Operating U H H
System I

Group Technische Universitdt Hamburg

CppSig: Extracting Type Information for
C-Preprocessor Macro Expansions

PLOS21

Christian Dietrich

October 25, 2021



The C-Preprocessor (CPP) and its Macros

Technische Universitit Hamburg

C Compiler
Lexer | Token | €PP | Token | Parser CodeGen
File AST
Stream Stream

m  CPP: A lexical preprocessor for the C/C++ parser

= Features: file inclusion/conditional compilation/macro expansion
= Method: insert/delete/replace elements in the token stream
= Problem: Ignorant of the language's syntax rules

m  CPP is symbiotic with the C/C++ language

= Uses the C compiler for semantic analysis and type checking
» Extends C by meta-programming flexibility and polymorphism
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EI_E CPP in the Linux kernel

#define raw_spin_is_locked(lock) \
arch_spin_is_locked(&(lock)->raw_lock)

m  Linux makes extensive use of CPP (numbers for v5.12)
= Usage: modularization, static variability, (hardware) abstractions
= Frequency: 1 #ifdef — 3 #include — 31 #define (> 3 million)
= Macros are wide-spread and are a challenge for readability: (x86,def)
- Top-level, function-like: 7519 macros — 142861 expansions
- Nesting of Macros: Up to 15 levels and 637 expansions
= We have to understand CPP macros better!
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#define raw_spin_is_locked(lock) \
arch_spin_is_locked(&(lock)->raw_lock)

m  Linux makes extensive use of CPP (numbers for v5.12)

= Usage: modularization, static variability, (hardware) abstractions
= Frequency: 1 #ifdef — 3 #include — 31 #define (> 3 million)
= Macros are wide-spread and are a challenge for readability: (x86,def)
- Top-level, function-like: 7519 macros — 142861 expansions
- Nesting of Macros: Up to 15 levels and 637 expansions
= We have to understand CPP macros better!

CppSig: What is the type signature of a macro expansion?
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Motivation

The CppSig Approach

= Type signatures for macros?

= Matching Expansion Tree and Abstract Syntax Tree
= Challenging Macro Patterns

Application to Linux kernel

Conclusion
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= Outline TUHH
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m  The CppSig Approach
= Type signatures for macros?

= Matching Expansion Tree and Abstract Syntax Tree
= Challenging Macro Patterns
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Macro Expansion Signatures
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Problem: CPP macros only have meaning within the expansion site!

#define add(a, b) ((a) + (b))

add(1l, 2) // (int, int) — int
add(1, 2.0) // (int, float) — float
add(1.0,2.0) // (float, float) — float

// Locks every struct with a field "nesting"
#define lock(lockable) ((lockable).nesting++)

= Extract Expansion Signatures instead of Definition Signatures

or informal: “How is a macro used throughout the code-base?”
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Problem: CPP macros only have meaning within the expansion site!

#define add(a, b) ((a) + (b))

add(1l, 2) // (int, int) — int
add(1, 2.0) // (int, float) — float
add(1.0,2.0) // (float, float) — float

// Locks every struct with a field "nesting"
#define lock(lockable) ((lockable).nesting++)

= Extract Expansion Signatures instead of Definition Signatures

or informal: “How is a macro used throughout the code-base?”

Different Possible Use-Cases:

= Code Understanding: How should | use this macro?
= Type Checking: Is the macro used consistently throughout the code base?
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The CppSig Approach
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. Within CPP: Record expansion tree and track tokens
= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.
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Expansion Tree and Abstract Syntax Tree TUHH

#define inner(I) I / 100
#define middle(M) inner(M % 1.0) - 20
#define outer(0) 1 + middle(0)
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12 The CppSig Approach
1. Within CPP: Record expansion tree and track tokens

= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.

2. Match expansion-tree and AST nodes

= Find AST nodes that stem from a (nested) expansion
= They come together as one or multiple AST subtrees
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Challenging Tree Alignments
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(a) Perfectly Aligned (b) Unaligned Body (c) Unaligned Argument
Example: Example: Example:

#define M(x) (x) #define M(x) 3+x+4 #define M(x) 3xxx4
int x = M(23+3); int x = 1 % M(3) x 4; int x = M(3+4);

Unaligned expansion are considered a bad code smell.

= CppSig handles them gracefully!
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. Within CPP: Record expansion tree and track tokens

= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.

. Match expansion-tree and AST nodes

= Find AST nodes that stem from a (nested) expansion
= They come together as one or multiple AST subtrees

. Find macro-arguments in the expansion subtree(s)

= Select subtree-nodes that are located within a
= Again: one or multiple AST subtrees
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The CppSig Approach
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. Within CPP: Record expansion tree and track tokens

= Macro arguments accumulate tokens from different locations
= In Clang saves an expansion-location stack for each token.
its parser propagates this location stack to the AST nodes.

. Match expansion-tree and AST nodes

= Find AST nodes that stem from a (nested) expansion
= They come together as one or multiple AST subtrees

. Find macro-arguments in the expansion subtree(s)

= Select subtree-nodes that are located within a
= Again: one or multiple AST subtrees

. Derive macro return and argument types from AST nodes

= Exactly one subtree: Root type is unambiguous type
= Multiple subtrees:  Statement-level macro or ambiguous argument type
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m  Application to Linux kernel

I
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=] CppSig on the Linux kernel
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m  Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig
= Matching both trees took 366ms (median)
= Longest running file: 53 minutes (net/mac80211/airtime.c)
= Problem: At-least quadratic run-time of prototypical implementation
due to Clang's AST Matcher Interface.

cd CppSig: Types for Macro Expansions 12/15



CppSig on the Linux kernel

Technische Universitt Hamburg

Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig

= Matching both trees took 366ms (median)

= Longest running file: 53 minutes (net/mac80211/airtime.c)

= Problem: At-least quadratic run-time of prototypical implementation
due to Clang's AST Matcher Interface.

142861 function-like top-level macro expansions

= 58 % = single expression AST subtrees
= 32% = multiple subtrees
= 10 % = match failed, type expansion or, expansion became "" (7)

cd CppSig: Types for Macro Expansions 12/15



CppSig on the Linux kernel

Technische Universitt Hamburg

Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig

= Matching both trees took 366ms (median)

= Longest running file: 53 minutes (net/mac80211/airtime.c)

= Problem: At-least quadratic run-time of prototypical implementation
due to Clang's AST Matcher Interface.

142861 function-like top-level macro expansions

= 58 % = single expression AST subtrees
= 32% = multiple subtrees
= 10 % = match failed, type expansion or, expansion became "" (7)

7519 function-like definitions used as top-level expansion

= 55% = unambigous parameter type (expression param)
= 53% = unambigous return type (expression macro)
= 31% = one or multiple void-typed nodes (statement macro)
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m  Run CppSig as a Clang plugin on Linux 5.12, x86, defconfig

= Matching both trees took 366ms (median)
= | ongest running file: 53 minutes (net/mac80211/airtime.c)

Top-10 Macro-Paramter Types

Parameter Type #Parms.  Parameter Type #Params.
int 1412 unsigned char 143
unsigned int 712 struct device * 102
unsigned long 320 unsigned short 88
unsigned long long 279 void * 71
struct drm_i915_private x 165 struct tty struct * 64

=7 OIY TUNCUOT=ITKE UETITIONS USEU ds TUP-TEVET EXpartsionm

= 55% = unambigous parameter type (expression param)
= 53% = unambigous return type (expression macro)
= 31% = one or multiple void-typed nodes (statement macro)
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Would you have guessed it?
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shm_ids(ns): 34 occurences
disk_to_dev(disk): 35 occurences
wake_up(x): 178 occurences
ext4_journal_stop(handle): 91 occurences
fw_domain_init(uncore, id, set, ack): 12 occurences
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Would you have guessed it? TUHH
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shm_ids(ns): 34 occurences
= struct ipc_ids * (struct ipc_namespace x*)

disk_to_dev(disk): 35 occurences
= struct devicex (struct gendisk x)

wake_up(x): 178 occurences
= void (struct wait_queue_head x)

ext4_journal_stop(handle): 91 occurences
= void (struct jbd2_journal_handle *)

fw_domain_init(uncore, id, set, ack): 12 occurences
= int (intel_uncore *, int, i1915_reg_t, i915_reg_t)

I
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m  Conclusion

I
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Conclusion

CPP is a symbiotic but problematic companion language

= In-kernel usage: abstractions, variability, modularization
= Complex constructs (nesting, involved macros) hinder readability

CppSig: Extract expansion types from the C-AST nodes

1. Record macro expansion tree and argument token lists
2. Match AST Nodes against expansion tree
3. Derive (un)ambiguous macro types from matched subtrees

The Linux kernel is a heavy user of CPP macros

= Monomorphism: 84% return- and 55% argument types are unambigious
= struct drm_i915_private x is the most frequent non-int param type

Source Code and Docker Image are available at:
https://collaborating.tuhh.de/e-exk4 /projects/cpp-macro-types
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