ballots are tallied, normally by verifiable decryption, i.e. decryption with zero-

knowledge proofs of correct decryption (see above section), and the results of the election are determined.

2.2 Introduction to E-Voting Backgrounds

We are exploring the history and evolution of voting methods and providing an overview of the compo-

nents of electronic voting systems that will be discussed in more detail in the following chapters.

2.2.1 Contemporary Voting Systems

The paper-based election method is one of the most widely used voting mechanisms for consulting peo-
ple on key choices. In this method, voters arrive at a polling station on election day and are authenticated
before receiving a ballot. They then cast their vote in a transparent ballot box in front of a representative
of the election authority and sign a register to confirm their vote. After the voting phase is complete, the
authority publicly opens the ballot box, counts the ballots, and publishes the election results.

While this method has been effective in many cases, it is still vulnerable to scams and other forms of
fraud. However, many people believe that a paper-based election system has certain qualities that make
it trustworthy, such as the anonymity of the vote. Despite its limitations, this method continues to be
used in many elections around the world.

The standard procedure for paper-based elections can be time-consuming, particularly the process of
counting and tallying the ballots. This can delay the publication and implementation of election results.
In order to speed up this process and maintain certain requirements such as voter privacy, electronic
voting systems have been developed. These systems allow for a more rapid count of the ballots, with
results often available within an hour of the end of voting. This can greatly reduce the time it takes to
determine the winner of an election and make decisions based on the results.

Since the 1980s, electronic voting systems have been the subject of extensive research. As a result, a
large number of protocols for electronic voting have been developed. However, as the number of pro-
tocols has increased, so have the security requirements that these protocols must meet. As a result,
researchers continue to explore new and existing cryptographic techniques in order to develop secure
electronic voting algorithms. This is an ongoing area of study, as the security of electronic voting systems
is of critical importance in ensuring the integrity of the electoral process.

2.2.2 Fundamental Knowledge

We will provide an overview of the key characteristics that electronic voting systems should possess. There
is some disagreement among researchers and writers about the specific requirements for these systems,
but the majority agree on the need for secrecy and authenticity in electronic voting protocols. These
characteristics are similar to those of paper-based elections, and are essential for ensuring the integrity
of the electoral process. Some of the key features that electronic voting systems should strive to achieve

include:
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¢ Correctness: The system should be able to accurately determine the outcomes of an election and

provide verifiable results.

 Privacy: The system should protect the privacy of voters by concealing their identities and ensuring

that their choices cannot be traced back to them.

¢ Receipt-freeness: The system should not provide any evidence or confirmation of a voter’s choices,

in order to prevent vote-selling and coercion.

* Robustness: The system should be able to withstand various forms of attack or manipulation, in-

cluding errant behavior.

e Verifiability: The system should be trustworthy and transparent, allowing interested parties to ver-

ify its operation and the accuracy of the results.

* Democracy: The system should ensure that only registered voters are able to cast their ballots, and

that each individual is only able to vote once.

¢ Fairness: The system should not provide any information about the election to voters during the

voting phase, in order to prevent them from being influenced by partial or incomplete information.

2.2.3 Security Properties

Developing a viable voting protocol is a challenging task, as there are many security requirements that
must be met in order to ensure the reliability and integrity of the system. However, it is difficult to de-
sign a protocol that meets all of these requirements simultaneously, as some of them may be conflicting
or inconsistent. For example, as discussed in [35], it is generally impossible to achieve both universal
verifiability of the tally and unconditional privacy of the votes unless all registered voters participate in
the election. The design of electronic voting systems must carefully balance the various security require-
ments in order to provide a reliable and trustworthy system. This can be a difficult task, but it is essential
for ensuring the integrity of the electoral process and maintaining the trust of voters.

For example, it is demonstrated that it is impossible to achieve

» Universal verifiability of the tally means that any interested party can verify the accuracy of the
election results, while unconditional privacy of the votes means that the identity of the voter is pro-
tected and cannot be traced back without any trust or computational. It is impossible to achieve
both of these properties concurrently unless all registered voters participate in the election. This is
because if some voters do not participate, their lack of participation could potentially reveal infor-

mation about their vote, compromising the privacy of the voting process(See [35]).

* Universal verifiability of the tally means that any interested party can verify the accuracy of the
election results, while receipt-freeness means that the system does not provide any confirmation
or evidence of a voter’s choices. It is difficult to achieve both of these properties unless the voting
procedure includes interactions between multiple voters and possibly the voting authority. This is
because receipt-freeness requires that the system does not provide any confirmation of a voter’s
choices, which makes it challenging to verify the accuracy of the tally without additional interac-
tions.

To begin, we will provide a an informal definition for each security property. This will allow us to
understand the various interpretations of these properties and how they are applied in different contexts.
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2.2.3.1 Privacy

The concept of privacy in elections refers to the ability of voters to cast their votes without fear of retali-
ation or coercion. In this context, the principle of secrecy of the ballot is crucial for ensuring that voters

can exercise their right to vote freely and without fear.

2.2.3.2 Receipt-freeness

Intuitively, an election protocol is considered receipt-free when a voter , referred to as A, is unable to pro-
vide conclusive evidence to a potential coercer or vote-buyer, denoted as C, regarding the specific manner
in which she cast her vote. In this context, we assume that A is willing to collaborate E.g. getting money
from C. Maybe also define that the interaction is after voting. The concept of receipt-freeness ensures
that such collaboration would be futile because C would be unable to acquire any proof concerning A’s
voting choices [46].

Receipt-freeness bears resemblance to the notion of privacy, which asserts that an unauthorized in-
dividual cannot obtain information regarding A’s voting behavior. However, receipt-freeness goes a step
further by incorporating an additional assumption: A’s willingness to cooperate with an intruder, denoted
as C, by sharing her secret key and other confidential information generated throughout the election pro-
tocol. Consequently, receipt-freeness implies the guarantee of privacy, in that A’'s voting choices remain

undisclosed even when she voluntarily engages with C during the voting process.

2.2.3.3 Coercion-Resistence

The interpretation of coercion-resistance in scholarly works is shaped by the complexities of assessing an
attacker’s abilities and the permissible degree of coercion. Historically, the concept of coercion-resistance
was largely associated with receipt-freeness, as demonstrated by numerous definitions [15, 95, 76, 45].
Nevertheless, receipt-freeness does not cover all possible coercive attacks. As a result, it’s crucial to em-
brace a broader understanding of coercion-resistance that includes all potential coercive actions that
could influence an election’s outcome. Given the lack of a universally accepted definition for coercion
and coercion-resistance [64], we've opted to employ a comprehensive definition of coercion-resistance
that covers a broad spectrum of attacks.

This viewpoint is inspired by Juels et al. [78], who suggested that a voting system is deemed coercion-
resistant if it’s virtually impossible for an attacker to verify whether a voter has complied with a coercer’s
demand. They further elaborated that a coercion-resistant voting system should effectively combat three
coercion tactics:

¢ Compelling the voter to refrain from participating in elections.
¢ Pressuring the voter to submit an invalid vote.

¢ Manipulating the voter’s credentials to cast a legitimate vote on their behalf.

In a remote environment where the adversary can persistently observe the voter from registration
to the conclusion of voting, achieving coercion-resistance is extremely challenging. However, it’s unlikely
that intrusive attacks of this kind can be effectively scaled. Therefore, a more pragmatic approach involves
examining coercion within election-related subprocesses.

Benaloh [13] divides coercion into three temporal phases: before voter registration, between regis-
tration and voting, and post-voting. It’s important to recognize that these phases impose varying con-
straints on the adversary. For example, averting coercion when the voter can be coerced before regis-
tration is difficult, as the coercer might obtain valid voting credentials. If coercion is attempted post-

registration but pre-voting, the success of the coercion attack hinges on the attacker’s abilities and the
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anti-coercion mechanisms incorporated in the voting system. However, if coercion is attempted post-
voting, a coercion-resistant voting system should protect both the attacker and the voter from being able
to confirm the voting choice, thereby preserving the vote’s privacy. Therefore, the key characteristic of

coercion-resistance is the assumptions that limit the adversary’s abilities.

2.2.3.4 Verifiability

In general, verifiability in the context of voting refers to the ability of participants or third parties to verify
that an election has been conducted properly and that the results accurately reflect the votes cast. There
are two main types of verifiability: universal (or public) verifiability, which allows anyone to verify the
authenticity of individual votes and the final tally, and individual verifiability, which allows each eligible
voter to verify that their vote was properly counted. Ensuring that a voting system has these qualities can
help to ensure the integrity of the election and provide confidence in the results.

Different authors have proposed slightly different definitions of verifiability in the context of voting.
For example, FOO [55] defines verifiability as the ability to ensure that nobody can alter the outcome of an
election. Weber [125] defines universal verifiability as the ability of anyone to verify that the voting pro-
cedure has processed and counted all legitimate votes, and defines individual verifiability as the ability
of each voter to confirm that their own vote was accurately included in the final result. These definitions
all emphasize the importance of being able to verify the integrity and accuracy of the voting process. Tu-
instra and Benaloh [16] define verifiability in terms of the ability of voters to be satisfied that the election
results truly reflect the sum of all votes cast. They propose that an election system is considered to be
verifiable if a specifically designated output shared by all participants who follow proper procedures pro-
duces a common correct tally with a probability of at least 1 — zﬂN for a given security parameter N. This
definition emphasizes the importance of ensuring that the election results accurately reflect the votes
cast, and that voters can have confidence in the integrity of the election. Lee, Boyd, and others [85] de-
fine verifiability in terms of the ability to ensure that all legitimate votes have been included in the final
result. They propose that in order to achieve this, all essential communications must be made public and
the correctness of all procedures (including voting, mixing, and tallying) must be independently verified.
This definition emphasizes the importance of transparency and independent verification in ensuring the
integrity of the election and the accuracy of the results.

Radwin [44] defines individual verifiability in terms of a voter’s ability to confirm that their vote was
correctly received by the voting authority. This enables the voter to have confidence that their vote was
counted properly and provides them with documentation that can be used to file a complaint if their vote
is miscounted. Radwin also discusses the importance of universal verifiability, which allows any voter or
third party to verify that an election was conducted correctly at a later date. This enables easy auditing of
the election and is considered desirable as long as the cost is not too high. This definition emphasizes the
importance of both individual and universal verifiability in ensuring the integrity of the voting process.

Cohen and Fischer [39, 12] define verifiability in terms of the confidence with which a voting scheme
can be verified. They propose that a method is considered confidently verifiable if the check function
meets certain criteria for random runs using a security parameter N. Specifically, if the government is
honest, there should be a good chance that the check will be valid and the government will disclose an
accurate count. Regardless of the government’s integrity, the joint probability that the check will provide
accurate results and the government will disclose an accurate tally (or release any tally at all) should be
low. Verifiability is defined as the ability of a scheme to be verified with confidence §, where ¢ is a function
of the security parameter N and is defined as § = ﬁ for some non-constant polynomial p with a positive
leading coefficient. This definition emphasizes the importance of having a high level of confidence in the
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verifiability of a voting scheme, and the need to ensure that the check function meets certain criteria for
random runs.

Rjaskova [104] defines individual verifiability in terms of each qualified voter’s right to check that their
vote was properly tallied. She also discusses universal verifiability, which allows any participant or passive
spectator to verify that the election is fair and that the final tally announced is the true total of votes cast.
This definition emphasizes the importance of both individual and universal verifiability in ensuring the

integrity of the voting process and the accuracy of the election results.
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CHAPTER 3

INTRODUCTION TO FORMAL
VERIFICATION VIA THE HOARE LOGIC

The chapter covers some background on formal verification, including Hoare Logic and introduces a
small programming language. It includes an examination of assignments, sequences, conditionals, and
WHILE-commands, as well as a summary of their syntax. The chapter also discusses Hoare’s notation and
the axioms and rules of Hoare Logic, including the assignment axiom, precondition strengthening, and
postcondition weakening. This information provides a foundation for Chapter 6 where we use EASYCRYPT

proof assistant to show MiniVoting scheme satisfy some privacy definition.

3.1 Hoare Logic and Formal Verification

Hoare logic, also known as Floyd-Hoare logic or Hoare rules, is a formal system that contains a set of
logical rules for reasoning rigorously about the correctness of computer programs. It was proposed in
1969 by the British computer scientist [73] and logician Tony Hoare, and subsequently refined by Hoare
and other researchers. The original ideas were seeded by the work of Robert W. Floyd, who had published
a similar system

The central feature of Hoare logic is the Hoare triple. A triple describes how the execution of a piece
of code changes the state of the computation. A Hoare triple is of the form {P} C {Q} where P and Q
are assertions and C is a command. P is named the precondition and Q the postcondition: when the
precondition is met, executing the command establishes the postcondition. Assertions are formulae in
predicate logic.

Hoare logic provides axioms and inference rules for all the constructs of a simple imperative program-
ming language. In addition to the rules for the simple language in Hoare’s original paper, rules for other
language constructs have been developed since then by Hoare and many other researchers. There are
rules for concurrency, procedures, jumps, and pointers.

Formal proof techniques, such as induction or program transformation, can be used for this purpose.

Hoare logic is a significant tool in program verification, providing a systematic method to prove program
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correctness, and enabling the detection and rectification of errors prior to program deployment. It is also
a powerful tool for specifying and verifying the behavior of complex systems, including distributed and
concurrent programs.

Example: Let’s consider a simple program that increments a variable x by 1. The precondition P is
x = n (where n is a natural number), the postcondition Q is x = n+ 1, and the program & is “x = x +
1”. According to Hoare logic, the Hoare triple {P} & {Q} is true, which means if x = n holds before the
execution of “x=x+ 1”, then x = n + 1 will hold after the execution.

3.1.1 Alittle programming language

In this context, a program is a set of instructions that are executed by a computer in order to perform a
specific task. These instructions can include assignments, which assign a value to a variable; conditionals,
which execute a specific block of code based on the truth value of a given condition; and other types of
statements such as loops and function calls.

The phrases “program” and “command” are often used interchangeably, with the term “program” typ-
ically reserved for a set of commands that together form an algorithm. The term “statement” refers to
conditions on program variables that appear in correctness requirements. However, there is a potential
for ambiguity, as some authors may use this term to refer to individual commands. The syntax of a pro-
gramming language refers to the rules for constructing and formatting valid instructions in the language.
The semantics of a programming language, on the other hand, refers to the meaning of these instructions
and how they are executed by the computer.

It is important to introduce these concepts to provide a foundation for explaining Hoare logic, which
is a formal system used to reason about the correctness of programs. By understanding the fundamen-
tal components and terminology of programs, we can delve into the application of Hoare logic and its
significance in ensuring program correctness.

The following notations are used to represent the different elements of a program:

e The notations V, Vj,..., V, represent arbitrary variables.

e E, Ey,..., E, represent arbitrary expressions (or terms). These are symbols, such as X+ 1 or V2, that

represent values (often numerals).

¢ §,81,...,S, represent arbitrary assertions. These are conditions that are either true or false, such as
X<YandX?=1.

* C, Cy,...,C, represent the arbitrary instructions in a programming language. These may include
assignments, conditionals, loops, and other types of statements. The specific syntax and semantics

of these instructions will depend on the particular programming language being used.

3.1.2 Assignments

An assignment statement in a programming language is a command that allows you to modify the value
of a variable. The syntax of an assignment statement is represented by the formula V := E, where V
represents a variable and E represents an expression. The semantics of the assignment statement indicate
that it changes the state of the program by assigning the value of the expression E to the variable V.

For example, the assignment statement X := X+ 1 increases the value of the variable X by one. This
statement is interpreted as follows: the current value of the variable X is retrieved, the value of X + 1 is
calculated, and then the value of X + 1 is assigned back to the variable X.
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It's worth noting that the scope of a variable refers to the part of the program where the variable is vis-
ible and can be accessed. A global variable is visible and can be accessed throughout the entire program,
while a local variable is only visible and accessible within a specific block of code, such as a function or
loop.

3.1.3 Sequences

The syntax and semantics described above correspond to a sequence of instructions in a programming
language. The syntax of a sequence of instructions is given by the formula Cy;--- ; C,, where Cy, ..., C, rep-
resent individual instructions. The semantics of a sequence of instructions indicate that the instructions
Cy,...,C, are performed in the given order.

In the example given, the sequence of instructions R:=X; X:=Y; Y:=R uses the temporary variable R to
reverse the values of the variables X and Y. This sequence of instructions is interpreted as follows: the
value of X is assigned to R, the value of Y is assigned to X, and then the value of R is assigned to Y. As a

result, the values of X and Y are swapped, and the value of R is changed to the previous value of X.

3.1.4 Conditionals

The syntax and semantics described above correspond to an if-then-else statement in a programming
language. The syntax of an if-then-else statement is given by the formula IF S THEN C; ELSE C,, where
S represents an assertion (a condition that is either true or false) and C; and C, represent instructions.
The semantics of an if-then-else statement indicate that if the assertion S is true in the current state, the
instruction C) is performed. If S evaluates to false, the instruction C; is performed instead.

In the example given, the if-then-else statement IF X < Y THEN MAX := Y ELSE MAX := X assigns
the maximum of the values of X and Y to the variable MAX. This if-then-else statement is interpreted as
follows: if the value of X is less than the value of Y, the value of Y is assigned to MAX; otherwise, the value
of X is assigned to MAX.

3.1.5 WHILE-commands

A while loop in a programming language is a control flow statement that allows you to repeatedly execute
a block of code as long as a certain condition is true. The syntax of a while loop is given by the formula
WHILE S DO C, where S represents an assertion (a condition that is either true or false) and C represents
an instruction. The semantics of a while loop indicate that if the assertion S is true in the current state,
the instruction C is performed, and then the while loop is repeated. If S evaluates to false, the while loop
ends and the instruction C is not performed.

For example, the while loop WHILE —(X = 0) DO X := X—2 decreases the value of X by 2 repeatedly
until the value of X becomes zero. This while loop is interpreted as follows: if the value of X is not equal
to zero, the value of X is decreased by 2 and the while loop is repeated; otherwise, the while loop ends.
Therefore, if the value of X is an even, non-negative integer, this while loop will terminate (with X having
the value 0). In every other state, the while loop will continue to run indefinitely. It’s important to ensure
that the assertion S will eventually evaluate to false, otherwise the while loop will run forever (resulting in
an infinite loop).
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3.1.6 Summary of syntax

The Backus-Naur Form (BNF), named after its creators John Backus and Peter Naur [79], is a widely used
notation for formal description of syntax in computer languages. First introduced in the report for AL-
GOL 60 programming language in 1960, BNF provides a grammatical framework that can represent the
structure of any string generated by a context-free language.

BNF uses a series of rules, which are definitions of a syntax notation. Each rule is expressed as a se-
quence of terminal symbols (concrete symbols present in the language) and non-terminal symbols (ab-
stract symbols that represent sets of strings). A BNF grammar is a set of derivation rules, consisting of
a sequence of these symbols, often separated by a “: =" to denote that the sequence on the left can be
replaced by the sequence on the right.

Here is a simple example of a BNF grammar for a small subset of English:

<sentence> := <subject> <verb> <object>
<subject> := I | You | Bob | Alice
<verb> := love | hate

<object> := hamburgers | programming

In this example, <sentence>, <subject>, <verb>, and <object> are non-terminal symbols
that represent different sets of strings in the language. “I”, “You”, “Bob”, “Alice”, “love”, “hate”, “hamburg-
ers”, and “programming” are terminal symbols.

This BNF notation summarizes the syntax of a small programming language that includes assignment
statements, sequences of commands, if-then-else statements, and while loops. The notation consists of

four rules, each of which defines a different type of command in the language:

¢ The firstrule <variable>:=<term> defines an assignment statement, which has the form <variable>:=<term>,

where <variable> represents a variable and <term> represents an expression.

¢ The second rule <command>; . . . ; <command> defines a sequence of commands, which can be

written as <command>; . . . ; <command>, where ; separates each individual command.

¢ The third rule IF <statement> THEN <command> ELSE <command> defines an if-then-else state-
ment, which has the form IF <statement> THEN <command> ELSE <command>, where <state-

ment> represents an assertion and <command> represents an instruction.

¢ The fourth rule WHILE <statement> DO <command> defines a while loop, which has the form
WHILE <statement> DO <command>, where <statement> represents an assertion and <command>

represents an instruction.

3.1.7 Hoare’s notation

Hoare introduced the notation {P}C{Q}, known as a Hoare triple, for specifying the behavior of a pro-
gram in an influential paper [73]. In this notation, C represents a program written in the programming
language for which specifications are being made, and P and Q are conditioned on the variables used in
the program. A Hoare triple {P}C{Q} is considered true if, when C is executed in a state fulfilling P, the
execution of C concludes in a state satisfying Q.

To illustrate the use of Hoare triples, consider the following example: X>0Y:=XY > 0. In this case, P
is the condition that X is greater than 0, Q is the condition that Y is greater than 0, and C is the assignment
instruction Y:=X (i.e., “Y becomes X”). The Hoare triple is true because if X is greater than 0, then Y will

also be greater than 0 after the assignment instruction is executed.
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Hoare triples provide a formal method for specifying the behavior of a program and can be used to
prove the correctness of a program. This is particularly useful in ensuring the reliability of programs used
in safety-critical systems. Additionally, Hoare triples allow for abstract reasoning about the behavior of a
program, which can aid in the development of complex software and in identifying and correcting errors
in program design.

A partial correctness specification only requires that the postcondition Q holds if the program C termi-
nates, while a total correctness specification requires both that the program C terminates if it is launched
from a state fulfilling P, and that the postcondition Q holds after termination. Total correctness specifica-
tions are stronger than partial correctness specifications, as they require not only that the postcondition
is satisfied, but also that the program terminates in the expected way.

To give an example, consider a program C that is intended to sort a list of numbers. A partial correct-
ness specification for this program might be {P}C{Q}, where P is the precondition that the input list is
a finite, non-empty list of numbers, and Q is the postcondition that the output list is a permutation of
the input list and is sorted in non-decreasing order. This specification only requires that the output list is
sorted if the program terminates, but does not guarantee that the program will terminate if it is launched
from a state fulfilling P.

On the other hand, a total correctness specification for the same program might be [P]C[Q], where
P and Q have the same meaning as in the partial correctness specification. This specification requires
not only that the output list is sorted, but also that the program terminates if it is launched from a state
fulfilling P. This stronger requirement can be useful, for example, if the program is intended to be used in
a real-time system where it is important that the program always terminates. Total correctness requires
both that the program terminates if it is launched from a state fulfilling the precondition, and that the
postcondition holds after termination. Partial correctness only requires that the postcondition holds if
the program terminates.

It is important to note that total correctness does not imply partial correctness. For example, a pro-
gram that always terminates but produces an incorrect result would be considered to have total correct-
ness (if the precondition does not hold), but not partial correctness. On the other hand, a program that
satisfies the postcondition only under certain conditions but may or may not terminate would be consid-

ered to have partial correctness, but not total correctness.

3.1.8 Axioms and rules of Hoare logic

In summary, the formal proof is a logical argument that demonstrates the truth of a statement, called
a theorem, by showing that it can be derived from a set of axioms and rules of inference. The process
of constructing a formal proof involves writing a series of statements, each of which is either an axiom
or follows logically from previous statements using an inference rule. If a theorem has been formally
proved, we write - S to indicate that it has proof. In some cases, it may be necessary to simply claim that
a theorem can be proved without providing complete formal proof. This may be because the proof is too
complex or involves too many steps to be written out in full, or because the proofrelies on assumptions or
claims that are taken to be true without being formally proved. In such cases, it is important to be explicit
about any assumptions that are being made and to provide as much detail as possible about the proof.
However, in order to maintain the highest level of rigor, it is ultimately necessary to provide a complete
formal proof of any theorem that is claimed to be true. In Hoare logic, the axioms are templates that can
be filled in with specific information to create assertions about the behavior of programs. The inference
rules of Hoare logic allow us to deduce new assertions from previously proven assertions using logical

FS1,FS2,....-Sn
— Fs

reasoning. The notation is used to express an inference rule, which states that if we can prove

the statements - Si,...,F S, then we can conclude that S is also true. The statements - S,..., S, are
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called the hypotheses of the rule, and can be either Hoare logic theorems or mathematical theorems, or a
combination of both.
For example, the sequencing rule is an inference rule in Hoare logic that allows us to deduce an as-

sertion about a sequence of two statements from assertions about the individual statements. The se-

PISIHQE  {Q1S2{R}
{P}S1;S2{R}

precondition P implies the postcondition Q for the first statement S;, and that the precondition Q implies

quencing rule is often expressed in the form , which states that if we can prove that the
the postcondition R for the second statement S, then we can conclude that the precondition P implies

the postcondition R for the sequence of statements Sy; So.

3.1.9 The assignment axiom

In Hoare logic, the assignment axiom is an axiom scheme that specifies the partial correctness of an as-
signment statement of the form “x := E”, where x is variable and E is an expression. The assignment axiom

has the following form:

{P[E/x]}x := E{P}

This axiom states that if we can prove that the precondition P holds after replacing every occurrence
of the variable x with the expression E, then we can conclude that the precondition P holds before and
after the assignment statement “x := E” is executed. In other words, the assignment axiom states that if
the expression E is evaluated and assigned to the variable x, the resulting assignment will not change the
truth of the precondition P. This means that the assignment statement preserves any properties of the

program that are stated in the precondition. For example, consider the following assignment statement:

x=x+1

Suppose we want to prove that the precondition P holds before and after this assignment is executed. We

can use the assignment axiom as follows:

{Pl(x+1)/x]}x:=x+1{P}

If we can prove that the precondition P holds after replacing every occurrence of x with the expression

x+1, then we can conclude that the precondition P holds before and after the assignment is executed.
The assignment axiom is a useful tool for demonstrating the partial correctness of assignment state-

ments in Hoare logic. It allows us to reason about the effects of assignment statements on the program’s

behavior without having to consider the specific details of the expressions being assigned.

3.1.10 Precondition strengthening

In the context of Hoare logic, a program doesn’t “satisfy” a precondition per se. Instead, a precondition is
a condition that should be satisfied (i.e., hold true) before the execution of a program or a specific part of
the program (e.g., a function or a block of code). A program is said to “meet” a precondition if the state of
the system (the values of variables, the state of memory, etc.), when the program starts execution, satisfies
the precondition.

Once a precondition is met, the program promises to deliver a certain result or bring the system into
a certain state, which is expressed as a postcondition. The relationship between preconditions, the pro-
gram, and postconditions is often expressed in the form of a Hoare triple: {P} C {Q}, where P is the pre-

condition, C is the command (or program), and Q is the postcondition.
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Here’s a simple example of a function that increments a number:

{x = n}increment(x) {x =n+1} 3.1)

In the above Hoare triple, the precondition is “x = n”, which means that before the execution of the

“y» “

“increment(x)” function, the variable “x” should be equal to “n”. The postcondition is “x=n + 1”, which
means that after the execution of “increment(x)”, the variable “x” should be equal to “n + 1”. If the pre-
condition is met before the function executes, and if the function is correct, then the postcondition will
be true after the function executes.

The precondition strengthening rule is a rule that allows you to strengthen the precondition of a pro-
gram or a program block. This rule states that if a program or program block satisfies its original pre-
condition, then it also satisfies a stronger precondition. The precondition strengthening rule can then be
stated as follows:

If {P}C{Q} and P’ implies P, then {P'}C{Q}. One way to understand the precondition strengthening rule
is to think of the precondition as a set of conditions that must be satisfied before a program or program
block can be executed. The stronger precondition P’ is a larger set of conditions that includes the original
precondition P as a subset. The precondition strengthening rule is useful in program verification, as
it allows you to make the preconditions of a program or program block stronger without changing the
program or program block itself. This can be useful in situations where you want to make sure that a
program or program block is only executed under certain conditions, or where you want to make sure

that certain conditions are satisfied before a program or program block is executed.

3.1.11 Postcondition weakening

The postcondition weakening rule states that if a program C satisfies a stronger postcondition Q', and Q'
implies Q, then C also satisfies the weaker postcondition Q. In other words, if we can prove that C satisfies
a stronger postcondition, we can also prove that it satisfies a weaker postcondition. The postcondition
weakening rule is often used in conjunction with the precondition strengthening rule, which allows the
programmer to strengthen the precondition of a program while preserving its correctness. Together, these
rules allow the programmer to modify the precondition and postcondition of a program in order to make
it easier to verify. It is important to note that the postcondition weakening rule should be used with
caution, as it can potentially weaken the correctness of a program. It is always important to ensure that
the weakened postcondition is still satisfied by the program being verified.

3.1.12 Specification conjunction and disjunction

The specification conjunction and disjunction rule allow the combining of multiple partial correctness
statements into a single statement using conjunction (and) or disjunction (or). The specification conjunc-
tion rule states that if a program C satisfies two partial correctness statements {P1}C{Q1} and {P2}C{Q2},
then C also satisfies the conjunction of these statements, {PlandP2} C {QlandQ2}. In other words, if a
program satisfies two partial correctness statements, it also satisfies the conjunction of these statements.
The specification disjunction rule states that if a program C satisfies either of two partial correctness
statements {P1} C {Q} or {P2} C {Q}, then C also satisfies the disjunction of these statements, {P1or P2} C
{Q}. In other words, if a program satisfies either of two partial correctness statements, it also satisfies the

disjunction of these statements.
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These rules can be useful in situations where we want to specify multiple conditions under which a
program is correct, or where they want to specify multiple possible outcomes of a program. For example,

consider the following program:

int max(int x, int y) {
if (x > y) {
return x;
} else {

return y;

We might want to specify two partial correctness statements for this program: one for the case where
x >y, and one for the case where y >= x. Using the specification conjunction and disjunction rule, we
could combine these statements into a single statement as follows:

{(x > vy) or (y >= x)} max(x, y) {return value == max(x, V) }

This single statement specifies that the program max is correct for all possible input values of x and
¥, and that it returns the maximum of x and y. In general, the specification conjunction and disjunction

rule can be useful for specifying complex conditions and outcomes in a program.

3.1.13 The sequencing rule

In Hoare logic, the sequencing rule (also known as the composition rule) states that if we have two pro-
gram statements, P and Q, and if the execution of statement P establishes a certain precondition, R, and
the execution of statement Q establishes a certain postcondition, S, then the execution of the sequence
P; Q establishes the precondition R and the postcondition S. The sequencing rule can be written formally
as follows:

{R}P{S}, {S}Q{T}
{RYP; Q{T}
Here, the curly braces denote the precondition and postcondition, respectively. The symbol “;” repre-
sents the sequencing of two statements, P and Q.
The sequencing rule is a fundamental rule in Hoare logic, as it allows us to reason about the correct-
ness of programs by composing smaller, simpler program statements. It is often used in conjunction with
other rules, such as the assignment rule, the conditional rule, and the loop rule, to prove the correctness

of more complex programs.

3.1.14 The conditional rule

The conditional rule states that if we have a program statement of the form “if (B)P else Q,” and if the
execution of statement P establishes a certain postcondition, S, when the Boolean condition B is true,
and the execution of statement Q establishes a certain postcondition, 7, when the Boolean condition B
is false, then the execution of the entire conditional statement establishes the postcondition S when B is
true, and the postcondition T when B is false.

{B} P {S}if B is true {B} Q {T}if B is false
{B} if (B) P else Q {Sif B else T}
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The symbol “if B is true” and “if B is false” are used to separate the two cases of the conditional state-
ment (when B is true and when B is false).

The conditional rule is a fundamental rule in Hoare logic, as it allows us to reason about the correct-
ness of programs that contain conditional statements. It is often used in conjunction with other rules,

such as the assignment rule and the sequencing rule, to prove the correctness of more complex programs.

3.1.15 The WHILE-rule

the WHILE-rule (also known as the loop rule) is a rule that is used to reason about the correctness of
programs that contain while loops. A while loop is a programming construct that allows a program to
repeatedly execute a block of statements as long as a particular condition (called the loop invariant) is
true. The WHILE-rule can be written formally as follows:

I P {1} INB=>{}Q{l}
{I} while (B) {P; Q } {I A B}

“»

The symbol A represents the logical “and” operator, and the symbol “!” represents the logical “not” oper-
ator. The symbols “{I}” and “{IA!B}” denote the loop invariant, which is a condition that must be satisfied
at the beginning and end of each iteration of the loop, respectively.

The WHILE-rule states that if the loop invariant I is satisfied at the beginning of the loop, if the exe-
cution of statement P preserves the loop invariant (that is, it establishes the loop invariant as its postcon-
dition), and if the execution of statement Q preserves the loop invariant and the Boolean condition B is
true, then the execution of the entire while loop will preserve the loop invariant and terminate when the
Boolean condition B becomes false.

The WHILE-rule is a fundamental rule in Hoare logic, as it allows us to reason about the correctness of
programs that contain while loops. It is often used in conjunction with other rules, such as the assignment

rule and the sequencing rule, to prove the correctness of more complex programs.

3.2 EASYCRYPT Backgrounds

EASYCRYPT is a proof assistant for cryptographic algorithms and imperative programs. It is a formal
demonstration tool that helps users create and validate proofs. It doesn't create a proof independently,
but instead assists in its formation and enables machine-checked verification that each step logically fol-
lows from the last one. EASYCRYPT offers a language to write definitions, programs, and theorems, and an
environment to develop machine-checked proofs [6, 38].

Formal verification, a technique used to prove that a piece of code correctly implements a specifica-
tion, is one of the primary applications of EASYCRYPT. Formal verification and formal methods have been
around since the 1950s, and today they are employed in various ways: from automating the checking of
security proofs to automating checks for functional correctness and the absence of side-channels attacks.
Code verified using such formal verification has been deployed in popular products like Mozilla Firefox
and Google Chrome [38].

EASYCRYPT operates based on a detailed process. Given a description of an algorithm in a natural
language, the goal is to produce two proofs: one that shows that the algorithm has the desired secu-
rity properties and another that verifies the correct implementation of the algorithm. This is achieved
in four steps: turning the algorithm and its security goals into a formal specification, using formal anal-
ysis to prove that the algorithm attains the specified properties, using formal verification to prove that
the implementation correctly implements the algorithm, and using formal verification to prove that the

implementation has additional properties like memory safety, efficiency, etc. [38].
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EASYCRYPT was originally designed for mechanizing the generation of proofs of game-based security
of cryptographic schemes and protocols. However, it has been extended to mechanize proofs of the secu-
rity of cryptographic protocols within the universally composable (UC) security framework. This makes
it possible to mechanize and formally verify the entire sequence of steps needed for proving simulation-
based security in a modular way. These steps include specifying a protocol and the desired ideal func-
tionality, constructing a simulator and demonstrating its validity via reduction to hard computational
problems, and invoking the universal composition operation, and demonstrating that it indeed preserves
security [30].

3.2.1 Foundations

EASYCRYPT is a proof assistant that uses the objective-directed proof methodology, which is a technique
for constructing formal proofs in a logical system. The objective-directed proof methodology involves
breaking down the proposition that needs to be proven into smaller, more manageable subproblems,
and then using tactics to solve these subproblems until the original proposition has been proven. The
objective-directed proof methodology is often used in the Coq proof assistant, which is a popular tool for
constructing and verifying formal proofs in computer science. EASYCRYPT is an extension of Coq that is
specifically designed for proving the security of cryptographic systems. In the objective-directed proof
methodology, the user inputs a proposition that they want to prove, along with a name for future ref-
erence, using the command “lemma”. The EASYCRYPT system then presents the formula as a goal to be
proven, possibly providing a context of local facts that may be used to prove the goal. The user then inputs
a command to break down the goal into smaller subgoals, ideally down to axioms or formulas that are al-
ready known to be true. The EASYCRYPT system then produces a list of subgoals that need to be proven,
and the process is repeated until there are no more subgoals remaining. Once all of the subgoals have
been proven, the proof is complete, and the user can save the lemma using the command “qed”. Before
defining a lemma to prove, the user may describe the structures he will work with, axioms he assumes, or
import libraries containing such definitions. EASYCRYPT includes a typed expression language based on
polymorphic typed lambda calculus for this purpose. In EASYCRYPT, types are non-empty collections of
values, whereas operators are typed functions on these collections. EASYCRYPT’s internal kernel contains
built-in types such as bool, int, real, and unit (the type occupied by tt or ()). Formalization of lists, arrays,
sets, finite sets, maps, finite maps, distributions, etc., are included in the standard libraries. EASYCRYPT’s
theory system enables the user to reorganize related types, predicates, operators, modules, axioms, and
lemmas. EASYCRYPT enables users to describe and specify their data-types and operators, such as induc-
tive data-types and operators defined by pattern matching. Types and operators without definitions are
considered abstract and may be seen as context parameters. Also, a powerful feature known as theory
cloning allows for the instantiation and specialization of theories, which can be abstracted over types,

operators, predicates, and proofs.

3.2.2 Probability Distributions

A sub-distribution is a function that assigns probabilities to events in a set. In the case of a discrete sub-
distribution, the set is a discrete set of possible outcomes, and the probabilities are assigned to each
individual outcome. The type “t distr” represents the type of real discrete sub-distributions, and “Z(¢)”
represents the set of all sub-distributions on a type “¢”. The mass function “ f” is a non-negative function
that assigns probabilities to the outcomes in the set “¢”, and is defined over a discrete support. The mass
function must also satisfy the condition that the sum of the probabilities assigned to all of the outcomes

in the set “¢” is less than or equal to 1.
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3.2.3 Modules in EASYCRYPT

In EASYCRYPT, programs are defined as modules, which are stateful “objects” that consist of global vari-
ables and processes. Global variables are accessible outside of the module and determine the module’s
internal state at all times, while processes are collections of local variable declarations and a series of
instructions. The language used to define these programs is called pWhile, and is a straightforward im-
perative probabilistic programming language. EASYCRYPT’s module system also supports higher-order
modules, which enables a cryptographer to design a game by specifying an opponent and a cryptosys-
tem as parameters. Before creating a game that accepts modules as parameters, the user must declare
a module type for each type of parameter. The semantics of an instruction sequence “c” in EASYCRYPT
is defined as a function that maps program memories to sub-distributions on program memories. This
function, denoted “[[c]]”, takes a program memory “&m” as input and produces a sub-distribution on
program memories as output. If one of the potential executions of “c” does not terminate, the resulting
sub-distribution will have a total probability of less than 1. The probability of an event occurring in a
program “c” with an initial memory “&m” is defined as the total of the masses of all memories in the
distribution “[[c]]{m)” that satisfy the event’s boolean expression “y”. This probability can be expressed
using the notation “Pr[c, m : y]”, or equivalently as “Pr[c@&m : y¢]”.

Adversary as a module, Quantification over all adversaries In EASYCRYPT, adversaries are modeled
as abstract modules of a specified module type. The module type specifies the procedure type, but the
code of the abstract module is unknown. This allows the user to argue about the behavior of an adversary
without knowing its exact implementation. EASYCRYPT provides three different classes of probabilistic
program facts, known as judgments, that allow the user to make assertions about the behavior of proba-
bilistic programs. These judgments are:

HL (Hoare Logic) with probabilistic programs: This judgment allows the user to prove properties of
probabilistic programs using traditional Hoare Logic techniques.

pHL (probabilistic Hoare Logic): This judgment enables the user to prove properties about the like-
lihood of a procedure’s execution yielding a post-condition that holds.

pRHL (probabilistic Relational Hoare Logic): This judgment allows the user to bind a pair of pro-
cesses and prove properties about their interactions.

3.2.3.1 Hoare Logic(HL)

In Hoare Logic (See 3.1 ), a Hoare judgment is a statement about the behavior of a (probabilistic) pro-
gram. It consists of a program “c”, and two predicates “¢p” and “¢”. The Hoare judgment “[c: ¢ = y]”
asserts that for all memories “&m” that meet the precondition “¢”, all memories in the support of the
subdistribution “[[c]]{m)” will satisfy the postcondition “y”. If the program “c” is deterministic, then the
subdistribution “[[c]]{(m)” will support no more than one element. This means that the program will have
a unique behavior, and the Hoare judgment can be used to prove the properties about this behavior.

3.2.3.2 Probabilistic Hoare Logic(pHL)

Probabilistic Hoare Logic is an extension of traditional Hoare Logic that allows the user to reason about
the likelihood of a program satisfying a postcondition. A probabilistic Hoare judgment is a quintuplet

“« . »

“[c: ¢ =w]op” that consists of a program “c”, two predicates “¢” and “y”, a relation on reals “¢” (which

» «__» “_on

can be either “<”, “=", or “2”), and a real “p”. The probabilistic Hoare judgment “[c : ¢ = ] o p” asserts

that, for all memories “&m”, if “¢(m)” holds, then the probability of “c” satisfying the postcondition “y”

“«_.»

when run with initial memory “m” will be related to “p” according to the relation “o

”

In other words, the

probability of “c” satisfying “y” will be either less than, equal to, or greater than “p”, depending on the
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value of “o”. Probabilistic Hoare Logic is a useful tool for reasoning about the likelihood of a program sat-
isfying a given postcondition and is particularly useful in the context of probabilistic programs where the
behavior of the program is not deterministic. It allows the user to make assertions about the probability
of a program satisfying a postcondition, rather than just the existence of a single execution that satisfies

the postcondition.

3.2.3.3 Probabilistic Relational Hoare Logic

The Probabilistic Relational Hoare Logic (pRHL) is an extension of Hoare Logic designed to facilitate rea-
soning about the interactions between two programs. A pRHL judgment takes the form of a quadruplet
“IC1 ~ Cy : ® = ¥]” comprising two programs, C; and C», and two relations, ® and ¥. The precondition ®
and postcondition ¥ are expressed as first-order formulas constructed using relational expressions that
represent relations on the program memory. These expressions may incorporate program variables dis-
tinguished by the labels “< 1 >” or “< 2 >” to differentiate between the two programs, as well as logical
variables that are only present when quantified.

Given an initial pair of memories, denoted as m; and my, satisfying the precondition ®, the distribu-
tions “[[C1]] < m; >" and “[[C,]] < my >" resulting from the execution of C; and Cs, respectively, must
conform to the lifting operator L applied to the postcondition ¥. The lifting operator L transforms a

binary relation on states into a binary relation on sub-distributions over states [77].
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CHAPTER 4

INTRODUCTION TO
MACHINE-LEARNING

This chapter introduces the essential materials and methodologies that lay the groundwork for our ex-
ploration of specific machine learning paradigms. While the subsequent sections provide a thorough
overview of the tools, frameworks, and principles employed in this thesis for precise modeling, analysis,
and implementation of complex machine learning systems, readers interested in more detailed defini-

tions and discussions about machine learning concepts are referred to [57].

4.1 Assessing Data Balance in Datasets

Imbalanced datasets are datasets in which one class is significantly more prevalent than the other classes.
This can cause problems when training machine learning models, as the models may be biased towards
the majority class and have difficulty accurately predicting the minority class. One common problem
with imbalanced datasets is that the accuracy of the model is not a reliable evaluation metric, as the
model can achieve high accuracy by simply predicting the majority class all the time. This is known as the
“accuracy paradox.” To address this issue, other evaluation metrics such as precision, recall, and the F1
score should be used, as these metrics take into account the balance of the classes in the dataset. Another
common problem with imbalanced datasets is that the model may be biased towards the majority class,
as it has more data points to learn from. This can lead to poor performance in the minority class, which is
known as the “class imbalance problem.” To address this issue, various techniques such as oversampling,
undersampling, and class weighting can be used to balance the classes in the dataset. Overall, imbalanced
datasets can be challenging to work with, but there are various techniques that can be used to address the
problems they can cause when training machine learning models. It is important to carefully evaluate the
performance of the model using appropriate evaluation metrics and to consider techniques to balance
the classes in the dataset.
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4.1.1 Oversampling

Oversampling is a technique used in machine learning to balance the class distribution in a dataset. It is
commonly used when the dataset is imbalanced, meaning that one class is significantly larger than the
other. This can be a problem because an imbalanced dataset can lead to a model that is biased toward
the larger class, leading to poor performance in the smaller class. One way to address this issue is to
use oversampling, which involves creating additional synthetic samples of the smaller class in order to
balance the dataset. Simple random oversampling involves simply replicating the samples of the smaller
class at random until the class distribution is balanced. This can be effective in some cases, but it can
also lead to overfitting since it does not consider the underlying structure of the data. Oversampling is
important because it can help to improve the performance of machine learning models on imbalanced
datasets. By balancing the class distribution, it can help to reduce bias and improve the model’s ability
to accurately classify samples from the smaller class. We can then use the oversampled data to train a
machine-learning model. The model will be trained on a balanced dataset, which can help to improve its

performance. In summary, oversampling is a technique used to balance the class distribution in a dataset.

4.1.2 Undersampling

One way to address the issue of the imbalanced dataset is to use undersampling, which involves reducing
the number of samples in the larger class in order to balance the dataset. Simple random undersampling
involves randomly selecting a smaller number of samples from the larger class until the class distribution
is balanced. This can be effective in some cases, but it can also lead to the loss of valuable information
since it does not consider the underlying structure of the data. Undersampling is important because it
can help to improve the performance of machine learning models on imbalanced datasets. Balancing the
class distribution can help to reduce bias and improve the model’s ability to accurately classify samples
from the smaller class. We can then use the undersampled data to train a machine-learning model. The
model will be trained on a balanced dataset, which can help to improve its performance. In summary,
undersampling is a technique used to balance the class distribution in a dataset. It can help to improve
the performance of machine learning models on imbalanced datasets and reduce bias towards the larger

class.

4.1.3 Limitation

Both oversampling and undersampling can be effective techniques for addressing the class imbalance
problem, but they also have their limitations. Oversampling can increase the risk of overfitting, as it in-
creases the complexity of the model. Undersampling can reduce the amount of data available for the
model to learn from, which can lead to a decrease in performance. Another approach is to use a different
evaluation metric, such as precision, recall, or the F1 score, which takes into account the class distribution
in the dataset. These metrics can be more appropriate for imbalanced datasets, as they place more em-
phasis on the performance of the classifier on the minority class. Additionally, it is important to choose an
appropriate classification algorithm for the imbalanced dataset. Some algorithms, such as decision trees
and support vector machines, are more sensitive to class imbalance than others, such as k-nearest neigh-
bors and naive Bayes. Choosing an appropriate algorithm can help to improve the performance of the
classifier on the minority class. In summary, imbalanced datasets can be a challenge when training a bi-
nary classifier, as the classifier may be biased towards the larger class. Techniques such as oversampling,
undersampling, and using different evaluation metrics can help to address this issue, as can choosing an
appropriate classification algorithm.
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4.2 Feature Engineering

Feature engineering is the process of selecting and constructing relevant features for a machine learning
model. It is a crucial step in the modeling process, as the quality and relevance of the features can greatly
affect the performance of the model. There are two main approaches to feature engineering: feature
selection and feature extraction. Feature selection involves selecting a subset of the available features to

use in the model, while feature extraction involves creating new features from the available data.

4.2.1 Feature Selection

Feature selection is the process of selecting a subset of relevant features for use in model construction.
It is an important step in the data preprocessing phase because it helps to improve the performance and
interpretability of the resulting model. There are several benefits to performing feature selection. First, it
reduces the complexity of the model, which can improve the model’s performance on unseen data. Sec-
ond, it can reduce the amount of time and resources required to train the model. Third, it can improve
the interpretability of the model by reducing the number of features that need to be considered when
interpreting the model’s predictions. There are several different techniques for performing feature selec-
tion. One popular method is called mutual information gain, which measures the mutual dependence
between each feature and the target variable. Features with high mutual information gain are likely to be
more relevant to the target variable and should be included in the model. Other techniques for feature
selection include forward and backward selection, which involves iteratively adding or removing features
from the model based on their performance. In summary, feature selection is an important step in the
data preprocessing phase that can improve the performance and interpretability of the resulting model.
By selecting only the most relevant features, it is possible to build more accurate and interpretable models

with less complexity and computational cost.

4.2.1.1 Using Pearson Correlation

Pearson correlation is a measure of the linear relationship between two variables. It is used to determine
how closely two variables are related and to predict one variable based on the other. The Pearson cor-
relation coefficient, also known as the Pearson 1, is a statistical measure that ranges from -1 to 1, where
-1 indicates a strong negative relationship, 0 indicates no relationship, and 1 indicates a strong positive
relationship. To calculate the Pearson correlation between two variables, you need to find the covariance
between the two variables and divide it by the product of the standard deviations of each variable. This
will give you the Pearson correlation coefficient, which you can interpret to understand the strength and
direction of the relationship between the two variables. For example, if you have data on the heights and
weights of a group of people, you can use Pearson correlation to determine whether there is a relationship
between height and weight. If the Pearson correlation coefficient is close to 1, it indicates a strong positive
relationship between height and weight, meaning that as height increases, weight also tends to increase.
On the other hand, if the coefficient is close to -1, it indicates a strong negative relationship, meaning
that as height increases, weight tends to decrease. In addition to its use in predicting one variable based
on the other, Pearson correlation is also used in a variety of other applications, such as determining the
strength of a linear relationship between two variables in a regression analysis or comparing the results of
different experiments to determine whether there is a significant difference between them. Overall, the
Pearson correlation is a widely used and powerful tool for understanding the relationship between two

variables.
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4.2.1.2 Chi-square test

The chi-square test is a statistical method used to ascertain if a significant difference exists between ex-
pected and observed frequencies in one or more categories. This test is essential for hypothesis testing,
either to evaluate how well a model fits the observed data or to test the independence of two variables
within a contingency table. The chi-square statistic is derived by summing up the squared differences
between observed and expected frequencies for each category and dividing by the expected frequency.
The chi-square statistic is then compared to a critical value derived from the chi-square distribution, de-
pendent on the degrees of freedom and the desired significance level. If the chi-square statistic exceeds
the critical value, the null hypothesis is rejected, indicating that observed and expected frequencies sig-
nificantly differ. While the chi-square test is versatile and widely used in various fields like psychology,
sociology, and biology, it has assumptions like random sampling and sufficiently large expected frequen-
cies that must be accounted for before applying the test.

Suppose you are conducting a study to assess the relationship between age groups and beverage pref-
erences among customers in a café. A random sample of 100 customers is surveyed, and the data is
displayed in Table 1.

TABLE 4.1: Table 1: Observed frequencies of beverage preference by age group

Coffee Tea Total

Youth 30 20 50
Adult 35 15 50
Total 65 35 100

The first step in conducting a chi-square test is to calculate the expected frequencies for each cell
in Table 1. This involves multiplying the row total by the column total for each cell and dividing by the
total number of observations. For instance, the expected frequency for Youth who prefer Coffee would be
(50*65)/100=32.5(50*65)/100=32.5. The expected frequencies are presented in Table 2.

TABLE 4.2: Table 2: Expected frequencies of beverage preference by age group

Coffee Tea  Total
Youth 32.5 17.5 50
Adult 32.5 17.5 50
Total 65 35 100

Subsequently, you would compute the chi-square statistic by summing the squared differences be-
tween observed and expected frequencies for each cell and dividing by the corresponding expected fre-
quency. In this example, the calculated chi-square statistic would be 0.92. This value is then compared
to the critical value from the chi-square distribution with one degree of freedom at a 0.05 level of sig-
nificance. If the chi-square statistic surpasses this critical value, the null hypothesis is rejected, and a
significant relationship between age group and beverage preference is established. In this case, however,

the chi-square value suggests that no significant relationship exists between the two variables.

4.2.1.3 Mutual Information Gain

Mutual information gain is a measure of the information shared between two random variables X and Y.
It quantifies the degree of dependence between the variables and is commonly used in machine learning
for feature selection.

The mutual information gain I(X;Y) between two variables X and Y is calculated as the difference
between the entropy H(X) and H(Y) of each variable alone and the joint entropy H(X,Y) of the two
variables together:
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I(X;Y)=HX)+H(Y)-H(X,Y)

Here, entropy H(X) is a measure of uncertainty and is defined for a discrete random variable X as:

H(X)=-)_ px)log, p(x)
xeX

The mutual information gain essentially quantifies the reduction in uncertainty for one variable given
the knowledge of the other.

For example, consider a more realistic dataset with three variables for eye color E: blue (B), green (G),
brown (Br), and two variables for hair color H: blonde (Bl), black (Blk).

Let the probabilities for eye colors be P(B) = 0.4, P(G) = 0.1, P(Br) = 0.5, and for hair colors, let
P(Bl)=0.7and P(Blk) =0.3.

The entropy for eye color E would then be calculated as:

H(E) = —(0.4l0g, 0.4 +0.1l0g, 0.1 +0.5l0g, 0.5) = 1.36

Similarly, the entropy for hair color H would be:

H(H) = —(0.7lo0g, 0.7 +0.3log, 0.3) =~ 0.88

Assuming the joint probabilities as P(B, Bl) = 0.28, P(B, Blk) =0.12, P(G,Bl) =0.07, P(G, Blk) = 0.03,
P(Br,Bl)=0.35, and P(Br, Blk) = 0.15, the joint entropy H(E, H) would be:

H(E, H) = —(0.28log, 0.28+0.1210g, 0.12+0.07 log, 0.07+0.03log, 0.03+0.3510g, 0.35+0.15l0g, 0.15) =~ 2.45

Therefore, the mutual information gain I(E; H) would be 1.36 +0.88 —2.45 = —0.21, indicating a small

but negative relationship between eye color and hair color.

4.2.2 Feature Extraction

Feature extraction is the process of transforming raw data into a set of features that can be easily and
reliably used in machine learning and other data analysis tasks. It is an important step in the data prepro-
cessing phase because it helps to improve the performance and interpretability of the resulting model.
There are several benefits to performing feature extraction. First, it can improve the performance of the
model by transforming the raw data into a more useful representation. For example, if the raw data con-
sists of images, feature extraction can be used to extract the edges, corners, and other important features
from the images, which can be used as inputs to a machine-learning model. Second, it can reduce the
amount of time and resources required to train the model by reducing the dimensionality of the data.
Third, it can improve the interpretability of the model by providing a more intuitive representation of
the data. There are several different techniques for performing feature extraction. One popular method is
called principal component analysis (PCA), which is used to reduce the dimensionality of the data by pro-
jecting it onto a lower-dimensional space. Other techniques for feature extraction include independent
component analysis (ICA) and non-negative matrix factorization (NMF), which are used to decompose

the data into a set of underlying factors.
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4.2.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical procedure that is used to analyze the interrelationships
among a large number of variables and to explain these variables in terms of a smaller number of under-
lying factors. The aim of PCA is to reduce the dimensionality of a data set, i.e. to simplify it by extracting
the most important information from the data and expressing it in a smaller number of variables. PCA is
a widely used technique in the fields of statistics and machine learning, and it has several important ap-
plications. For example, PCA can be used to reduce the number of variables in a data set for the purposes
of data visualization, data compression, and feature extraction. In these cases, PCA can help to make the
data more manageable and easier to analyze. Another important application of PCA is in the field of pre-
dictive modeling. In this case, PCA can be used to identify the underlying factors that are most important
for predicting the outcome of a particular event. By reducing the dimensionality of the data, PCA can help
to improve the performance of predictive models, and it can also help to identify potential relationships
between different variables that might not be obvious from the raw data. The importance of PCA lies in
its ability to extract the most important information from a data set and to express it in a smaller number
of variables. This can make the data easier to understand and analyze, and it can also help to improve the
performance of predictive models. Additionally, PCA can be used to identify relationships between differ-
ent variables in a data set, which can provide valuable insights for further analysis. One simple example
of PCA in Python is to use the technique to reduce the number of variables in a data set. For instance,
suppose we have a data set with 100 variables, but we want to reduce it to just 10 variables. This can make

the data easier to analyze and can also improve the performance of predictive models.

4.2.2.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) is a statistical technique used to identify and separate underly-
ing sources of variation in a data set. ICA is based on the assumption that the observed data is a linear
combination of underlying independent sources, and the goal of ICA is to estimate these independent
sources and separate them from the observed data. ICA has several important properties that make it a
useful tool for data analysis and signal processing. First, ICA is a non-parametric method, which means
that it does not make any assumptions about the underlying distribution of the data. This makes ICA a
flexible and versatile technique that can be applied to a wide range of data sets. Second, ICA is an unsu-
pervised learning method, which means that it does not require any prior knowledge or labeling of the
data. This makes ICA particularly useful for exploring and discovering hidden patterns in data sets that
have not been previously studied. Third, ICA is a blind source separation method, which means that it
can separate independent sources of variation in the data even when these sources are mixed together or
when their statistical properties are unknown. This property of ICA makes it a powerful tool for analyzing
complex and noisy data sets. Overall, ICA is a valuable tool for data analysis and signal processing, and it
has many important applications in fields such as neuroscience, engineering, and finance. By estimating
and separating independent sources of variation in data, ICA can help to uncover hidden patterns and

relationships, and it can provide valuable insights for further analysis.

4.3 Machine-Learning Classifiers

This section of the thesis will concentrate on using the previously created datasets to train a machine

learning model that functions as an ML classifier. Subsequently, we will assess the model’s generated
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reports and its overall performance. The evaluation process will encompass measuring the model’s ac-
curacy, precision, recall, and other critical performance metrics, which will assist us in gauging its effi-
cacy. To enhance the performance of our machine learning model, we will also include a hyperparameter
tuning step in the aforementioned process. Hyperparameter tuning involves optimizing the model’s hy-
perparameters, which are the adjustable settings that determine its behavior and performance. We will
utilize various techniques and tools to explore the optimal values of the hyperparameters, including grid
search. By adjusting the hyperparameters and evaluating the model’s performance, we can find the best
possible configuration for our ML classifier. After performing hyperparameter tuning, we will retrain the
model with the new hyperparameter settings and assess its performance using the same evaluation met-
rics. This step will allow us to fine-tune the model and achieve the best possible results. In the following,
we aim to provide a concise but informative explanation of the different machine-learning classifica-
tion algorithms that we utilized in our thesis. We recognize the significance of selecting the appropriate
algorithm to achieve the best possible results, and thus we will offer an overview of the key characteris-
tics and applications of each algorithm. We employed a range of algorithms such as logistic regression,
decision trees, k-nearest neighbors, support vector machines, and neural networks, to name a few. We
will describe the underlying principles, benefits, and drawbacks of each algorithm, as well as how they

compare and contrast with one another.

4.3.1 Logistic Regression

Logistic regression is a widely used supervised machine-learning technique for classification tasks. Itis a
statistical model that is used to predict the probability of an outcome being one of two possible classes,
typically referred to as 0 and 1. For example, it can be used to predict whether a patient has a certain
disease (class 1) or not (class 0), or whether an email is spam (class 1) or not (class 0). The basic idea be-
hind logistic regression is to find the best linear boundary that separates the classes in the feature space.
This boundary is called the decision boundary. Logistic regression uses an iterative process to learn the
coefficients (weights) of the features in the training data, which can then be used to make predictions on
unseen data. One key advantage of logistic regression is that it can be easily implemented and trained,
even on large datasets. It is also a robust model that can handle a variety of features and is not sensitive
to the scaling of the features. However, it can only model binary classification tasks and may not perform
well on datasets with non-linear patterns or multiple classes. Upon training our machine learning model
with various datasets and conducting hyperparameter tuning to optimize its performance, we have ob-
tained a comprehensive report on the logistic regression classifier. This report provides valuable insights
into the efficacy of the algorithm and its performance on our specific data. Our report includes various
evaluation metrics, including accuracy, precision, recall, and F1 score, to assess the model’s effective-
ness in accurately predicting the outcomes. We also examine the confusion matrix to analyze the model’s

ability to correctly classify instances.

4.3.2 Decision Trees

Decision tree classifiers are a type of supervised machine learning algorithm that can be used for both
classification and regression tasks. They are called “decision trees” because they build a tree-like model
of decisions based on the features of the data. Each internal node in the tree represents a feature, and
the branches represent the decision based on that feature. The leaves of the tree represent the final clas-
sification or prediction. Decision trees are a popular choice for machine learning because they are easy

to understand and interpret, and they can handle both continuous and categorical data. They are also
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relatively efficient and fast to train, making them a good choice for large datasets. One key aspect of de-
cision tree classifiers is the ability to handle missing values in the data. When training a decision tree,
the algorithm can handle missing values by simply treating them as another possible feature value, and it
will create branches in the tree to account for them. This is a useful property, as real-world datasets often
have missing or incomplete data. One potential issue is that they can be prone to overfitting, especially if
the tree is allowed to grow too deep. Overfitting occurs when the model is too closely tied to the training
data, and as a result, it may not generalize well to unseen data. To address this issue, it is often necessary
to prune the tree or use other techniques to prevent overfitting.

4.3.3 Random Forest

Random forest classifiers are a type of ensemble machine-learning algorithm that can be used for both
classification and regression tasks. They are called “random forests” because they are made up of a large
number of decision trees, each trained on a different subset of the data, and the predictions of the indi-
vidual trees are combined to make the final prediction. The basic idea behind random forests is to build
a large number of decision trees, each trained on a different subset of the data, and then average the pre-
dictions of the individual trees to make the final prediction. This process helps to reduce the variance of
the model, and as a result, random forests are often more accurate than individual decision trees. There
are several algorithms that can be used to build random forests, including Breiman’s original algorithm
and the randomForest package in R. These algorithms differ in the way the decision trees are trained and
the features are selected, but they all follow a similar overall process. To train a random forest classifier,
the algorithm first selects a random subset of the data and a random subset of the features to use at each
node of the decision tree. It then builds the decision tree using these subsets of the data and features.
This process is repeated multiple times, and the resulting decision trees are combined to form a random
forest. One key advantage of random forest classifiers is their ability to handle a large number of features
and handle missing values in the data. They are also relatively fast to train and are resistant to overfit-
ting, which makes them a good choice for large and complex datasets. Despite their many advantages,
random forest classifiers are not without their limitations. One potential issue is that they can be difficult
to interpret, as the individual decision trees are combined to make the final prediction. This can make it

challenging to understand how the model is making its predictions and identify any potential biases.

4.3.4 Naive Bayes

Naive Bayes classifiers are a type of supervised machine learning algorithm that can be used for both
classification and regression tasks. They are called “naive” because they make the assumption that all of
the features in the data are independent of each other, which is often not the case in real-world datasets.
Despite this assumption, naive Bayes classifiers are often surprisingly effective and are widely used in a
variety of applications.

The basic idea behind naive Bayes classifiers is to use Bayes’ theorem to estimate the probability of an
event based on the probabilities of related events. In the case of a classification task, the event is the class
label (e.g. spam or not spam), and their related events are the features of the data (e.g. certain words or
phrases in an email). The algorithm uses the training data to estimate the probabilities of each class and
the probabilities of each feature given a particular class, and it combines these probabilities using Bayes’
theorem to make the final prediction.

There are several algorithms that can be used to build naive Bayes classifiers, including the Gaussian
naive Bayes, Bernoulli naive Bayes, and multinomial naive Bayes algorithms. These algorithms differ in

the way they handle the features and make the predictions, but they all follow a similar overall process.
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One key advantage of naive Bayes classifiers is their simplicity and efficiency. They are fast to train and
relatively easy to implement, making them a good choice for large datasets. They are also robust to ir-
relevant features and are not sensitive to the scaling of the data, which can be a problem for some other
machine-learning algorithms. Despite their many advantages, naive Bayes classifiers are not without
their limitations. One potential issue is that they rely on the assumption that all of the features are in-
dependent, which is often not the case in real-world datasets. This can lead to less accurate predictions,
especially if there are strong dependencies between the features. This algorithm takes in a training dataset
D = {(x1,y1),(x2,¥2),..., (xn, yn)} and a test data point x, and it returns a predicted class j. It first calcu-
lates the prior probabilities P(y;) for each class y; in the training data and then calculates the likelihoods
P(xjly;) for each feature x; given each class y;. Finally, it uses Bayes’ theorem to calculate the posterior
probability P(y;|x) for each class y; given the test data x, and it returns the class with the highest posterior
probability as the predicted class j.

4.3.5 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a type of supervised machine learning algorithm that can be used for both
classification and regression tasks. It is based on the idea of using the information from the closest neigh-
bors to make a prediction. In the case of a classification task, the algorithm assigns the class label of the
majority of the nearest neighbors to the test data point. In the case of a regression task, the algorithm
takes the average of the values of the nearest neighbors to make the prediction. One key advantage of
KNN is its simplicity and flexibility. It is easy to implement and does not require any training, as it simply
uses the information from the nearest neighbors to make the prediction. KNN is also relatively robust
to noise and can handle missing values in the data. To determine the number of nearest neighbors to
consider, the algorithm uses a parameter called k, which is typically chosen through cross-validation. A
larger value of k will smooth the decision boundary and reduce the variance of the model, but it may also
increase the bias. A smaller value of k will make the model more sensitive to the local structure of the
data and may increase the variance, but it may also decrease the bias. Despite their many advantages,
KNN classifiers are not without their limitations. One potential issue is that they can be computationally
intensive to make predictions, especially on large datasets, as the algorithm must consider the informa-
tion from all of the data points in the dataset. KNN is also sensitive to the scale of the features, and it is

generally recommended to scale the features before training the model.
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CHAPTER 5

PRACTICAL AND USABLE
COERCION-RESISTANT REMOTE
E-VOTING

In this chapter, we delve into the practical and usable aspects of coercion-resistant remote e-voting sys-
tems, with a primary focus on the JCJ protocol [78, 37]. We begin by providing an introduction to the
JCJ protocol and its main structure, including the functions and the coercion-resistant election proto-
col framework. Subsequently, we discuss the usability aspects of e-voting schemes and evaluate their
effectiveness. In order to demonstrate the importance of designing secure e-voting systems, we present
an overview of the NV12 scheme [91], highlighting the attacks and security vulnerabilities identified in
previous works. We then provide detailed information about the protocol, including electronic voting
protocols based on the Paillier [99] and BGN [25] encryption schemes respectively. Lastly, we discuss the
concept of PIN space covering as an essential component in the process of achieving coercion-resistance
in the PIN-based system we design here. The chapter concludes with a summary of the findings and a

brief outlook on potential future research directions in the field of coercion-resistant remote e-voting.

5.1 Introduction

The absence of a voting booth in remote electronic voting makes it highly vulnerable to coercion-attacks,
which is a major concern. In a seminal paper by Juels, Catalano, and Jakobsson [78], they provided a for-
mal definition of coercion-resistance and developed a protocol (JCJ) that meets this security requirement.
The JCJ protocol relies on a coercion-free setup phase, wherein the voter receives a credential, essentially
a cryptographic key. To cast a valid ballot, the voter must accurately enter this key along with their vote.
In the event of coercion, the voter has the option to provide the coercer with a fake random credential
and even vote alongside the coercer using this false credential. However, during the tallying process, the

corresponding vote associated with the fake credential will be disregarded.
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However, the tally process of weeding out the ballots with fake credentials and duplicates suffers from
a quadratic complexity problem in the number of voters and cast ballots. Several papers are devoted to
reducing the tally complexity in JCJ, see e.g. [107, 62, 118]; however, each with its drawbacks. Moreover,
JCJ and similar constructions- we consider them under the term JCJ-type-protocols, however also suffer
from usability deficits, see also [90].

Moreover, the handling and storing of long credentials is a notorious usability problem, getting even
harder with a coercer present. The usability was analyzed by Neumann et. al. [92], which led to a protocol
using smart cards for handling voter’s credentials. The stored credential is combined with a PIN code to
produce the full credential, compared with the credential stored by the authorities on the bulletin board.
In [51], we revisit this protocol and present several attacks on coercion-resistance and verifiability, but
also possible repairs.

Whereas the smart card provides a solution to the usability problem, it also comes with strong trust

assumptions and problems such as:

* Their security model assumes that the smart card generally needs to be trusted. A malicious card
could e.g. use the wrong credential invalidating the cast ballot without detection, and we cannot let

the voter check if the ballot is correct without introducing coercion threats.
* The coercer can take the smart card away from the voter to force abstention.
* Itis more expensive, less flexible, and harder to update than a pure software solution.

* One of the attacks we found is that a coercer can use the smart card to cast ballots. This not only en-
dangers coerced voter’s real vote, but due to a leak of information in the weeding phase, the coercer
can also detect, with non-negligible probability, whether the coerced voter has cast an independent

ballot against his instructions.

We will present protocols that repair or at least diminish the attack probability of, the last point’s
attack probability by constructing new duplicate removal methods in JCJ. Furthermore, the protocols
constructed in this chapter are hardware-independent: they could use a smart card or be implemented
using a combination of a digitally stored cryptographic length key and a PIN only known by the voter. The
long credential could be stored in several places — or hidden via steganography.

At ballot casting time, the software will take as input the digital key and the password to form the
credential submitted with the vote. Depending on the level of coercion, the coerced voter can either fake
the long credential or, for stronger levels of coercion, the voter can reveal the digitally stored credential to
the coercer but fake the PIN. Due to our improved tally, the coercer will not know if he got fake credentials
or PINs.

Another major problem with the original construction, already discussed as an open problem in [92],
is the high chance of users making a PIN typo error which will invalidate the vote and remain undetected.
Note that naively giving feedback on the correctness of the PIN is not possible for coercion-resistance
as it would allow the coercer to check whether he got a fake PIN or not. Instead, we will define a set of
allowed PIN errors (e.g. chosen by the election administrator), and we will consider a ballot as valid both
ifit has a correct PIN or an allowed PIN error, but invalid for other PINs. We construct protocols that at the
tally time secretly check whether a given PIN is in the set of allowed PINs and will sort out invalid ballots.
The protocols can accommodate general PIN error policies, however, Wiseman et. al. [126] studied usual
errors in PIN entries. Two frequent errors are transposition errors (i.e. entering “2134“ instead of “1234”)
and wrong digit number errors (i.e. entering “1235“ instead of “1234”). However, correcting for both of

these errors is however problematic, as we will see since the set of independent PINs becomes small.
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5.2 Usability aspects of E-Voting Schemes

The importance of usability in voting systems is often overlooked in addition to the critical issues of ac-
curacy and security. To ensure the integrity of elections, it is essential that voters are able to cast their
ballots as intended. Incidents of unintentional undervotes, overvotes, or votes for incorrect candidates
can significantly impact the outcome of elections, as demonstrated in the 2000 Florida election upset.
According to [124], the butterfly ballot used in Palm Beach County, Florida resulted in over 2000 votes be-
ing cast for Pat Buchanan rather than Al Gore, ultimately leading to George W. Bush’s victory. Therefore,
it is important that voting systems prioritize usability to ensure that voters are able to cast their ballots
accurately and efficiently. Poor ballot design, confusing instructions, and other usability issues can lead
to mistakes, mistrust in the election’s results, and long lines at the polls. By addressing usability issues,
we can improve the overall experience of voting for both voters and election officials. On the other hand,
a positive voting experience can encourage individuals to participate in future elections. Good usabil-
ity in voting systems can enhance voters’ confidence in the election’s outcome and make the process of
voting a more enjoyable experience. This can lead to increased voter turnout and ultimately strengthen
the democratic process. In conclusion, usability is a critical aspect of voting systems that should not be
overlooked. Ensuring that voting systems are easy to understand and use is essential for maintaining the
integrity of elections, encouraging voter participation, and fostering trust in the democratic process. By
considering usability in the design and implementation of voting systems, we can create systems that are
not only secure and accurate but also user-friendly and accessible to all voters.

Based onISO 9421-11, In order for a voting system to be considered usable, it must allow users to com-
plete their task of casting a vote effectively, efficiently, and with satisfaction. This means that the system
must be easy to understand and navigate, allow voters to cast their votes without errors or confusion, and
provide a positive experience for the user. Usability is crucial for voting systems because it ensures that
all eligible voters are able to cast their ballots and have confidence in the election process. Poor usability
can lead to confusion, frustration, and ultimately lower voter participation. It is therefore important for
voting systems to be designed with usability in mind, in order to ensure that elections are fair, accurate,
and representative of the will of the people. For instance, authors in [90] found bad usability in JCJ since

the voter need to handle long crypto-size credential and be able to fake them.

5.3 Overview of the NV12 Scheme

The NV12 scheme [92] is an improvement on the proposed scheme by Shirazi et al in their work [114].
The NV12 scheme addresses some of the abstract assumptions and credential management abstractions
of the JCJ/Civitas system through the use of smart cards, as proposed by Mendes in [116] and Neumann
and Volkamer in [28]. In the NV12 scheme, several entities are involved: A supervisor who is in charge of
running the election and declaring election authorities; the voter who intends to cast her vote; the voter’s
smart card that serves as a trusted device between the voter and the JCJ / Civitas system; a registrar who
administrates the electoral register; a supervised registration authority and a set of registration tellers that
provide the voter with her credential; a set of tabulation tellers that are in charge of the tallying process;
a set of ballot boxes to which voters cast their votes; and a bulletin board that is used to publish infor-
mation. This part of the work summarizes the NV12 approach and includes a modification to address
side-channel threats. NV12 generally follows JCJ but with some tweaks for usability. The main idea is to
store JCJ credentials on a smartcard, but adding a PIN such that using a wrong PIN will result in a fake
credential.
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Setup Phase. In the NV12 scheme, the administrator organizes the election and makes information
about the ballot layout available. The registrar releases the electoral register along with the public keys of
the voters. The tabulation tellers construct the election key pair in a distributed manner and broadcast
the accompanying public key pkpg. After that, each registration teller creates random private credential
shares for all eligible voters. They then encrypt these private credential shares using the public election
key, resulting in public credential shares, which they publish along with the voter’s record in the pub-
lished electoral register. In more technical terms, the registration teller i publishes S; = {0 RT,-};, kex for a
particular voter, where o gy, is the voter’s credential share.

Registration Phase. The NV12 scheme has a different registration process compared to the original
JCJ/Civitas plan. It involves an offline phase, during which a voter visits a supervised registration author-
ity (SRA) in person. The SRA ensures that the voter is not being coerced and asks them to insert their
smart device (a smart card) into the reader. The voter is then asked to create a personal identification
number (PIN) for their smart card. After the voter creates their PIN, the supervised registration author-
ity saves the voter’s private credential share ¢, , from the secure group on their smart card. Along with
the private credential share, the authority generates a designated verifier re-encryption proof (DVRP) that
convinces the voter’s smart card that the public credential share published on the bulletin board during
the setup phase is a re-encryption of the voter’s private credential share. The smart card then calculates

the coefficient ¢, that will be used to transfer the PIN (p) to the shared private credential (o ,), using

the equation ¢, = U%A . These calculations are performed in a finite field of prime order, with the selected
order being n-times (n = 1) as large as the order of the set containing the private credential. The smart
card stores the calculated coefficient during this phase. The voter then exits the supervised registration
authority, completing the offline registration process. During the online phase of the voting process, the
voter begins by connecting to the election website and completing the registration process. As part of this
process, the voter is asked to select their preferred registration agents from a list of available options. This
selection is then sent to the voter’s smart card, which prompts the voter to confirm the selection through
their smart card reader. Once this confirmation has been received, the smart card is preloaded with the
IDs of the selected, trusted registration agents (denoted as TRT for the voter v). The smart card then es-
tablishes secure connections with these trusted registration agents via the voter’s computer and obtains
private credential shares ofm, as well as encrypted versions of these shares (denoted as S’i ={oRT, ; ,kEK)‘
The card also receives DVRPs (digital verifiable random proofs) from each individual agent, which serve
to confirm that the S and S; contain the same message. After obtaining all of the necessary private cre-
dential shares and validating the DVRPs, the voter’s smart card computes and saves the voter’s credential
factor. This information is then used to securely cast the voter’s ballot during the voting process. Also,

note that the encryption versions on the bulletin board are added homomorphically under encryption.

Cfactor = Cp X l_[ ORT;
ieTRT(v)

Voting Phase. After completing the registration process, the voter can begin the voting process by
accessing the election website and viewing the available options. The voter makes their selection using
the provided JavaScript interface. Once the voter has made their selection, it is sent to their smart card for
encryption. To ensure the integrity of the process, the voter has the option to audit the JavaScript using
a “cut-and-choose” method, such as the Benaloh challenge (as described in NV12 [14]). This allows the
voter to verify that their selection was conveyed correctly. Once the voter has confirmed the validity of
their selection, they are prompted to enter their voting PIN into the smart card reader to finalize their
vote. The smart card then multiplies this PIN by the credential factor generated during the registration
process (which was saved on the card). This computation is performed within a finite field of prime order,
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as previously mentioned. If the voter correctly enters their PIN, the card generates a true credential that
is associated with the voter’s vote. If the voter enters an incorrect PIN, a randomly generated (invalid)

credential is used instead. The resulting credential is as follows:

¢=PIN x cracror

This process helps to ensure the security of the voting process by allowing the voter to enter their PIN
correctly while protecting against side-channel attacks. Specifically, the voter’s smart card generates a

ballot with the following structure:

(S pkgyr VOtel prpy, 0, )

Notations {c} ,rex and {vore} pxgx refer to private credentials, which are both encrypted using a public
election key. The term ¢ is a well-formedness proof that indicates that the encrypted vote {vote}
includes a valid choice, while ¢ is a zero-knowledge proof demonstrating that the submitter knows both
c and vote in order to prevent replay attacks. The voter’s smart card uses these elements to compute and
output the hash value

hash({{c}pkgx,{votel pige,0,$))

on the smart card reader. It is important to note that, while the use of a smart card for this process may
provide a more realistic implementation in comparison to JCJ/Civitas systems, the NV12 method does
not provide any proof of integrity once the voter has entered their PIN. This is a practical issue that must
be addressed, as humans are known to make mistakes such as mistyping or forgetting their PINs and
passwords (as noted in [54]) and this is what we will improve on below. After computing the hash value,
the smart card anonymously distributes the prepared ballot to all available ballot boxes. Each ballot box
computes the hash value of the received ballot and posts it on a bulletin board upon receipt.

Tallying Phase. During the counting phase, all tabulation tellers collect the ballots from all ballot
boxes, as well as the public credentials that have been posted on the bulletin board. They then verify
the zero-knowledge proofs, eliminate any duplicate votes (which may be the result of vote altering), and
identify any illegitimate votes (which may be the result of forged credentials). Finally, the encrypted cre-
dentials of the remaining ballots are discarded and the corresponding encrypted votes are decrypted in a
distributed manner (See [78]). Each step of the tabulation process can be independently verified using a
series of zero-knowledge proofs. This helps to ensure the accuracy and integrity of the vote count.

5.3.1 Attacks

In [51] we demonstrate many attacks and issues with the protocol’s security, most notably a coercion-
resistance attack caused by information leakage caused by the removal of duplicate votes. Moreover,
they discuss how to repair these issues. These shortcomings include the Benaloh challenge problem,
Brute force attack, Leaky duplicate removal, Fake election identifier, and Smart card removal. Finally, to
motivate our protocol in this section, we describe these attacks that our protocol will repair.

In this part we are presenting the attacks that we found in [51]. In order to ensure the security and
integrity of an electronic voting system, it is essential to identify potential vulnerabilities and implement
appropriate measures to protect against potential attacks. In the following, we will examine some of the
potential attacks that may be encountered in this voting scheme and discuss ways to safeguard against

them.
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Benaloh challenge problem: The described attack focuses on exploiting a potential weakness in the
NV12 voting scheme with regard to the Benaloh challenge, which is designed to provide individual verifi-
ability. The problem lies in the fact that the hash of the encrypted vote, committed to by the smart card
and reader, is not checked for the cast ballot. Instead, what is checked is the hash of the entire ballot,
which includes the encryption of the credential and zero-knowledge proofs (ZKPs).

Let’s expand on this attack strategy:

The smart card, in this scenario, acts dishonestly. During the initial stages of the voting process, it be-
haves properly, encrypting all votes as expected. This creates the illusion of integrity and honesty because
the Benaloh challenge at this stage will be passed. The smart card reader’s screen will display the correct
hash of the encrypted vote, and the voter will be under the impression that their vote has been correctly
recorded.

However, once the Personal Identification Number (PIN) is entered to cast the ballot, the smart card
switches its strategy. It encrypts a different vote choice—potentially one that wasn’t chosen by the voter—and
includes this in the ballot.

The crucial part of this attack is that it goes undetected even in an honest verification environment.
This is because the verification process doesn’t check the hash of the individual encrypted vote, but rather
checks the hash of the entire ballot, which includes the new dishonestly encrypted vote, the credential,
and the ZKPs. If the dishonest smart card maintains the integrity of the rest of the ballot, the hash check
will pass, and the altered vote will be accepted as part of a valid ballot. This effectively violates the trust
assumption, undermining the individual verifiability of the voting process.

Repair: In order to properly verify the integrity of the vote, it is necessary to hash of the vote encryp-
tion committed in the Benaloh challenge and compare both the hash of the vote encryption and the hash
of the entire ballot to values computed from the ballot received by the ballot box. This can be a usability
issue, as it requires the voter to verify two different hashes, which may not be straightforward. For exam-
ple, an adversary may precompute hashes that are difficult for the voter to identify, such as matching on
the leading component.

Another option is to commit to the entire ballot in the Benaloh challenge process, but this would
require the voter to input their PIN for each challenge. Given that it is common for legitimate voters to
rarely perform verification checks in electronic voting systems, requiring a PIN for each challenge may
further compromise the security of the Benaloh challenge. Additionally, a voter is typically only able to
challenge once, so an adversary could potentially cheat after the first challenge.

Attack using brute force: Coercion-resistance and verifiability may be compromised if an adversary is
able to gain access to the voter’s smart card, either by requesting access directly or by stealthily accessing
the card. In these cases, the adversary could potentially guess the voter’s PIN and cast a vote on their
behalf. Due to the anonymity of the voting process, the voter would not be aware of this attack and would
not be able to detect it. Unfortunately, it is not possible to simply increase the size of the PIN space to
protect against this type of attack, as there is a limit to the voter’s ability to remember and accurately
input a longer PIN. This means that it is important to find other ways to protect against such attacks, such
as implementing additional security measures or implementing a system that allows the voter to verify
that their vote was cast as intended. The probability of an adversary successfully guessing the voter’s PIN
is not be negligible, especially if the adversary is able to vote multiple times. Additionally, even if the voter
is using a properly designed smart card reader, it is possible for an adversary to create a malicious reader
that could be used to automate the ballot-casting process and increase the probability of a successful
attack. This type of attack is not practical, however, as it would take a significant amount of time to fill the
PIN space through brute force guessing. For example, according to [52], the process of voting typically

takes around 13 seconds, including network delay. While the theoretical value for voting with current



5.3. Overview of the NV12 Scheme 49

smart cards is likely to be lower, it would still take a significant amount of time to fill the PIN space through
brute-force guessing. It is also worth noting that the success of this type of attack depends on the vote
update policy in place and the timing of the vote. An adversary may be able to optimize their strategy by
casting their vote last, for example.

Repair:One way to combat the risk of brute force attacks is to add a short pause or delay between each
voting attempt. This delay can slow down an attacker trying to guess the voter’s PIN, as it would take a lot
longer to try all possible combinations.

However, we have to be careful about the length of this delay. If it’s too long, someone who’s trying
to force a voter to abstain might notice it. On the other hand, if it’s too short, it may not slow down a
brute-force attack enough to make a difference.

So, it’s a bit of a balancing act to find just the right amount of delay. It has to be long enough to slow
down an attacker, but not so long that it would be noticed by someone trying to force a voter to abstain or
make voting inconvenient for the legitimate voter. We need to experiment with different lengths of delays
and test their effectiveness to find the optimal solution.

Leaky duplicate removal: This is an attack on coercion-resistance but can also be an attack on ver-
ifiability. In the simplest form, the coercer uses the smart card to cast a vote with some trial PIN. The
coercer wants to determine if this trial PIN is correct. According to the protocol, the voter will cast her
true vote using the correct PIN at some secret point during the voting phase. However, in the tally phase,
credentials are weeded using plaintext equivalence tests (PETs) of the encrypted credentials directly on
the submitted ballots. If the coercer now sees an equivalence with his submitted trial ballot, he can guess
that it was the voter casting the other ballot, probably with the correct PIN. Thus he has determined the
correct PIN and that the voter defied his instructions in one go. To boost the attack he can simply try
several PINs. In standard JCJ, such an attack would not work since the submitted trial credential would
have the same probability of being identical to the coerced voter’s credential as for it to be identical to any
other voter’s credential. Furthermore, the probability would be negligible.

Alocal adversary getting access to the smart card could also follow this strategy to try to know the PIN
and cast valid votes. The voter might actually detect this if the voter checks the weeding on the bulletin
board and sees a duplicate of his own vote (note this was also mentioned in [105]), but the voter is not
instructed to do this in the protocol. Thus the PIN is not protecting against unauthorized use of the smart
card.

It is actually surprisingly hard to make a tally protocol that does not leak information to prevent this
attack. The original JCJ protocol relies on guessing the real full credential can only happen with a negligi-
ble chance. A first repair could be to mix the ballots before weeding but after verifying the Zero-knowledge
proofs. This makes it difficult to implement certain policies, like the last valid vote counts; however, it fits
nicely with the policy that a random selection from the valid votes counts. Unfortunately, this does not
prevent the attack. The coercer could mark his ballot by casting it a certain number of times which is likely
to be unique. He then checks if he sees this number of duplicates or one more. Even if mix between each
duplicate removal, which would be horrible from an efficiency perspective, we do not get a leak-free tally.
The distribution of time until a PET reveals a duplicate will depend on whether the PIN was correct or
not. Especially the coercer could cast a lot of votes with the same trial PIN, which would make detecting
this more visible. There are other methods to limit the information leak in the tally which we will present
below.

The protocol we will present in this chapter does not leak information about the number of duplicates
per voter and has linear tally complexity (compared to the quadratic in JCJ) but has an obfuscated form

of participation privacy.
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Repair: It can be challenging to design a tally protocol that does not leak information and is able to
protect against this type of attack. The original JC] methodology relies on the assumption that it is unlikely
that an adversary will be able to guess the true complete credential. One potential measure that could be
implemented to address this issue is to mix the ballots prior to weeding, but after confirming the zero-
knowledge proofs (ZKPs). This would make it more difficult for an adversary to determine which ballots
are equivalent and deduce the voter’s actual vote. However, this approach has the potential to complicate
the implementation of certain rules, such as the last legitimate vote count. Despite these efforts, it is still
possible for an adversary to attempt this type of attack and potentially deduce the voter’s actual vote. To
further protect against this type of attack, the coercer may mark their ballot by casting it a specific number
of times, which is likely to be unique. They can then check to see if there are any other duplicate ballots
and thus learn if the trial PIN was correct. While mixing the ballots between each duplicate removal may
help to complicate the process, it is not a foolproof solution and may not be sufficient to prevent informa-
tion leakage in the tally. One potential issue with this approach is that the time interval between plaintext
equivalency tests (PETs) revealing a duplicate may vary depending on whether the PIN was accurate or
not. If the coercer uses the same trial PIN to cast a large number of votes, it may be easier to identify
this and deduce the voter’s actual vote. There may be other techniques that can be implemented to limit
information leakage in the tally. We are presenting one based on multi-party computation below, but
where voter participation is only obfuscated. It may also be possible to develop a technique that does
not disclose the number of duplicates per voter, has a linear tally complexity (as opposed to the quadratic
complexity in JCJ), and provides an obfuscated form of participation privacy. These methods could help
to further strengthen the security of the voting system and protect against attacks.

Fake election identifier: This attack targets the verifiability of the voting system by attempting to
present the voter with an incorrect election identifier. As stated in the original JCJ article, zero-knowledge
proofs must have a unique election identifier to prevent ballots from being copied between elections. If
an incorrect identifier is used, the proofs will not be validated. However, before voting, the voter’s smart
card must be updated with the correct election identifier. If an adversary is able to manipulate the voter’s
computer and present them with the wrong credential, it could potentially compromise the integrity of
the voting process.

Repair: To protect against this type of attack, it is important to ensure that the correct election iden-
tifier is properly transmitted to the voter’s smart card and that the voter is able to verify its accuracy. This
may involve implementing additional security measures, such as encryption or authentication, to protect
against tampering or manipulation. One potential solution to this issue is for the voter to manually enter
the election identifier to ensure its accuracy. However, this approach may be prone to mistakes, as the
voter may accidentally input the wrong identifier. An alternative approach is for the voter to verify that
the submitted ballot contains a zero-knowledge proof (ZKP) that certifies the ballot’s authenticity in rela-
tion to the genuine election identity. This can be done when the hash of the entire ballot is verified, but it
may require the voter to wait a little longer in order to complete the process. By implementing this addi-
tional verification step, it may be possible to increase the security of the voting system and protect against
attacks that seek to compromise the integrity of the voting process. It is important to carefully consider
the trade-offs between security and usability when implementing these types of measures to ensure that
they do not unduly burden the voter or undermine the voting process.

Removing the smart card: An obvious forced abstention attack is when the coercer simply demands
to hold the smart card during the election period. This problem seems quite inherent to the smart card
approach. We could let the voter hold several smart cards. However, holding several cards would be
physical evidence that a voter with a local coercer probably would not want to risk. Furthermore, the

number of cards allowed per voter could necessarily not be bounded. If each voter were allowed to hold
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e.g. 5 cards, the coercer would simply ask for five cards. If this is troublesome it seems better to leave the
smart card only approach and allow the voter to also hold the credential as a piece of data as in standard
JCJ. This can more easily be hidden (steganography could be an option here) even though theoretically
this also has problems [113]. Our protocols below can be implemented with or without smart cards.

Additionally to the above attacks, some problems with the protocol do not fall under the category of
attacks. The main usability and verifiability problem with the protocol is that PIN entry is error-prone,
as was already stressed in the papers by Neumann et al. An obvious solution is to have a PIN check, e.g.
a checksum check. However, this would mean that only certain PINs are valid PINs, and for a voter to
present a fake PIN to a coercer, she would first have to prepare a valid fake PIN, which is less usable.

An option with higher usability is to have a policy of allowing PIN errors and accepting full credentials
corresponding to the PIN being entered with allowed errors. This is the approach we will essentially follow
in this paper; however, our solutions will also work for checksum checks.

If JCJ had a method of verifying the cast votes, we would also be able to detect such PIN errors. Such
a verification mechanism was suggested in [74] using the Selene approach. However, this check can only
be made after vote casting has ended; thus too late to update a PIN typo.

Another problem is the assumption that the smart card is trustworthy. This does not seem like a valid
assumption, at least for important elections. The smart card could simply use the wrong credential in a
ballot, invalidating the vote. Further, this cannot be detected since the smart card is the only credential
holder. At least the PIN encryption could be Benaloh tested, but not the credential. Furthermore, the
smart card reader is also trusted. However, this might not be reasonable in practice. As an example, if the
middleware on the reader allows the voter’s computer or the network to display messages on the screen,
e.g. to say it is waiting for a connection, then it could e.g. try to display fake hash values. A corrupted
smart card could also easily break privacy by using encryption as a subliminal channel for vote choice.
The smart card can also be seen as a single point of failure in light of this. We will thus focus on hardware-
independent protocols.

Repair: The utilization of smart cards in the voting process introduces challenges in safeguarding
against coercion and other forms of interference. Allowing voters to possess multiple smart cards could
potentially address this issue; however, practical difficulties arise, such as secure storage and manage-
ment of multiple cards. Alternatively, it may be necessary to abandon the reliance on smart cards al-
together and enable voters to possess their credentials as digital data, similar to the conventional JCJ
method. This approach offers greater flexibility in countering coercion, as the credentials can be more
easily concealed using techniques like steganography [113]. Nonetheless, this alternative approach brings
its own set of challenges, such as ensuring the security and integrity of the credentials to prevent tamper-

ing or unauthorized access.

5.3.2 Security Vulnerabilities

There are several vulnerabilities in the protocol that are not considered attacks. One of the main issues
with the protocol is that it is prone to errors when it comes to inputting the PIN. Neumann et al. have
noted this issue in their articles. One solution to this problem is to include a PIN check, such as a check-
sum, to ensure that only certain PINs are valid. This would make it more difficult for a voter to give a fake
PIN to a coercer, as they would have to create a valid fake PIN first. A more user-friendly solution is to
implement a policy that allows for PIN errors and accepts complete credentials that match the allowed
PIN errors. This is the approach we will take in this chapter, though our solutions will also be applicable
to checksum checks.

If JCJ had a mechanism for verifying cast votes, we could also identify such PIN issues. Iovino et al.

proposed a method for doing this using the Selene approach in their article [74]. However, this check can
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only be performed after voting has ended, so it is too late to correct a PIN error. Another major concern
with the protocol is the reliability of the smart card. In large elections, it may not be reasonable to assume
that the smart card will always function properly. The smart card may accidentally include the wrong
credential in the ballot, rendering the vote invalid. This is difficult to detect because the smart card is the
only entity with access to the credential.

While the encryption of the PIN can be checked using the Benaloh challenge, the credential itself
cannot be checked in this way. Additionally, the trustworthiness of the smart card reader is assumed.
However, this may not be sufficient in practice. For example, if the reader’s middleware allows the voter’s
computer or network to display messages on the screen, such as indicating that it is waiting for a con-
nection, the voter’s computer or network may attempt to display fraudulent hash values. Additionally, a
compromised smart card may compromise privacy by using the encryption option as a covert channel
for transmitting the vote selection. As a result, the smart card may be seen as a single point of failure.

Therefore, we will focus on hardware-independent protocols.

5.4 Pin-based JCJ] Protocol

To overcome the unsatisfying state-of-affairs described before in [51] we propose a practical and usable
e-voting scheme, PIN-JCJ that satisfies verifiability, and coercion-resistance properties.

Compared to the previous electronic voting technique, our protocol has two significant innovations.
First, it is a hardware-independent protocol, as we replace the smart card with the voter’s supporting
device, which can be easily duplicated. Second, we construct it in such a way that some human error is

tolerated.

5.4.1 The intuition behind the PIN

In a nutshell, in our voting scenario, the voter has two keys: a long key (a.k.a. long credential) which
is stored on her supporting device (smart card or another device), and a short key, namely PIN, which
should be memorized by the voter. Our goal is to design a voting protocol that tolerates some level of
human error. In other words, the validity of a ballot and the result of the decryption algorithm tolerate
human errors, such as typos (fat finger errors) regarding the PIN. The naive solution to do this is for each
PIN, “a” we generate an ErrorList,, and in the tally phase, to verify the legitimacy of the ballot, check

whether the input PIN is in the set of error lists or not.
pin=a: ErrorList, ={a; = a,a,...,ai}, |a| = |ai| (5.1)

This method has several significant privacy and efficiency issues, and to overcome these drawbacks, we
propose the following new approach:

Our approach is based on polynomial evaluation, which allows us to determine whether or not a PIN
is legitimate efficiently. This is accomplished by generating a list of approved PINs based on the user’s
PIN a and the election policy. From now on, we refer to this list as an Error List. We emphasize that to
have a constant degree polynomial for all voters, the error list must have the same number of PINs, which
might contain duplicates. From this, we generate the pin-Polynomial, as follows, which has all ErrorList,

members as its root:

k k ‘
pin-polynomial: polypi,(x) = [[(x—a;) =} pix’ (5.2)
i=1 i=0



5.5. Protocol Description; Participants, Primitives and Framework 53

In order to check the validity of the PIN typed by the voter, it is then sufficient to check whether the
polynomial value on this pin is equal to zero or not.

It is obvious that this polynomial must be kept secret at all times to prevent the coercer from recov-
ering the PIN by factorizing it. As a result, we must operate with encrypted polynomials, which brings
us to our next challenge: polynomial evaluation under this encryption. Namely, given the polynomial

encryption as its encrypted coefficient,

polypin(x) = Zk: p,'xi = Enc(polypin)(x) = Zk: cpixi,
i=0 i=0
as well as a ciphertext CTpin = Enc(a) that is the encryption of the entered PIN, we need to compute
Enc(polypin(il)).

Therefore in the next step, we have to find a way to prove (publicly) that the individual voter’s polyno-
mial is correctly evaluated without endangering the coercion-resistance.

Further, while solving this problem, we will also focus on efficient protocols to obtain a practical JCJ
scheme with (almost) linear tally time in the number of voters. To obtain this we need to sacrifice perfect
privacy. We only have participation privacy in the first scheme by obfuscation inspired by [61]. Here
ballots are submitted with an ID, and homomorphic Paillier encryption can then be used to evaluate the
polynomial. However, everybody, e.g. an independent authority, can cast votes labeled with ID, which
will later be discarded as invalid. Thus the actual participation of the voter is obfuscated, and the voter
can deny having participated in the election. Optionally, we could also follow the JCJ alternative method
in [61] to achieve perfect privacy; however, the cost will be that the voters twice have to defy the coercer
and interact with the voting system. In the second scheme using BGN encryption, the information leak
from duplicate removal will not be negligible but bounded, and this scheme does not satisfy linear tally
efficiency.

The next section will present the protocol description by introducing the cryptographic building blocks
and their algorithm. Also, for simplicity, we describe the protocol with a single trusted party, but it is pos-
sible to run this protocol distributively. We will also not specify all parts of the distributed registration
phase and the Benaloh challenges; this can be implemented as in the NV12 scheme with some obvious

modifications and the repairs presented in [51].

5.5 Protocol Description; Participants, Primitives and Framework

We now present the PIN-JCJ e-voting protocol on the conceptual level. In sections 5.6 and 5.7, we will
then instantiate our protocol by introducing concrete cryptographic primitives to demonstrate the effi-

ciency and usability of the protocol.

5.5.1 Protocol Participants

The PIN-JCJ protocol is run among the following participants: Election authority in charge of running
elections and declaring elections. Election trustees are in charge of the tallying process, and they are the
only parties in possession of the election secret keys. n, voters, each having their own voting supporting
device,vsd. A set of supervised registrars administrate the electoral register and provide the voters with
their credentials. A set of mix-servers (mix-net) and an append-only bulletin board 5°B.

We also presume that all parties communicate with one another via authenticated channels. An au-

thenticated channel from each voter to the bulletin board allows the voter to post data on the bulletin
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board, for example, cast her ballot, or file a complaint. To describe the PIN-JCJ protocol, we will first go
through the cryptographic primitives that are employed in the scheme. We separate two sets of primi-
tives for instantiation: those that use standard public encryption schemes and those that use the public

functional encryption scheme.

5.5.2 Cryptographic Primitives
We use the following cryptographic primitives:

¢ An IND-CPA-secure public-key encryption scheme: [1Pke = (Kgen, Enc,Dec). Our protocol re-
quires performing a polynomial evaluation on encrypted data; namely, the underlying public-key
cryptosystem must support re-encryption. To this end, we consider three approaches: A public-
key encryption scheme that allows multiplication on the ciphertext or a homomorphic public-key
encryption scheme, or a functional encryption scheme. We detail the instantiation of the protocol
with these two cryptosystems in sections 5.6 and 5.7. However, for the time being, we are only con-
sidering a public-key cryptosystem with IND-CPA-secure property as the protocol’s security and
privacy are dependent upon it.

Additional Note. As mentioned above, the underlying public-key cryptosystem needs to have an
extra algorithm, as a re-encryption algorithm. On the other hand, for security analysis, we require
the cryptosystem to be non-malleable, which contradicts the re-encryption requirement. We em-
ploy a public-key cryptosystem with a re-encryption algorithm to address this issue, w, but we re-
quire that each ciphertext contain a zero-knowledge proof of knowledge. We refer to [21] for more

detail on the CCA-secure cryptosystem for e-voting protocol.

¢ Non-interactive zero-knowledge proof: For the protocol’s verifiability, we use a non-interactive
zero-knowledge proof system to prove the correctness and plaintext knowledge for all encrypted
data, such as “Proof of Plaintext Knowledge” and “Proof of Decryption Validity.” We may utilize
either a zero-knowledge proof system or a witness-indistinguishable proof system for this aim. For-

mally we will use the following proofs in our protocol:

1. A proof of correct key generation, i.e., a non-interactive zero-knowledge proof (NIZKP) mKgen

for proving the correctness of a public key pk w.r.t. TPke The underlying relation ZKeyGen is
(x = pk, w = (random, sk)) € ZKeyGen < (pk, sk) = Kgen(random). (5.3)

2. The proof of correct encryption ng,, i.e., a NIZK proof of knowledge for proving the correct-
ness of a ciphertext ct w.r.t. election key pk, voter public key pk,,.
3. A proof of shuffle, wsp e With respect to the cryptosystem I1Pke e, NIZK proof of knowledge

for the following relation %Zshuffle:

(x= (et () D, w=((r),,0)) € Zshuffle
0 (5.4)

(o: [n] — [n] bijective ) A (Vi € [n]: ct; = ReEnc(pk, ctgi; 1))

In other words, the public statement of proof of shuffle consists of two ciphertext vectors
(ct)! , and (ct;.):’=1 of the same size, and if the prover’s output is valid, then this implies that
the prover knows random coins (r;)}_, and a permutation o over [n] such that ct’i is a re-

encryption of cty(;) (using randomness r;).
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4. A proof of correct decryption mpec with respect to ITPK¢, i.e., a NIZK for the following relation
Hdec:

(x = (pkr m,ct), w = Sk) € Rdec
¢ (5.5)
(m = Dec(sk, ct)) A (pk,sk) — Hpke.ngn.

For all the above relations we can use either a zero-knowledge proof system or a witness-
indistinguishable proof system for this purpose.

¢ EUF-CMA-secure signature scheme: The EUF-CMA-secure signature scheme, or Existential Un-
forgeability under Chosen Message Attacks, is a crucial security property for digital signature schemes.
Mathematically, a signature scheme (Gen, Sign, Verify) is said to be EUF-CMA secure if for all proba-
bilistic polynomial-time adversaries A, the probability pr[Forge(A, (Gen, Sign, Verify))] is negligible.

Here, Forge denotes a successful forgery event, which is defined as follows:

A forges a signature if after a learning phase, where A has access to a signing oracle that signs any
message of A’s choice, A can output a pair (m,o) such that Verify(pk, m,0) = 1 and m was not
queried to the signing oracle during the learning phase.

We assume that every message encrypted by a protocol participant contains some election param-
eters such as the election identifier, and to avoid the heavy notation, we use the following conven-
tion: Signing some message m implies that the signature is computed on the tuple (m; pp) where

the second components are public election parameters including an election identifier.

5.5.3 Protocol Framework
A protocol run consists of the following phases:

* Setup Phase. This procedure is carried out in the same manner as a standard e-voting protocol.
The election authority sets up the election, establishes all the policies, such as the re-voting policy
and the type of error that the protocol will tolerate, and publishes details about the ballot design
and other procedures. For example, the re-vote policy specifies whether voters can cast only one
ballot or many ballots. Furthermore, which ballot will be counted as the voter vote in the tally phase
in the latter case?

Then the election trustees distributively generate the election key through distributed threshold
secret sharing and publish the public part of it on the bulletin board, together with proof of data

correctness.

* Registration Phase. During this phase, the voter, v, personally consults a so-called supervised reg-
istrar (SR). This authority verifies that the voter is not being coerced directly and then generates
a unique credential. This credential is then split into two parts: the long credential and the short

credential, also referred to as the PIN.

Following that, the supervised registration authority develops the PIN’s error list(as in 5.1) accord-
ing to the election policy and determines the pin polynomial (as defined in 5.2). Finally, the voter’s
long credential and encryption of the pin-polynomial are transmitted to (stored on) the voter’s sup-
porting device. Notably, the PIN is not stored in the voting device or on the bulletin board, and it
is necessary to be memorized by the voter. Along with the voter credential, the registrar provides
proof that satisfies only voter, v, that all associated data was generated correctly, whether published

on the bulletin board or stored on the voter’s device.
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¢ Voting Phase. In this phase, the voter device asks the voter to enter her PIN, 4, and her preferred

choice, vote. Then it generates the ballot of the form:

ballot = (CTcrd;CTvotev Thallot) :
CTcrq = Enc(voterCredential) = (CT1,CT»), (5.6)

CTyote = Enc(vote)

together with some election’s public parameters, such as the election identifier. In the ballot form,
CT; and CT, denote the encryption of the voter long credential and the pin she entered, with re-
spect to the election public key, respectively. Moreover, 7,10t denotes the proof of the ciphertexts’
well-formedness, which consists of proof of plaintext knowledge of both the credential and vote.
In the next step, the voter can choose to either audit her ballot her vsd and conduct the Benaloh

Challenge [11] procedure to ensure that her ballot has the correct vote and pin or to submit it.

Device Auditing: If the voter wishes to audit option, the smart card commits to encryption
of the ballot by displaying H(ballot; {random}). The voter notes down this hash, and if the en-
cryption is challenged, the smart card releases all the randomness numbers {random} to the
voter’s computer. The voter can verify the hash indeed was consistent with the vote choice via
a third device. This challenging procedure can be reiterated.

Ballot Casting: When voters get sufficient confidence in the honesty of their device, they sign

the ballot 5.6 and submit it via an authentic anonymous channel to the bulletin board.

Tally phase. This includes several steps. First, any exact duplicate ballots and ballots with incorrect
proofs or signatures are removed. The teller should then detect duplicate ballots from a single voter,
weeding the duplicates while ensuring the remaining ballot matches the valid pin (if existing). The
weeding step is done according to the re-vote policy of the election. For example, suppose the re-
vote policy specifies that each voter’s last (according to the timeline) valid ballot must be counted in
the tally phase. In that case, this step must ensure that the last valid ballot remains on the bulletin

board and the rest are removed.

The several mix-net servers carry out the following phase: each mix-net receives a list of ballots
as input, re-encrypts each ballot, and then performs a secret permutation on the re-encrypted list
to produce the new list. Finally, the decryption trustees process the output of the last mix-net to
compute the election outcome. We emphasize that the in-charge parties must provide proof of

correctness in all of the preceding procedures.

Public verification phase. In this phase, every participant, including the voters or external ob-
servers can verify the correctness of the previous phases, particularly the correctness of all NIZKPs

published during the setup, registration, voting, and tallying phases.

In sections 5.6 and 5.7, we propose two instantiations of our protocol. The main difference in these

instantiations is how we perform the tally phase.

This the next section we provide two instantiations of the generic PIN-JCJ protocol with concrete

cryptographic primitives. While all three institutions adhere to the protocol framework 5.5.3, we empha-

size that they differ in some steps, particularly the tally phase.
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We will explain only the basic building blocks and their algorithm and suppress some details about
ballot integrity and non-malleability from the zero-knowledge proofs, e.g. the inclusion of election iden-
tifiers and the correct form of the Fiat-Shamir transformations. Also, for simplicity, we describe the pro-
tocol with a single election trustee, but it is possible to run this protocol distributively. Finally, we also
will not specify all parts of the distributed registration phase and the Benaloh challenges, this can; be
implemented as in the NV12 scheme with some obvious modifications and with the repairs mentioned
in [51].

Before proceeding, we will establish some specific notations for this chapter. First, we refer to the
ct[m] as the cipher-text containing the message m, i.e. ct = Enc(m), and by ballot[crd, vote], we mean a

ballot that contains both the crd’s and the vote’s encryption.

5.6 Instantiation with Paillier cryptosystem

The first instantiation relies on the standard threshold variant Paillier public-key cryptosystem[93] whose
security is based on the hardness of the decisional composite residuosity assumption.

The main reason for choosing Paillier [99] instead of exponential ElGamal [65] (as in the original JCJ
protocol) is that its plaintext-homomorphic property allows us to evaluate the polynomial without de-
crypting the coefficients of the polynomials. Further, it allows an efficient multi-party computation pro-
tocol to compare and (hence sort) ciphertexts by plaintext values without decryption [87]. Furthermore,
this algorithm is linear in the bit length, i.e. logarithmic in the security parameter, and can be made pub-
lic verifiable [84]. Using this technique allows us to empower this instantiation to secure and efficient the
weeding process but at the cost of all ballots submitted with a voter identifier. Thus, obfuscating votes [61,
83] must also to be cast to achieve participation privacy.

We also use the secure multi-party computation protocol MPC,,;,, to compare and (hence sort) ci-
phertexts by plaintext values without decryption introduced by Lipmaa and Toft [87] which secretly eval-
uates the equality of two secret integers. In addition, the MPC protocol that is used in tally-hiding e-voting

protocol such as Ordinos [84]. We refer to [84] for the public verifiable multi-party computation details.

Additional Note. We consider the protocol in the context of a single trusted party, namely a single election
trustee running the key generation algorithm, rather than distributing trust among a group of election
trustees; however, it can be implemented in a distributed fashion, as was already mentioned above, using
the methods introduced in [93, 67]. Furthermore, we emphasize that in the Paillier cryptosystem, proof
of the correct key generation, 7kgen, is actually the bi-primary test of the modulus n. Numerous meth-
ods for bi-primary testing have been proposed in single- and multi-party settings, including the method
introduced by Boneh and Franklin in [24]. Additionally, Vitto [123] introduces a protocol for efficiently
generating certificates of semi-primality, which enables us to generate distributively semi-primes with
unknown factorization.

For the proof of knowledge of the vote and the well-formedness of the ballot, we use a non-interactive
version of the sigma protocol for Paillier encryption scheme. Finally, we can use any EUF-CMA-secure
signature scheme.

The detail of the protocol is as follows:

* Set Up Phase: The election authority runs the key generation algorithm of Paillier encryption scheme,
P2 Kgen to generate the pair of keys and publish them on the bulletin board along with the elec-

tion parameter:

Kelection = (PK,SK); PK = (” =pq,G, g’ppelection)'SK =(pq
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* Registration Phase: At the beginning of this phase, an empty list of voter’s credentials, VoterCredentialList

is initiated. Then for voter v; 4 the registrar does the following steps:

1.

Pick a random number, crd S Z,. according to the uniform distribution such that crd ¢
VoterCredentialList. For the sake of privacy, we can store a hash value of the credential in
this list rather than the credential. Append the new credential crd to the VoterCredentialList

and store it on the voter’s device. We refer to crd as the voter’s long credential.

. Pickrandomly a number a S PinSpace and declare it to the voter v; 4. We refer to a as a voter’s

short credential or voter’s pin.

. Aregistrar, based on the error-tolerance policy of the election, computes the set ErrorList, as

in (5.1)

k [
polyiqq=[](x—crd—a;) =) pix' (5.7)
i=1 i=0

We refer to the set ErrorList, as the error list for pin = a and poly, 4 , the pin-polynomial for

voter 1d. If the voter’s 1d is clear from the context we will omit the index id.

. Encrypt the polynomial with respect to the election public key. We stress that by encryption of

the polynomial, we mean the encryption of its coefficients, throughout this chapter. Namely,
we consider the encryption as a vector with lent k + 1.

Enc(poly(;q q) = CP= (cpg»---»Cp) : cp; = Enc(p;) fori=0,...k. (5.8)

. Provide a proof 7, for the following relation:

Zpoly = {(x, w),x = (id, a,crd, ErrorListg, CP = (cpicixl)
w = ((random;)ie(y) :

cp; = Enc(PK, p;;random;) = g”i -random;”, 5.9

ko k
polyigq= Z pix' = ]_[(x—crd —a;),
i=0 i=0

i=1,...,k:a;€ ErrorList}

The registrant presents 70|, the voter as proof of the polynomial’s validity (well-formedness
and correctness). This proofis done in a designated way.

6. Store (crd, CP) on voter device.

7. Publish v g4 : (CP = (cpy,...,cpy), Enc(crd)) on bulletin board.

* Casting Ballot: In this step, every voter v; decides to abstain from the election or vote for some

candidate. In the latter scenario, the voter indicates her choice after entering her PIN, 4 to her vsd

device. Then the vsd encrypts the vote, the voter credential, and the entered 4, under the pub-

lic key of the election (Paillier public key) using random coins random, resulting in the following
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ciphertexts: CP* = (cp;,...,cpZ),ct[vote] and ctlcrd].

ielk]:cp; = cpgmcrd)l -random*” = (g”' - random™) @< D" . random "
= (gPriarerd’ (randomgmcrd)l -random})"
=Enc(PK, p; - (@+crd)?) (5.10)
ct[vote] = Enc(PK, vote;random) = g'°*¢ - random”,

ctlcrd] = Enc(PK,crd) = gcrd -random’”

As previously stated, the voter’s vsd contains the voter’s long credential (plain) but not the polyno-
mial. In fact, it only has the encryption of the polynomial. However, because of the homomorphic
property of the Paillier encryption scheme, the vsd is capable of performing a blind multiplication
of the polynomial coefficient with the (crd + a).

In the next step, vsd provides a proof, m,10t, (also proof of knowledge), ensures that everything was

generated honestly, for relation ZballotP2!'er,

ZballotP2illier = {(x, w), x = (ctlvote], ctlcrd], CP = (cp))ieik), CP* = (p})icik)

w = (vote, randomyote, @, crd, randome,q, frandom; } (i) :

vote

ct[vote] = g¥°*¢-random”, vote € cList, (5.11)

ctlcrd] = gCrd -random’”,

i=1,..k:cp} =cplcrd+a’ -random;‘”}

This proof can be implemented efficiently using Sigma protocols and relies on the DDH assumption

and it can be made non-interactive using the strong Fiat-Shamir heuristic.

At the end of this phase, the voter signs her ballot on the following form:
balloty, , = (ctlcrd], ct[vote], CP* = (cP1,---»CPL), Thallot) (5.12)

and submiits it to the bulletin board. Note that the hash should contain all parts of the ballot.

Re-Vote Policy In this instantiation, each voter is permitted to submit multiple ballots, and in the
tally phase, one of the valid ballots is randomly picked and counted.

Additional Note. We stress that we do not describe some steps in detail here, such as the “Benaloh
challenge” to audit the voter’s supporting device. Furthermore, in this instantiation, we use the
obfuscate method introduced in [62, 83] to protect the voter against the coercer who compels a
voter not to vote (abstain from voting) i.e. a separate (distributed) authority will submit dummy
ballots on behalf of all voters. Since this authority does not know the long credential all of these

dummy ballots will be invalid but will obfuscate whether a specific voter did vote or not.

¢ Tally Phase: Using the Paillier encryption scheme allows us to efficiently sort the ciphertexts based
on plaintext values without decrypting them using MPC among the Tally Tellers (see [87] for details).
Additionally, this algorithm can be implemented in a multi-party computation, to strengthen the
elections. In our protocol, we take advantage of this multi-party computation to sort the encryption

of polynomial evaluation.
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We refer by MP C,i, the algorithm that takes as input the ciphertexts:

cty = Enc(my), ctz = Enc(my),...,ct; = Enc(my),

and outputs the index i* such that
ctj» = Enc(m;+) : mj» = min{my, ..., m}.

We use this algorithm in the Tally phase.

1. Ballot Validity check: We remove exact ballot duplicates and all ballots with invalid proof and
the signature in the first step. In the next step, we need to remove extra ballots for each voter,

making sure a valid ballot is kept if existing.

2. Weeding: Since each voter will be associated with possibly more than one ballot, we need to
weed them in a way that at least one of the ballots associated with the valid credential and pin
will remain - if existing.

Assume the voter v; 4 casts g ballots, each includes choices vote; g ;:

Vig: balIotid‘l : (C*Pr,ct[voteidll]) ey baIIotid'q (C*P:,,ct[voteid,q])

. S . A
each contains CP, = (sz“t,l),...,cpz‘[,k)) and the pin 4;.
We homomorphically combine the public ciphertext cp, with the submitted encryptions to

obtain an encrypted polynomial evaluation for each ballot:

Fort=1,...q:
k k .
cpo- [ cp; ;= &" -randomg - IT gPit@terd)! -random?
j=1 i=0 (5.13)
= ngzo piterd+an’ 1o dom

= Enc(PK, poly; 4 ,(crd + d,))

Note that the above ciphertext would be the encryption of zero if the ballot has a valid creden-
tial and pin.
Enc(PK,0) < a; € ErrorList,

We now verifiably mix the pairs:
ctelpoly; 4 4(@r +crd)], ct[vote; 4 ¢]
and run the MPCy;, protocol:

MPCmin(ctg(j) [poly; 4 4(dsj+ crd)]) : — ctpoly; g 4(@m +crd)] (5.14)

jelg

which securely outputs the minimum value:

Vi=1,...,q:poly;q4(crd +d;) < poly; 4(crd + é;),
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We keep this ciphertext and the corresponding encrypted vote and discard the rest. Note that
MPCmin selects a valid ballots having poly; 4 ,(@, +crd) = 0 if it exists.!

3. Ballot anonymization: We observe that at this stage, there is only one ballot left on the bulletin
board for each voter, which is composed of two components:

Vig: ballot; g, = (Ctig,cthy):
6tid =ct;qlpoly]l = EnC(POWid,a(&m +crd)),

ct) 4 = ctiglvotes g ml.

In fact, ballot; 4,1, is the output of the MPC,,;,, protocol. To avoid the heavy notation, we will

no longer use the index m and we refer to ballot; 4 ,, by ballot; 4.

Two steps must be completed in order to anonymize the ballots:

Step 1. Raise the first component to the power r; and re-encrypt the second component:
Ctig— ctig =Ct} = Enc(poly; 4 4(dm +crd)™) (5.15)
and provide a proof 7 3ndomization fOr the relation Zrandomization:

Hrandomization = {(x, w), x = (ballot, ballot), w =ry :

ballot = (¢t, ct’), ballot = (ct, ct’),
- (5.16)
ct=