
Operating
System
Group

PSIC: Priority-Strict Multi-Core IRQ Processing

ISORC'22

Malte Bargholz, Christian Dietrich, Daniel Lohmann

May 18, 2022



Prioritized

Multi-Core

Interrupt Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

1 CPU n Sources

External Events (Interrupts)
Device requests interruption

Controller dispatches IRQ

ISRs process and complete request

Better Hardware
m > 1: Embedded multi-cores

n > m ⇒ Still not enough CPUs

Priority-aware processing order?

cd PSIC: Priority-Strict Multi-Core IRQ Processing 2/17



Prioritized Multi-Core Interrupt Delivery

CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

m CPUs n Sources

External Events (Interrupts)
Device requests interruption

Controller dispatches IRQ

ISRs process and complete request

Better Hardware
m > 1: Embedded multi-cores

n > m ⇒ Still not enough CPUs

Priority-aware processing order?

cd PSIC: Priority-Strict Multi-Core IRQ Processing 2/17



Partitioned or Global Delivery?
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Global and Semi-Partitioned scheduling require (some) system-wide

event distribution → Overheads in real-world system software.
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Global Priority-Strict Interrupt Processing
A system currently processes IRQs priority strict,
i� its m CPUs execute the top-m ISRs.

Only temporary and bounded priority-strictness violations are
tolerable for a real-time system, yet they are undesirable.
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Global Delivery: Any IRQ on any CPU

In�neon Aurix: Statically con�gured IRQ-CPU pairs
⇒ No global interrupt dispatching

NXP MPC5676 (Power): Both CPUs are noti�ed
⇒ Software must synchronize ISR execution.

ARM GiC and RISC-V PLIC give weak guarantees
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Multiple CPUs with sufficiently low priority can be interrupted
⇒ Software must synchronize ISR execution

cd PSIC: Priority-Strict Multi-Core IRQ Processing 5/17



Global Delivery: Any IRQ on any CPU

In�neon Aurix: Statically con�gured IRQ-CPU pairs
⇒ No global interrupt dispatching

NXP MPC5676 (Power): Both CPUs are noti�ed
⇒ Software must synchronize ISR execution.

ARM GiC and RISC-V PLIC give weak guarantees
CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

Multiple CPUs with sufficiently low priority can be interrupted
⇒ Software must synchronize ISR execution

cd PSIC: Priority-Strict Multi-Core IRQ Processing 5/17



Global Delivery: Any IRQ on any CPU

In�neon Aurix: Statically con�gured IRQ-CPU pairs
⇒ No global interrupt dispatching

NXP MPC5676 (Power): Both CPUs are noti�ed
⇒ Software must synchronize ISR execution.

ARM GiC and RISC-V PLIC give weak guarantees
CPU 0
Prio ∞

CPU 1
Prio 0

CPU 2
Prio 0

IRQ 0
Prio 10

IRQ 1
Prio 15

IRQ 2
Prio 3

IRQ
Controller

topm(I0, . . . , In)

E

ISR / 15

ISR / 15

Multiple CPUs with sufficiently low priority can be interrupted
⇒ Software must synchronize ISR execution

cd PSIC: Priority-Strict Multi-Core IRQ Processing 5/17



Lowest-Priority IRQ Delivery

Do we only interrupt the lowest-priority CPU?

ARM GiC and RISC-V PLIC

Multiple CPUs can be interrupted and suffer from the interference
Inter-CPU synchronization through atomic claim operation

Intel (IO)APIC supports Lowest-Prio Delivery Mode
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Prioritized delivery and priority-check is decoupled
Delivered IRQ stuck in local APIC ⇒ Priority Inversion
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IRQ/ISR Migration

Do we always service the highest-priority IRQs?
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Priority strictness requires Nested Interruptions
Interrupted ISRs stick to the CPU, buried in the stack
Systematic priority-strictness violation

⇒ ISR Migration is mandatory
Controller must decouple IRQ delivery and completion

ARM GiC: IRQ completion and drop of priority are atomic
MCP5676/(IO) APIC: Unmigratable hardware state
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State-of-the-Art Interrupt Controllers
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PSIC: Priority-Strict Interrupt Controller

Multi-Core Interrupt Controller for real-time systems

Global Delivery of the highest-priority IRQ to the lowest-priority CPU
PSIC reconsiders decisions if CPU-priorities change
Simple ISR migration: No CPU-local hardware state

PSIC

PSIC is (near) drop-in replacement for RISC-V's PLIC

Compatible memory-mapped IO interface
PSIC manages CPU and IRQ priorities
CPU-local interface: trigger, claim, redeliver, complete
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PSIC: Technical Details
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PSIC: System-Software Integration

ISR migration requires CPU-local (software-)state migration
ISRs become light-weight threads, trampoline performs switch
PSIC handles ISR ownership, no global synchronization
Software induces only bounded priority-strictness violations

context_t ctx[MAX_IRQ];
irq_t active[MAX_CPU];

void PSIC_Trampoline() {
cpu_t id = getCPU();

// Save PREV Context
irq_t PREV = active[id];
save(&ctx[PREV]);

// Claim NEXT and Redeliver PREV
irq_t NEXT = PSIC.claim();
if (prev != 0)
PSIC.redeliver(prev);

// Load new Context
active[id] = NEXT;
load(&context[NEXT]);

}

void ISR_3() {
enable_int();
// ... workload ...
disable_int();

setup(&ctx[3], &ISR_3);
PSIC.complete(3);
PSIC.setCPUPrio(0);

}
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Prototype and Hardware Cost

Integrated Prototype with Rocket RISC-V Generator

Configurable: IRQ sources, CPU interfaces, priority width
Synthesized for Xilinx Zynq7000 FPGA (XC7X020), 100Mhz
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Interference and Latency

Parallel cyclic Test with periodic (ti ) IRQ
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Summary

Global/Semi-partitioned scheduling requires Global Event Delivery

Current multi-core controllers do not support priority-strict delivery
Global delivery, Lowest-priority delivery, ISR migration

PSIC: Priority-strict IRQ delivery onto multiple cores

Deliver one IRQ per cycle to a CPU-local mailbox
Retract and redeliver IRQs on CPU-priority change
Replacement for RISC-V’s platform-Level interrupt controller

Prototype Implementation for Rocket Chip Generator

Complexity and critical path driver: Max-IRQ selector
Reasonable overheads for real-world–sized systems
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