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Abstract: A new class of inhibitors of tubulin polymerization based on the 2-amino-3-

(3’,4’,5’-trimethoxybenzoyl)benzo[b]furan molecular scaffold was synthesized and evaluated 

for in vivo and in vitro biological activity. These derivatives were synthesized with different 

electron-releasing or electron-withdrawing substituents at one of the C-4 through C-7 

positions. Methoxy substitution and location on the benzene part of the benzo[b]furan ring 

played an important role in affecting antiproliferative activity, with the greatest activity 

occurring with the methoxy group at the C-6 position, the least with the substituent at C-4. 

The same effect was also observed with ethoxy, methyl or bromine at the C-6 position of the 

benzo[b]furan skeleton, with the 6-ethoxy-2-amino-3-(3’,4’,5’-

trimethoxybenzoyl)benzo[b]furan derivative 4f as the most promising compound of the series. 

This compound showed remarkable antiproliferative activity (IC50: 5 pM) against the Daoy 

medulloblastoma cell line, and 4f was nearly devoid of toxicity on healthy human 

lymphocytes and astrocytes. The potent antiproliferative activity of 4f was derived from its 

inhibition of tubulin polymerization by binding to the colchicine site. The compound was also 

examined for in vivo activity, showing higher potency at 15 mg/kg compared with the 

reference compound combretastatin A-4 phosphate at 30 mg/kg against a syngeneic murine 

mammary tumor. 

Keywords. Microtubules, benzo[b]furan, in vivo activity, inhibition tubulin assembly, 

colchicine binding site. 
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1. Introduction 

Microtubules, as key components of the cytoskeleton, are dynamic cellular structures in 

neoplastic and non-neoplastic cells generated by the polymerization of -tubulin 

heterodimers [1, 2]. The microtubule system of eukaryotic cells is a critical element involved 

in a variety of essential cellular processes in addition to mitotic spindle assembly. These 

include determination and maintenance of cell shape, regulation of motility, cell signaling, 

secretion and intracellular transport [3, 4]. Due to the essential role of microtubules in mitosis 

and cell division, tubulin is the target for numerous small natural and synthetic molecules that 

inhibit the formation of the mitotic spindle [5-7]. More recent studies have demonstrated that 

several small molecules able to interfere with the dynamic assembly of tubulin in generating 

the microtubule system are also able to induce extensive morphological changes in the 

endothelial cells of tumor vasculature. Such agents can thus also be classified as vascular 

disrupting agents [8-10]. 

Among the natural microtubule depolymerizing agents, combretastatin A-4 (CA-4, 1a; Figure 

1) is one of the more studied compounds. CA-4, isolated from the bark of the South African 

tree Combretum caffrum [11], strongly inhibits the polymerization of tubulin by binding to 

the colchicine site [12]. CA-4 inhibits cell growth at low to mid-nanomolar concentrations 

[13]. The water soluble sodium phosphate prodrug of CA-4 (CA-4P, fosbretabulin or 

Zybrestat, 1b) is actually in phase III clinical trials for the treatment of anaplastic thyroid 

cancer and Phase II trials for non-small-cell lung cancer [14, 15], while the related serine 

aminoacid prodrug of 3’-amino-deoxycombretastatin A-4 (Ombrabulin or AVE8062, 1c) was 

found to have more potent activity compared with CA-4P and is in phase I clinical studies for 

patients with solid tumors [16]. In addition, CA-4P and AVE8062 demonstrate strong 

suppressive activity on tumor blood flow, leading to tumor necrosis [17, 18]. 
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Figure 1. Representative tubulin depolymerizing agents (CA-4, CA-4P and AVE8062) and 

general structures 2-4 of inhibitors of tubulin assembly with the benzo[b]furan 

pharmacophore. 

Anticancer therapy based on microtubule-targeting agents that bind to tubulin at the 

colchicine site and disrupt microtubule dynamics have received considerable attention, and 

there is still a need to identify novel molecules that target microtubules [19-22]. 

Although many synthetic tubulin inhibitors have been synthesized, among such compounds 

there are limited examples of chemically diverse small molecule antimitotic agents based on 

the benzo[b]furan molecular skeleton as the core structure [23-30].  During our continuing 

search directed at the preparation of new small molecule tubulin inhibitors, we previously 
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reported the discovery of a series of methoxy-substituted 2-(3’,4’,5’-trimethoxybenzoyl)-3-

aminobenzo[b]furan derivatives with general structure 2, as a new class of antimitotic agents 

[26]. In this series of compounds, potent activity was highly dependent upon the presence and 

position of four methoxy substituents. In addition to the trimethoxyphenyl ring, a fairly 

dramatic difference was observed between C-4/5 and C-6/7-methoxy substituted compounds. 

The greatest activity occurred when the fourth methoxy group was located at the 6- or 7-

position, while 4- and 5-methoxy derivatives were inactive. Among the synthesized 

compounds, derivative 2a, characterized by the presence of a methoxy group at the 6-position 

of the benzo[b]furan skeleton, displayed the greatest antiproliferative activity with IC50 values 

ranging from 87 to 430 nM against a panel of four different cancer cell lines. This agent 

inhibited tubulin polymerization by binding to the colchicine site on tubulin (IC50: 1.1 M for 

assembly) and caused G2/M phase arrest of the cell cycle. 

The 3-(3’,4’,5’-trimethoxybenzoyl)-6-methoxybenzo[b]furan molecular skeleton was the core 

structure of a series of agents with general structure 3 identified by Flynn and co-workers as 

potent inhibitors of both tubulin polymerization and cell proliferation of the MCF-7 human 

breast cancer cell line [29, 30].  While at the C-2 position there was a wide tolerance to 

structural variation with hydrophobic and hydrophilic substituents, at the C-3 position the 

carbon linker with the 3’,4’,5’-trimethoxyphenyl substituent was more effective as a carbonyl 

group than as a carbinol or a simple methylene group [29]. Previous studies have shown that 

the concomitant presence of a C-6 methoxy substituent significantly contributed to maximize 

activity, presumably as a mimic of the 4-methoxy group in the B-ring of CA-4 [29]. The 

introduction of a hydroxyl at the C-7 position was well tolerated and afforded compounds 

with similar potency as with R2=H, while a 10-fold increase in activity was observed with 

R2=OH [30]. Among the synthesized compounds, the C-2 3’-hydroxy-4’-methoxyphenyl 

analogue 3a showed potent activity in inhibiting the growth of the MCF-7 cell line (IC50: 4 
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nM), with a significant effect on inhibition of tubulin polymerization (IC50: 0.8 M). 

Replacement of C-2 aryl group with a methyl furnished derivative 3b (BNC105), a potent and 

selective antiproliferative (IC50: 3 nM on MCF-7 cells) and antitubulin (IC50: 3 M for tubulin 

assembly) agent, which causes strong tumor vasculature disruption and exhibits tumor growth 

inhibitory properties in xenograft tumor models [30, 31]. These data confirmed that the 4-

methoxy-3-hydroxy groups in the B-ring of CA-4 correlates with the 6-methoxy-7-hydroxy 

substituents on the benzene portion of the benzo[b]furan skeleton. 

Compound 3c, obtained by replacing the C-2 methyl group of 3b with an amino moiety, was 

characterized by a 2-amino-3-(3’,4’,5’-trimethoxybenzoy)benzo[b]furan skeleton and can be 

also considered as a positional isomer of compounds with general structure 2, switching the 

position of the amino and 3’,4’,5’-trimethoxybenzoyl groups. Compound 3c was able to 

inhibit the growth of activated and quiescent human umbilical vein endothelial cells 

(HUVECs), with a selectivity ratio of 4.6, but neither its antiproliferative activity on cancer 

cell lines nor its inhibition of tubulin assembly was reported [30]. This compound has been 

re-synthesized by a facile and rapid chemical approach reported here, resulting in a compound 

equipotent with CA-4 as an inhibitor of tubulin assembly (IC50: 0.59 M). By comparing 

activity as inhibitors of tubulin polymerization of 3c to 3a and 3b, the amino moiety of 3c can 

be considered a good surrogate for the 4’-methoxy-3’-hydroxyphenyl ring or methyl group 

present at the 2-position of 3-(3’,4’,5’-trimethoxybenzoy)benzo[b]furan system of compounds 

3a and 3b. We can presume that the presence of the amino group at the C-2 position of the 

benzo[b]furan system should be important in restricting the conformation of the adjacent 

trimethoxybenzoyl moiety into the favored orientation for binding to tubulin by the formation 

an intramolecular hydrogen bond between one of the hydrogens of the amino group with the 

carbonyl oxygen of the adjacent trimethoxybenzoyl function. 
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The biological evaluation of compound 3c prompted us to continue our research on this class 

of compounds, extending the structure-activity analysis around compound 3c in an effort to 

determine if its activity was maintained, or even improved, by the synthesis of a new series of 

derivatives with general structure 4. We developed a new synthetic approach that 

incorporated the structural motif of the 2-amino-3-(3’,4’,5’-trimethoxybenzoy)benzo[b]furan 

molecular scaffold, and a series of compounds was synthesized with modifications with 

respect to positions C-4 to C-7 with substituents with different chemical properties. These 

substituents included electron releasing moieties, such as alkoxy (methoxy, ethoxy, n-propoxy 

and benzyloxy) methyl, amino and hydroxy, or electron-withdrawing fluorine and bromine 

groups. 

Since the C-6 methoxy moiety proved to be favorable for bioactivity, we evaluated the effect 

of replacing the strong electron-releasing methoxy with the corresponding ethoxy and n-

propoxy homologues and by the weaker electron-releasing methyl group, which was well-

tolerated in a series of CA-4 analogues [32]. In an effort to design compounds with improved 

polarity, we also replaced the methoxy group at the C-5 and C-6 position of the benzo[b]furan 

ring with the more hydrophilic amino and hydroxyl moieties, respectively. The presence of an 

amino group at the C-6 position should be detrimental for activity, as observed in a series of 

2-(3’,4’,5’-trimethoxybenzoyl)benzo[b]furan derivatives previously published by us [28]. 

Also, in a series of 2-(3’,4’,5’-trimethoxybenzoyl)-3-aminoindoles previously published, the 

introduction of the electron-withdrawing chloro atom at the C-6 position reduced 

antiproliferative activity of the resulting compound [33]. For these reasons, molecules 

characterized by the presence of a chlorine atom or the amino group at the C-6 position of 2-

amino-3-(3’,4’,5’-trimethoxybenzoyl)benzo[b]furan system were not prepared. 

 

 



 

 9 

2. Chemistry  

Compounds 4a-n and 3c were prepared by an efficient, previously described two-step 

procedure for the synthesis of 2-amino-3-aroyl benzo[b]furans (Scheme 1) [34]. -Azido 

chalcones 6a-n were synthesized via a Knoevenagel condensation reaction of 

salicylaldehydes 5a-n [35-37] with 2-azido-1-(3,4,5-trimethoxyphenyl)ethanone [38] in the 

presence of one equivalent of piperidinium acetate [34]. A solution of -azido chalcones 6a-n 

in CH3CN was transformed in good yields (60-80%) to the corresponding 2-amino-3-

(3’,4’,5’-trimethoxybenzoyl)benzo[b]furan 4a-l, 7a and 3c by heating at reflux in the 

presence of a catalytic amount (0.2 equiv., 20 mol %) of p-toluensulfonic acid (p-TSA) for 12 

h. 

Scheme 1. Synthesis of 2-amino-3-(3’,4’,5’-trimethoxybenzoyl)benzo[b]furan derivatives 4a-
n and 3c 
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Reagents. a: 2-azido-1-(3,4,5-trimethoxyphenyl)ethanone, piperidinium acetate, MeOH, rt, 

24 h; b: p-TSA (0.2 equiv., 20 mol %), CH3CN, reflux, 12 h; c: white CFL (25 W), p-TSA 

(0.2 equiv., 20 mol %), CH3CN, rt, 24 h, d: 10% Pd/C, EtOH, 40 bar, 60 °C, 30 min; e: Fe, 

NH4Cl, EtOH-H2O, reflux, 3 h. 
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The same compounds can also be obtained with a 20-40% reduced yield by a photochemical 

process replacing the thermal heating with irradiation for 24 h at room temperature with a 25 

W white compact fluorescent lamp (CFL). The 6-hydroxy benzo[b]furan derivative 4m was 

obtained by cleavage of the 6-benzyloxy group of 4i performed by flow hydrogenolysis with 

H-Cube® over 10% Pd/C catalyst. 5-Amino benzo[b]furan derivative 4n was generated from 

the corresponding nitro analogue 7a by reduction with iron and ammonium chloride in a 

refluxing mixture of water and ethanol. 

3. Biological Results and Discussion 

3.1. In vitro antiproliferative activities. 

Table 1 summarizes the growth inhibitory effects of 2-amino-3-(3’,4’,5’-

trimethoxybenzoyl)benzo[b]furan derivatives 4a-n and 3c against a panel of six human cell 

lines derived from different cancer types. These were cervix carcinoma (HeLa), colon 

adenocarcinoma (HT-29), medulloblastoma (Daoy), promyelocytic leukemia (HL-60), B-cell 

leukemia (SEM) and T-cell leukemia (Jurkat). We used the isomeric 6-methoxy-2-(3’,4’,5’-

trimethoxybenzoyl)-3-aminobenzo[b]furan derivative 2a and CA-4 (1a) as reference 

compounds. Nine compounds, including the two reference compounds 2a and CA-4, had 

average IC50 values below 50 nM (4c, 4d, 4f, 4g, 4k, 4l, 3c, 2a and CA-4), and, for seven of 

these compounds, the average IC50 was below 5 nM (all except 4c and 4g). Also, especially 

notable was the 5 pM IC50 value obtained with 4f against the Daoy medulloblastoma cell line. 



 

 12 

 

Table 1. In vitro cell growth inhibitory effects of compounds CA-4 (1a), 2a, 3c and 4a-n. 

 IC50 
a(nM) 

Compd HeLa HT-29 Daoy HL-60 SEM Jurkat 

4a 413±40.3 591±29 371±19 339±21 250±28 385±52 

4b 5225±312 6512±263 3950±236 4891±445 4557±369 2760±156 

4c 56.0±19 62.9±12.9 36.2±6.9 36.2±11 38.9±12 29.2±9.3 

4d 2.9±0.3 5.6±0.9 0.30±0.08 3.0±0.2 4.1±0.2 2.7±0.6 

4e 496±39 477±42 345±36 233±31 285±26 333±42 

4f 2.8±0.3 2.1±0.2 0.005±0.001 2.7±0.2 0.31±0.05 0.28±0.08 

4g 22.7±1.8 17.7±1.2 4.4±0.9 41.7±15.9 29.7±8.9 27.2±1.9 

4h 1250±98 910±58 1670±87 428±36 385±27 390±39 

4i 9670±125 8680±458 >10000 7056±659 3675±298 4390±154 

4j 591±26 682±45 846±28 413±56 333±45 299±39 

4k 4.5±0.5 5.4±0.3 2.5±0.2 5.6±0.9 3.5±0.1 2.8±0.6 

4l 1.1±0.2 0.6±0.02 0.34±0.1 3.5±0.4 0.30±0.03 0.33±0.05 

4m 591±63 3420±368 428±45 285±2.5 371±1.5 299±37 

4n 635±1.5 790±98 494±56 413±3.8 259±1.8 399±58 

2a 6.2±4.0 787±45 5.0±1.2 3.5±0.3 3.6±0.2 3.1±0.9 

3c 15.3±1.9 424±36 0.32±0.06 2.8±0.3 259±19 0.34±0.07 

1a 4±1 3100±100 12.3±0.9 1±0.2 5±0.1 0.8±0.2 

aIC50= compound concentration required to inhibit tumor cell proliferation by 50%. Data are expressed as the 
mean ± SEM from the dose-response curves of at least three independent experiments. 

 

Derivatives with a methoxy (4d), an ethoxy (4f), a bromine (4k) or a methyl (4l) at the C-6 

position of the benzo[b]furan system exhibited the greatest activity among the tested 

compounds, with IC50 values of 0.30-5.6, 0.005-2.8, 2.5-5.6 and 0.3-3.5 nM, respectively, 

with compound 4f having remarkable activity (IC50: 5 pM) against Daoy cells as compared 

with the other cancer cell lines. None of the synthesized compounds was more active than 

CA-4 against HL-60 cells, while only derivatives 4f and 4l were more potent than CA-4 
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against HeLa, HT-29, Daoy, SEM and Jurkat cells. The latter three cancer cell lines were 

highly sensitive to compounds 4f and 4l, with IC50 values ranging from 0.005 to 0.38 nM.  

Also, derivatives 4d, 4l and 3c were active at subnanomolar concentrations against Daoy 

cells, and 3c was similarly potent (IC50: 0.34 nM) against Jurkat cells.  

Comparing the two C-6 methoxy derivatives 2a and 4d, the latter being obtained by switching 

the position of the amino and 3’,4’,5’-trimethoxybenzoyl moieties at the 2- and 3-positions of 

the benzo[b]furan ring, both compounds were equipotent against HL-60, SEM and Jurkat 

cells, but 4d was 2-, 17- and 140-fold more active than 2a against HeLa, Daoy and HT-29 

cells, respectively.  

Derivative 4a, which was unsubstituted in the benzene portion of the benzo[b]furan ring, was 

active at submicromolar concentrations (IC50: 0.25-0.59 M), and thus less active than 

derivatives 4c and 4d with a methoxy group at the C-5 or C-6 position, respectively, but 

equipotent with the C-7 methoxy derivative 4e and more active than the C-4 methoxy 

analogue 4b. 

In the series of methoxy substituted benzo[b]furan derivatives 4b-e, the data show that potent 

cancer cell growth inhibition is strongly dependent on the position of the methoxy group. A 

substantial difference was observed between C-4/7 and C-5/6 substituted compounds (4b and 

4e versus 4c and 4d). The greatest activity occurred with the methoxy group located at the C-

5 or C-6 position, the least when located at the C-4 or C-7 position, with the order being 6-

OMe (4d)>5-OMe (4c)>7-OMe (4e)>>4-OMe (4b). Thus, compound 4b, with a methoxy 

group at the C-4 position, showed modest antiproliferative activity (IC50: 2.8-8.5 μM) and was 

the least active compound in this series of methoxylated derivatives. Simply moving the 

methoxy group from the C-4 to the C-5 position (4c) resulted in 100-150-fold increased 

activity, with IC50 values ranging from 29 to 56 nM. Activity was further increased 10-120-

fold by shifting the methoxy group from the C-5 to C-6 position (4d), with the greatest 
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difference being observed with the Daoy cells (IC50: 36.2 and 0.3 nM for 4c and 4d, 

respectively). Moving the methoxy group to the C-7 position (4e) resulted in activity 

decreasing 2-3-orders of magnitude relative to 4d, with IC50 values ranging from 0.2 to 0.5 

M. The substitution of the C-5 methoxy group of 4c with an amino group (4n) was 

detrimental to activity, with compound 4n being 7- to 15-fold less potent than 4d.  

We found that replacement of the C-6 methoxy of 4d with its ethoxy homologue, to furnish 

compound 4f, maintained activity against HeLa and HL-60 cells, and activity was improved 

2.5-60-fold against the other four cancer cell lines relative to 4d, with the difference in 

activity most pronounced (60-fold) against Daoy cells. Compound 4f was one of the most 

potent antiproliferative agents among the newly synthesized compounds, with IC50 values of 

2.8, 2.1, 0.005, 2.7, 0.31 and 0.28 nM against Hela, HT-29, Daoy, HL-60, SEM and Jurkat 

cells, respectively. Compound 4f was 3-fold less active than CA-4 against HL-60 cells (IC50: 

2.7 and 1.1 nM, respectively), equipotent to CA-4 against HeLa cells and 3- and 16-fold more 

active than CA-4 against Jurkat and SEM cells. Enhancement in antiproliferative activity was 

most evident against Daoy cells (2,460-fold) with 4f, which was also active against HT-29 

cells, which are refractory to CA-4 (IC50: 2.1 nM and 3.1 M, respectively). Compound 4f 

was also considerably superior to its C-7 ethoxy isomer 4h. A further homologation of the 

ethoxy group of 4f to n-propoxy (4g) reduced antiproliferative activity from one to three 

orders of magnitude (IC50: 0.005-2.8 and 4.4-41 nM for 4f and 4g, respectively), while the C-

6 benzyloxy derivative 4i exhibited no significant antiproliferative activity against the cancer 

cell lines (IC50: 4-10 M).  

A comparison of the substituent effects revealed that the replacement of the C-6 methoxy 

with the less electron-releasing methyl group (compounds 4d and 4l, respectively) caused a 3-

14-fold increased activity against HeLa, HT-29, SEM and Jurkat cells of 4l relative to 4d, 

whereas the methyl and methoxy moieties are interchangeable for activity against Daoy and 



 

 15 

HL-60 cells. A drastic loss of activity was observed if the C-6 methoxy group was replaced 

by the weaker electron-donating and more hydrophilic hydroxy (4m) or the electron-

withdrawing fluorine (4j) moieties. For this latter compound, increasing the size of the halide 

from fluorine to bromine (4k) led to a 71-338-fold increase in activity with all six cell lines, 

which was most pronounced with the Daoy cells.  

The introduction of an additional hydroxyl group at the C-7 position of 4d, to furnish 3c, had 

contrasting effects, with activity being maintained against Daoy and HL-60 cells, while 

mildly reduced potency relative to 4d (4-fold) was observed against HeLa cells and more 

pronounced reduced activity against HT-29 and SEM cells (76- and 63-fold, respectively). 

Jurkat cells, on the other hand, were 8-fold more sensitive to 3c than to 4d. 

3.2. Compounds 4f and 4l are non-toxic in non-tumor cells.  

In order to have a preliminary indication of the potential cytotoxicity of these compounds on 

non-tumor cell lines, the most active compounds, 4f and 4l, were evaluated in vitro against 

peripheral blood lymphocytes (PBL) from healthy donors. As shown in Table 2, 4f had a GI50 

of 8.7 µM in quiescent lymphocytes. Similarly, in lymphocytes in an active phase of 

proliferation induced by the mitogenic stimulant phytohematoagglutinin (PHA), the GI50 of 4f 

was greater than 10 µM. Compound 4l was similarly inactive, with a GI50>10 µM in both 

conditions. 

Considering that one of the major causes of cytotoxicity of antitubulin drugs is neurotoxicity, 

we also evaluated the antiproliferative effect of 4f an 4l on a line of normal human astrocytes 

(NHA). Both compounds had a GI50 value greater than 10 µM. These initial results suggest 

that these compounds have very low toxicity in normal cells in comparison to tumor cells, 

indicating potential for an excellent therapeutic index, perhaps greater than 10. 



 

 16 

 

Table 2. Cytotoxicity of compounds 4f and 4l for human PBL and NHA 

 GI50 (µM) a 

Cell line 4f 4l 

PBLresting
b 8.7±0.7 >10 

PBLPHA
c >10 >10 

NHA >10 >10 

a Compound concentration required to inhibit cell growth by 50%. 
b PBL not stimulated with PHA. 

c PBL stimulated with PHA. 
Values are the mean ± SEM for three separate experiments. 

 

3.3. Inhibition of tubulin polymerization and colchicine binding.  

To investigate whether the antiproliferative activities of these compounds were related to 

interaction with the microtubule system, seven of the most active compounds (4c-d, 4f-g, 4k-l 

and 3c) were evaluated for their inhibition of the polymerization of purified tubulin and 

inhibition of the binding of [3H]colchicine to tubulin. In the latter assay, the compounds were 

examined at two different concentrations (5 and 0.5 μM), with tubulin and colchicine at 0.5 

and 5 μM concentrations, respectively (Table 3) [39, 40]. For comparison, CA-4 (1a) was 

examined in contemporaneous experiments.  

All tested compounds strongly inhibited tubulin assembly, with activities comparable or 

superior to that of the reference compound CA-4. Compounds 4f and 4l seemed to be even 

more potent than CA-4 (IC50, 0.37, 0.39 and 0.54 μM, respectively), while the others were as 

active as CA-4 as inhibitors of tubulin assembly, with IC50's ranging from 0.48 to 0.59 μM. 

This is in agreement with 4f and 4l being the derivatives with the greatest antiproliferative 

activity. 
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Table 3. Inhibition of tubulin polymerization and colchicine binding by compounds 4c-d, 4f-

g, 4k-l, 3c and CA-4 (1a)  

Compound 

Tubulin assemblya 

IC50±S.D. (M) 

Colchicine bindingb 

% ±S.D.  

 5 M drug 0.5 M drug 

4c 0.50±0.09 73±0.5 ND 

4d 0.48±0.05 99±0.2 79±1 

4f 0.37±0.02 99±0.3 86±0.8 

4g 0.51±0.1 91±0.3 42±0.4 

4k 0.57±0.04 92±1 56±2 

4l 0.39±0.04 97±0.4 74±0.1 

3c 0.59±0.08 99±1 87±5 

CA-4 (1a) 0.54±0.06 97±0.8 82±2 

ND= not determined 
a Inhibition of tubulin polymerization. Tubulin was at 10 M. 

b Inhibition of [3H]colchicine binding. Tubulin and colchicine were at 0.5 and 5 M, respectively. 

 

In the colchicine binding studies, all tested compounds potently inhibited the binding of 

[3H]colchicine to tubulin, with six of them (the exception was 4c) being as potent as CA-4, 

when these agents and radiolabeled colchicine were equimolar (5 μM each) in the reaction 

mixture. However, only derivatives 4d, 4f, 4l and 3c were comparable to CA-4 as inhibitors 

of colchicine binding when present at one-tenth the concentration of colchicine in the reaction 

mixture. These data suggested that tested compounds are potent antiproliferative and 

antitubulin agents acting as microtubule depolymerizing agents through the colchicine site on 

tubulin. 
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3.4. Molecular modeling studies. 

The potential interaction between these novel 2-amino-3-(3’,4’,5’-

trimethoxybenzoyl)benzo[b]furan derivatives and the colchicine site was investigated through 

molecular docking studies, using Glide [41]. 

The proposed binding mode for all the new active derivatives is consistent with that of the co-

crystallized colchicine, with the trimethoxyphenyl ring in proximity to Cys241, a key 

interaction point for tubulin polymerization inhibition (Figure 2A). The free amino group at 

the 2-position of the benzo[b]furan ring interacts with Asn101, potentially locking the 

compounds in this favorable binding conformation. The benzofuran ring overlaps with the co-

crystallized colchicine central core, placing the different substituents at the C-6 position in a 

small hydrophobic sub-pocket near Met259, where the colchicine methoxy group is 

positioned. This small sub-pocket, accommodating the different substituents at the 6-position, 

can function as an important anchor point, stabilizing the protein-ligand interaction and 

potentially resulting in a better inhibition of tubulin assembly and antiproliferative activity. In 

support of this observation, it should be noted that the compounds without a substituent at this 

position (e.g., 4a) have reduced antiproliferative activity. No plausible docking poses were 

found for the almost inactive C-6 benzyloxy derivative 4i (Figure 2B), as the large benzyl 

group in the C-6 position cannot be accommodated in the sub-pocket. This observation 

rationalizes the loss of antiproliferative activity observed for this compound. 
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A       B 

   

Figure 2. A) Proposed binding mode for compound 4f in the colchicine site. The 

trimethoxyphenyl ring is in proximity of Cys241, while the 6-ethoxy substituent lies in the 

small sub-pocket. B) The benzyl group at the C-6 position cannot be accommodated in the 

small sub-pocket, and, therefore, compound 4i is forced away from the binding site. The co-

crystallized colchicine is shown in green. The hydrophobic sub-pocket is highlighted with a 

red surface. The tubulin -subunit is shown as green ribbon, while the -subunit is 

represented in white ribbon. Secondary structure from residue 245 to residue 250 of the -

subunit is not shown for clarity of the structure. 

Finally, based on the modeling results, the loss of activity of C-4 methoxy analogue 4b could 

be due to the lack of space in the colchicine site around Leu255, to accommodate the 

substituent at the C-4 position of the benzo[b]furan. Larger substituents than a hydroxyl group 

at the C-7 position, such as methoxy and ethoxy moieties for derivatives 4e and 4h, 

respectively, could also be sterically hindered by the amino acids Ala180 and Val181, 

impeding efficient binding to the colchicine site, thereby reducing antiproliferative activity.  

3.5 Compounds 4f and 4l induced alteration of the microtubule network. 

To gain further insight into the tubulin binding effect of test compounds on microtubule 

structure, morphological characteristics of the microtubules were analyzed by 

immunofluorescence staining using an anti-β-tubulin antibody in Hela cells after treatment 
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with compounds 4f and 4l. As depicted in Figure 3, microtubule networks in control cells 

(Ctr) show normal arrangement and intact organization, while after a 24 h treatment, even 

at the lowest concentration used (10 nM), microtubules show the beginnings of 

disorganization. At higher concentrations (50 and 100 nM), the effects on microtubules are 

much more evident, and the cells show clear signs of apoptosis.  

 

Figure 3. Representative images of microtubule organization in Hela cells treated with 4f and 

4l at the indicated concentrations for 24 h. HeLa cells were stained with an anti-β-tubulin 

antibody (green) and DAPI (blue) and then observed by confocal microscopy (Magnification 

20X).  
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3.6. Compounds 4f and 4l induced cell cycle arrest in G2/M and alteration of cell cycle 

checkpoint proteins.  

The effects of two of the most active compounds (4f and 4l) on cell cycle progression were 

examined by flow cytometry in HeLa cells (Figure 4). After a 24 h treatment, both 

compounds induced a G2/M arrest in these cells at a very low concentration (10 nM). With 

both compounds, the increase in G2/M cells was accompanied by a strong reduction of cells 

in the G1 phase whereas the S phase was not affected.  
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Figure 4. Panel A; representative histograms of cell cycle analysis of HeLa cells treated for 

24 h with 4f or 4l at the indicated concentrations. Panels B and C: quantitative analysis of the 

different cell cycle phase in Hela cells. Cells were fixed and labeled with PI and analyzed by 

flow cytometry as described in the Experimental Section. Data are presented as means of two 

independent experiments ± SEM.  

In addition to analyzing the cell cycle, we wanted to study the effects of 4f on important 

checkpoint proteins, such as Bubr1 and Mad-2. These two proteins belong to the spindle 

assembly checkpoint (SAC), a system that arrests cell cycle progression until microtubule 

attachment to kinetochores is complete [42]. Cells with depleted or down regulated BubR1 or 

MAD-2 often undergo apoptotic cell death [43]. 

As shown in Figure 5, the expression of both BubR1 and MAD-2 was strongly reduced by 

treatment with 4f both at 24 and 48 h, and this effect was evident even at the lowest 

concentration used (10 nM), suggesting mitotic checkpoint abrogation. 

 

Figure 5. Effect of compound 4f on cell cycle regulatory proteins. HeLa cells were treated for 

24 or 48 h with the indicated concentration of 4f. The cells were harvested and lysed for the 

detection of cyclin B, BubR1 and MAD-2 expression by western blot analysis. To confirm 

equal protein loading, each membrane was stripped and reprobed with anti--actin antibody. 

Cyclin B1 is a cell cycle regulatory protein involved in mitosis and mainly expressed during 

the G2/M phase of cell cycle, and it has been demonstrated that cyclin B1 increases after 
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treatment with antimitotic compounds [44, 45]. Compound 4f, as shown in Figure 5, induced 

a dose dependent increase in cyclin B expression, consistent with the rapid accumulation of 

cells in the G2/M phase. 

3.7. Compounds 4f and 4l induced apoptosis through the mitochondrial pathway.  

To characterize the mode of cell death induced by 4f and 4l, a biparametric cytofluorimetric 

analysis was performed using PI, which stains DNA and enters only dead cells, and 

fluorescent immunolabeling of the protein annexin-V, which binds to phosphatidylserine (PS) 

in a highly selective manner. Dual staining for annexin-V and with PI permits discrimination 

between live cells (annexin-V-/PI-), early apoptotic cells (annexin-V+/PI-), late apoptotic cells 

(annexin-V+/PI+) and necrotic cells (annexin-V-/PI+). HeLa cells treated with both compounds 

at different concentrations showed an increased percentage of annexin-V positive cells 

(Figure 6, Panels A and B) in a concentration and time-dependent manner. Induction of 

apoptosis was significant with both compounds even at 10 nM. 

 

 

 

A 
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Figure 6. Representative flow cytometric analysis of apoptotic cells after treatment of HeLa 
cells with compounds 4f and 4l at the indicated concentrations after incubation for 24 or 48 h 
(Panel A). The cells were harvested and labeled with annexin-V-FITC and PI and analyzed by 
flow cytometry. Panels B and C. Quantitative analysis of apoptotic cells. Data are represented 
as mean ± SEM of three independent experiments.  

Since it has been demonstrated that many anti-mitotic drugs induce apoptosis through the 

mitochondrial pathway, we also examined whether 4f and 4l were able to alter the 

mitochondrial transmembrane potential (mt) [46-48]. Flow cytometric experiments were 

performed utilizing the dye 5,5’,6,6’-tetrachloro-1,1’,3,3’-

tetraethylbenzimidazolcarbocyanine (JC-1) [49]. HeLa cells exposed to different 

concentrations of 4f and 4l showed an increased proportion of cells with depolarized 

mitochondria (Figure 7, Panels B and C). 

B C 
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Figure 7. Compounds 4f and 4l induce mitochondrial depolarization (Panel A). Hela cells 

were treated for 24 or 48 h with the indicated concentrations of 4f (Panel B) or 4l (Panel D) 

and then analyzed by flow cytometry using the fluorescent probe JC-1. Data are represented 

as mean ± SEM of JC-1 monomers demonstrating mitochondrial membrane depolarization 

from three independent experiments. 

A 

B C 
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3.8. Compound 4f induced caspase-9 activation and PARP cleavage.  

Caspase activation is a fundamental process in apoptotic cell death [50]. Caspase-9 is an 

initiator caspase that is activated early in the apoptotic process by the release of cytochrome-c 

from the mitochondrion following mitochondrial depolarization [51]. Consequently, the 

activation of this caspase constitutes a key element of the intrinsic (mitochondrial) apoptotic 

pathway. As shown in Figure 8, compound 4f induced cleavage of caspase-9 after a 24 h 

treatment at the lowest concentration used (10 nM). Moreover, we also observed PARP 

cleavage, demonstrating at 24 h a fragment of 89 kDa, and this finding is a hallmark of 

apoptotic cell death [52]. There was a further increase in this fragment after 48 h of treatment 

at 10 nM 4f. These results showed that 4f-induced apoptosis is caspase-dependent, in addition 

to utilizing the intrinsic (mitochondrial) pathway. 

3.9. Compound 4f induced Bcl-2 phosphorylation and Mcl-1 downregulation.  

The apoptotic process is regulated by a fine balance between pro-apoptotic and antiapoptotic 

proteins. Among the latter, Bcl-2 and Mcl-1 are heavily involved in apoptosis induced by 

antimitotic agents [53]. In this context we found that Bcl-2 is phosphorylated upon treatment 

with 4f both at 24 and 48 h (Figure 8). In this context Bcl-2 phosphorylation has been shown 

to occur with many antimitotic agents, and it is considered a priming event for apoptosis [54]. 

Furthermore, the expression of Mcl-1 was strongly reduced after a 24 h treatment with 4f at 

10 nM, in agreement with recent studies that underlined the importance of Mcl-1 degradation 

in response to antimitotic agents and that this event potentiates cell death [55, 56]. 
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Figure 8. Western blot analysis of caspase-9, PARP, Bcl-2 and Mcl-1 after treatment of HeLa 

cells with 4f at the indicated concentrations and for the indicated times. To confirm equal 

protein loading, each membrane was stripped and reprobed with anti--actin antibody. 

3.10. Compound 4f induces inhibition of capillary-like tubule formation by HUVECs.  

Tubulin binding agents show antivascular effects against tumor endothelium [8, 57-58]. In 

this context, we evaluated 4f for its effects on endothelial cells utilizing HUVECs as a model 

to study angiogenesis in vitro.  

To evaluate the antivascular activity of 4f, we analyzed the ability of the compound to disrupt 

the “tubule-like” structures formed by HUVECs seeded on Matrigel, a well known in vitro 

angiogenesis test. As shown in Figure 9 (Panel A), after only a 1 h incubation, compound 4f 

at 10 nM, as well as at the cytotoxic concentration of 100 nM, clearly disrupted the network 

of HUVECs as compared with the control. Image analysis [58] was performed to obtain a 

quantitative assessment of the segment length of the tubules, the area and the number of 

meshes, the percent of area covered by HUVECs, and the number of branching points after a 

1 h treatment (Figure 9, Panels B-G). For segment length and meshes area, a statistically 

significant effect was observed at 10 nM 4f, suggesting the high potential of 4f for vascular 

disruption. 
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Figure 9. Inhibition of endothelial cell capillary-like tubules formation by 4f. Tubule 

formation on Matrigel was examined as described in Materials and Methods. Panel A. 

Representative images of preformed capillary-like tubules treated with 4f for 1 h at 10 and 

100 nM. Panels B-G. quantitative analysis of the effects of 4f on the dimensional and 

topological parameters of the preformed capillary-like tubule network. Data are represented as 

mean ± SEM of three independent experiments. **p<0.01; ***p<0.001  

3.11. Compound 4f reduced tumor growth in an orthotopic murine tumor model.  

The antitumor effect in vivo of compound 4f was evaluated in a syngeneic mouse tumor 

model [59]. This model consists of the use of E0771 murine breast cancer cells orthotopically 

injected into the mammary fat pad of C57BL/6 female mice. Preliminary experiments were 
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also carried out to determine the cytotoxicity of 4f in this cell line. The results of the MTT 

tests after 72 h of cell treatment indicated a GI50 of 15.6 nM, comparable to those observed in 

the human cancer cell lines. 

Compound 4f was administered by the intraperitoneal route every other day at two different 

doses (5.0 or 15 mg/kg). As reference compound, CA-4P (1b) was used at a dose of 30 

mg/kg. As shown in Figure 10A-B, treatment with compound 4f significantly reduced tumor 

growth in a dose-dependent manner. When compared with the control group, the tumor mass 

was reduced by 45.7% and 16.9% with 4f at 15 and 5 mg/kg, respectively. Treatment with 

CA-4P reduced tumor growth by 26.5%. These data confirmed the higher potency of 4f at 15 

mg/kg as compared with CA-4P at 30 mg/kg (p<0.01). Moreover, even at the higher dose (15 

mg/kg), 4f did not show any sign of toxicity and did not cause a decrease in animal body 

weight (Figure 10C). 

 

   

 

A 
B 
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Figure 10. Inhibition of mammary tumor growth in the syngeneic orthotopic E0771-C57BL/6 

mouse model by compound 4f. Female C57BL/6 mice were injected orthotopically in the 

mammary fat pad with 4x105 E0711 murine breast cancer cells. Tumor-bearing mice were 

administered the vehicle, as control, or 5.0 or 15 mg/kg of 4f, or CA-4P as reference 

compound at 30 mg/kg. Injections were given intraperitoneally on the days indicated by the 

arrows. Data are presented as mean ± SEM of tumor volume at each time point (Panel A) or 

tumor weight (Panel B) measured at the end of the experimental procedure (n= 5 mice/group). 

Panel C represents the animal body weight variation during the treatment period. Asterisks 

indicate a significant difference between the treated and the control group. * p < 0.05, ** p < 

0.01, **** p < 0.0001. 

4. Conclusions 

We have reported the synthesis and biological evaluation of a new class of synthetic 

antitubulin compounds based on the 2-amino-3-(3’,4’,5’-trimethoxybenzoyl)benzo[b]furan 

molecular skeleton. Structure-activity relationships were investigated by the insertion of 

electron-withdrawing or electron releasing substituents at one of positions C-4 to C-7 of the 

C 
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benzo[b]furan scaffold. The C-6 ethoxy derivative 4f and the C-6 methyl analogue 4l were the 

two most potent compounds of the series, exhibiting IC50 values of 0.005-2.8 and 0.3-3.5 nM, 

respectively, as compared with the range 0.8-3100 nM obtained with CA-4 in cancer cell 

lines. A major finding with 4f was its highly potent activity (IC50: 5 pM) against Daoy cells. 

Although 4f was 3-fold less potent than CA-4 against HL-60 cells, it was from 1.5- to 2,460-

fold more active than CA-4 against the other five cancer cell lines. While compounds 4f and 

4l had potent antiproliferative activity against the Daoy medulloblastoma cell line, both 

derivatives had IC50 values greater than 10 M against normal human astrocytes, suggesting 

low toxicity in normal cells in comparison to tumor cells.  

Selected molecules (3c, 4c-d, 4f-g. and 4k-l) showed potent inhibition of tubulin assembly 

and the binding of colchicine to tubulin, and 4f and 4l were better inhibitors of assembly than 

CA-4. For the most active compounds (C-6 methoxy analogue 4d along with 4f and 4l), a 

good correlation was observed between antiproliferative activities and inhibition of tubulin 

assembly and colchicine binding. Thus, the antiproliferative activity of these compounds 

derived from an interaction with the colchicine site of tubulin and interference with 

microtubule assembly. This indicated that the cellular actions of these agents would involve 

mitotic arrest, due to interference with the functions of the mitotic spindle, and their use 

would ultimately lead to apoptotic cell death. Compound 4f was also shown to have potential 

antivascular activity, since it disrupted the network of HUVECs at a concentration of 10 nM. 

The excellent antitumor efficacy of the most active compound 4f was demonstrated in an 

orthotopic murine model of breast cancer, in which we observed significant inhibition of 

tumor growth occurring at a low dose in comparison to the reference compound CA-4P, and 

there were no apparent signs of toxicity in the treated mice. 
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5. Experimental Protocols. 

5.1. Chemistry. 

5.1.1. Materials and Methods. 

1H NMR and 13C NMR spectra were recorded in CDCl3 solution with a Varian Mercury Plus 

400 spectrometer at 400 MHz and 100 MHz, respectively. Peak positions are given in parts 

per million (ppm) downfield from tetramethylsilane as internal standard, and J values are 

given in hertz. Positive-ion electrospray ionization (ESI) mass spectra were measured on a 

double-focusing Finnigan MAT 95 instrument with BE geometry. Analytical HPLC analyses 

were performed at ambient temperature on a Beckman 125 liquid chromatograph fitted with a 

Luna C-18 column (4.6 x 100 mm, 3 μm particle size) with 0.1% TFA in H2O (A) and 0.1% 

TFA in CH3CN (B) solvent mixtures and equipped with a Beckman 168 diode array detector. 

Melting points (mp) were determined on a Buchi-Tottoli apparatus and are uncorrected. All 

tested compounds yielded data consistent with a purity of at least 95% as compared with the 

theoretical values. All reactions were carried out under an inert atmosphere of dry nitrogen, 

unless otherwise indicated. TLC was performed on silica gel (precoated F254 Merck plates), 

and compounds were visualized with aqueous KMnO4. Flash column chromatography was 

performed using 230-400 mesh silica gel and the indicated solvent system. Organic solutions 

were dried over anhydrous Na2SO4. All commercial chemicals and solvents were reagent 

grade and were used without further treatment. With the exception of compounds 5f-g and 5n, 

all salicyladehydes are commercially available.  

5.1.2. General procedure for the synthesis of compounds 6a-n.  

A mixture of the appropriate salicylaldehyde 5a-n (1 mmol), 2-azido-1-(3,4,5-

trimethoxyphenyl)ethanone (0.25 g, 1 mmol) and piperidinium acetate (0.15 g, 1 mmol) in 
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methanol (5 mL) was stirred in the dark for 24 h at room temperature. If the α-azidochalcone 

precipitated from the reaction mixture, the solid was collected by filtration, washed with cold 

methanol, dried under vacuum and used without further purification for the next reaction. 

When the α-azidochalcone did not precipitate, the reaction mixture was evaporated to dryness 

under reduced pressure, and the resulting residue suspended in a mixture of 50% ethyl acetate 

and 50% water. After phase separation, the organic layer was washed with brine, dried over 

Na2SO4 and concentrated under vacuum to give a crude product, which was purified by silica-

gel column chromatography to yield the appropriate α-azidochalcone. 

5.1.2.1. (Z)-2-Azido-3-(2-hydroxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (6a). 

The crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) 

for elution, furnished 6a as a yellow oil. Yield 64%. 1H-NMR (DMSO-d6) : 3.78 (s, 3H), 

3.84 (s, 6H), 6.84 (m, 2H), 7.02 (s, 1H), 7.14 (s, 2H), 7.22 (m, 1H), 8.18 (dd, J=7.2 and 2.4 

Hz, 1H), 10.1 (s, 1H). 

5.1.2.2. (Z)-2-Azido-3-(2-hydroxy-6-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6b). The precipitate was collected by filtration and washed with cold methanol, to 

furnish 6b as a cream-colored solid. Yield 63%, mp 130-132 °C. 1H-NMR (DMSO-d6) : 3.77 

(s, 6H), 3.86 (s, 6H), 6.49 (d, J=8.2 Hz, 1H), 6.65 (s, 1H), 7.19 (m, 4H), 9.82 (bs, 1H). 

5.1.2.3. (Z)-2-Azido-3-(2-hydroxy-5-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6c). The precipitate was collected by filtration and washed with cold methanol, to 

furnish 6c as a yellow solid. Yield 69%, mp 97-99 °C. 1H-NMR (DMSO-d6) : 3.72 (s, 3H), 

3.78 (s, 3H), 3.84 (s, 6H), 6.82 (m, 2H), 7.00 (s, 1H), 7.12 (s, 2H), 7.74 (d, J=2.6 Hz, 1H), 

9.70 (s, 1H). 
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5.1.2.4. (Z)-2-Azido-3-(2-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6d). The crude residue purified by flash chromatography, using EtOAc:petroleum ether 

4:6 (v:v) for elution, furnished 6d as a yellow solid. Yield 86%, mp 112-114 °C. 1H-NMR 

(DMSO-d6) : 3.74 (s, 3H), 3.77 (s, 3H), 3.83 (s, 6H), 6.42 (d, J=2.2 Hz, 1H), 6.46 (dd, J=9.0 

and 2.2 Hz, 1H), 7.05 (s, 1H), 7.08 (s, 2H), 8.18 (d, J=9.0 Hz, 1H), 10.3 (s, 1H). 

5.1.2.5. (Z)-2-Azido-3-(2-hydroxy-3-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6e). The precipitate was collected by filtration and washed with cold methanol, to 

furnish 6e as a white solid. Yield 75%, mp 130-131 °C. 1H-NMR (DMSO-d6) : 3.78 (s, 3H), 

3.80 (s, 3H), 3.83 (s, 6H), 6.85 (t, J=8.0 Hz, 1H), 6.98 (dd, J=8.0 and 1.2 Hz, 1H), 7.07 (s, 

1H), 7.12 (s, 2H), 7.77 (dd, J=8.0 and 1.2 Hz, 1H), 9.42 (bs, 1H). 

5.1.2.6. (Z)-2-Azido-3-(2-hydroxy-4-ethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6f). The crude residue purified by flash chromatography, using EtOAc:petroleum ether 

4:6 (v:v) for elution, furnished 6f as a yellow solid. Yield 68%, mp 135-137 °C. 1H-NMR 

(DMSO-d6) : 1.31 (t, J=6.8 Hz, 3H), 3.77 (s, 3H), 3.83 (s, 6H), 4.02 (q, J=6.8 Hz, 2H), 6.41 

(d, J=2.2 Hz, 1H), 6.47 (dd, J=8.8 and 2.2 Hz, 1H), 7.05 (s, 1H), 7.07 (s, 2H), 8.17 (d, J=8.8 

Hz, 1H), 10.3 (s, 1H). 

5.1.2.7. (Z)-2-Azido-3-(2-hydroxy-4-propoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6g). The crude residue purified by flash chromatography, using EtOAc:petroleum ether 

3:7 (v:v) for elution, furnished 6g as a yellow solid. Yield 58%, mp 168-170 °C. 1H-NMR 

(DMSO-d6) : 0.97 (t, J=7.4 Hz, 3H), 1.74 (m, 2H), 3.76 (s, 3H), 3.83 (s, 6H), 3.91 (q, J=7.4 

Hz, 2H), 6.41 (d, J=2.2 Hz, 1H), 6.50 (dd, J=9.0 and 2.2 Hz, 1H), 7.05 (s, 1H), 7.07 (s, 2H), 

8.17 (d, J=9.0 Hz, 1H), 10.2 (s, 1H). 
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5.1.2.8. (Z)-2-Azido-3-(2-hydroxy-3-ethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6h). The precipitate was collected by filtration and washed with cold methanol, to 

furnish 6h as a yellow solid. Yield 67%, mp 138-139 °C. 1H-NMR (DMSO-d6) : 1.33 (t, 

J=7.0 Hz, 3H), 3.77 (s, 3H), 3.84 (s, 6H), 4.03 (q, J=7.0 Hz, 2H), 6.83 (t, J=8.0 Hz, 1H), 6.97 

(d, J=8.0 Hz, 1H), 7.08 (s, 1H), 7.13 (s, 2H), 7.76 (d, J=8.0 Hz, 1H), 9.12 (s, 1H). 

5.1.2.9. (Z)-2-Azido-3-(2-hydroxy-4-benzyloxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-

1-one (6i). The crude residue purified by flash chromatography, using EtOAc:petroleum ether 

1:1 (v:v) for elution, furnished 6i as a yellow solid. Yield 71%, mp 102-104 °C. 1H-NMR 

(DMSO-d6) : 3.77 (s, 3H), 3.82 (s, 6H), 5.10 (s, 2H), 6.48 (d, J=2.4 Hz, 1H), 6.58 (dd, J=8.8 

and 2.4 Hz, 1H), 7.04 (s, 1H), 7.07 (s, 2H), 7.42 (m, 5H), 8.18 (d, J=9.0 Hz, 1H), 10.3 (s, 1H). 

5.1.2.10. (Z)-2-Azido-3-(2-hydroxy-4-fluorophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6j). The crude residue purified by flash chromatography, using EtOAc:petroleum ether 

3:7 (v:v) for elution, furnished 6j as a yellow solid. Yield 55%, mp 107-109 °C. 1H-NMR 

(DMSO-d6) : 3.77 (s, 3H), 3.83 (s, 6H), 6.68 (m, 2H), 6.96 (s, 1H), 7.11 (s, 2H), 8.12 (dd, 

J=8.4 and 5.6 Hz, 1H), 10.8 (bs, 1H). 

5.1.2.11. (Z)-2-Azido-3-(2-hydroxy-4-bromophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6k). The precipitate was collected by filtration and washed with cold methanol, to 

furnish 6k as a white solid. Yield 60%, mp 115-117 °C. 1H-NMR (DMSO-d6) : 3.77 (s, 3H), 

3.83 (s, 6H), 6.93 (s, 1H), 7.02 (m, 2H), 7.12 (s, 2H), 8.09 (d, J=8.2 Hz, 1H), 10.2 (bs, 1H). 

5.1.2.12. (Z)-2-Azido-3-(2-hydroxy-4-methylphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6l). The precipitate was collected by filtration and washed with cold methanol, to furnish 

6l as a yellow solid. Yield 56%, mp 100-102 °C. 1H-NMR (DMSO-d6) : 2.24 (s, 3H), 3.77 
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(s, 3H), 3.83 (s, 6H), 6.68 (m, 2H), 7.05 (s, 1H), 7.09 (s, 2H), 8.08 (d, J=7.8 Hz, 1H), 10.2 (s, 

1H).  

5.1.2.13. (Z)-2-Azido-3-(2-hydroxy-5-nitrophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one (6m). The precipitate was collected by filtration and washed with cold methanol, to 

furnish 6m as a yellow solid. Yield 53%, mp 137-138 °C. 1H-NMR (DMSO-d6) : 3.78 (s, 

3H), 3.84 (s, 6H), 6.85 (s, 1H), 7.01 (d, J=7.8 Hz, 1H), 7.17 (s, 2H), 8.12 (d, J=7.8 Hz, 1H), 

9.02 (s, 1H), 11.8 (s, 1H). 

5.1.2.14. (Z)-2-Azido-3-(2,3-dihydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-

en-1-one (6n). The crude residue purified by flash chromatography, using EtOAc:petroleum 

ether 1:1 (v:v) for elution, furnished 6n as a yellow solid. Yield 36%, mp 121-123 °C. 1H-

NMR (DMSO-d6) : 3.77 (s, 3H), 3.83 (s, 6H), 3.87 (s, 3H), 6.58 (d, J=9.0 Hz, 1H), 7.08 (s, 

2H), 7.09 (s, 1H), 7.75 (d, J=9.0 Hz, 1H), 9.13 (s, 1H), 10.3 (s, 1H). 

5.1.3. General procedure for the synthesis of compounds 3c, 4a-l and 7a.  

A mixture of the appropriate α-azidochalcone 6a-n (1 mmol) and p-TSA (38 mg, 0.2 mmol) 

in acetonitrile (10 mL) was stirred under argon at reflux for 12 h (Method A) or irradiated 

with a 25W white CFL for 24 h at room temperature (Method B). After this time, the reaction 

mixture was concentrated under reduced pressure to give a residue that was dissolved in 

dichloromethane (15 mL) and washed with water (5 mL) and brine (5 mL). The organic layer 

was dried on Na2SO4, filtered and evaporated. The crude product was purified by silica gel 

column chromatography to yield compounds 3c, 4a-l and 7a. 

5.1.3.1. (2-Amino-7-hydroxy-6-methoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone 

(3c). The crude residue purified by flash chromatography, using EtOAc:petroleum ether 6:4 

(v:v) for elution, furnished 3c as a yellow solid. Yield: 71% (Method A), 52% (Method B), 
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mp 103-105 °C. 1H-NMR (DMSO-d6) : 3.73 (s, 3H), 3.75 (s, 6H), 3.77 (s, 3H), 6.21 (d, 

J=8.8 Hz, 1H), 6.69 (d, J=8.8 Hz, 1H), 6.89 (s, 2H), 8.47 (bs, 2H), 9.25 (s, 1H). 13C-NMR 

(DMSO-d6) : 55.83 (2C), 56.75, 60.08, 91.92, 104.46 (2C), 107.41, 108.82, 121.28, 122.49, 

131.49, 136.49, 139.02, 143.81, 152.51 (2C), 166.90, 187.32. MS (ESI): [M+1]+=374.22. 

HPLC: tR=15.97 min. 

5.1.3.2. (2-Amino-benzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4a). The crude 

residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for elution, 

furnished 4a as a yellow solid. Yield: 73% (Method A), 49% (Method B), mp 103-104 °C. 

1H-NMR (DMSO-d6) : 3.74 (s, 3H), 3.75 (s, 6H), 6.82 (dd, J=6.8 and 1.6 Hz, 1H), 6.89 (s, 

2H), 6.99 (m, 2H), 7.30 (dd, J=7.6 and 2.0 Hz, 1H), 8.54 (s, 2H). 13C-NMR (DMSO-d6) : 

56.39 (2C), 60.66, 92.43, 105.08 (2C), 110.36, 118.55, 121.78, 123.96, 126.89, 136.85, 

139.79, 148.85, 153.15 (2C), 167.25, 188.14. MS (ESI): [M+1]+=328.43. HPLC: tR=20.20 

min. 

5.1.3.3. (2-Amino-4-methoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4b). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4b as a yellow solid. Yield: 74% (Method A), 53% (Method B), mp 123-

125 °C. 1H-NMR (DMSO-d6) : 3.28 (s, 3H), 3.69 (s, 6H), 3.72 (s, 3H), 6.69 (dd, J=6.8 and 

2.4 Hz, Hz, 1H), 6.81 (s, 2H), 7.05 (m, 2H), 8.22 (bs, 2H). 13C-NMR (DMSO-d6) : 54.79, 

55.67 (2C), 59.99, 91.72, 102.97, 105.52 (2C), 106.22, 115.17, 122.17, 137.32, 139.31, 

149.04, 151.21, 151.62 (2C), 165.71, 188.15. MS (ESI): [M+1]+=358.31. HPLC: tR=16.83 

min. 

5.1.3.4. (2-Amino-5-methoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4c). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 
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elution, furnished 4c as a cream-colored solid. Yield: 68% (Method A), 49% (Method B), mp 

140-142 °C. 1H-NMR (DMSO-d6) : 3.56 (s, 3H), 3.74 (s, 3H), 3.78 (s, 6H), 6.26 (d, J=2.4 

Hz, 1H), 6.56 (dd, J=8.8 and 2.4 Hz, 1H), 6.89 (s, 2H), 7.22 (d, J=8.8 Hz, 1H), 8.54 (bs, 2H). 

13C-NMR (DMSO-d6) : 55.07, 55.88 (2C), 60.09, 92.30, 103.22, 104.36 (2C), 106.91, 

109.98, 127.34, 136.36, 139.09, 142.99, 152.64 (2C), 155.78, 167.23, 187.61. MS (ESI): 

[M+1]+=358.40. HPLC: tR=17.93 min. 

5.1.3.5. (2-Amino-6-methoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4d). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4d as an orange solid. Yield: 74% (Method A), 52% (Method B), mp 48-50 

°C. 1H-NMR (DMSO-d6) : 3.72 (s, 3H), 3.75 (s, 3H), 3.77 (s, 6H), 6.67 (dd, J=9.0 and 2.4 

Hz, 1H), 6.73 (d, J=9.0 Hz, 1H), 6.90 (s, 2H), 7.03 (d, J=2.4 Hz, 1H), 8.48 (bs, 2H). 13C-NMR 

(DMSO-d6) : 55.51, 55.88 (2C), 60.13, 91.58, 96.60, 104.54 (2C), 110.19, 118.18, 119.22, 

136.42, 139.21, 149.12, 152.60 (2C), 155.25, 166,712, 187.11. MS (ESI): [M+1]+=358.28. 

HPLC: tR=16.95 min. 

5.1.3.6. (2-Amino-7-methoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4e). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 6:4 (v:v) for 

elution, furnished 4e as a white solid. Yield: 72% (Method A), 48% (Method B), mp 164-165 

°C. 1H-NMR (DMSO-d6) : 3.75 (s, 3H), 3.76 (s, 6H), 3.88 (s, 3H), 6.43 (d, J=7.6 Hz, 1H), 

6.71 (d, J=8.0 Hz, 1H), 6.90 (s, 2H), 6.94 (d, J=8.0 Hz, 1H), 8.51 (bs, 2H). 13C-NMR 

(DMSO-d6) : 55.68, 55.82 (2C), 60.10, 92.29, 104.64 (2C), 105.11, 110.79, 124.03, 127.87, 

136.16, 136.77, 139.25, 143.73, 152.53 (2C), 166.54, 187.68. MS (ESI): [M+1]+=358.39. 

HPLC: tR=17.60 min. 
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5.1.3.7. (2-Amino-6-ethoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4f). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4f as an orange solid. Yield: 78% (Method A), 46% (Method B), mp 83-85 

°C. 1H-NMR (DMSO-d6) : 1.29 (t, J=6.8 Hz, 3H), 3.75 (s, 3H), 3.77 (s, 6H), 3.97 (q, J=6.8 

Hz, 2H), 6.63 (dd, J=9.0 and 2.4 Hz, 1H), 6.73 (d, J=9.0 Hz, 1H), 6.90 (s, 2H), 7.00 (d, J=2.4 

Hz, 1H), 8.46 (bs, 2H). 13C-NMR (DMSO-d6) : 14.55, 55.81 (2C), 60.09, 63.41, 91.56, 

97.05, 104.48 (2C), 110.68, 118.15, 119.08, 136.40, 139.14, 149.06, 152.56 (2C), 154.39, 

166.65, 187.06. MS (ESI): [M+1]+=372.31. HPLC: tR=18.62 min. 

5.1.3.8. (2-Amino-6-propoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4g). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 4:6 (v:v) for 

elution, furnished 4g as an orange solid. Yield: 78% (Method A), 52% (Method B), mp 168-

170 °C. 1H-NMR (DMSO-d6) : 0.96 (t, J=7.2 Hz, 3H), 1.68 (m, 2H), 3.75 (s, 3H), 3.77 (s, 

6H), 3.88 (q, J=7.6 Hz, 2H), 6.64 (dd, J=8.8 and 2.0 Hz, 1H), 6.73 (d, J=8.8 Hz, 1H), 6.90 (s, 

2H), 7.01 (d, J=2.0 Hz, 1H), 8.48 (bs, 2H). 13C-NMR (DMSO-d6) : 10.33, 21.95, 55.81 (2C), 

60.09, 69.36, 91.55, 97.09, 104.49 (2C), 110.68, 118.16, 119.06, 136.38, 139.14, 149.07, 

152.55 (2C), 154.55, 166.69, 187.04. MS (ESI): [M+1]+=386.19. HPLC: tR=19.85 min. 

5.1.3.9. (2-Amino-7-ethoxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4h). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4h as an orange solid. Yield: 68% (Method A), 43% (Method B), mp 158-

160 °C. 1H-NMR (DMSO-d6) : 1.37 (t, J=6.8 Hz, 3H), 3.75 (s, 3H), 3.76 (s, 6H), 4.14 (q, 

J=6.8 Hz, 2H), 6.41 (d, J=8.0 Hz, 1H), 6.69 (d, J=8.0 Hz, 1H), 6.90 (s, 2H), 6.94 (t, J=8.0 Hz, 

1H), 8.52 (bs, 2H). 13C-NMR (DMSO-d6) : 14.69, 55.83 (2C), 60.12, 63.80, 92.31, 104.60 

(2C), 105.78, 110.68, 124.06, 127.92, 136.21, 136.57, 139.19, 142.99, 152.53 (2C), 166.58, 

187.68. MS (ESI): [M+1]+=372.39. HPLC: tR=19.75 min. 
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5.1.3.10. (2-Amino-6-benzyloxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4i). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4i as an orange solid. Yield: 75% (Method A), 54% (Method B), mp 123-

125 °C. 1H-NMR (DMSO-d6) : 3.72 (s, 3H), 3.75 (s, 3H), 3.77 (s, 6H), 6.67 (dd, J=9.0 and 

2.4 Hz, 1H), 6.73 (d, J=9.0 Hz, 1H), 6.90 (s, 2H), 7.03 (d, J=2.4 Hz, 1H), 8.48 (bs, 2H). 13C-

NMR (DMSO-d6) : 55.82 (2C), 60.09, 69.69, 91.53, 97.57, 104.49 (2C), 111.07, 118.13, 

119.44, 127.71 (2C), 128.28 (2C), 136.37, 136.95, 139.16, 148.96, 152.56 (2C), 154.16, 

166.71, 187.07. MS (ESI): [M+1]+=434.37. HPLC: tR=21.25 min. 

5.1.3.11. (2-Amino-6-fluorobenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4j). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4j as a white solid. Yield: 76% (Method A), 44% (Method B), mp 178-180 

°C. 1H-NMR (DMSO-d6) : 3.76 (s, 3H), 3.77 (s, 6H), 6.76 (d, J=8.4 Hz, 1H), 7.21 (dd, J=8.4 

and 5.2 Hz, 1H), 6.91 (s, 2H), 7.35 (dd, J=9.2 and 2.8 Hz, 1H), 8.56 (bs, 2H). 13C-NMR 

(CDCl3) : 56.31 (2C), 61.12, 93.76, 98.791 and 99.057 (2JCF=26.6 Hz), 105.00 (2C), 110.936 

and 111.165 (2JCF=22.9 Hz), 110.94, 119.330 and 119.421 (3JC-F=9.1 Hz), 122.58, 135.87, 

140.57, 148.957 and 149.087 (3JCF=13.0 Hz), 153.22 (2C), 157.900 and 160.294 (1JC-F=239 

Hz), 166.87, 189.68. MS (ESI): [M+1]+=346.05. HPLC: tR=18.52 min. 

5.1.3.12. (2-Amino-6-bromobenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4k). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4k as a yellow solid. Yield: 78% (Method A), 47% (Method B), mp 170-

172 °C.  1H-NMR (DMSO-d6) : 3.75 (s, 3H), 3.77 (s, 6H), 6.76 (d, J=8.4 Hz, 1H), 6.90 (s, 

2H), 7.21 (dd, J=8.4 and 2.0 Hz, 1H), 7.64 (d, J=2.0 Hz, 1H), 8.66 (bs, 2H). 13C-NMR 

(DMSO-d6) : 55.86 (2C), 60.13, 91.48, 104.49 (2C), 112.62, 113.06, 119.22, 126.02, 126.34, 
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136.03, 139.34, 148.64, 152.66 (2C), 166.77, 187.46. MS (ESI): [M]+=405.92, 

[M+2]+=408.25. HPLC: tR=20.65 min. 

5.1.3.13. (2-Amino-6-methylbenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4l). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 1:1 (v:v) for 

elution, furnished 4l as a yellow solid. Yield: 73% (Method A), 39% (Method B), mp 137-139 

°C. 1H-NMR (DMSO-d6) : 2.28 (s, 3H), 3.74 (s, 3H), 3.75 (s, 6H), 6.72 (d, J=8.0 Hz, 1H), 

6.85 (dd, J=8.0 and 0.8 Hz, 1H), 6.89 (s, 2H), 7.15 (d, J=0.8 Hz, 1H), 8.49 (bs, 2H). 13C-NMR 

(DMSO-d6) : 20.71, 55.82 (2C), 60.12, 91.80, 104.53 (2C), 110.29, 117.74, 123.65, 124.19, 

130.83, 136.35, 139.15, 148.64, 152.56 (2C), 166.70, 187.33. MS (ESI): [M+1]+=342.20. 

HPLC: tR=18.72 min. 

5.1.3.14. (2-Amino-5-nitrobenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (7a). The 

crude residue purified by flash chromatography, using EtOAc:petroleum ether 8:2 (v:v) for 

elution, furnished 7a as a brown solid. Yield; 68% (Method A), 47% (Method B), mp 95-97 

°C. 1H-NMR (DMSO-d6) : 3.78 (s, 3H), 3.79 (s, 6H), 6.98 (s, 2H), 7.62 (d, J=8.2 Hz, 1H), 

7.69 (d, J=2.4 Hz, 1H), 8.00 (dd, J=8.2 and 2.4 Hz, 1H), 8.88 (bs, 2H). MS (ESI): 

[M+1]+=373.27. 

5.1.4. (2-Amino-6-hydroxybenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4m). (2-

Amino-6-(benzyloxy)benzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone 4i (0.12 g, 0.28 

mmol) was dissolved in a mixture of methanol (25 mL) and ethanol (25 mL) and passed 

through a H-Cube Pro flow reactor using a 10% Pd/C 70 mm Catcart at 40 bar and 60 °C. 

Once the reaction was complete, the reaction mixture was concentrated. The final compound 

was obtained as a yellow solid. Yield 78%, mp 87-89 °C. 1H-NMR (DMSO-d6) : 3.75 (s, 

3H), 3.77 (s, 6H), 6.52 (dd, J=8.4 and 1.6 Hz, 1H), 6.66 (d, J=8.4 Hz, 1H), 6.74 (d, J=1.6 Hz, 

1H), 6.90 (s, 2H), 8.42 (bs, 2H), 9.36 (bs, 1H). 13C-NMR (DMSO-d6) : 55.81 (2C), 60.08, 
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91.72, 97.72, 104.47 (2C), 110.99, 118.00, 118.26, 136.46, 139.37, 149.15, 152.53 (2C), 

153.06, 166.50, 186.93. MS (ESI): [M+1]+=344.18. HPLC: tR=14.50 min. 

5.1.5. (2,5-Diaminobenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone (4n). To a stirred 

suspension of (2-amino-5-nitrobenzofuran-3-yl)(3,4,5-trimethoxyphenyl)methanone 7a (220 

mg, 0.59 mmol) in EtOH (10 ml) was added iron powder (230 mg, 4.13 mmol, 7 equiv.) and a 

solution of ammonium chloride (126 mg, 2.3 mmol, 4 equiv.) in water (1 mL). The reaction 

mixture was heated under reflux for 1 h, cooled to room temperature, and filtered through 

Celite. The filter cake was rinsed with dichloromethane (20 mL) and the filtrate washed with 

water (5 mL) and brine (5 mL) and dried over Na2SO4. The solvent was removed under 

reduced pressure. The crude residue was purified by flash chromatography, using 

EtOAc:petroleum ether 6:4 (v:v) for elution, and furnished 4n as an orange solid. Yield 45%, 

mp 168-170 °C. 1H-NMR (DMSO-d6) : 3.76 (s, 3H), 3.78 (s, 6H), 4.82 (bs, 2H), 6.20 (dd, 

J=8.4 and 2.4 Hz, 1H), 6.26 (d, J=2.4 Hz, 1H), 6.93 (s, 2H), 6.96 (d, J=8.4 Hz, 1H), 8.41 (bs, 

2H). 13C-NMR (DMSO-d6) : 55.79 (2C), 60.08, 92.38, 103.49, 104.78 (2C), 107.74, 109.59, 

126.60, 136.12, 139.30, 145.05, 152.46 (2C), 154.09, 167.22, 187.30. MS (ESI): 

[M+1]+=343.22. HPLC: tR=12.00 min. 

5.2. Biological assays and computational studies. 

5.2.1. Cytotoxicity assays.  

The cell lines and culture media used were described previously, as were the cell culture 

methodologies [27]. The 10 mM compound stock solutions were prepared with DMSO, and 

the DMSO concentration in cytotoxicity and all cell-based assays was always ≤ 0.25%. 

Peripheral blood lymphocytes (PBL) from healthy donors were obtained from human 

peripheral blood (leukocyte rich plasma-buffy coats) from healthy volunteers using the 

Lymphoprep (Fresenius KABI Norge AS) gradient density centrifugation. 
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Buffy coats were obtained from the Blood Transfusion Service, Azienda Ospedaliera of 

Padova and provided at this institution for research purposes. Therefore, no additional 

informed consent was needed. In addition, buffy coats were provided without identifiers. The 

experimental procedures were carried out in strict accordance with approved guidelines. 

Normal human astrocytes (NHA) were purchased from Lonza (Lonza Inc, CC-2565) and 

cultured according to the supplier’s instructions.  

5.2.2. Effects on tubulin polymerization and on colchicine binding to tubulin.  

To evaluate the effects of the compounds on tubulin assembly in vitro [39], varying 

concentrations of compounds were preincubated with 10 M bovine brain tubulin in 

glutamate buffer at 30 ˚C and then cooled to 0 ˚C. After addition of 0.4 mM GTP (final 

concentration), the mixtures were transferred to 0 °C cuvettes in a recording 

spectrophotometer and warmed to 30 °C. Tubulin assembly was followed turbidimetrically at 

350 nm. The IC50 was defined as the compound concentration that inhibited the extent of 

assembly by 50% after a 20 min incubation. The ability of the test compounds to inhibit 

colchicine binding to tubulin was measured as described [40], except that the reaction 

mixtures contained 0.5 M tubulin, 5 M [3H]colchicine and 5 M or 0.5 M test compound. 

5.2.3. Molecular modeling.  

All molecular docking studies were performed on a Viglen Genie Intel®CoreTM i7-3770 vPro 

CPU@ 3.40 GHz x 8 running Ubuntu 184.04. Molecular Operating Environment (MOE) 

2019.10 [60] and Maestro (Schrödinger Release 2019-3) [41] were used as molecular 

modeling software. The tubulin structure was downloaded from the PDB data bank 

(http://www.rcsb.org/; PDB code 4O2B). The protein was preprocessed using the Schrödinger 

Protein Preparation Wizard by assigning bond orders, adding hydrogens and performing a 

restrained energy minimization of the added hydrogens using the OPLS_2005 force field. 

http://www.rcsb.org/
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Ligand structures were built with MOE and then prepared using the Maestro LigPrep tool by 

energy minimizing the structures (OPLS_2005 force filed), generating possible ionization 

states at pH 7±2, and generating tautomers and low-energy ring conformers. After isolating a 

tubulin dimer structure, a 12 Å docking grid (inner-box 10 Å and outer-box 22 Å) was 

prepared using as centroid the co-crystallized colchicine. Molecular docking studies were 

performed using Glide SP precision keeping the default parameters and setting 5 as number of 

output poses per input ligand to include in the solution. The output database was saved as a 

mol2 file. The docking results were visually inspected for their ability to bind the active site. 

5.2.4 Immunofluorescence analysis.  

For immunofluorescence imaging, cells were fixed in cold 4% formaldehyde for 15 min, 

rinsed and stained with anti--tubulin antibody (Sigma-Aldrich S.r.l., Milan, IT) for 2 h at 

room temperature. After incubation with primary antibody, cells were washed and labeled 

with species specific secondary antibody conjugated with Alexa 488 dye (Molecular Probes, 

Carlsbad, CA). Cells were counterstained with DAPI (Sigma-Aldrich, St. Louis, MO). 

Finally, images were obtained by using a Zeiss confocal microscope LSM800. 

5.2.5. Cell cycle analysis.  

HeLa cells were treated with the test compounds for 24 h. Cells were harvested by 

centrifugation and fixed with 70% (v/v) cold ethanol. Cells were lysed with 0.1% (v/v) Triton 

X-100 containing RNase A and stained with PI. A Beckman Coulter Cytomics FC500 

instrument and MultiCycle for Windows software from Phoenix Flow Systems were used to 

analyze the cells. 

5.2.6. Measurement of apoptosis by flow cytometry.  

The cells were treated with the test compounds and after different times stained with both PI, 

to stain DNA, and annexin V-fluorescein isothiocyanate, to stain membrane PS exposed on 
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the cell surface, following the instructions of the manufacturer (Roche Diagnostics) of the 

Annexin-V-Fluos reagent. 

5.2.7. Measurement of mitochondrial membrane potential and reactive oxygen species. 

Mitochondrial potential was measured in HeLa cells by flow cytometry as previously 

described [29], using the fluorescent dye JC-1 (Molecular Probes). 

5.2.8. Evaluation of cellular protein expression. 

HeLa cells were exposed for various times to 4f, and the cells were harvested by 

centrifugation and washed twice in 0 °C phosphate-buffered saline (PBS). Cells were lysed 

with 0.1% (v/v) Triton X-100 containing RNase A at 0 °C, and supernatants were obtained by 

centrifuging the lysed cells at 15,000 x g for 10 min at 4 °C. The protein content of the 

solutions was measured, and 10 μg of protein from each sample was subjected to sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins were transferred by 

electroblotting to a poly(vinylidene difluoride) Hybond-P membrane from GE Healthcare. 

The membranes were treated with 5% bovine serum albumin in PBS containing 0.1% Tween 

20 overnight at 4 °C. The membranes were then exposed for 2 h at room temperature to 

primary antibodies directed against cyclin B, BubR1, MAD-2, PARP, caspase-9, Mcl-1 (all 

from Cell Signaling), Bcl-2 or -actin (Santa Cruz; to verify equal protein loading) and 

subsequently for 1 h to peroxidase-labeled secondary antibodies. The membranes were 

visualized using ECL Select (GE Healthcare), and images were acquired using a Uvitec-

Alliance imaging system. 

5.2.9. Evaluation of antivascular activity in vitro. 

HUVECs were prepared as previously described [57, 58]. The adherent cells were maintained 

in M200 medium supplemented with Low Serum Growth Supplement, containing fetal 

bovine serum, hydrocortisone, hEGF, bFGF, heparin and gentamycin/amphotericin B (Life 
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Technologies, Monza, Italy). Once confluent, the cells were detached with a trypsin–EDTA 

solution and used in experiments from the first to the sixth passage. Matrigel matrix 

(Basement Membrane Matrix, BD Biosciences, Italy) was kept at 4 °C for 3 h, when 230 µL 

of Matrigel solution was added to each well of a 24-well plate. After gelling at 37 °C for 30 

min, gels were overlaid with 500 µL of medium containing 6 x 104 HUVECs. The cells were 

incubated over Matrigel for 6 h to allow capillary tubes to form. Different concentrations of 

test compound were added to the cultures and incubated for different times, and the 

disappearance of existing vasculature was monitored and photographed (five fields for each 

well: the four quadrants and the center) at a 10x magnification. Phase contrast images were 

recorded using a digital camera and saved as TIFF files. Image analysis was carried out using 

ImageJ image analysis software, and the following dimensional parameters (percent area 

covered by HUVECs and total length of HUVECs network per field) and topological 

parameters (number of meshes and branching points per field) were estimated [57, 58].  

5.2.10. In vivo evaluation of anti-tumor activity.  

Animal experiments were approved by the local animal ethics committee (OPBA, Organismo 

Preposto al Benessere degli Animali, Università degli Studi di Brescia, Italy) and were 

performed in accordance with national guidelines and regulations. Procedures involving 

animals and their care conformed with institutional guidelines that comply with national and 

international laws and policies (EEC Council Directive 86/609, OJ L 358, 12 December 1987) 

and with “ARRIVE” guidelines (Animals in Research Reporting In Vivo Experiments). 

Seven-week-old C57BL/6 female mice were orthotopically injected into the mammary fat pad 

with 4 × 105 E0771 mammary carcinoma cells. When tumors were palpable, mice were 

randomized to control and treated groups. Treatment was performed every other day by 

intraperitoneal injection of 4f (15 or 5 mg/kg), CA-4P (30 mg/kg) or vehicle (DMSO) in a 

100 µL final volume. Tumors were measured using a caliper: tumor volume V (mm3) was 
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calculated according to the formula V=(D × d2)/2, where D and d are the major and minor 

perpendicular tumor diameters in mm, respectively. Tumor volume data were analyzed with a 

two-way analysis of variance, and individual group comparisons were evaluated by the 

Bonferroni correction. 

5.2.11. Statistical analysis.  

Graphs and statistical analyses were performed using GraphPad Prism software (GraphPad, 

La Jolla, CA, USA). All data in graphs represented the mean of at least three independent 

experiments ± SEM. Statistical significance was determined using Student’s t-test or ANOVA 

(one- or two-way) depending on the type of data. Asterisks indicate a significant difference 

between the treated and the control group, unless otherwise specified. * p < 0.05, ** p < 0.01, 

*** p < 0.001, **** p < 0.0001. 
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Abbreviations. Abbreviations. CA-4, combretastatin A-4; CA-4P, combretastatin A-4 

disodium phosphate; CH3CN, acetonitrile, p-TSA, p-toluensulfonic acid; CFL, compact 

fluorescent lamp; 10% Pd/C, 10% palladium on activated charcoal; DMSO, dimethyl 

sulfoxide; ESI, electrospray ionization; FITC, fluorescein isothiocyanate; HUVECs, human 

umbilical vein endothelial cells; JC-1, 5,5’,6,6’-tetrachloro-1,1’,3,3’-

tetraethylbenzimidazolcarbocyanine; NHA, normal human astrocytes; PHA, 

phytohematoagglutinin; PARP, Poly (ADP-ribose) polymerase; PBS, phosphate-buffered 

saline; PI, propidium iodide; PBL, peripheral blood lymphocytes; PS, phospholipid 

phosphatidylserine; SAC, spindle assembly checkpoint. 

Supporting information available. 1H-NMR and 13C-NMR spectra of compounds 3c, 7a and 

4a-n. HPLC traces for compounds 3c and 4a-n. Supplementary data associated with this 

article can be found in the online version.  
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