Operating U H H
System I

Group Technische Universitdt Hamburg

CppSig: Extracting Type Information for
C-Preprocessor Macro Expansions

PLOS21

Christian Dietrich

October 25, 2021

The C-Preprocessor (CPP) and its Macros

Technische Universitit Hamburg

C Compiler
Lexer | Token | €PP | Token | Parser CodeGen
File AST
Stream Stream

m CPP: A lexical preprocessor for the C/C++ parser

= Features: file inclusion/conditional compilation/macro expansion
= Method: insert/delete/replace elements in the token stream
= Problem: Ignorant of the language's syntax rules

m CPP is symbiotic with the C/C++ language

= Uses the C compiler for semantic analysis and type checking
» Extends C by meta-programming flexibility and polymorphism

cd CppSig: Types for Macro Expansions 2/15

EI_E CPP in the Linux kernel

#define raw_spin_is_locked(lock) \
arch_spin_is_locked(&(lock)->raw_lock)

m Linux makes extensive use of CPP (numbers for v5.12)
= Usage: modularization, static variability, (hardware) abstractions
= Frequency: 1 #ifdef — 3 #include — 31 #define (> 3 million)
= Macros are wide-spread and are a challenge for readability: (x86,def)
- Top-level, function-like: 7519 macros — 142861 expansions
- Nesting of Macros: Up to 15 levels and 637 expansions
= We have to understand CPP macros better!

cd CppSig: Types for Macro Expansions 3/15

CPP in the Linux kernel

Technische Universitt Hamburg

#define raw_spin_is_locked(lock) \
arch_spin_is_locked(&(lock)->raw_lock)

m Linux makes extensive use of CPP (numbers for v5.12)

= Usage: modularization, static variability, (hardware) abstractions
= Frequency: 1 #ifdef — 3 #include — 31 #define (> 3 million)
= Macros are wide-spread and are a challenge for readability: (x86,def)
- Top-level, function-like: 7519 macros — 142861 expansions
- Nesting of Macros: Up to 15 levels and 637 expansions
= We have to understand CPP macros better!

CppSig: What is the type signature of a macro expansion?

cd CppSig: Types for Macro Expansions 3/15

Outline

Technische Universitit Hamburg

Motivation

The CppSig Approach

= Type signatures for macros?

= Matching Expansion Tree and Abstract Syntax Tree
= Challenging Macro Patterns

Application to Linux kernel

Conclusion

cd CppSig: Types for Macro Expansions 4/15

= Outline TUHH

Technische Universitit Hamburg

m The CppSig Approach
= Type signatures for macros?

= Matching Expansion Tree and Abstract Syntax Tree
= Challenging Macro Patterns

cd CppSig: Types for Macro Expansions

4/15

Macro Expansion Signatures

Technische Universitit Hamburg

Problem: CPP macros only have meaning within the expansion site!

#define add(a, b) ((a) + (b))

add(1l, 2) // (int, int) — int
add(1, 2.0) // (int, float) — float
add(1.0,2.0) // (float, float) — float

// Locks every struct with a field "nesting"
#define lock(lockable) ((lockable).nesting++)

= Extract Expansion Signatures instead of Definition Signatures

or informal: “How is a macro used throughout the code-base?”

cd CppSig: Types for Macro Expansions

5/15

Macro Expansion Signatures

Technische Universitit Hamburg

Problem: CPP macros only have meaning within the expansion site!

#define add(a, b) ((a) + (b))

add(1l, 2) // (int, int) — int
add(1, 2.0) // (int, float) — float
add(1.0,2.0) // (float, float) — float

// Locks every struct with a field "nesting"
#define lock(lockable) ((lockable).nesting++)

= Extract Expansion Signatures instead of Definition Signatures

or informal: “How is a macro used throughout the code-base?”

Different Possible Use-Cases:

= Code Understanding: How should | use this macro?
= Type Checking: Is the macro used consistently throughout the code base?

cd CppSig: Types for Macro Expansions /75

The CppSig Approach

Technische Universitit Hamburg

. Within CPP: Record expansion tree and track tokens
= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.

cd CppSig: Types for Macro Expansions 6/15

I .
Expansion Tree and Abstract Syntax Tree TUHH

#define inner(I) I / 100
#define middle(M) inner(M % 1.0) - 20
#define outer(0) 1 + middle(0)

9po?) @24nog
W N

= outer(23);
. 75‘7 outer(23) D
Unexpanded

Token Stream

994] uoisuedx3 44D

Expanded
Token Stream
|

= —]

cd CppSig: Types for Macro Expansions 7/15

Expansion Tree and Abstract Syntax Tree

Technische Universitit Hamburg

#define inner(I) I / 100
#define middle(M) inner(M % 1.0) - 20
#define outer(0) 1 + middle(0)

= outer(23);

9po?) @24nog
W N

outer(23)

994] uoisuedx3 44D

middle(23)

I
cd CppSig: Types for Macro Expansions 7/15

I .
Expansion Tree and Abstract Syntax Tree TUHH

9po7) 924n0g

994] uoisuedx3 44D

A N

#define inner(I) I / 100
#define middle(M) inner(M % 1.0) - 20
#define outer(0) 1 + middle(0)

= outer(23);

— outer(23)

middle(23)

inner(23 * 1.0)

cd CppSig: Types for Macro Expansions 7/15

D .
Expansion Tree and Abstract Syntax Tree TUHH

& | 1. #define inner(I) I / 100

5 | 20 #define middle(M) inner(M 1.0) - 20
('6 3: #define outer(0) 1 + middle(0)

[o]

S5 = outer(23);

I~ outer(23) m
el

o

g middle(23)

2.

:

=

3

I
cd CppSig: Types for Macro Expansions 7/15

= .
Expansion

cd

9po?) @24nog

921 uoisuedxy ddd

Tree and Abstract Syntax Tree

Technische Universitit Hamburg

#define inner(I) I / 100
#define middle(M) inner(M % 1.0) - 20
#define outer(0) 1 + middle(0)

= outer(23);

— outer(23)

/!
Sl n s K1 S EE] 200} - [1]20]

m1ddle(23)

‘ 1nner(23*1 0)

CppSig: Types for Macro Expansions 7/15

Expansion Tree and Abstract Syntax Tree

cd

#define inner(I) I / 100
#define middle(M) inner(M % 1.0) - 20
#define outer(0) 1 + middle(0)

= outer(23);

9po?) @24nog
W N

I~ — outer(23)
o
o
i m1ddle(23)
[%)
o
= 1nner(23*1 0)
=
? f
/
-] l-.l- T[]0l /[100 1 - |
i Ve
A \
g \
= \
3

CppSig: Types for Macro Expansions

Technische Universitit Hamburg

7/15

12 The CppSig Approach
1. Within CPP: Record expansion tree and track tokens

= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.

2. Match expansion-tree and AST nodes

= Find AST nodes that stem from a (nested) expansion
= They come together as one or multiple AST subtrees

cd CppSig: Types for Macro Expansions 8/15

Challenging Tree Alignments

Technische Universitit Hamburg

(a) Perfectly Aligned (b) Unaligned Body (c) Unaligned Argument
Example: Example: Example:

#define M(x) (x) #define M(x) 3+x+4 #define M(x) 3xxx4
int x = M(23+3); int x = 1 % M(3) x 4; int x = M(3+4);

Unaligned expansion are considered a bad code smell.

= CppSig handles them gracefully!

cd CppSig: Types for Macro Expansions 9/15

The CppSig Approach

Technische Universitt Hamburg

. Within CPP: Record expansion tree and track tokens

= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.

. Match expansion-tree and AST nodes

= Find AST nodes that stem from a (nested) expansion
= They come together as one or multiple AST subtrees

. Find macro-arguments in the expansion subtree(s)

= Select subtree-nodes that are located within a
= Again: one or multiple AST subtrees

cd CppSig: Types for Macro Expansions

10/15

The CppSig Approach

Technische Universitt Hamburg

. Within CPP: Record expansion tree and track tokens

= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.

. Match expansion-tree and AST nodes

= Find AST nodes that stem from a (nested) expansion
= They come together as one or multiple AST subtrees

. Find macro-arguments in the expansion subtree(s)

= Select subtree-nodes that are located within a
= Again: one or multiple AST subtrees

. Derive macro return and argument types from AST nodes

= Exactly one subtree: Root type is unambiguous type
= Multiple subtrees: Statement-level macro or ambiguous argument type

cd CppSig: Types for Macro Expansions 10/15

Outline

Technische Universitit Hamburg

m Application to Linux kernel

I
cd CppSig: Types for Macro Expansions 11/15

=] CppSig on the Linux kernel

Technische Universitit Hamburg

m Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig
= Matching both trees took 366ms (median)
= Longest running file: 53 minutes (net/mac80211/airtime.c)
= Problem: At-least quadratic run-time of prototypical implementation
due to Clang's AST Matcher Interface.

cd CppSig: Types for Macro Expansions 12/15

CppSig on the Linux kernel

Technische Universitt Hamburg

Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig

= Matching both trees took 366ms (median)

= Longest running file: 53 minutes (net/mac80211/airtime.c)

= Problem: At-least quadratic run-time of prototypical implementation
due to Clang's AST Matcher Interface.

142861 function-like top-level macro expansions

= 58 % = single expression AST subtrees
= 32% = multiple subtrees
= 10 % = match failed, type expansion or, expansion became "" (7)

cd CppSig: Types for Macro Expansions 12/15

CppSig on the Linux kernel

Technische Universitt Hamburg

Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig

= Matching both trees took 366ms (median)

= Longest running file: 53 minutes (net/mac80211/airtime.c)

= Problem: At-least quadratic run-time of prototypical implementation
due to Clang's AST Matcher Interface.

142861 function-like top-level macro expansions

= 58 % = single expression AST subtrees
= 32% = multiple subtrees
= 10 % = match failed, type expansion or, expansion became "" (7)

7519 function-like definitions used as top-level expansion

= 55% = unambigous parameter type (expression param)
= 53% = unambigous return type (expression macro)
= 31% = one or multiple void-typed nodes (statement macro)

cd CppSig: Types for Macro Expansions 12/15

'E CppSig on the Linux kernel

ersitit Hamburg

m Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig

= Matching both trees took 366ms (median)
= | ongest running file: 53 minutes (net/mac80211/airtime.c)

Top-10 Macro-Paramter Types

Parameter Type #Parms. Parameter Type #Params.
int 1412 unsigned char 143
unsigned int 712 struct device * 102
unsigned long 320 unsigned short 88
unsigned long long 279 void * 71
struct drm_i915_private x 165 struct tty struct * 64

=7 OIY TUNCUOT=ITKE UETITIONS USEU ds TUP-TEVET EXpartsionm

= 55% = unambigous parameter type (expression param)
= 53% = unambigous return type (expression macro)
= 31% = one or multiple void-typed nodes (statement macro)

cd CppSig: Types for Macro Expansions 12/15

Would you have guessed it?

Technische Universitit Hamburg

shm_ids(ns): 34 occurences
disk_to_dev(disk): 35 occurences
wake_up(x): 178 occurences
ext4_journal_stop(handle): 91 occurences
fw_domain_init(uncore, id, set, ack): 12 occurences

cd CppSig: Types for Macro Expansions 13/15

Would you have guessed it? TUHH

Technische Universitit Hamburg

shm_ids(ns): 34 occurences
= struct ipc_ids * (struct ipc_namespace x*)

disk_to_dev(disk): 35 occurences
= struct devicex (struct gendisk x)

wake_up(x): 178 occurences
= void (struct wait_queue_head x)

ext4_journal_stop(handle): 91 occurences
= void (struct jbd2_journal_handle *)

fw_domain_init(uncore, id, set, ack): 12 occurences
= int (intel_uncore *, int, i1915_reg_t, i915_reg_t)

I
cd CppSig: Types for Macro Expansions 13/15

Outline

Technische Universitit Hamburg

m Conclusion

I
cd CppSig: Types for Macro Expansions 14/15

Conclusion

CPP is a symbiotic but problematic companion language

= In-kernel usage: abstractions, variability, modularization
= Complex constructs (nesting, involved macros) hinder readability

CppSig: Extract expansion types from the C-AST nodes

1. Record macro expansion tree and argument token lists
2. Match AST Nodes against expansion tree
3. Derive (un)ambiguous macro types from matched subtrees

The Linux kernel is a heavy user of CPP macros

= Monomorphism: 84% return- and 55% argument types are unambigious
= struct drm_i915_private x is the most frequent non-int param type

Source Code and Docker Image are available at:
https://collaborating.tuhh.de/e-exk4 /projects/cpp-macro-types

cd CppSig: Types for Macro Expansions

15/15

