
Operating
System
Group

PSIC: Priority-Strict Multi-Core IRQ Processing

ISORC'22

Malte Bargholz, Christian Dietrich, Daniel Lohmann

May 18, 2022



Prioritized

Multi-Core

Interrupt Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

1 CPU n Sources

External Events (Interrupts)
Device requests interruption

Controller dispatches IRQ

ISRs process and complete request

Better Hardware
m > 1: Embedded multi-cores

n > m ⇒ Still not enough CPUs

Priority-aware processing order?

cd PSIC: Priority-Strict Multi-Core IRQ Processing 2/17



Prioritized Multi-Core Interrupt Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

m CPUs n Sources

External Events (Interrupts)
Device requests interruption

Controller dispatches IRQ

ISRs process and complete request

Better Hardware
m > 1: Embedded multi-cores

n > m ⇒ Still not enough CPUs

Priority-aware processing order?

cd PSIC: Priority-Strict Multi-Core IRQ Processing 2/17



Partitioned or Global Delivery?

Partitioned Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

E

+ Simple in hardware

+ High Cache locality

� Latency despite resources

� Less �exibility

Global Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)
E

ISR / 10

� More complex hardware

� More cache interference

+ Use all available resources

+ O�oad global event distribution

Global and Semi-Partitioned scheduling require (some) system-wide

event distribution → Overheads in real-world system software.

cd PSIC: Priority-Strict Multi-Core IRQ Processing 3/17



Partitioned or Global Delivery?

Partitioned Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

E

+ Simple in hardware

+ High Cache locality

� Latency despite resources

� Less �exibility

Global Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)
E

ISR / 10

� More complex hardware

� More cache interference

+ Use all available resources

+ O�oad global event distribution

Global and Semi-Partitioned scheduling require (some) system-wide

event distribution → Overheads in real-world system software.

cd PSIC: Priority-Strict Multi-Core IRQ Processing 3/17



Partitioned or Global Delivery?

Partitioned Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

E

+ Simple in hardware

+ High Cache locality

� Latency despite resources

� Less �exibility

Global Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)
E

ISR / 10

� More complex hardware

� More cache interference

+ Use all available resources

+ O�oad global event distribution

Global and Semi-Partitioned scheduling require (some) system-wide

event distribution → Overheads in real-world system software.

cd PSIC: Priority-Strict Multi-Core IRQ Processing 3/17



Partitioned or Global Delivery?

Partitioned Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

E

+ Simple in hardware

+ High Cache locality

� Latency despite resources

� Less �exibility

Global Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)
E

ISR / 10

� More complex hardware

� More cache interference

+ Use all available resources

+ O�oad global event distribution

Global and Semi-Partitioned scheduling require (some) system-wide

event distribution → Overheads in real-world system software.

cd PSIC: Priority-Strict Multi-Core IRQ Processing 3/17

Global Priority-Strict Interrupt Processing
A system currently processes IRQs priority strict,
i� its m CPUs execute the top-m ISRs.

Only temporary and bounded priority-strictness violations are
tolerable for a real-time system, yet they are undesirable.



Motivation

Problems with Current Interrupt Controllers

The PSIC Interrupt Controller

Evaluation

Summary

cd PSIC: Priority-Strict Multi-Core IRQ Processing 4/17



Motivation

Problems with Current Interrupt Controllers

The PSIC Interrupt Controller

Evaluation

Summary

cd PSIC: Priority-Strict Multi-Core IRQ Processing 4/17



Global Delivery: Any IRQ on any CPU

In�neon Aurix: Statically con�gured IRQ-CPU pairs
⇒ No global interrupt dispatching

NXP MPC5676 (Power): Both CPUs are noti�ed
⇒ Software must synchronize ISR execution.

ARM GiC and RISC-V PLIC give weak guarantees
CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

Multiple CPUs with sufficiently low priority can be interrupted
⇒ Software must synchronize ISR execution

cd PSIC: Priority-Strict Multi-Core IRQ Processing 5/17



Global Delivery: Any IRQ on any CPU

In�neon Aurix: Statically con�gured IRQ-CPU pairs
⇒ No global interrupt dispatching

NXP MPC5676 (Power): Both CPUs are noti�ed
⇒ Software must synchronize ISR execution.

ARM GiC and RISC-V PLIC give weak guarantees
CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

Multiple CPUs with sufficiently low priority can be interrupted
⇒ Software must synchronize ISR execution

cd PSIC: Priority-Strict Multi-Core IRQ Processing 5/17



Global Delivery: Any IRQ on any CPU

In�neon Aurix: Statically con�gured IRQ-CPU pairs
⇒ No global interrupt dispatching

NXP MPC5676 (Power): Both CPUs are noti�ed
⇒ Software must synchronize ISR execution.

ARM GiC and RISC-V PLIC give weak guarantees
CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

E

ISR / 15

ISR / 15

Multiple CPUs with sufficiently low priority can be interrupted
⇒ Software must synchronize ISR execution

cd PSIC: Priority-Strict Multi-Core IRQ Processing 5/17



Lowest-Priority IRQ Delivery

Do we only interrupt the lowest-priority CPU?

ARM GiC and RISC-V PLIC

Multiple CPUs can be interrupted and suffer from the interference
Inter-CPU synchronization through atomic claim operation

Intel (IO)APIC supports Lowest-Prio Delivery Mode

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

Prio 80

Prio 100

Prioritized delivery and priority-check is decoupled
Delivered IRQ stuck in local APIC ⇒ Priority Inversion

cd PSIC: Priority-Strict Multi-Core IRQ Processing 6/17



Lowest-Priority IRQ Delivery

Do we only interrupt the lowest-priority CPU?

ARM GiC and RISC-V PLIC

Multiple CPUs can be interrupted and suffer from the interference
Inter-CPU synchronization through atomic claim operation

Intel (IO)APIC supports Lowest-Prio Delivery Mode

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

Prio 80

Prio 100

Prioritized delivery and priority-check is decoupled
Delivered IRQ stuck in local APIC ⇒ Priority Inversion

cd PSIC: Priority-Strict Multi-Core IRQ Processing 6/17



Lowest-Priority IRQ Delivery

Do we only interrupt the lowest-priority CPU?

ARM GiC and RISC-V PLIC

Multiple CPUs can be interrupted and suffer from the interference
Inter-CPU synchronization through atomic claim operation

Intel (IO)APIC supports Lowest-Prio Delivery Mode

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

Prio 80 E
ISR / 15

Prio 100

Prioritized delivery and priority-check is decoupled
Delivered IRQ stuck in local APIC ⇒ Priority Inversion

cd PSIC: Priority-Strict Multi-Core IRQ Processing 6/17



Lowest-Priority IRQ Delivery

Do we only interrupt the lowest-priority CPU?

ARM GiC and RISC-V PLIC

Multiple CPUs can be interrupted and suffer from the interference
Inter-CPU synchronization through atomic claim operation

Intel (IO)APIC supports Lowest-Prio Delivery Mode

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

Prio 80
ISR / 15

Prioritized delivery and priority-check is decoupled
Delivered IRQ stuck in local APIC ⇒ Priority Inversion

cd PSIC: Priority-Strict Multi-Core IRQ Processing 6/17



IRQ/ISR Migration

Do we always service the highest-priority IRQs?

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

ISR / 3

ISR / 10

Priority strictness requires Nested Interruptions
Interrupted ISRs stick to the CPU, buried in the stack
Systematic priority-strictness violation

⇒ ISR Migration is mandatory
Controller must decouple IRQ delivery and completion

ARM GiC: IRQ completion and drop of priority are atomic
MCP5676/(IO) APIC: Unmigratable hardware state

cd PSIC: Priority-Strict Multi-Core IRQ Processing 7/17



IRQ/ISR Migration

Do we always service the highest-priority IRQs?

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

ISR / 3

ISR / 10

EISR / 15

Priority strictness requires Nested Interruptions
Interrupted ISRs stick to the CPU, buried in the stack
Systematic priority-strictness violation

⇒ ISR Migration is mandatory
Controller must decouple IRQ delivery and completion

ARM GiC: IRQ completion and drop of priority are atomic
MCP5676/(IO) APIC: Unmigratable hardware state

cd PSIC: Priority-Strict Multi-Core IRQ Processing 7/17



IRQ/ISR Migration

Do we always service the highest-priority IRQs?

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

ISR / 3ISR / 15

Priority strictness requires Nested Interruptions
Interrupted ISRs stick to the CPU, buried in the stack
Systematic priority-strictness violation
⇒ ISR Migration is mandatory

Controller must decouple IRQ delivery and completion
ARM GiC: IRQ completion and drop of priority are atomic
MCP5676/(IO) APIC: Unmigratable hardware state

cd PSIC: Priority-Strict Multi-Core IRQ Processing 7/17



IRQ/ISR Migration

Do we always service the highest-priority IRQs?

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

ISR / 3ISR / 15

Priority strictness requires Nested Interruptions
Interrupted ISRs stick to the CPU, buried in the stack
Systematic priority-strictness violation
⇒ ISR Migration is mandatory

Controller must decouple IRQ delivery and completion
ARM GiC: IRQ completion and drop of priority are atomic
MCP5676/(IO) APIC: Unmigratable hardware state

cd PSIC: Priority-Strict Multi-Core IRQ Processing 7/17



State-of-the-Art Interrupt Controllers

cd PSIC: Priority-Strict Multi-Core IRQ Processing 8/17



Motivation

Problems with Current Interrupt Controllers

The PSIC Interrupt Controller

Evaluation

Summary

cd PSIC: Priority-Strict Multi-Core IRQ Processing 9/17



PSIC: Priority-Strict Interrupt Controller

Multi-Core Interrupt Controller for real-time systems

Global Delivery of the highest-priority IRQ to the lowest-priority CPU
PSIC reconsiders decisions if CPU-priorities change
Simple ISR migration: No CPU-local hardware state

PSIC

PSIC is (near) drop-in replacement for RISC-V's PLIC

Compatible memory-mapped IO interface
PSIC manages CPU and IRQ priorities
CPU-local interface: trigger, claim, redeliver, complete

cd PSIC: Priority-Strict Multi-Core IRQ Processing 10/17



PSIC: Technical Details

cpuInt
E

cpuInt
E

cpuInt
E

eIRQE

eIRQE

eIRQE

IRQ Source #1
intPrio : P bit
intMask : 1 bit
irqPrio : P bit
pending : 1 bit
delivered : 1 bit

IRQ Source #2
...

IRQ Source #n

State Port

&
&

Max
IRQ

IRQ#1

irqPrio

active
IRQ#2

irqPrio

active
IRQ#n

IRQ
Deliver

irqMax

irqMaxPrio

CPU #1
cpuPrio : P bit
msgPrio : P bit
msgIRQ : N bit
msgValid : 1 bit
msgDirty : 1 bit

CPU #2
...

CPU #m

0
1

&
&

Min
CPU

CPU#1

curPrio CPU#2

curPrio CPU#m

cpuMin, cpuMinPrio, cpuMinIRQ

De
liv

er
Po

rt

cpuSel

msgPrio

msgIRQ

IRQ
Retract

Di
rty

Po
rt

hasDirty

dirtyIRQ

cpuMinIRQ

irqSel, pending, delivered
PSIC

IRQ Config Command Interface CPU Config

irqSel, delivered

m
CP

Us

n
De

vic
es

Memory Bus

block

d
e
l
a
y

CPU-local message boxes
Deliver one IRQ per cycle
SW takes responsibility after claim

Priority changes invalidate
mailboxes
Retract invalidated decisions
Global IRQ-Source blocking

cd PSIC: Priority-Strict Multi-Core IRQ Processing 11/17



PSIC: System-Software Integration

ISR migration requires CPU-local (software-)state migration
ISRs become light-weight threads, trampoline performs switch
PSIC handles ISR ownership, no global synchronization
Software induces only bounded priority-strictness violations

context_t ctx[MAX_IRQ];
irq_t active[MAX_CPU];

void PSIC_Trampoline() {
cpu_t id = getCPU();

// Save PREV Context
irq_t PREV = active[id];
save(&ctx[PREV]);

// Claim NEXT and Redeliver PREV
irq_t NEXT = PSIC.claim();
if (prev != 0)
PSIC.redeliver(prev);

// Load new Context
active[id] = NEXT;
load(&context[NEXT]);

}

void ISR_3() {
enable_int();
// ... workload ...
disable_int();

setup(&ctx[3], &ISR_3);
PSIC.complete(3);
PSIC.setCPUPrio(0);

}

cd PSIC: Priority-Strict Multi-Core IRQ Processing 12/17



Motivation

Problems with Current Interrupt Controllers

The PSIC Interrupt Controller

Evaluation

Summary

cd PSIC: Priority-Strict Multi-Core IRQ Processing 13/17



Prototype and Hardware Cost

Integrated Prototype with Rocket RISC-V Generator

Configurable: IRQ sources, CPU interfaces, priority width
Synthesized for Xilinx Zynq7000 FPGA (XC7X020), 100Mhz

cd PSIC: Priority-Strict Multi-Core IRQ Processing 14/17



Prototype and Hardware Cost

Integrated Prototype with Rocket RISC-V Generator

Configurable: IRQ sources, CPU interfaces, priority width
Synthesized for Xilinx Zynq7000 FPGA (XC7X020), 100Mhz

cd PSIC: Priority-Strict Multi-Core IRQ Processing 14/17

Maximum Clock Frequency



Interference and Latency

Parallel cyclic Test with periodic (ti ) IRQ

cd PSIC: Priority-Strict Multi-Core IRQ Processing 15/17



Motivation

Problems with Current Interrupt Controllers

The PSIC Interrupt Controller

Evaluation

Summary

cd PSIC: Priority-Strict Multi-Core IRQ Processing 16/17



Summary

Global/Semi-partitioned scheduling requires Global Event Delivery

Current multi-core controllers do not support priority-strict delivery
Global delivery, Lowest-priority delivery, ISR migration

PSIC: Priority-strict IRQ delivery onto multiple cores

Deliver one IRQ per cycle to a CPU-local mailbox
Retract and redeliver IRQs on CPU-priority change
Replacement for RISC-V’s platform-Level interrupt controller

Prototype Implementation for Rocket Chip Generator

Complexity and critical path driver: Max-IRQ selector
Reasonable overheads for real-world–sized systems

cd PSIC: Priority-Strict Multi-Core IRQ Processing 17/17


