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ABSTRACT 
We present a framework for gesture customization requiring mini-
mal examples from users, all without degrading the performance of 
existing gesture sets. To achieve this, we frst deployed a large-scale 
study (N=500+) to collect data and train an accelerometer-gyroscope 
recognition model with a cross-user accuracy of 95.7% and a false-
positive rate of 0.6 per hour when tested on everyday non-gesture 
data. Next, we design a few-shot learning framework which derives 
a lightweight model from our pre-trained model, enabling knowl-
edge transfer without performance degradation. We validate our 
approach through a user study (N=20) examining on-device cus-
tomization from 12 new gestures, resulting in an average accuracy 
of 55.3%, 83.1%, and 87.2% on using one, three, or fve shots when 
adding a new gesture, while maintaining the same recognition ac-
curacy and false-positive rate from the pre-existing gesture set. We 
further evaluate the usability of our real-time implementation with 
a user experience study (N=20). Our results highlight the efective-
ness, learnability, and usability of our customization framework. 

Our approach paves the way for a future where users are no longer 
bound to pre-existing gestures, freeing them to creatively introduce 
new gestures tailored to their preferences and abilities. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Interaction techniques; Ubiquitous and mobile computing 
systems and tools. 
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1 INTRODUCTION 
Recent advances in worn sensing technologies have led to the emer-
gence of promising hand gesture recognition systems [27, 29, 39, 
42, 46, 50, 81, 87]. Regardless of the sensing modality, typical sys-
tems are designed with pre-defned gestures, using data collected 
from multiple users [47, 83, 91, 93, 96]. To truly leverage gestural 
input, devices should allow users to add their own gestures beyond 
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Figure 1: Overview of Our Gesture Customization Framework & Real-Time System. A model can recognize a pre-existing ges-
ture set and is robust to noise, but it cannot recognize out-of-dictionary gestures (A). A custom gesture can be added merely 
with three samples (B), without afecting the recognition on pre-existing gestures (C). The system can provide real-time feed-
back when the new gesture is close to existing gestures (D), similar to common daily activities (E), and inconsistent (F). When 
the model performance is sub-optimal, users can decide whether to provide additional samples (G). 

a pre-existing gesture vocabulary [52, 62, 84]. This unlocks several 
advantages, including better gesture memorability [59], higher in-
teraction efciency [63], and enhanced accessibility for people with 
special needs [2]. 

However, there are two notable requirements for systems aiming 
to support gesture customization, especially if the bar is to prevent 
performance degradation of the original gesture set. First, such a 
system should support a rapid and minimal data collection process 
(e.g., around fve samples) to limit user burden. Second, such a sys-
tem should go beyond model fne-tuning, as this often causes two 
problems [80]: one is forgetting old, where the model’s performance 
deteriorates drastically on old (i.e., pre-defned) classes [21]; the 
other is overftting new, where the fne-tuned model is prone to 
overftting towards newer classes, therefore degrading its general-
izability [26]. 

Although several early systems have explored few-shot gesture 
recognition (frst requirement) [7, 51], they mainly work for simple, 
salient gestures and rely on highly distinguishable signals [3, 4, 51]. 
This often leads to poor performance for gestures that are more 
fne-grained and natural. Moreover, these systems collapse all ges-
tures (old and new) into a single global gesture set. They did not 
distinguish the pre-existing and customized gestures. But to make 
such a system robust in the wild, it is essential to track performance 
benchmarks between pre-existing v.s. customized gesture sets, and 
doing equally well on both are of paramount importance. To the 

best of our knowledge, no prior work has investigated the chal-
lenges of extending an existing model for new gestures with few 
shots (second requirement). 

In this paper, we propose a robust gesture customization frame-
work that supports a small number of user examples (three to 
fve [68, 82]), and ofers in-situ feedback while maintaining recog-
nition performance on the original gesture set. Our framework 
integrates transfer learning, incremental learning, and few-shot 
learning techniques. To do this, we frst conduct a user study on over 
500 users across diverse contexts, using accelerometer-gyroscope 
data to train a convolution neural network (CNN) to recognize 
a pre-defned gesture set (four gestures plus a null class, which 
includes 60 hours of of daily activities such as walking, typing, 
driving, cooking). Next, we train a lightweight model for custom 
gestures, without adjusting the parameters of the original model. 
We employ the frst half of our pre-trained model as a feature em-
bedding extractor, and create a parallel output after the embedding 
layer to enable the training of a new model without afecting the 
pre-trained model. We then utilize a series of data augmentation, 
data synthesis, and adversarial training techniques to extract the 
most utility from few user samples and boost model performance. 

To further ensure that a new gesture is reliable [62], we designed 
our learning and training process around an interactive customiza-
tion experience. Instead of simply accepting any gesture, our system 
provides interactive feedback when a new gesture is either 1) too 
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close to the existing gesture set, 2) too inconsistent relative to pro-
vided examples, 3) too confusing against unintended interactions 
such as frequent daily activities, and 4) has sub-optimal recognition 
performance, during which users can decide whether they want to 
provide additional samples. Our study results show that this feed-
back mechanism empowers users to understand and make better 
use of the recognition system to suit their accuracy and reliability 
preferences. Figure 1 illustrates the overview of our framework. 

To summarize, our paper makes the following core contributions: 

• We propose a few-shot gesture customization framework that can 
support gesture customization with a small number of samples, 
without degrading the performance of pre-defned gestures. 

• We conducted a large-scale user study (500+ participants) and 
built a wrist-worn accelerometer-gyroscope gesture recognition 
model. This model can recognize four gestures with an accuracy 
of 95.7% and an F1 score of 95.8% in a cross-user setup, and a false 
positive rate of 0.6 times per hour when tested on daily behavior 
non-gesture data. 

• We extend the pre-trained model by designing architectural, data 
augmentation, data synthesis, adversarial regularization tech-
niques, and interactive feedback mechanisms to extract the most 
utility from few user samples. We evaluated our framework on 
12 new gestures in addition to the four existing gestures. The 
fnal model achieves an average accuracy of 55.3%, 83.1%, and 
87.2%, and an F1 score of 66.0%, 89.2%, and 92.1% on one, three, 
and fve gesture examples. 

• We evaluate the usability of our real-time three-shot gesture 
customization system through a user study. Our results indicate 
that our gesture customization system achieves highly favorable 
usability and learnability efects. We believe our framework en-
ables end-users to easily and creatively introduce new gestures 
tailored to their preferences and abilities. 

2 RELATED WORK 
In this section, we frst provide a general overview of wearable hand 
gesture recognition techniques across sensing modalities. Next, we 
review prior work in the gesture customization. Finally, we review 
ML-based methods that are relevant to our work. 

2.1 Wearable Hand Gesture Recognition 
Researchers and practitioners have extensively explored hand ges-
ture recognition. These technologies leverage diverse modalities, 
including cameras [37, 45, 87, 90, 95], infrared (IR) ranging [22, 25, 
29, 44, 56], acoustics [33, 39, 40, 47, 61], electromyography (EMG) [9, 
72, 73], electrical impedance tomography [96], pressure [16, 42], 
radar [50], stretch sensors [78], magnetic sensors [12, 13, 65, 94], 
and bio-capacitive efects [69, 74, 81]. Among these techniques, 
the intertial measurement unit (IMU) is arguably one of the most 
low-cost and widely available sensors embedded in commodity 
wearable devices. As a result, the IMU is frequently relied upon 
for capturing dynamic hand gestures that involve arm or hand mo-
tion [1, 10, 27, 46, 48, 83, 89]. In this work, we focused on the IMU, 
specifcally the accelerometer and gyroscope, for its ubiquity and 
potential for generalizability. 

Early trajectory-based gesture recognition methods, such as 
dynamic time warping (DTW) [51] and hidden Markov models 
(HMM) [57], can recognize gesture trajectories (e.g., line, square, 
circle, star [57]) using few samples while achieving high accura-
cies. However, these methods do not work well for gestures that 
are more complex and fne-grained. More sophisticated techniques 
have emerged, relying heavily on data-driven approaches. These are 
typically designed by collecting data from a known set of gestures. 
Depending on the volume of collected data, modeling approaches 
range from support vector machines (SVM), trees, e.g., [25, 39], to 
deep learning models, e.g., [37, 95]. 

Our approach trains a high-performance model from large vol-
umes of data (collected from our user study). Moreover, we take 
this process one step further by extending that model’s ability to 
recognize novel gestures (e.g., customized by a new user) with a 
few samples. We discuss the details of our approach in Sections 3 
and 4. 

2.2 Gesture Customization 
The advantages of supporting customized, user-defned gestures 
include but are not limited to greater memorability [59], higher 
interaction efciency [63], and better accessibility for people with 
physical disabilities [2]. Prior work has explored and summarized 
customized gesture sets through user elicitation studies (e.g., [66, 
70, 84]), and others built tools that facilitate the creation of new 
customized gestures (e.g., [6, 62, 94]). 

To enable a favorable experience for end-users, gesture cus-
tomization systems need to support a nimble yet efective data 
collection process. The HCI feld has examined several approaches 
for supporting gesture customization by demonstration [17, 53], 
including rule-based approaches [4, 18], and tiered computational 
methods [3, 52, 57, 63]. Related to our work, uWave [51] stored tem-
plates of accelerometer signals for new gestures, and used DTW to 
compare against incoming data streams. Bigdelou et al. [7] applied 
Laplacian Eigenmaps and kernel regression on arm-worn IMU sig-
nals, while Mezari et al. [58] leveraged fast Fourier transforms (FFT), 
symbolic aggregate approximation, and simple distance metrics to 
recognize new gestures. 

Although these systems require minimal training data, they often 
only work with hand gestures that involve signifcant hand motion, 
where the IMU signals have high variance. As we will show in 
Section 5, traditional methods perform poorly when applied to 
complex, fne-grained gestures. 

2.3 Related Machine Learning Techniques 
Our work intersects with several ML-based approaches. These in-
clude transfer learning [24, 64], a method that focuses on applying 
knowledge gained from solving one task to another related task, and 
incremental learning [55, 67, 88], an approach that accommodates 
new data to continuously extend a model’s knowledge without full 
retraining. Specifcally, our method belongs to a subcategory of 
transfer learning: solving new tasks (i.e., new gestures) in the same 
domain (i.e., hand gesture recognition) [64]. Likewise, the goal of 
learning to recognize new gestures with few samples fts within 
the few-shot learning problem [82]. A number of techniques have 
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been proposed to address few-shot learning, including metric learn-
ing [43], meta-learning [20, 30], and multi-task learning [11, 97]. 
Within the gesture recognition domain, few-shot learning is per-
formed on camera data [77, 86] or EMG signals [68]. However, 
previous research neglected the problem of extending an existing 
model (for pre-existing classes) to include new classes. 

Our framework is a variant of dynamic few-shot learning [26, 80], 
where the goal is to train a model that can learn base categories, 
while dynamically recognizing novel categories from only a few 
training examples. Our approach is a combination of transfer learn-
ing, incremental learning and few-shot learning methods, which 
we describe in the next two sections. 

3 PRE-TRAINED GESTURE MODEL 
We designed a system that integrates transfer learning, class incre-
mental learning, and few-shot learning for gesture customization. 
Figure 2 visualizes the structure of the framework. In this section, 
we describe our pre-trained model in detail, and we present our 
gesture customization model in Section 4. 

3.1 Data Collection 
We sought to build a fve-class classifer that can recognize four 
dynamic hand gestures (Clench, Double Clench, Pinch, and Dou-
ble Pinch, see Figure 7) and one non-gesture case (i.e., negative 
gesture). To ensure robustness, we made signifcant efort to build 
a large-scale and diverse hand gesture dataset. Table 1 ofers a 
comprehensive summary. 

3.1.1 Participants and Apparatus. Leveraging a user-experiment-
platform with a large user repository, we recruited 512 participants 
(133 self-identifed female, 378 male, 1 non-binary) with a wide 
coverage of age range (min=21, max=63, mean=33.1±10.5). Majority 
of users were right-handed (N=442, left-handed=70). We used Apple 
Watch Series 5 and 6 for data collection, with IMU sensors sampled 
at 800 Hz max, ultimately downsampled to 100 Hz during training 
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1. Participants wore the watch on their non-dominant hand during 
the data collection. Data was frst stored on the watch and then 
uploaded to a server for processing and model training. The user 
study received institutional IRB approval. 

3.1.2 Gesture Data. We asked participants to follow instructions 
on the watch throughout a session. In each round, a gesture would 
appear on the screen, and we asked participants to perform that 
gesture 10 times, each time following a three-second countdown. 
Gesture order was randomized and each participant performed at 
least three rounds of data for each gesture. Throughout this process, 
a phone was placed directly above the user’s hand, and we recorded 
video to serve as additional ground truth for annotation purposes. 

We also considered other relevant factors: body posture, hand-
eye angle, motion, gesture variation, and activity. We randomly 
picked a subset of participants to perform gestures in diferent body 
postures, such as sitting upright (N=224), sitting and leaning back 
(N=149), standing (N=58), and lying down (N=21). For diferent 
hand-eye angles, participants were either asked to put down their 
hand to abdomen-level (N=193), chest level (N=38), or head-level 
(N=203). We also asked a few participants (N=40) to walk while 
performing gestures. Lastly, we asked a small fraction of partici-
pants (N=13) to perform gestures at diferent speed and intensities 
(i.e., slower-faster, weaker-stronger). Some participants (N=12) per-
formed light everyday tasks (e.g., typing or wrist twisting) while 
occasionally performing a gesture. 

3.1.3 Negative Data. In addition to positive examples, we also 
asked participants to perform negative (i.e., non-gesture) examples. 
In this round, we asked participants to perform normal indoor daily 
activities, such as walking, phone browsing, and typing (among 
others). Moreover, we asked a small group of participants (N=12) to 
perform a wide range of behaviors that involved fne-grained hand 
1We collected raw data with an overly high sampling rate, 800 Hz, to maximize our 
dataset ability. However, during the model training, we found that 100 Hz already 
sufces. Thus, in the rest of the paper, our framework only uses 100 Hz data. 

Factor Information 

Demographics 
Total Number 

Self-identifed Gender 
512 Participants 
Female 133, Male 378, Non-binary 1 

Age Min 21, Max 63, Mean 33.1±10.5 

Hand Habits Right handed (442), left-handed (70) 

Gesture Data 

Body Posture 

Eye-hand Angles 

Sitting upright (N=224), Sitting and leaning back (N=149), 
Standing (N=58), Lying down (N=21), and others (N=60) 
Abdomen-level (N=193), Chest level (N=38), 
Head-level (N=203), and others (N=78) 

Motion Static (472), Walking (40) 
Gesture Variation Regular (499), Intentionally slower/faster/weaker/stronger (13) 

Contexts Gesures only (500), Gestures inserted with regular chores (12) 

Negative Data 
In-lab Daily Activities 
Targeted Negative Data 

Walking, using mobile phones, typing (500) 
A wide range of behaviors that involve fne-grained hand movement (12) 

Table 1: Data Collection Information to Build The Pre-trained Model 



Gesture Customization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

Figure 2: Hand Gesture Customization Framework. The upper region shows the two parts of a pre-trained gesture recognition 
model: feature embedding extraction (A) and inference (B). The lower region shows the additional prediction head (C) that 
trained on new inputs of the new gestures. Both the pre-trained model and the new model shared the same embedding layers. 

movement, including tapping on the watch/other surfaces, scratch-
ing head/hands, using mouse/keyboard, playing pens, brushing 
teeth, shaving, washing hands/utensil, showering, driving, using 
juicer/vacuum cleaners, playing video games, opening bottles, and 
biking. These negative sessions were not video-recorded. 

3.1.4 Annotation. Each data collection study lasted 30 to 60 min-
utes. We synchronized videos with our IMU signals and annotated 
the start and end times of each gesture performance. After annota-
tion, we collected approximately 110,000 gesture samples (30 hours), 
and 60 hours of negative samples. The average duration of single 
gestures (i.e., Clench and Pinch) is around 550ms, while the average 
duration of double gestures (i.e., Double Clench/Pinch) is around 
800ms. 

3.2 Model Architecture 
The raw input of the model is a one-second, six degree-of-freedom 
accel-gyro signal (three axes for accelerometer, and three axes for 
gyroscope) sampled at 100 Hz. Each channel is preprocessed using 
three Butterworth bandpass flters (0.22-8 Hz, 8-32 Hz, 32 Hz) using 
cascaded second-order sections, leading to a 100 × 4 input size for 
every channel. 

We adopt the concept of EfcientNet [79] to balance the number 
of trainable parameters and model performance. Specifcally, for 
each input channel, we employed two inverted residual blocks [71] 
(i.e., MBConv in Figure 2) to process the signals. We then concate-
nate the output of the six channels, and add one more separable 
convolution layer [15] to capture concatenated information with 

low computational cost, followed by a max-pooling layer and a 
fatten layer. We mark these layers as the feature embedding ex-
traction part of the pre-trained model (Figure 2a), whose output is 
a one-dimension vector with a vector length of 120. 

The latter half of the pre-trained model consists of a stack of 
fve fully connected layers with sizes 80, 40, 20, 10, and 5. We 
insert a batch normalization layer [38] and a dropout layer (p = 
0.5) [23] between every two fully connected layers to improve 
model generalizability. The output of the fnal layers correspond to 
the confdence of the fve classes. We use cross-entropy as the loss 
function, and Adam optimizer during the training. The entire model 
has 106k total parameters, a suitable size for on-device inference. 

3.3 Model Training and Performance 
After data collection, we processed each data sequence with a slid-
ing window mechanism, with the window size as 1 second (same as 
the input of the model), and a step size of 0.125 sec (simulating an 
8Hz prediction frequency). We then randomly split 50%, 10%, 40% 
of the dataset into training, validation, and testing sets. It is worth 
noting that data splitting was conducted based on participants so 
that the evaluation outcomes are cross-user results. We trained our 
model for 200 epochs, with a 0.1 exponential learning rate decay 
every 50 epochs. The epoch with the best results on the validation 
set is saved and evaluated on the testing set. 

3.3.1 Window-level Prediction Performance. We frst investigate 
the direct outcome of the prediction, which is at the window level. 
The results show an average accuracy of 74.8%, a precision of 93.6%, 
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(a) Window-level Matrix (b) Gesture-level Matrix 

Figure 3: Prediction Results as Confusion Matrices of The 
Pre-trained Model. The window-level prediction (a) has an 
average accuracy of 74.8% and an F1 score of 82.7%. The 
gesture-level aggregation (b) signifcantly improves the re-
sults, with an accuracy of 95.7% and an F1 score of 95.8%. 

a recall of 74.8%, and an F1 score of 82.7%. Figure 3a visualizes the 
confusion matrix of the window-level prediction on the testing set. 

The confusion matrix shows that there is little confusion among 
the four gestures, and that the majority of the misclassifcation 
comes from the model not recognizing some windows where a ges-
ture actually happens, leading to false negatives. The window-level 
prediction only focused on every single 1-sec window. However, 
in real-time scenarios, a gesture is comprised of multiple windows. 
Therefore, we need to aggregate our window-level predictions to 
obtain our gesture-level predictions. 

3.3.2 Gesture-level Prediction Performance. The aggregation in-
volves a few hyper-parameters. For the four gestures, we need to 
decide how many consecutive prediction windows are required 
before the model predicts a gesture. For negative data, we also need 
to decide how many consecutive windows with non-negative pre-
dictions are required before the model triggers a “false positive”. We 
performed grid search on these hyper-parameters using our valida-
tion set. Our fnal consecutive window length thresholds are 3, 4, 3, 
4 for Clench, Double Clench, Pinch, and Double Pinch, respectively. 

Aggregation signifcantly improves our recognition performance, 
with an average accuracy of 95.7%, a precision of 95.8%, a recall of 
95.7%, and an F1 score of 95.8%. Moreover, the gesture-level false 
positive rate is 0.6 times per hour. Figure 3b presents the confusion 
matrix of the gesture-level results. These results indicate that our 
model can accurately recognize gestures on new users’ data and is 
highly robust to negative data. 

4 GESTURE CUSTOMIZATION 
Having a model that can recognize four gestures and works across 
users with robust performance, we now describe our gesture cus-
tomization framework. 

4.1 Customization Architecture 
Our framework integrates transfer learning, class incremental learn-
ing, and few-shot learning. After building the pre-trained model 
with good performance, we create a new branch after the feature 
embedding extraction layers as the additional prediction head (Fig-
ure 2a and Figure 2c). Note that each user will have their own 

Figure 4: 2-D t-SNE Visualization of The Feature Embedding 
Vectors of Diferent Gestures. The same color indicates the 
same gesture. Data collected for building the pre-trained 
model is plotted in circle, while new users’ customized ges-
ture data are plotted in cross and diamond. The zoom-in area 
suggests that even for the same customized gesture, difer-
ent users’ data may have distinct clusters. 

particular branch, even when two users want to add the same cus-
tomized gesture. To better understand this, Figure 4 visualizes the 
2-dimensional t-distributed stochastic neighbor embedding (t-SNE) 
plot with a subset of the four gestures’ data collected in Section 3.1, 
as well as two new users’ data with both of them performing two 
customized gestures (Peace and PinkyPinch, see Figure 7) and two 
old gestures (Clench and Pinch). 

There are a few observations. First, most of the four pre-existing 
gestures form clear clusters, which refects the high accuracy of 
the pre-trained model. More importantly, the two users’ data has 
some interesting patterns: while both users did the same gestures, 
each user’s own data form a cluster and the two users’ clusters 
are not close to each other, especially for the gesture Peace. This 
indicates high between-user variance and low within-user variance, 
i.e., a user can do a gesture in a relatively consistent way, while two 
users may do it quite diferently. Besides, the decision boundaries 
to distinguish the two new gestures (Peace v.s. PinkyPinch) are also 
diferent between the two users. These observations further support 
building a customized prediction head for each user’s customization 
gestures. 

We employ a simple, light-weighted two-layer fully connected 
network, the frst as a feature processing layer and the second as the 
output layer. The frst layer uses Leaky ReLU (α = 0.3) [60] as the 
activation function and has a L2 kernel regularizer (λ = 5e−5) [35] 
and a dropout layer (p = 0.5) [23] to reduce overftting. The last 
layer uses Softmax activation that corresponds to the prediction 
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confdence of the fnal classes. The number of the classes is equal to 
the number of customized gestures plus one more for the negative 
case. Therefore, when users create their frst customized gesture, the 
additional prediction head is trained as a binary classifer. When a 
second gesture is added, a new three-class prediction head is trained 
from scratch, etc. Since the prediction head is light-weighted, the 
training process is fast. 

In real-time, the new prediction head works together with the 
pre-trained model to recognize gestures. The two models recognize 
distinctive gestures and are both robust to negative data. If both 
models predict a gesture, the one with the highest confdence would 
be the fnal prediction. 

Our framework leverages the frst half of the pre-trained model 
as the feature extractor and transfers it to new gesture recognition 
tasks. By training the new prediction head for incremental classes, 
the performance of the existing gestures is not impacted, addressing 
the forgetting old problem. Then, we tackle the few-shot challenge 
with a series of data processing techniques. 

4.2 Maximizing Few Shots 
No matter how much we simplify the model, training a model 
with less than 10 samples is challenging. It can easily fall into the 
overftting problem. It is also hard to prevent false-positives as 
the model does not have enough “positive” samples (i.e., gesture 
samples) to learn from. We use a series of techniques to make 
the most out of the small amount of data provided by users (see 
Figure 5). 

4.2.1 Data Segmentation. Before actual data processing, it is worth 
noting that there is no readily available training sample. When end-
users record data of their new customized gestures, they can either 
do gestures consecutively in a row (similar to the data collection 
process in Section 3.1), or follow some instructions to do one gesture 
at a time and repeat several times, depending on the interaction 
design. In either way, it is unrealistic to ask users to provide the 
exact start and end timestamp of the gesture. Therefore, we need 
to segment the signal sequence to obtain data samples. 

We take the output signals of the middle bandpass flters (8-
32 Hz) as this is robust to noisy arm movement, and use a peak 
detection algorithm to identify potential moments of performing 
hand gestures. Specifcally, we calculate the sum of the magnitude 
of both fltered accelerometer and gyroscope signals, and apply a 
1-sec absolute moving average to smooth the data. We then use a 
simple peak detection method that fnds local maxima by comparing 
neighboring values (with distance threshold as 1 sec). A peak is 
ignored if it is lower than the overall average of signal magnitude. If 
any time reference is available (e.g., a countdown mechanism), we 
can further flter peaks according to the reference. We take a 1-sec 
window centered at these potential peaks, and feed them into the 
feature extraction part of the pre-trained model. We then compute 
a Euclidean distance matrix of the normalized embedding vectors 
and remove outliers (threshold empirically set as 0.8). In such a 
way, we can segment out pronounced, repetitive hand movement 
periods that correspond to the target gestures. 

Once the peaks are determined, we take a 1.5-sec window cen-
tered at each fnal peak to ensure that a gesture is fully covered 

by the window. Our data augmentation techniques are applied to 
these windows. 

4.2.2 Data Augmentation. After data segmentation, we use sev-
eral data augmentation techniques to generate a larger number 
of samples. Three time series data augmentation techniques [41], 
with all seven combinations (23 − 1), are used to generate positive 
samples, enlarging the data size by eight times: 1) zooming, to sim-
ulate diferent gesture speed, randomly chosen from ×0.9 to ×1; 
2) scaling, to simulate diferent gesture strength, with the scaling 
factor s ∼ N(1, 0.22), s ∈ [0, 2], and 3) time-warping, to simulate 
gesture temporal variance, with 2 interpolation knots and warping 
randomness w ∼ N(1, 0.052), w ∈ [0, 2]. 

Moreover, we also employ three augmentation techniques to 
generate gesture data that is marked as negative [92]: 1) cutting out 
by masking a random 0.5 sec of signals by zero; 2) reversing signals, 
and 3) shufing by slicing signals into 0.1-sec pieces and generating 
a random permutation. These augmentations are often used in 
other ML tasks to augment positive data, but we mark the data 
augmented by these techniques as negative to ensure our model 
only recognizes valid gestures. We also applied the seven positive 
augmentation techniques on these negative data to generate more 
negative samples. 

After data augmentation, we take a 1-sec sliding window on 
these 1.5-sec windows to generate samples to be fed into the pre-
trained model. The step size is set as 0.1 sec, leading to fve input 
samples from each 1.5-sec window. In addition, the data collected in 
Section 3.1 are all added as negative data to improve the robustness 
of the model against noisy movement. 

4.2.3 Data Synthesis. Although the data augmentation can gener-
ate signals with larger variance from the data recorded by end-users, 
these augmented data may not be close to the actual gesture vari-
ance introduced by natural human behavior. Therefore, we further 
synthesize more data from both the raw signals and the augmented 
signals that simulate the natural motion variance. Specifcally, we 
train a ∆-encoder [75], a self-supervised encoder-decoder model 
that can capture the diference between two samples (i.e., ∆) belong-
ing to the same gesture, and use it to synthesize more new gesture 
samples. 

A ∆-encoder is trained as follows: it takes two samples (sam-
pleInput and sampleRef) from the same class as the input, feeds 
sampleInput through a few neural network layers to be a very small 
embedding called ∆-vector (similar to a typical Autoencoder [31]), 
and then use the ∆-vector and the sampleRef to reconstruct sam-
pleInput. The intuition comes from the fact that the size of ∆-vector 
is so small that it focuses on capturing the diference between sam-
pleInput and sampleRef, which is then used to rebuild sampleInput 
with sampleRef as the reference [75]. After the ∆-encoder is trained, 
it can take another sample from the new class as a new sampleRef, 
and generate a new sample of the same class with a ∆-vector. This 
∆-vector can either be obtained via feeding any existing sample 
from other classes through the encoder, or randomly generated. 

In our case, we use the data of the four pre-existing gestures 
to train a ∆-encoder. During the training, we randomly draw two 
samples from the same gesture and the same user to ensure that the 
model captures the within-user variance instead of the between-
user variance. We use the feature embeddings of length 120 as the 
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Figure 5: The Data Processing Pipeline of Training a Gesture Customization Prediction Head. It starts with a short data se-
quence (3 shots in this example) recorded by an end-user and goes through data segmentation, augmentation, and synthesis 
before the training. The training process is enhanced by adversarial regularization. 

input and the output of the ∆-encoder to save computation cost. Our 
structure of our ∆-encoder is fairly simple. Both the encoder and 
decoder have one hidden layer with a size of 4096 and uses Leaky 
ReLU (α = 0.3) as the activation function. The size of ∆-vector is 
set as 5. Using the training set from the four gestures, the model 
is trained with 200 epochs and has a 0.5 exponential decay on the 
learning rate every 30 epochs. The epoch with the best results on 
the validation set is saved. We also calculate and save the ∆-vectors 
from the four gestures’ testing set, which will be used to generate 
new samples. 

In real-time, when the customized gestures’ data come in and go 
through the augmentation stage, we use the ∆-encoder to generate 
extra samples of the customized gestures that contain more natural 
gesture variance, enlarging both augmented positive and negative 
data by 10 times. 

4.2.4 Adversarial Training Regularization. After the data augmen-
tation and data synthesis, we obtain a large amount of data with ap-
propriate variance to train the prediction head. To further improve 
the robustness of the model, we adopt the practice of adversarial 
training regularization [32, 54] when learning the model. 

The main idea of adversarial regularization is to train a model 
with adversarially-perturbed data (perturbed towards the decision 
boundary or inverse gradient decent so that the training process 
becomes harder) in addition to the original training data. It can 
prevent the model from overftting and classify the data points close 
to the boundary more robustly. In Figure 4, the two customized 
gestures’ data from the same user tend to be blended with the exist-
ing four gestures near the boundary. The adversarial regularization 
can help to enhance classifcation performance, especially for the 
purpose of reducing false-positive. We set both the adversarial 
regularization loss weight and the reverse gradient step size as 0.2. 

Through a series of data segmentation, data augmentation, data 
synthesis, and adversarial training, we can learn a robust prediction 
head for each new user that can accurately recognize their cus-
tomized gestures with a low false-positive rate. Figure 5 visualizes 
the whole training procedure of the prediction head. 

4.3 Interactive Feedback 
We take a few prerequisites into account to design the user ex-
perience. When building the prediction head, we have two im-
plicit assumptions: 1) Each customized gesture is unique and dis-
tinguishes from existing gestures; 2) The sequence provided by an 
end-user does contain valid, consistent gesture repetitions. More-
over, to avoid frequent false-positive triggers, a gesture should not 
be close to ordinary daily actions, such as shaking (common in 
teeth-brushing, washing, and scratching) and slow waving (easily 
involved in driving or greeting). 

Therefore, our framework should not simply accept any in-
coming data provided by end-users. Instead, it needs to be sanity 
checked to ensure the gesture are reliable [62]. We design the over-
all gesture customization user experience for our framework, as 
shown in Figure 6. 

When the data is recorded and segmented, we examine whether 
it belongs to any of the following three situations and provide real-
time feedback to users to help users better understand the process 
and design gestures [62]: 

• Similar to existing gestures. We feed the segmented data into the 
pre-trained model and the additional prediction head (if it exists). 
If either model predicts the majority of the segments to be one 
of the existing gestures, it indicates that the new gesture is close 
to previous gestures. 

• Inconsistent. During the segmentation, we check the euclidean 
distance matrix of potential gesture repetitions and flter out 
those that are far from the rest of the repetitions (see Section 4.2). 
After the fltering, if the number of repetitions left is less than the 
expected number (e.g., 3 when the framework requires a three-
shot recording), it means that users did not do the gesture in a 
consistent way. 

• Easily confused with daily activities. To fnd whether the new 
gesture is close to common daily behaviors, we leverage the neg-
ative data collected in Section 3.1. We use the pre-trained model 
to extract the embeddings of the negative data in the testing set 
(sliced in 1-sec pieces), and apply Hierarchical Density-Based 



Gesture Customization CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

Figure 6: Gesture Customization User Experience Design. If a new gesture is similar to existing gestures, or performed in-
consistently, or close to daily activities, the framework will provide corresponding feedback to users and ask them to defne 
another gesture. Moreover, if a new gesture is novel and performed consistently, but the model is trained with fair perfor-
mance, the framework will ofer users to choose fnishing or collecting a few more samples. Such a feedback can help users 
to better understand the process and design gestures. 

Spatial Clustering of Applications with Noise (HDBSCAN) [8] 
to automatically cluster the data. HDBSCAN is a variant of DB-
SCAN [19] that can adapt diferent distance thresholds based 
on the cluster density, obviating the necessity of setting this 
hyperparameter. We use the euclidean distance as the metric, 
and set the minimal cluster size as 3. HDBSCAN identifes 2,500 
clusters. We calculate and save the center of these clusters and 
use them as the representation of common daily activities. After 
the new gesture data is segmented, we compute a distance matrix 
between the gesture data and these cluster centers, and fnd each 
gesture sample’s closest center. If the majority of the gesture data 
are close to at least one of these centers (threshold empirically 
set as 0.4), it means that the new gesture is close to common daily 
activities. 

When a customized gesture is novel and performed consistently, 
the framework will proceed and go through a series of data augmen-
tation, data synthesis, and adversarial training. After the training, 
we synthesize extra gesture data and use them as a testing set. If 
the testing accuracy is good enough (set as 80.0%), the process is 
completed and the model can recognize the new gesture. When 
the accuracy is below the threshold, the framework will inform 
users of the accuracy value and let them decide either to whether 
to continue data recording and re-train the model with more data. 
If the model still does not perform well on the testing set after the 
second data collection, it will ask users to defne a new gesture. 

5 EVALUATION 
We evaluate our framework from two aspects. In this section, we 
focus on the algorithmic perspective and measure the model per-
formance on various new gestures. In the next section, we assess it 
from the usability perspective and test the real-time system via a 
user study. 

5.1 Data Collection 
We conducted a user study to collect data from 16 gestures (four ex-
isting gestures in Section 3 and 12 new gestures) to train customized 
gesture recognition for each individual. 

5.1.1 Gesture Design. To evaluate the performance of our frame-
work, we refer to the taxonomy of dynamic hand gestures [14] and 
choose a set of new gestures (in addition to the four supported by 
the pre-trained model) that covers a wide range of movement. Other 
than the existing four gestures (Clench, Double Clench, Pinch, Dou-
ble Pinch), we pick a set of 12 new gestures that are representative 
of diferent wrist/hand/fnger movement patterns [14]: Spread and 
Double Spread have opposite fnger movement (opened v.s. closed) 
against Clench and Double Clench, PinkyPinch and Double PinkyP-
inch use a diferent fnger than Pinch, and Peace has two fngers 
opened and three fngers closed; Slide has opposite motion between 
the thumb and the index fnger; TwistOut/In, RotateOut/In and 
Extend/Flex involve wrist movement in diferent ways. Figure 7 
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Figure 7: Dynamic Hand Gesture Set Involved in the Study: (A) Clench and DoubleClench, (B) Pinch and DoublePinch, (C) 
Spread and DoubleSpread, (D) PinkyPinch and DoublePinkyPinch, (E) Peace, (F) Slide, (G) RotateOut, (H) RotateIn, (I) Deviate-
Out, (J) DeviateIn, (K) Extend, (L) Flex. All gestures start from a neutral, relax hand pose, and return back to the neutral pose 
at the end. The four gestures of (A) (B) are supported by the pre-trained model. It is worth noting that this gesture set is only 
for the purpose of evaluation. Our framework can work with a much more wide range of gestures as long as they are not close 
to existing gestures or common daily activities. 

visualizes the 16 gestures (12 new + 4 existing). All gestures start 
from the neutral pose and return back to the neutral pose. 

It is worth noting that the main purpose of this gesture set is to 
evaluate the framework’s performance. The actual gesture set that 
can be supported by our framework goes beyond these 12 gestures. 

5.1.2 Participants and Apparatus. 20 participants (4 self-identifed 
female, 16 male, Age = 29.8±4.9) volunteered to participate in the 
data collection study. 3 participants are left-handed. We employed 
the Apple Watch Series 6 for data collection, with IMU sensors 
sampled at 100 Hz. All participants wore the smartwatch on their 
non-dominant hands. 

5.1.3 Design and Procedure. Participants went through multiple 
sessions for data collection. Each session is similar to the study in 
Section 3.1, where participants saw the gesture name on the watch 
screen, followed a 3-sec countdown to perform the gesture, and 
repeated fve times. 

Every participant started with one session for each of the ex-
isting four gestures as a warm-up stage. Then, they had fve data 
collection sessions. In each session, they performed each of the 12 
new gestures 5 times. A Latin-square design was used to counter-
balance the order efect. Participants took a 30-sec break between 
gestures and a 2-min break between each session to reduce fatigue. 
Moreover, to simulate the actual use case of taking the watch on 
and of over time, participants were asked to take of and put on 
the watch during the break to vary the watch position on the wrist, 
with a variation within 5 cm. The study was around 30 to 40 min-
utes. Overall, for each participant, we collected 5 repetitions per 
existing gesture, 25 repetitions (5 sessions × 5 repetitions) per new 
gesture. 

5.2 Model Performance 
We followed the procedure depicted in Figure 5 to process the 
data. For each user, we randomly picked two sessions (i.e., 10-shot 
maximum) as the training set, one session as the validation set, 
and the remaining two as the testing set. We repeated three times 
and computed the average performance. We also evaluated the 
robustness of the model against noise by applying it to the negative 
testing set and measuring the false-positive rate. 

Note that during the testing, we use a sliding window mechanism 
on the whole sequence to simulate a real-time use case. Thus, similar 
to Section 3.3, the results can be evaluated at both window-level 
and gesture-level. For the gesture-level prediction, we set a uniform 
consecutive window length threshold as 5. 

In the rest of the section, we frst evaluated the recognition 
performance on the new gestures (Section 5.2.1). We then evaluated 
whether the recognition on the existing gestures were impacted 
after introducing new prediction heads (Section 5.2.2). We further 
combined existing and new gestures, and evaluated their overall 
performance (Section 5.2.3). Finally, we compared our framework 
with a range of baseline techniques (Section 5.2.4). 

5.2.1 Recognizing New Gestures. We investigated two factors that 
have important design implications: the number of shots used for 
training and the number of new gestures that the model is trained 
to recognize. For the frst factor, we went through diferent numbers 
of training samples from the original training set (from 1 shot to 10 
shots) to train the model. For the second factor, given the number 
of new gestures, we went through all possible combinations of 
the gestures, from one new gesture to four new gestures. In total, 
we trained and evaluated 475,800 models (10 shot numbers × 3Í4 ��12repetition × =793 gesture combinations × 20 participants). n=1 n 

Prediction Head Evaluation. We frst evaluate the perfor-
mance of the prediction head (the solid lines in Figure 8). When 
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Figure 8: Prediction Performance with Diferent Number of 
Shots and Gestures. The accuracy and F1 score results corre-
spond to the left y-axis, while the false positive rate results 
correspond to the right y-axis. Error bars indicate the stan-
dard error of the mean. 

using only one shot to add a new gesture (i.e., users perform the ges-
ture just one time), our framework can achieve an average gesture-
level accuracy of 55.3% and an F1 score of 64.6%. The more shots 
the model has, the better the recognition performance. With three 
shots of a new gesture, our framework can achieve an average ac-
curacy of 83.1% and an F1 score of 88.9%. The performance further 
increases to 87.2% and 92.0% with fve shots, and 91.0% and 94.5% 
when using ten shots. Meanwhile, the models are robust to noisy 
data, with an average false positive rate af 0.02 times per hour when 
evaluated on daily activity non-gesture data. 

Supporting more than one gesture is more challenging, but our 
framework achieves an average accuracy of 83.3% and an F1 score 
of 88.8% with three shots of two new gestures. When adding three 
new gestures, our method has an accuracy of 77.7% and an F1 score 
of 84.2%. For four gestures, our method still has an accuracy of 77.2% 
and an F1 score of 83.4%. More new gestures also lead to a slightly 
higher false positive rate, and we observe the same trend as more 
number of shots are included for training. This can be explained by 
the fact that the increased variety of the positive samples raises the 
difculty of the classifcation task. But our models can maintain 
the false positive rate as low as 0.06 or 0.12 times per hour when 
adding two or four gestures. The evaluation results show promising 
potential of the framework. 

Moreover, we investigate the individual performance of each 
gesture. Figure 9 reveals that the majority of the 12 gestures have 
good performance. Using three shots, 7 out of 12 gestures have 
F1 scores at least 90%. Spread, RotateOut, and Flex have F1 scores 

Figure 9: Prediction Performance of One New Gesture. 

higher than 95%. In contrast, Slide has relatively lower performance. 
The diference can be explained by the fact that the sliding gesture 
has larger variation, or is hard for the accelerometer/gyroscope to 
capture the motion. 

To evaluate how these new gestures are confused against each 
other, we also look into the confusion between each pair of gestures 
when both are added as new gestures. Figure 10 shows that Slide 
and Peace are relatively more easily confused with other gestures. 

Combining Prediction Head and Pre-trained Model. After 
the prediction head is trained and applied in real-time, it works with 
the pre-trained model together for recognition. Therefore, we also 
evaluate the performance on the new gestures when combining the 
two models, as shown by the dashed lines in Figure 8. The results 
are very close to those tested solely on the prediction head, with a 

Figure 10: Prediction Performance of Two New Gestures. 
Higher F1 score indicates less confusion between the two 
newly added gestures. 
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minimal performance drop of 1.7% on F1 scores. This indicates that 
the two models have a distinguishing focus on diferent gestures 
(i.e., new gestures v.s. existing four gestures) and barely confuse 
each other. 

5.2.2 Recognizing Existing Gestures. In addition to evaluating the 
performance of our framework on new gestures’ data and negative 
data, it is also important to measure how much the additional 
prediction head infuences the recognition performance on the 
existing four gestures. Both the average accuracy and F1 score 
achieve 97.5% and 97.7% when applying the combined model on 
participants’ data of the existing four gestures. This shows that the 
recognition outcomes of the original four gestures are not impacted 
by the additional prediction head. 

5.2.3 Recognizing All Gestures. The real-time system in actual us-
age can recognize both new gestures and existing gestures. There-
fore, we also evaluate the two models on all gestures, as shown 
by the dotted lines in Figure 8. When using one shot to add a new 
gesture, our framework can achieve an average F1 score of 84.3% 
on the fve gestures. With three, fve, and ten shots, the F1 score in-
creases to 93.1%, 94.4%, and 95.4%. When adding two, three, or four 
gestures with three shots, the average F1 scores achieve 91.0%, 86.6% 
or 84.9% on the whole six, seven, or eight gestures. We summarize 
detailed results in Appendix Tab. 4 

The results from Section 5.2.1 to Section 5.2.3 suggest that our 
framework can include new gestures and achieve good performance 
with only a few shots, without degrading the recognition accuracy 
on existing gestures. 

5.2.4 Comparing to Other Methods. We also compare our frame-
work against a few other methods. Some of them are traditional 
computational methods, while some of them are deep-learning-
based: 

• DTW. In some prior work [51], DTW can be used to recognize 
new hand waving gestures with only one sample as the template. 
We re-implement the algorithm in uWave [51] and test it using 
our datasets. 

• Traditional ML models. As deep learning methods are usually 
data-hungry, an alternative solution is to use of-the-shelf tradi-
tional ML models to lower the data requirement. We test both 
SVM and random forest as they are commonly used on wear-
able gesture recognition systems (e.g., [25, 39, 96]). The input for 
these traditional models are the feature embeddings from the 
pre-trained model. 

• Fine-tuning on the pre-trained model. This method is one of the 
common transfer-learning-based solutions. Specifcally, we re-
move the fnal layer of the pre-trained model and add a new layer 
with more output nodes (fve original classes plus the number of 
new gestures). We copy the weights from the old layers for the 
old fve nodes, and randomly initiates the weights for the new 
nodes. Then, we fne-tuning the model using new data. 

• Ablation study. In addition to other methods, we also remove one 
of the data augmentation, data synthesis, and adversarial regular-
ization methods to evaluate each of their individual contribution 
to the fnal results. 

Methods 
Window-level Gesture-level 

acc F1 FP Rate acc F1 FP #/Hr 

DTW 

SVM 

Random Forest 
Fine-tuning 

0.485 0.355 0.515 

0.928 0.737 0.000 

0.895 0.686 0.000 

0.915 0.516 0.039 

0.552 0.597 0.457 

0.712 0.796 0.021 

0.686 0.763 0.000 

0.448 0.511 6.175 

w/o Augmentation 

w/o Synthesis 

w/o Adv Regularization 

Full Pipeline 

0.898 0.497 0.000 

0.933 0.784 0.001 

0.922 0.742 0.002 

0.935 0.790 0.001 

0.244 0.327 0.000 

0.819 0.879 0.034 

0.792 0.855 0.106 

0.833 0.888 0.055 

Table 2: Results Comparison between Our Framework and 
Other Methods. All training and testing use three shots and 
two new gestures to ensure consistency. 

To make a fair comparison, we use three shots and two gestures 
for consistency, and negative data is available in all methods. Ta-
ble 2 presents both the window-level and gesture-level results. Our 
method signifcantly outperforms the traditional methods and the 
fne-tuning method by at least 12.1% on accuracy and 9.2% on F1 
score. Moreover, the ablation study results show that each of the 
techniques helps improve the model performance. 

6 USABILITY 
Finally, we implemented a real-time system based on our frame-
work, and evaluated the system via a user study. Figure 11 shows the 
watch interface that corresponds to the user experience roadmap. 
Not only do we evaluate the real-time recognition performance, 
more importantly, we also measure the system usability and collect 
users’ feedback. 

6.1 Participants and Apparatus 
We invited the same set of users in Section 5 for the usability eval-
uation. Apple Series S6 was used as the apparatus for the usability 
study, worn on participants’ non-dominant hands. For prototyping 
purposes, the watch streamed the data to a MacBook Pro laptop. 
The laptop did the model training and gesture recognition, and sent 
the results back to the watch for real-time interaction. 

6.2 Design and Procedure 
We used a three-shot version of the system for the evaluation. Partic-
ipants went through the following stages after a brief introduction 
of the system and the interface: 

(1) Participants frst tried the recognition system in the live-stream 
mode with the existing four gestures to get themselves famil-
iarized with the system. 

(2) Participants recorded a pre-defned new gesture RotateOut 
three times to add the gesture, and tested it in the live-stream 
mode, together with the four gestures (fve in total). 

(3) Participants were asked to create one or more customized ges-
tures themselves and record the gesture. After adding it suc-
cessfully, they tested it in the live-stream mode, together with 
the fve existing gestures. 
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Figure 11: Real-Time Gesture Customization System Watch Interface Design. The few-shot recording mode is consistent with 
the user experience design in Figure 6. 

(4) Participants were told to use the system freely for 5 to 10 
minutes, after which they flled in the System Usability Scale 
(SUS) [5] and Task Load Index (NASA-TLX) questionnaire [34], 
and had a semi-structured interview about their experience. 

During the study, participants could ask the experimenter anytime 
if they have any questions. The experimenter noted down all suc-
cessful or unsuccessful recognition results. The study lasted about 
30 minutes. 

6.3 Results 
Overall, many participants were excited about the system. We sum-
marize the recognition results, customization procedure, and sub-
jective feedback. 

6.3.1 New Gestures Recognition Performance. The real-time perfor-
mance of the system is similar to the ofine results in Section 5.2. 
The average recognition accuracy and F1 score on the four existing 
gestures are 96.7% and 98.1%. For new gestures, the overall average 
accuracy and F1 score are 91.1% and 95.1%, respectively. The cus-
tomized gestures defned by participants were diverse. Examples 
include snapping fngers, ficking fngers, making spiderman pose, 
etc.. Some gestures have zero misclassifcation during the study, 
such as Snap, Spiderman, Clap, and FiveFingerBend. 

Meanwhile, false-positive rate was kept low. A few participants 
tried diverse non-gesture motion and the real-time system was 
robust to noisy data. On average, participants had 0.6 times of false 
positive throughout the whole study. 
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Gestures acc F1 FP Count # of Users Gestures acc F1 FP Count # of Users 

Clench 0.950 0.972 0.100 20 DoubleClench 0.993 0.996 0.050 20 

Pinch 0.975 0.986 0.200 20 DoublePinch 0.952 0.972 0.000 20 

RotateOut 0.949 0.973 0.050 20 Snap 0.960 0.978 0.000 5 

Flick 0.958 0.978 0.000 3 Peace 1.000 1.000 0.500 2 

FastArmWave 0.909 0.950 0.500 2 Spiderman 1.000 1.000 0.000 1 

VulcanSalute 1.000 1.000 0.000 1 Clap 1.000 1.000 0.000 1 

PinchThenDrag 1.000 1.000 0.000 1 FiveFingerBend 1.000 1.000 0.000 1 

PinkyPinch 0.900 0.947 0.000 1 IndexFingerPointing 0.882 0.938 0.000 1 

ThumbsUp 0.857 0.923 1.000 1 ThumbTwoTaps 0.833 0.909 0.000 1 

FiveFingerSequentialBend 0.812 0.897 0.000 1 IndexFingerBend 0.800 0.889 0.000 1 

Punch 0.778 0.875 2.000 1 IndexMiddleFingerBend 0.750 0.857 0.000 1 

Table 3: Recognition Results in The Real-time System Usability Study. All new gestures are added with three shots. FP count 
indicates the average count of false positive per person during the study. 

Table 3 summarizes the proposed gestures and their recogni-
tion performance. These results indicate the scalability and the 
robustness of our framework. 

6.3.2 Procedure of Gesture Customization. During the study, all 
participants added the RotateOut gesture smoothly. As for adding 
their own gestures, most participants succeeded at the frst trial 
when adding their own gesture. This indicates that the system’s 
sanity check does not pose much restriction on users’ creativity. 

A small number of participants’ new gesture did not went through 
due to the similarity check. Two participants’ frst gestures (mid-
dle fnger pinching and hang loose) were recognized as close to 
Pinch and Clench, respectively. P15 attempted to add a slow wav-
ing motion as the second gesture but it got recognized as being 
close to common daily activities. P18 frst added PinkyPinch as 
the frst new gesture, and then tried to add a thumb-tapping on 
index fnger knuckle. It did not go through as it was recognized 
as being close to PinkyPinch. Moreover, some participants delib-
erately tried to confuse the system. After adding the frst gesture, 
P2 intentionally added another similar gesture but it did not go 
through. The accelerometer signals of these new gestures and the 
wrongly recognized gestures were indeed similar. On the one hand, 
this indicates the robustness of the system; On the other hand, this 
reveals the room for improvement of our framework to distinguish 
closer gestures. 

As for the model performance check, P1 and P19 got an accuracy 
below 80% when adding their gestures. Both of them chose to collect 
more shots and completed the addition. 

6.3.3 Qestionnaire Results. The questionnaire results also suggest 
positive feedback from participants. Following the score calculation 
method [5], we obtain the average overall SUS score as 87.2±8.3 out 
of 100. This indicates the high overall usability of our system. SUS 
has two sub-scale scores (Q4 and Q10 for “Learnability” and the rest 
for “Usability”). The learnability score was 84.5±14.3 (out of 100, 
high) and the usability score was 87.9±8.6 (out of 100, high). Both 
sub-scale scores further indicate that our system is easy-to-learn 

and easy-to-use. The details of each SUS questions can be found in 
Appendix Figure 12. 

Moreover, results of the NASA-TLX questionnaire (on a 7-point 
Likert scale) indicate that participants had low task load when us-
ing the real-time system, which is in line with the SUS outcome. 
Participants reported low task mental load (1.9±1.1), physical load 
(2.7±1.3), and temporal load (2.3±1.3). They considered themselves 
paying low efort (2.0±0.9). Moreover, participants agreed that they 
had a good performance during the study (6.2±1.0) and there was 
little frustration (1.5±1.1). Both the SUS and NASA-TLX question-
naires’ results indicate good usability of our system. 

6.3.4 Subjective Feedback. In addition to the questionnaire results, 
participants provided positive comments about the system. 8 out 
of the 20 participants explicitly mentioned that they would love to 
use the system in daily life. A few participants were impressed by 
the system: “It works amazingly well! That’s beyond my expectation.” 
(P11). Some participants were happy to see how the system can be 
robust against noisy motion. P2 was excited when their confusing 
gesture was not accepted by the system. “The system could tell that 
they are too close and it did not let me add it. This is a very good 
design, [making the system] much more robust!” (P2). P1 liked the 
feedback when the system has sub-optimal performance. “Know 
that the system is not perfect is absolutely fne! It only took three 
samples! I also feel good that the system can inform me about the 
performance so that I can have a better expectation.” (P1). Some 
participants discussed a few potential use cases of our system. We 
will have more discussion in Section 7.2. 

Overall, the recognition performance and subject feedback of 
the user study illustrate the good usability and promising future of 
our framework. 

7 DISCUSSION 
Here, we discuss insights of extending gesture sets, application 
scenarios and the potential generalizability of our framework. We 
also summarize limitations and future work. 
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7.1 Potentials and Challenges of Extending 
Gesture Set 

Through our evaluation studies, we reveal the potential of our 
framework to extend the existing four gestures to support more 
gestures with few shots. In Section 5, the 12 new gestures are de-
signed to span across diferent dimensions in hand gesture design 
space. Meanwhile, in Section 6, a number of diverse gestures were 
proposed by participants without restrictions. Achieving good re-
sults in both studies, our framework shows the ability to extend to 
a wide range of gesture sets. However, we also foresee some chal-
lenges of the framework. Our pilot study indicates that gestures 
with the same fngers but opposite sequences are hard to classify, 
e.g., thumb sliding from the bottom to the top of the index fnger v.s. 
thumb sliding from the top to the bottom of the index fnger. This 
is mainly caused by the similar motion patterns measured from 
the wrist-worn accelerometer. Increasing the signal sampling rate 
could be a potential solution to discover pattern diferences and 
distinguish this type of complex but close gestures [48]. 

7.2 Applications 
We believe our contributions in this paper can be impactful in many 
areas. First, a well-designed customization system can improve ges-
ture memorability [59] and interaction efciency [63]. Likewise, our 
work can be helpful for users who need more than what typically 
ships in a pre-packaged gesture set. A well-designed customization 
system can accelerate users’ ability to easily and creatively add new 
gestures. In our case, we envision our system being particularly 
helpful for users who have personalized accessibility conditions [2] 
or situational impairments [28, 76]. In situations where the original 
gesture set can be inappropriate or inaccessible, our framework 
can support the creation of gestures that best cater to users’ pref-
erences and abilities; our interactive feedback mechanisms ensure 
that end-users get to decide what level of robustness and accuracy 
helps them achieve their device usage goals. 

7.3 Beyond Gestures 
Our framework has the potential to transfer to other customization 
tasks beyond gesture recognition. As depicted in Figure 2, our model 
architecture and data processing techniques are mostly independent 
from any specifc classifcation task. For example, our framework 
can be applied to other time-series recognition tasks, such as fa-
cial expression recognition [85], voice command recognition [36], 
and human activity recognition [30]. As long as the model can be 
architecturally decomposed into feature extraction and inference 
components (which is often the case for deep-learning models), the 
core ideas, interactive feedback mechanisms, and overall contribu-
tions in this paper are conceptually and practically compatible. 

7.4 Limitations 
Like any other paper, our work has limitations. First, our set of 
12 new customized gestures is not comprehensive. Although our 
evaluation is based on all possible combinations of these gestures, 
our results are still far from being thorough. In the future, we plan 
to collect data from more gestures and conduct a wider evalua-
tion experiment. Second, the constraints of our usability study 
prevented us from investigating the robustness of the system when 

running for a longer period. It is possible that after a while, users’ 
customized gestures may drift over time. However, we envision 
multiple techniques to address such variations. For example, when 
a misclassifcation is noticed (due to temporal drift), users can pro-
vide in-situ feedback (via extra gesture samples), helping the system 
adaptively improve its robustness. Third, on-device processing and 
training is beyond the scope of this paper. Currently, our model 
is trained on an external laptop (with data streamed wirelessly). 
In an engineering implementation, training and processing can 
be ofoaded to a cloud server, or it can be federated across other 
devices [49]. These are areas we plan to investigate in future work. 

8 CONCLUSION 
In this paper, we present a gesture customization framework that 
supports end-users to add their own customized gestures with very 
few samples, without impacting the recognition performance of 
the existing gesture set. We frst conducted a large-scale user study 
(N=512) to train an IMU-only deep learning gesture recognition 
model that can recognize four gestures (Clench, Double-Clench, 
Pinch, and Double-Pinch) with a cross-user accuracy of 95.7% and 
a F1 score of 95.8% and a false positive rate of 0.6 times per hour. 
Then, we proposed a dynamic few-shot learning framework that 
creates a branch after the frst half of the pre-trained model to 
enable knowledge transfer and introduce minimal infuence on the 
old gestures’ recognition outcome. We then used a series of data 
processing techniques to improve the robustness of the additional 
prediction model. Through an evaluation study (N=20) on a set 
of 12 new gestures, our framework shows an average accuracy of 
55.3%, 83.1%, and an F1 score of 66.0%, 89.2%, and 92.1% on using 
one, three, fve shots when adding one new gesture. When adding 
two, three, and four gestures, it can achieve an average accuracy 
of 83.3%, 77.7%, and 77.2% and an average F1 score of 88.8%, 84.2%, 
and 83.4% with only three shots, while maintaining the low false 
positive rate and the good accuracy on the existing four gestures. 
We further evaluated the usability of the real-time implementation 
of our framework via a user study (N=20). The results indicate 
good learnability and usability of our framework. We envision 
our work can paves the way for enabling users move beyond pre-
existing gestures, freeing them to creatively add new gestures that 
are tailored to their preferences and ability. 
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APPENDIX 

# of 

Shots 

New Gestures 

with Prediction Head 

New Gestures 

with Both Models 

New & Existing Gestures 

with Both Models 
Non-gestures 

Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level 

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 FP Rate FP Count/Hr 

1 0.908 0.570 0.523 0.608 0.889 0.434 0.505 0.592 0.880 0.546 0.680 0.709 0.001 0.040 

2 0.920 0.672 0.694 0.767 0.904 0.531 0.671 0.748 0.889 0.604 0.782 0.811 0.001 0.060 

3 0.927 0.725 0.780 0.842 0.911 0.584 0.753 0.821 0.893 0.632 0.833 0.860 0.001 0.074 

4 0.930 0.747 0.824 0.875 0.914 0.613 0.798 0.855 0.895 0.645 0.861 0.884 0.001 0.102 

5 0.930 0.755 0.841 0.887 0.915 0.626 0.816 0.869 0.896 0.650 0.872 0.893 0.002 0.116 

6 0.929 0.760 0.857 0.899 0.914 0.636 0.832 0.880 0.894 0.652 0.881 0.900 0.002 0.152 

7 0.931 0.764 0.858 0.900 0.916 0.636 0.832 0.881 0.896 0.654 0.882 0.901 0.002 0.145 

8 0.933 0.770 0.864 0.904 0.917 0.641 0.838 0.886 0.897 0.657 0.885 0.904 0.002 0.128 

9 0.931 0.770 0.870 0.909 0.916 0.644 0.843 0.890 0.896 0.657 0.888 0.906 0.002 0.136 

10 0.932 0.778 0.885 0.919 0.917 0.657 0.860 0.901 0.896 0.662 0.899 0.915 0.002 0.162 

# of 

Gestures 

New Gestures 

with Prediction Head 

New Gestures 

with Both Models 

New & Existing Gestures 

with Both Models 
Non-gestures 

Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level 

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 FP Rate FP Count/Hr 

1 0.936 0.834 0.828 0.883 0.921 0.744 0.805 0.865 0.885 0.651 0.918 0.930 0.000 0.025 

2 0.934 0.785 0.824 0.875 0.917 0.664 0.800 0.857 0.891 0.648 0.886 0.904 0.001 0.062 

3 0.928 0.738 0.795 0.849 0.912 0.604 0.770 0.831 0.893 0.637 0.850 0.872 0.001 0.095 

4 0.926 0.718 0.798 0.848 0.910 0.586 0.773 0.829 0.894 0.633 0.838 0.861 0.002 0.127 

Table 4: Results Summary of Prediction Heads with Diferent Numbers of Shots (top) and Gestures (bottom). FP stands for 
false positive. The top table shows the average results over 1 to 10 shots. The bottom table shows the average results over 1 to 
4 gestures. 

Figure 12: Barplot of the 10 Questions in SUS Questionnaire. Note that Q2,4,6,8,10 are marked as [R] and their scores are 
reversed for better visualization. Error bar indicates standard error. 
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