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Abstract

This paper proposes an on-line sliding mode control allocation scheme for fault tolerant control. The effectiveness level of the
actuators is used by the control allocation scheme to redistribute the control signals to the remaining actuators when a fault
or failure occurs. The paper provides an analysis of the sliding mode control allocation scheme and determines the nonlinear
gain required to maintain sliding. The on-line sliding mode control allocation scheme shows that faults and even certain total
actuator failures can be handled directly without reconfiguring the controller. The simulation results show good performance
when tested on different fault and failure scenarios. (©2007 Elsevier Science Ltd. All rights reserved.
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1 Introduction

In most safety critical systems e.g. passenger aircraft [4]
and modern fighter aircraft [12], there is actuator redun-
dancy. This allows freedom to design fault tolerant con-
trol (FTC) systems to maintain stability and acceptable
performance during faults and failures. Control alloca-
tion (CA) is one approach to manage the actuator re-
dundancy for different control strategies handling actu-
ator faults (see for example [5,8]). There is extensive lit-
erature on CA which discusses different algorithms, ap-
proaches and applications: [11] discusses two (broadly)
linked approaches (linear and quadratic programming)
for CA based on finding the ‘best solution’ to a system
of linear equations. The work in [13] compares control
allocation with optimal control design for distributing
the control effort among redundant actuators. In [6] the
authors demonstrate that feedback control systems with
redundant actuators can be reduced to a feedback con-
trol system without redundancy using a special case of
CA known as ‘daisy chaining’. In this approach, a subset
of the actuators, regarded as the primary actuators are
used first, then secondary actuators are used if the pri-
mary actuators reach saturation. Other CA approaches
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taking into account actuator limits are discussed in [2,3].

The work in [5,8] uses CA as a means for fault tolerant
control (FTC). The benefits of CA is that the controller
structure does not have to be reconfigured in the case of
faults and it can deal directly with total actuator fail-
ures without requiring reconfiguration/accommodation
of the controller: the CA scheme automatically redis-
tributes the control signal. This is the facet of CA that
will be explored in this paper. The work in [17,21] pro-
vides practical examples of the combination of sliding
mode control (SMC) and CA for FTC. The work by Shin
et al.[16] uses control allocation ideas, but formulates the
problem from an adaptive controller point of view. How-
ever neither of these papers provide a detailed stability
analysis and discuss sliding mode controller design issues
when using control allocation. Recent work by Corradini
et al.[7] shows that total failures can be dealt with by
SMC schemes provided that there is enough redundancy
in the system. However [7] considers exact duplication of
actuators to achieve redundancy, whereas in many over
actuated systems, the redundant actuators do not have
identical dynamics to the ‘primary’ actuators.

In this paper, a combination of SMC and CA will be
explored to achieve FTC. A rigorous design procedure
is developed from a theoretical perspective. The con-
trol strategy uses the effectiveness level of the actuators,
and redistributes the control to the remaining actuators
when faults/failures occur. This is the novelty of this
paper compared to the work in [7,17,21].
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2 Controller Design
2.1 Problem Formulation

This paper considers a situation where a fault associ-
ated with the actuators develops in a system. It will be
assumed that the system subject to actuator faults or
failures, can be written as

i(t) = Ax(t) + Bu(t) — BK(t)u(t) (1)

where A € R"*™ and B € R"*"™. The effectiveness gain
K(t) = diag(k1(¢), . .., km(t)) where the k;(¢) are scalars
satisfying 0 < k;(¢) < 1. These scalars model a decrease
in effectiveness of a particular actuator. If k;(¢) = 0, the
ith actuator is working perfectly whereas if k;(t) > 0, a
fault is present, and if k;(t) = 1 the actuator has failed
completely. In this paper, information about K (¢) will
be incorporated into the allocation algorithm . In most
CA strategies, the control signal is distributed equally
among all the actuators [16] or distributed based on the
limits (position and rate) of the actuators [8].

In the literature, the assumption that Rank(B) =1 <
m is often employed so that B can be factorized into
B = B,N where N € R™*!, For many systems the
assumption, is not valid. However, usually the system
states can always be reordered, and the matrix B from
(1) can be partitioned as:

B
By

B= 2)

where By € R(™=Dxm and B, € RY*™ has rank [. The
partition is in keeping with the notion of splitting the
control law from the control allocation task [13,8]. Here
it is assumed that the matrix By represents the domi-
nant contribution of the control action on the system,
while B; generally will have elements of small magni-
tude compared with || Bz||. Compared to the work in [16]
where it is assumed that B; = 0, here B; # 0 will be
considered explicitly in the controller design and in the
stability analysis. It will be assumed without loss of gen-
erality that the states of the system in (1) have been
transformed so that Bo By = I; and therefore || By|| = 1.
This is always possible since rank(By) = [ by construc-
tion. As in [1], let the ‘virtual control’ v(¢) be defined as

v(t) := Bau(t) (3)
so that
u(t) = Blu(t) (4)

where the pseudo inverse is chosen as

Bl := WBJ (B,WB{)™! (5)

and W € R™*™ ig a symmetric positive definite (s.p.d)
diagonal weighting matrix. It can be shown the pseudo-
inverse in (5) arises from the optimization problem

m(ir)lu(t)TW_lu(t) subject to Bau(t) = v(t) (6)
u(t

In this paper a novel choice of weighting matrix W will
be considered. Specifically, W has been chosen as

Wi=1-K (7)

and so W = diag{wy, ..., wy, } where w; =1 — k;. Note
in a fault free situation W = 1. As k; — 1, w; — 0 and
so the associated component u; in (6) is weighted heavily

since - becomes large.
i
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Fig. 1. Control allocation strategy

Figure 1 illustrates the FTC control allocation strategy.
The control allocation will depend on the effectiveness of
the actuators. The information necessary to compute W
on-line can be supplied by a fault reconstruction scheme
as described in [10,19] for example, or by using a mea-
surement of the actual actuator deflection compared to
the demand which is available in many systems e.g. pas-
senger aircraft [4]. Alternatively other fault reconstruc-
tion schemes based on Kalman filters [22] can be used.
From (7) if an actuator fault occurs, the weighting W
will be changed on-line and the control input wu(t) is re-
allocated to minimize the use of the faulty control sur-
face. In the event of total failure of the ith control sur-
face, k; — 1 and therefore the ith component of W1
becomes large. Hence, u;(t) is totally re-routed to the
other actuators (provided there is enough redundancy
in the system).

In this paper, sliding mode control (SMC) techniques [9],
have been used to synthesize the ‘virtual control’ v(¢).
Define a switching function s(t) : R* — R! to be

s(t) = Sz(t)

where S € R'*™ and det(SB,) # 0. Let S be the hyper-
plane defined by § = {z(t) € R™ : Sxz(t) = 0}. If a con-
trol law can be developed which forces the closed—loop
trajectories onto the surface S in finite time and con-
strains the states to remain there, then an ideal sliding
motion is said to have been attained [9]. First define

D(t) := (BaW?BY)(BaWBY) ' u(t) (8)



then as argued in [1], after an appropriate coordinate
transformation, « — T,x = &, equation (1) becomes:

5 e S e R
where

B := W2B3 (ByW?Bf)™! (10)
and

By := (I - B3 Bs) (11)

Proposition 1 There exists a scalar vy which is finite
and independent of W such that

IBS || = [W2BS (B:W?B3) ™| < % (12)
for all W = diag(w; ... wy,) such that 0 < w; < 1.

Proof: This follows from a modification of the proof of
Theorem 1 in [18]. The work in [18] considers left pseudo-

inverses but since (By )T = (BJ)*, the result follows. W

Remark 1: As shown in [18], if W is not diagonal, || B ||
is no longer necessarily bounded.

The virtual control law & will now be designed based on
the nominal fault-free system in which the top partition
of the last term in (9) is zero since B; BY Bf |1 = 0.
In the Z(¢) coordinates in (9), a suitable choice for the
sliding surface is

$=81" =M 1] (13)

where M € R (=D js the design freedom. Introduce an-
other transformation so that (21, Z2) — (Z1,s(t)), then
equation (9) becomes

f)l(t) _

5(t)
where By is defined in (10) and Ay = Ay — AlgM,
/121 = Mﬁll + 15121 — AQQM. If a control law can be
designed to induce sliding, then during sliding s$(t) =
s(t) = 0 and so the equivalent control [9,20] necessary to
maintain sliding is obtained from solving for D, () from
the lower equations of (14) to give

Z1(¢)

o(t) (14)
s(t)

AQl A-22

An A]

B1BY Bf
I+ MB, By Bf

Veq(t) = —(I + MB1BY By )~ As131(t) (15)
where BYY is defined in (11). Define

= |[MBBY| (16)

It follows |[MB1B3 By || < [MB1BY || By ]l < vom-
Since By is independent of M, the term ~q can be calcu-
lated a—priori using the boundedness result from Propo-
sition 1. If (A, B,) is controllable, then (A;1, A12) is con-
trollable [9] and so M can always be chosen to make
A1 — Ao M stable. If the design matrix M can also be
chosen so that v; from (16) satisfies ypy; <1, this guar-
antees the inverse in (15) exists for all W. Substituting
(15) into the top partition of (14), yields the following
reduced order system which governs the sliding motion:

&1(t)=A1121(t)—B1Bs B (I+MB1Bs B ) ' Aniz (t) (17)

Remark 2: In a fault free condition, W = I and there-
fore By |w—; = BY since ByBJ = I. Also

By Bf = (I — By By)Bf = (I — By By)By =0

and the system in (17) ‘collapses’ to 21 (t) = A112:(t)
which is the nominal sliding mode reduced order system
for which M has been designed to guarantee stability [9].

2.2 Stability analysis

The stability of the sliding mode is dependent on the re-
duced order system (17). Typically in sliding mode con-
trol [9] the stability of the system only depends on A1,
which is guaranteed to be stable by choice of M. Note
that M can be designed using standard sliding hyper-
plane design methods (see for example [9]) assuming a
nominal no fault condition —i.e. W = I in (9). To facil-
itate the subsequent analysis, define

G(S) = 1421<SI — All)_lBlBéV (18)

where s represents the Laplace variable. By construction
the transfer function matrix G(s) is stable and define

72 = [|G(8)ll (19)

Proposition 2 During a fault or failure condition, for
any combination of 0 < w; < 1, the closed—loop system
will be stable if

7270

0< ———
L =170

<1 (20)

where the positive scalar 7y, is defined in Proposition 1,
the positive scalar 1 is defined in (16).

Proof: Consider the reduced order system from equa-
tion (17) rewritten as follows:

ll(t) = Auﬁl(t) — B1By u(t) (21)
G(t) = Ag1d (t) (22)



where
a(t) := By (I + M B, BY BS)~'(t) (23)

Let G(s) be defined as (18). Consequently (17) may be
viewed as the closed-loop dynamics of the negative feed-

back interconnection of G(s) and the varying (with re-
spect to W) ‘feedback gain’ associated with (23). Since
(20) is assumed to hold, vpy1 < 1 and it follows that

IMBBY B | < |MBBY I B || < 7071 < 1. Conse-
quently 2, det(I + M By BY BS) # 0. Furthermore, us-

ing the fact that in general ||(I + X)71|| < (I — || X]|)~*
if || X]| < 1 (page 301 [14]), then

1B5 (1+M By B3 BY) ™| < || B |[|(1+MB1 By By) ™|

Yo
24
[—— (24)

From the Small Gain Theorem [15], if
IG(s)]looll B3 (I + MBy By BY) ™| < 1 (25)

then (17) is stable. Using (24) and the fact that
IG(s)]looc < 72, inequality (20) implies (25) holds and
so (17) is stable. [ |

Remark 3: Both ~; and 7, depend on the design of the
sliding surface since they depend on M, however they
are independent of W. The scalar «y depends on W but
is independent of M.

Remark 4: If By = 0 (which is an assumption in many
schemes: for example [16]), then 44 = 0 and 72 = 0
and Proposition 2 is trivially satisfied. Furthermore, as
Bl — 0, the scalar {222~ — 0 and so the require-
ments of Proposition 2 are satisfied. This means, for
weakly coupled systems in which || By || is small, the ap-
proach will be feasible. The situation where By = 0 can
be regarded as the special extreme case as || By|| — 0.

Equation (20) represents a test to guarantee the stability
of the closed—loop system when faults occur (i.e. when
the w; vary). One important feature is that in order for
(17) to hold, the norm of the pseudo-inverse By which
depends on W must be bounded for all 0 < w; < 1
(which was proved in Proposition 1).

2 Suppose det(I + X) = 0, then A = —1 is an eigenvalue of
X so there exists a v € R™ s.t. Xv = —v. Therefore

T T
X+ Xv
vTXTXv = vTv = sup v

U >1=[X||>1

which is a contradiction since by assumption || X|| < 1.

2.8 Sliding Mode Control laws

Next, a sliding mode controller is designed based on the
system in (14) with respect to ©. The proposed control
law has a structure given by o(t) = 9;(t) + ©,,(¢) where

I}l(t) = —Azli‘l(t) — Ang(f) (26)

and the nonlinear component is defined to be

D (t) = —p(t, ) gy for s(t) # 0 (27)
where s(t) = Sz(t).

Proposition 3 Suppgse the hyperplane matrix M has
been chosen so that Ay1 = Ay1 — Ao M is stable and
condition (20) from Proposition 2 holds, then choosing

)= nollz®)ll +n

28
I —m7% ( )

p(t,x

ensures a sliding motion takes place on S in finite time.

Proof: Notice if (20) holds, then vyy; < 1 and so the
gain defined in (28) is well defined. From (14),

5(t) = (I + M By BY B )i, (t) + (M By BY B )i (t)

and so

sVs=—p||s|| + s MB1BY Bf o (t) + 5L (MB1BY B )in(¢)

jsll (ol B BY BS || + 1M By BY B [ ()| - p)

<|

<IIsll (pr170 + 0l (t)ll - p) (29)
Choosing p(.) as in (28), and substituting into (29) im-
plies s(t)T5(t) < —nl|s(t)||. This differential inequality
is the ‘reachability condition’ [9,20] and implies s(t) = 0
in finite time and a sliding motion is maintained for all
subsequent time. [ |

It follows that the actual control which is sent to the
actuators is resolved from the ‘virtual control law’ v(t)
(from (26)-(27)), using (4), (5) and (8). Therefore u(t)
is defined as

u(t) = WBS (BsW?BY) ™' i(t) (30)

i.e. the control which is sent to the actuators depends on
the effectiveness gains k; (through the matrix W).

2.4 The effect of non—perfect fault reconstruction

Consider a faulty system represented by equation (1).
Let K correspond to the estimated reduction of the ac-
tuator efficiency based on the information provided by
the FDI scheme. Define

W-I-F& (31)



and suppose K # K, where, as described earlier, K
represents the actual reduction in actuator efficiency.
Suppose

W= (I-AW (32)

were A = diag(dy,...,0m) and (the unknown) d; are el-
ements which represent the level of imperfection in the

fault reconstruction. Since (I — K) = W, from (1)

i(t) = Ax(t) + B(I — A)Wu(t) (33)
Now suppose u(t) = Biv(t) where

Bl .= WBJ (B,WB{)™! (34)

This represents the fact that W (i.e. the estimate rather
than the true value of W) will be used to compute the
controller. Then (33) becomes

i(t) = Az(t) + B(I — AW BJu(t) (35)
Also define 7(t) = (BoW BY)~'w(t), then it follows from
(35) that
ByW?B} BiAW?BY
(t) = Ax(t [ 1W2 2 ! VYQ "’T] o(t)
BsW?2By B:AW?B;
3132 B Bi(I — W?*)By
, T o(t)
By(I —W?)By
B AW?BY
- _ o(t 36
B A2 BT v(t) (36)

Notice that equation (36) has an additional term de-
pendent on both the faults and the error in fault recon-
struction. Again consider a transformation to regular
form using the transformation matrix 7). defined in [1].
Equation (36) becomes

R [0 —B,BYNW?2BY
p=Az(t)+ | | o(t) — R B0
I I — B,W?B}
[ BiBYAW2BY |
o 2 T v(t)
B,AW2B]

R [0 B,BYNW?2BY
=Apt)+| o em+ ] o(t)
| B,W?2B;) 0

[ B,BY AW2BT
- oo | 70 (37)
ByAW2B]

where BY is defined in (11). Define &(t) := BoW?2BJ (t)

and By := W2BJ (B;W?By )~ then (37) becomes

. 0 BiBN(I — A)Bf

g=Azt)+ | o)+ | 2 0= 2B, D(t) (38)
—ByABSF

Consider another coordinate transformation so that
(Z1,22) — (&1, 5(t)), using Ts as defined in [1], then the
Ay A | | 21(2)

above becomes
0
i 4 ] o)
A21 A22 S(t) I

B BY(I — A)Bf
MBBY (I — A)Bf — BoABS

[i‘l(t)

5(t)

p(t) (39)

where 12111 = All — AlgM, 1421 = Mﬁll + 1421 - 1422.

If a control law can be designed to induce sliding, then
during sliding $(t) = s(t) = 0 and so the equivalent
control [9,20] necessary to maintain sliding is obtained
from solving for #,(t) from the lower equations of (39)
to give

Deq(t) = —Q 1 Agy 4 (2) (40)
where

Q= (I+MBBY(I—-A)Bf — B,ABY) (41)
Substituting into the first equation of (39) gives the fol-
lowing reduced order system [9]:

a1(t) = Ani(t) — BiBY (I — A)By Q7' Agidn () (42)
Remark 5: If the information on the actual degradation
of the control surface efficiency is ‘perfect’, then A = 0,
and (42) reduces to (17) in the stability analysis that
follows. However in the event of non—perfect fault recon-

struction, there is a bound on A for which stability is
still guaranteed.

Proposition 4 Assume (as in Proposition 2), that
equation (20) holds. During a fault or failure condition,
for any combinations of 0 < w; < 1, the closed—loop
system will be stable if the mismatch between the actual
and reconstructed fault A satisfies:

Yo(y1+72+1)

where 7o and y1 are defined in Proposition 1 and 2 re-
spectively and 7o is defined in (19).



Proof: Consider the reduced order system from equa-
tion (42) which can be rewritten as (21)-(23), where now

a(t):=(I—A)By (I+M BBy (I-A)By —B2ABS )™ §i(t)(44)

Assume that (20) and (43) hold. Inequality (43) implies

1—7%

Al < —————— 45
1A Yo(y1 +1) (45)
because

1 —717 1 — 717 — 727% (46)
Yo +1) " yn+r+1)

Since

IM By B3’ (I-A) By —B2ABS || < | MB1 By || (1+|| Al B |
+Ba I A[1IB |

and in addition || Bz|| = 1 and 1B || < 7o (since | BS || <
Y0 = ||BS || < 7o), inequality (45) implies

|MB,BY (I-A)Bf ~BaABF || <yivo+ | Allyo (31 +1) <1(47)

Therefore Q! exists for all 0 < w; < 1. Furthermore,
using arguments similar to those in Proposition 2

(1 + 1A[D0
(1 =71+ [[Al)o = [[Allvo)

I = A)By Q7| < (48)

From Small Gain Theorem, since (42) is the closed-loop
system obtained from G(s) interconnected with (44) if

(1+ Al 1
=+ A0 — AT < 72 (49)

holds, then (42) is stable. By direct manipulation, (49)
holds if (43) holds, and the proof is complete. u

Asin §2.3, asliding mode controller will now be designed
based on the ‘virtual’ system in (39) with respect to 7,
as defined in (26) and (27).

Proposition 5 Suppose that the hyperplane matriz M
has been chosen so that A1 = A1 — A12M is stable and

1 =77
Al < Aoz < ————— 50
2 T+ ) o0
where yo, y1 and vy are defined in (12), (16) and (19),
and Apaz 18 a fized positive scalar. Then choosing
(71(1 —+ Amaz)’yo + Amaz’YO) ”f/l(t)” + n
1- 71(1 + Amaa:)ﬂyo - Amaa:'yo

p(t,z)=

ensures a sliding motion takes place on S in finite time.

Proof: The assumption on A in (50) implies yoy1 + (1 +
Y1) AmazYo < 1 and so the gain p(t,z) in (51) is well
defined. From (39),

S(t) = Agli’l(t) + 121228(0
+(I + MBBY(I — A)Bf — BQAB;)ﬁ(t)

- (1 + MBBY(I - A)Bf — BQAB;)an(t)
+(MBlB§V (I - A)Bf — BQAB;)al(t)

after substituting for v;(t) from (26). Consequently sub-
stituting v, (¢) from (27) into the above yield

sTs=—pllsl| + T (MBI BY (I = A)Bf — BABT ) on(1)
+sT (MBlBgv (I - A)Bf - BzAB;)f/l(t)
<|sll(o||[MB1BY (1 - ) BF — B2ABE ||
[ pmBY 1 - 8)Bf ~ BABElon(e)] - )
<Jsll (= p(1 =311+ Amar)10 = Amaso)

+ (10 Amaehro + Amacr) I2O1)  (52)

So choosing p(.) as described in (51) and substituting
into (52) implies

s(t)T5(t) < —nlls()] (53)

Again, as in §2.3, the differential inequality (53) implies
that the ‘reachability condition’ is achieved. Therefore
s(t) = 0 in finite time and a sliding motion is maintained
for all subsequent time. n

3 An Example

The ADMIRE model has been used by several re-
searchers (e.g. [13]) and within the Group for Aeronau-
tical Research and Technology in Europe (GARTEUR)
AG11 and AG12 [12]. The linear model used here has
been obtained at a low speed flight condition of Mach
0.22 at an altitude of 3000m and is similar to the one
in [13]. The states are x = [ S p ¢ r]T with controlled
outputs «, 0, p; where « is angle of attack (AoA) (rad),
03 is sideslip angle (rad), p is roll rate (rad/sec), ¢ is pitch
rate (rad/sec) and r is yaw rate (rad/sec). The control
surfaces are & = [0. Ore Ofc 5T]T, which represent the
deflections (rad) of the canard, right elevon, left elevon
and rudder respectively. A linearized model [13] is:



(205432 0.0137 0 09778 0
0 —0.1179 0.2215 0 —0.9661
A= 0 —10.5128 —0.9967 0 0.6176] (54)
2.6221 —0.0030 0 —0.5057 0
I 0 0.7075 —0.0939 0 —0.2127
[0.0069 —0.0866 —0.0866 0.0004] } 5
0 00119 —0.0119 0.0287
B= 0 —4.2423 4.2423 1.4871 (55)
1.6532 —1.2735 —1.2735  0.0024 }32
| 0 -0.2805 0.2805 —0.8823]

The partition of B in (55) shows the terms By and Bs
(although a further change of coordinate is necessary to
scale By to ensure BQBQT = I). It can be shown that in
the coordinates in which || Bz|| = 1, ||B1]] = 0.1227 and
so the dominant effect of the control signal is through the
By channels. To include a tracking facility, integral ac-
tion as described in [1,9] has been included. A quadratic
optimal design has been used to obtain the sliding sur-
face matrix S, (see for example [20,9]). The symmet-
ric positive definite weighting matrix has been chosen
as @ = diag(20,20,20,7,10,10,1, 1). In the simulations
the discontinuity in the nonlinear control term has been
smoothed by using a sigmoidal approximation where the
smoothing scalar has been chosen as 0.001 (see for ex-
ample §3.7 in [9]). This removes the discontinuity and
introduces a further degree of tuning to accommodate
the actuator limits, especially during actuator fault or
failure conditions.

In normal flight, either the canard or elevons (left &
right) are sufficient to provide the pitch moment and
therefore redundancy is available. In the event of faults
or failures, elevons can replace the canard to obtain a
pitch moment. However for roll, the elevons will become
the only active control surface (the rudder is used for
yaw). During the design stage, and based on analysis

from (28), it was found that, rank(B,W BY) < 3 when
the rudder completely fails or any two surfaces from the
set consisting of the canard and the left and right elevons
completely fail. This is an expected result since there is
no redundancy for the rudder to provide yaw; and when
two actuators fail from either the canard or elevons, it
means that there is no redundancy left in the system
and all possible actuators to provide pitch or roll have
failed. Based on this assumption, it can be verified from
a numerical search that v9 = 2.0913. Simple calculations
show that v; = 0.0980, therefore 19 = 0.2050 < 1 and
so, the requirement of Proposition 2 is satisfied. Also for
this particular choice of sliding surface |G(s)]|co < 72 =

0.0819. Therefore from Proposition 2,

Y270

=0.2154 <1
L=

which shows the closed—loop system is stable for all
0 < w; < 1. From Proposition 4, the limits of the toler-
able mismatch between the actual and estimated fault
signal (for guaranteed stability) is A4, = 0.3519. Here
it is assumed that direct measurements of the actuator
deflections are not available and a sliding mode recon-
struction approach as described in [1] has been used.

In the following simulations (which assume that there is
no saturation or rate limits on the actuators), the linear
aircraft model from [13] undertakes a manoeuvre called
‘a roll’ [13], where a step demand of magnitude 10 deg
is applied to « during 1-5 sec and a step of 150 deg for
p is applied during 3-7 sec. (There is no reference com-
mand for 8 — see Figure 2(a)). Figures 2(a), 2(b), 2(c)
and 2(d) show the responses of the closed—loop system
under 11 different canard fault conditions ranging from
0% — 100% (including total failure). It can be seen that
the control signal is systematically re-routed to the right
and left elevon (Figure 2(b)). The tracking responses
(Figure 2(a)) show no degradation in performance. Fig-
ure 2(a) shows that the observer designed for fault re-
construction, tracks the plant output ‘perfectly’. Figure
2(c) shows the evolution of the fault reconstruction sig-
nal from the observer. These signals are used for the on-
line control allocation through the term W as shown in
Figure 2(d).

4 Conclusions

This paper has presented an on-line sliding mode control
allocation scheme for fault tolerant control. The effec-
tiveness level of the actuators is used by the control allo-
cation scheme to redistribute the control signals to the
remaining actuators when a fault or failure occurs. This
paper has provided an analysis of the proposed sliding
mode control allocation scheme and has determined the
nonlinear gain required to maintain sliding. The on-line
sliding mode control allocation scheme implemented on
the ADMIRE model has shown that fault and total ac-
tuator failures can be handled directly without reconfig-
uring the controller.
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