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Abstract. For systematic fault injection (FI), we deterministically re-execute
a program, introduce faults, and observe the program outcome to assess its
resilience in the presence of transient hardware faults. For this, simulation-
assisted ISA-level FI provides a good trade-off between result quality and the
required time to execute the FI campaign. However, for each architecture, this
requires a specialized ISA simulator with tracing, injection, and error observation
capabilities; a dependency that not only increases the bar for the exploration of
ISA-level hardening mechanisms, but which can also deviate from the behavior
of the actual hardware, especially when an error propagates through the system
and triggers semantic edge cases.
With SailFAIL, we propose a model-driven approach to derive FI platforms from
Sail models, which formally describe the ISA semantics. Based on two existing
(RISC-V, CHERI RISC-V) and one newly introduced (AVR) Sail models, we use the
Sail toolchain to derive emulators that we combine with the FAIL* framework
into multiple new FI platforms. Furthermore, we extend Sail to automatically
introduce bit-wise dynamic register tracing into the emulator, which enables us
to harvest bit-wise access information that we use to improve the well-known
def-use pruning technique. Thereby, we further reduce the number of necessary
injections by up to 19 %.

Keywords: ISA-level fault injection · transient hardware faults · simulation-
assisted fault injection.

1 Introduction

Shrinking transistor sizes and lowering operating voltages make transient hardware
faults, where bits in a machine’s dynamic state randomly flip, not only a challenge
for safety-critical systems [7, 5, 18] but, increasingly, also for cloud providers [13].
Functional safety standards (e.g., ISO 26262 [15]) already reflect this and recommend
explicit measures to assess (and possibly mitigate) the effects of single-event upsets
(SEUs) causing transient hardware faults (soft errors) [16] on the functional safety
of the system. One possibility to assess a system’s resilience is a systematic fault
injection (FI) campaign [23] of the program-under-test (PUT), where many (or even all)
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of the possible faults for a single execution are injected into different program re-runs,
while the injection platform classifies the subsequent behavior (e.g., benign fault, silent-
data corruption (SDC)). Such precise failure classification does not only quantify the
program resilience, but also guides the introduction of mitigation techniques [14].
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Fig. 1: Overview of SailFAIL

For the injection platform, three solution classes emerged: (1) Software-Implemented
FI (SWIFI) [24, 3] runs a pre-injected version of the program on the final target platform,
leveraging high injection speeds. (2) Simulation-Assisted FI (SAFI) [12, 10, 23] uses a
low-level architecture simulator (e.g., ISA- or flip-flop level) to inject and observe the
executing program “from beneath”, which eases parallelization of the campaign. (3)
Hardware-Assisted FI (HAFI) [6, 9] is similar to SAFI, but loads an instrumented netlist
of the target platform loaded into an FPGAs, which allows for gate-level FI at reasonable
speeds. While Software-Implemented FI (SWIFI)’s pre-injected programs only behave
similar (e.g., different code and data layout) to the PUT and HAFI can be parallelized
only up to the number of available FPGAs/LUTs, SAFI provides a compromise between
campaign run time and result quality.

Still, SAFI requires an instrumented simulator that provides hooks and callbacks
for tracing, fault injection, and behavior observation. Often, SAFI platforms extend
existing simulators, like Bochs [23] or gem5 [26], which shortens development times
but bears the risk that the used simulator differs in subtle details from the actual target
platform, which can skew the FI results.

Therefore, with SailFAIL, we propose (see Fig. 1) to derive SAFI platforms from
a formal description of the ISA semantic, which allows for easier validation and ver-
ification. We chose Sail [1], since Sail models cannot only be translated to theorem
prover definitions, but the Sail toolchain can already compile a model to a sequential
C emulator. Furthermore, we leverage the existing FAIL* toolchain and combine the
generated emulator with FAIL*’s injection and experiment infrastructure. Due to our
model-driven approach, we can automatically introduce callbacks during this compila-
tion process, which not only limits the required model modifications but also allows
for a fine-grained observation of the PUT down to the bit level. All in all, we are able
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to provide five new FAIL* backends for RISC-V (32/64 bits), CHERI RISC-V (32/64 bits),
and AVR 8-bit microcontrollers.
The contributions of this paper are as follows:

– We derive ISA-level FI platforms from two existing and one newly developed Sail
ISA models. In total, we provide five new FI backends.

– We extend the Sail toolchain to provide for automatically instrumented bit-precise
register access tracing.

– We propose bit-wise def-use fault space pruning for partially interpreted register
accesses.

The rest of the paper is structured as follows: In Sec. 2, we provide the necessary
background on FAIL* and Sail, before we describe the SailFAIL approach in Sec. 3.
In Sec. 4, we perform an evaluation of the resulting FI platforms against the existing
FAIL* backend for IA-32 and quantify the benefits of our automatic register-tracing
transformation, before we conclude in Sec. 5.

2 Background

SailFAIL integrates formal models of the ISA semantic with the existing SAFI frame-
work FAIL* to provide different systematic FI platforms. As our ISA-modeling language,
we chose Sail [1], whose toolchain provides versatile backends, including the auto-
matic derivation of ISA-level emulators. Furthermore, different high-quality ISA models
(e.g., ARMv8.5, RISC-V, MIPS) with and without the HW-enabled capability extension
CHERI [4], which inspired ARM’s Morrello CPU extension, are available.

2.1 Systematic Fault Injection

For the systematic FI of transient hardware faults in the volatile machine state, we
execute three steps (see Fig. 1, left): (1) trace a fault-free program execution as the
golden run, which spans up the fault space (FS) of all potential faults (one fault per time
and bit, uniformly distributed). (2) prune the FS [25, 11, 20] to plan a representative
subset of faults as pilot injections. (3) re-execute the program deterministically, inject
the planned pilots, and classify the following program behavior. While this results in
a precise (and even complete) picture of a program’s resilience on the chosen level,
it is not only time-consuming, but it also requires a specially-instrumented execution
platform for steps 1 and 3, which must be able to record the program state, inject faults
into the executing program, and observe the continued behavior.

For the result interpretation, we have to use metrics that incorporate not only
failure counts but also the fault-space size [21]. Otherwise, the results, especially from
software-level FI, can deviate substantially from the actual failure behavior [5, 19, 22]
of the hardware. However, it was shown [22] that ISA-level injection, if interpreted
correctly, is well suited to select the most resilient algorithm variant.
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2.2 Sail: ISA Modeling Language

Sail is a special-purpose modeling language for ISA-semantic description, that comes
with a toolchain to analyze and translate models to different representations. In its core,
the Sail language is a dependently-typed and statically-checked first-order imperative
language with strong pattern-matching capabilities that mimics existing industry ISA
pseudocode. Sail’s main design goal was to create a language that is expressive enough
to densely describe ISA semantics but also limited enough to allow for easy translation.
For example, Sail does not support higher-order functions.

1 register PC : bits(22) // Program Counter
2 register nextPC : bits(22) // PC in the next cycle
3 register SP : bits(16) // Stack Pointer
4
5 function clause decode 0b1101 @ offset : bits(12)
6 = Some(BRTYPE(AVR_RCALL, offset))
7
8 function clause execute (BRTYPE(AVR_RCALL, offset)) = {
9 // Push return address onto Stack
10 let ret = write_dmem(SP, nextPC[7..0]);
11 let ret = write_dmem(SP - 1, nextPC[15..8]);
12 SP = SP - 2;
13
14 // Relative jump with a scaling of 2 byte.
15 let roffset = signed(offset) * 2;
16 nextPC = nextPC + roffset;
17 }

Fig. 2: Sail Fragment of the rcall Instruction in our AVR model

In a Sail model, registers, which are essentially global variables, contain the model
state. Sail supports enums, bit vectors, bit fields, and arbitrary-precision integers as
scalar types, while complex types like dynamic lists, vectors, structs and tagged unions
are also available. However, most complex and nested types, beyond a simple vector of
bitvectors, are quite unusual for typing registers, as the model resembles a hardware
implementation. In Fig. 2, we present the relative-call instruction from our own AVR
model. PC and nextPC are 22-bit registers and hold the current and the subsequently
following program counter, while SP holds the stack pointer and is 16 bits wide.

Sail allows for scattered function definitions that use pattern matching on their
argument values. In the example, we show one clause of the decode() function that
decodes rcall instructions. When the opcode starts with the pattern 1101, this clause
captures the remaining 12 argument bits in offset and returns the decoded instruction.
In the corresponding execute() clause, we push the return address onto the stack, and
perform a PC-relative jump. Sail also supports slicing of bit vectors and has a built-in
abstraction for memory, which is accessed through write_dmem().

For generating a sequential C emulator, the Sail toolchain maps registers to global
variables and collects all clauses for a function before translating it to a C function.
Scalar types and bitvectors, if smaller than 128 bits, are mapped to C integers; bitfields
and other complex type become specialized structs with generated accessor functions.
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2.3 FAIL*: Fault Injection Leveraged

FAIL* [23] is a versatile FI platform for the injection of transient hardware faults on
the ISA level that is designed to support multiple, simulator- and hardware-debugger–
based, injection backends (see Fig. 1). At the moment, FAIL* already has support for
Bochs (IA-32), Gem5 (ARM), and OpenOCD (ARM HW) and some experimental and
less mature backends (Qemu, Trace32 Tri-Core simulator). Furthermore, FAIL* not only
handles the FI itself, but also provides the necessary tooling to record the golden-run
trace, plan injections, and to run and distribute the FI campaign onto multiple workers.

For providing high-speed tracing and FI, FAIL* directly links its client library into
the simulator binary: FAIL* creates a second co-routine within the simulator process,
which alternates its execution with the simulator’s control-flow thread. On specific
events, the (modified) simulator switches to the co-routine, which is able to inspect
and manipulate the machine state before handing back control. Furthermore, to speed
up injections [2], back ends can also support saving and restoring the machine state.

For its functionality, FAIL* relies on callbacks within the simulator to inform the
client library about events, provide access to the machine state, and for (re-)storing the
machine state. For the existing backends, this hand-crafted connection between FAIL*
and the simulator is often rather brittle, which increases the burden of updating the
simulator. FAIL*, for example, still ships with a rather ancient version of Bochs 2.4.6
(2011), while 2.7 (August 2021) is already available.

While FAIL* records memory accesses for the golden run, it uses a different route
to plan CPU-register injections: FAIL* disassembles (with LLVM or libcapstone) the
program binary, and inspects the list of read and written registers for each traced
instruction. While such detailed instruction summaries are consistently available for
COTS architectures, a hardware developer interested in resilient ISA design would
have to maintain, both, the ISA-extension and the FI platform and keep them in sync.
Therefore, dynamic register-access tracing, where the FI platform itself records which
registers are read, would be beneficial for exploring alternative designs.

3 The SailFAIL Approach

To speed up FI-platform development, we propose SailFAIL, a methodology to derive
FI platforms from Sail models. Thereby, we not only provide more faithful ISA-level
execution platforms for SAFI, but become able to modify the Sail compiler to unleash
dynamic register tracing: The SailFAIL-derived simulators dynamically report register
reads and writes, down to individual bit-field members, which allows for bit-wise
def-use pruning of partially interpreted registers (e.g., status registers). Furthermore,
we extend FAIL* to systematically support backends with multiple types of memory
throughout the complete FI toolchain.

3.1 Connecting Sail and FAIL*

Although Sail is designed as an ISA modeling language, it has no built-in notion of
traps, executed instructions, or the current program counter, and does not distinguish
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Table 1: Callbacks that the emulator calls to inform FAIL* about the execution progress.
willExecute(PC) Indicate the next program counter to execute.
executeRequests() Give FAIL* the chance to save and restore the machine state.
setIF({true, false}) Indicate that following memory-accesses stem from the instruc-

tion fetch.
onTrap(num) A synchronous trap occured.
onInterrupt(num, nmi) An (non-maskable) interrupt occured.
didExecute(PC, opcode) Execution of instruction did finish.

between ISA-defined and model-specific registers. While this leaves more room for
model designers, it requires SailFAIL to use manually inserted callbacks to indicate
the current progress of the execution. Tab. 1 gives an overview about the necessary
state-transition callbacks. However, since these callbacks are directly inserted into the
ISA model, they can co-evolve with the model instead of being managed separately, as
currently done in FAIL*.

For memory accesses, we also rely on explicitly inserted callbacks (onMemoryRead(),
onMemoryWrite()) to report to FAIL*. While a generic modification of Sail’s memory
abstraction would have been possible, explicit hooks allow us to gather additional
information, like the type of accessed memory (i.e., RAM or flash), that is only available
within the model.

For register FI, we must have read/write access to all ISA-visible registers
(e.g., general-purpose registers, program counter. . . ). For this, we manually curate
a register mapping with one line for each register to connect the global variables in
the C emulator with the FAIL* machinery. From these mappings, we automatically
derive the register-access functions and generate the machine-state checkpointing
functionality.

We also explored the possibility of automatically exporting such mappings from
the Sail compiler. However, since Sail does not distinguish between model-internal and
ISA-visible registers, we decided to stick with the curated variant for now. This also
has the benefit of making it easier to support registers whose ISA-level format does
not match the format within the model. For example, the CHERI RISC-V model stores
capabilities in a decoded form, whereby we have to en-/decode them on access.

3.2 Systematic Register Access Tracing

While deriving emulators from formal ISA models, which are easier to validate, already
increases the faith in the FI platform, we can harvest more benefits from this model-
driven approach. Since registers are a core concept of Sail, SailFAIL is able to use a
modified Sail compiler that inserts fine-grained register access tracing into the emulator.
Thereby, we no longer require a disassembler, but also gain access to dynamic and
more fine-grained tracing information: Even if an instruction statically depends on
a register, it does not necessarily interpret all bits or read it in a specific context. For
example, some instructions interpret/update only some bits of the machine status word
and the exception table base register is only of interest in case of a trap.
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To provide detailed access information, including a bit mask of potentially inter-
preted bits, we modified the C backend of the Sail compiler to insert code at every
variable access, which covers all (global) register and (local) variable accesses. However,
since Sail supports references to registers and nested data types, correlating an access
back to a register definition is not straight-forward. To solve this, we search, before
each access, for the memory addresses of accessed values in the previously mentioned
register mapping (see Sec. 3.1), which also stores pointers to the mapped global vari-
ables. On match, SailFAIL reports the dynamically occurred access to FAIL*, whereby
we can cover all ISA registers and report only those accesses that actually occurred.

Nevertheless, there are several challenging patterns in Sail’s generated emulators:
For accesses to nested register (e.g., within a struct), the emulator creates a temporary
copy (with a different address), performs the access, and writes back the result. To catch
these accesses, we let the emulator create temporary mappings for the life-time of the
copy. Furthermore, we precisely track bit field accesses, which the emulator implements
in specialized accessor functions that extract and update specific bits: For each accessor,
we calculate an access mask, let the accessor identify the accessed register through the
register mapping, and report register and access mask to FAIL*. Thereby, SailFAIL is
able to provide precise access information for bit fields, which we subsequently use to
reduce the number of necessary FIs.

3.3 Bit-Wise Def-Use Pruning

FS size is a major problem for systematic FI that aims for a high, or even complete,
coverage of all faults in the FS. Naively, we would have to inject every bit of information
in every cycle, which quickly becomes infeasible for realistic programs. Therefore,
fault-pruning methods, which form sets of equivalent faults that all show the same
erroneous behavior on injection, are used. For each equivalence set, one pilot injection
is performed as a representative.

Of these methods, def-use-pruning [25, 11] is the most established one. For a specific
fault location, we partition the time axis at read and write events into compact intervals.
As faulty information only becomes active on access, every fault within the interval
can act as a representative injection, whose failure classification can be projected onto
all members of the interval. Even more, intervals that are closed by a write event are
surely benign and require no injection. For example, Fig. 3a shows a 4-bit, 10 cycle FS
for a processor’s status register SREG (40 faults). As there are 4 read events (after cycle
0, 2, 4, 8), def-use pruning would schedule 16 injections for complete FS coverage. In a
recent work [20], we also made def-use-pruning aware of the program’s data-flow to
form two-dimensional equivalence intervals.

However, as touched on before, instructions do not necessarily access or overwrite
all bits of a register. For example, the first access to SREG in Fig. 3a, only reads bit 1 and
writes bits 0 and 1; bits 2 and 3 remain untouched, whereby no injection for these bits is
necessary at cycle 0. For bit 3, no injection is even necessary at all, as it is overwritten
after cycle 2. In total, with the recorded access-mask information, only 7 injections are
really required to cover the presented FS.

To incorporate the access masks, we extend the byte-granular def-use pruning
of FAIL* (see Fig. 3b): For each coarse-grained fault location, we keep a FIFO stack
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(a) Example fault space with 4-bit Read and Write masks.

1 def bit_wise_prune(events):
2 # Initialize Access Stacks and iterate over all events in
3 # chronological order
4 access_stacks = {loc: Event(time=0,mask=0xffff)
5 for loc in all_locs])
6 for event in events:
7 access_mask = event.mask # Copy mask!
8 # Iterate over previous events in reverse
9 access_stack = access_stacks[event.loc]
10 for prev in reversed(access_stack):
11 # Has previous event touched the same bits
12 overlap = access_mask & prev.mask
13 if overlap != 0:
14 # New equiv. interval: (prev.time, event.time)
15 new_interval(prev.time, event.time,
16 event, overlap)
17 # Clear bits in both masks
18 prev.mask ^= overlap
19 access_mask ^= overlap
20 # Pop Empty events from Stack
21 if prev.mask == 0: ...
22 # Push current event onto the Stack
23 access_stack.push(event)

(b) Algorithm in Python Pseudocode

Fig. 3: Bit-Wise Def-Use Pruning. For Sail bit fields, SailFAIL records access bit-masks for each
read/write event, whereby a more precise def-use pruning is possible.

that holds previous read/write events with a bit-mask of still open equivalence in-
tervals. For each access in the golden run, we search the access history backwards
for masks that overlap with the current access mask. On match, we report an in-
terval (new_interval()) between the previous (prev.time) and the current access
(event.time) with the overlapping bit mask. Since we close those reported intervals in
previous accesses, we can drop old events (not shown) such that the stack for a register
never grows larger than the register width.

3.4 Virtual Fault Spaces

With the flexibility of SailFAIL’s model-driven approach, the FI platform has the chance
to support a wide range of processors. However, this also requires unified support for
the different state holding elements (i.e., registers, RAM, EEPROM, flash. . . ). Therefore,
we introduce the virtual fault space, which maps the different kinds of memory into a
unified FS abstraction, on which we can carry out FS analyses, the fault pruning and
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the campaign management. Thereby, SailFAIL is able to handle different architectures,
even with experimental ISA extensions, with the same toolchain and the same database
schema.

In essence, the virtual fault space maps different fault locations within the target
architecture into a linear address space for which we use 64-bit-wide addresses. While
recording the golden run, we translate accesses into this unified FS, let FAIL* work on
this representation, and only map the FS address back to the actual emulator register
(and its corresponding global variable) at injection time. In this translation step, we
are also able to provide a dense encoding for unusual kinds of memory. For example,
the CHERI RISC-V 32-bit architecture stores one out-of-band tag bit for every 64 bits
of memory to ensure the “unforgeable” attribute of capabilities. With the virtual fault
space, we are able to densely store those tag bits in a separate FS region instead of
supporting 65-bit memory throughout the whole FI toolchain.

4 Evaluation

We used SailFAIL with three Sail models (RISC-V, CHERI RISC-V, AVR), whereof the
two RISC-V models were built by the Sail developers [1] and the AVR model was
developed by us. Since the RISC-V models have configurable bit widths (32/64 bits),
we provide five new backends for FAIL*. After developing SailFAIL for the RISC-V FI
platforms, it took one developer day to derive the AVR FI platform. In the following, we
will quantify the efficiency of these backends, report on the coverage of the dynamic
register tracing, and show the potential saving of bit-wise pruning for bit-packed CPU
registers.

4.1 Simulation Overheads

For systematic SAFI, the simulation platform executes the same program, over and over
again, potentially millions of times. Thereby, the run-time-overheads for checkpoint-
ing and instruction simulation become critical properties for SailFAIL’s applicability.
Therefore, we quantify these overheads by comparing the existing IA-32 backend
(Bochs), which is FAIL*’s most mature platform, with our backends for RISC-V 32-bit,
which comes closest to IA-32, and AVR. Furthermore, we perform golden-run tracing
with Spike3, the reference ISA simulator for RISC-V. We executed all benchmarks on
a 48-core (96 HW threads) Intel Xeon Gold 6262 CPU with 2.10 GHz and 373 GiB of
RAM, within a Debian 11.0 Docker container, which we made publicly available [8] to
ease the reproduction of our results.

For the benchmark, we execute the golden run trace step, which includes starting
the simulator, saving a machine state checkpoint, and performing a fault-free execution
of the program, while recording program counter (PC) and memory accesses. We focus
on the tracing step here, since fault-injected executions are all purposefully different
from each other. However, since each FI run consists of checkpoint restoration and
program execution, we believe that the results are transferable.
3 https://github.com/riscv-software-src/riscv-isa-sim
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Our PUT calculates the CRC32 checksum over the first 8000 iteratively calculated
Fibonacci numbers (overflowed at 32 bits). This program requires almost the same
number of instructions on RISC-V and IA-32 (488K instr.). For the single-threaded trac-
ing, we record the number of simulated instructions and the run-time of the executing
simulator and show the achieved simulation performance in Fig. 4.

Without dynamic register tracing, our RISC-V 32-bit emulator achieves 13 percent
of the performance of Bochs (and Spike), which simulate at around 1.2MHz. For the
considerably simpler 8-bit AVR architecture, SailFAIL achieves 327 KHz. With dynamic
register tracing, which is only required for golden run tracing and can be disabled for
the actual FI, the simulation frequency is at 11 KHz (RISC-V) and 23 KHz (AVR).

The less-desirable performance results of Sail-generated simulators have two ori-
gins: (1) Quality of the model: As the authors admit, the RISC-V model has “many oppor-
tunities for optimisation”[17] as it only achieves around 300 KHz without instruction
tracing. (2) Sail’s C-emulator backend: Although our AVR model is a straight-forward
implementation of a rather simple 8-bit ISA, its performance is still by a factor of three
from Bochs and Spike. From this, we conclude that the translation from Sail to C is
not yet fully optimized. Nevertheless, unlike hand-optimized per-ISA backends, all
SailFAIL FI platforms will automatically become faster with improvements to the Sail
toolchain.

For checkpoint saving, Bochs requires 0.54 seconds, while the RISC-V emulator only
requires 0.024 seconds. These long checkpointing times stem from the fact that Bochs is
not only a CPU emulator, but emulates a whole execution platform including periphery.
This is also reflected in Boch’s startup time of 3.82 seconds, which makes checkpointing
absolutely necessary for reasonable FI times. With SailFAIL, the 0.011 second setup
time is even faster than saving the checkpoint. So, while the hand-optimized simulator
will outperform Sail’s generated one in the long run, SailFAIL can already be faster for
short running programs.
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4.2 Register Trace Coverage

To validate our register tracing approach, we compare the recorded register accesses to
the result of FAIL*’s trace analysis, which statically extracts register access patterns
from the disassembled binary. At the very least, SailFAIL must record all accesses
that can be also be statically extractable. For RISC-V 32-bit, we traced the mentioned
program for the first 500 Fibonacci numbers (30 510 instructions), loaded the golden
run into the database, and executed (bit-wise) def-use pruning.

In total, the disassembler approach reported 2.58 ·105 register byte accesses4, while
SailFAIL reported 6.27 · 105 accesses. SailFAIL faithfully covered all statically inferred
register accesses, but moreover found accesses to six additional architecture-specific
registers (MISA, MSTATUS, MIP, MIE, MCYCLE, MTIME), which the CPU implicitly uses to
decide on the instruction semantic and interruptions. While these registers are not
listed in the disassembler information, SailFAIL makes it possible to also cover them
in a FI campaign.

4.3 Efficiency Improvements by Bit-Wise Pruning

Our bit-wise pruning method, combined with the fine-grained access information,
allows SailFAIL to cover partially read/written registers without planning a FI for each
bit in each accessed register. As the disassembler-based approach would only report
full-width accesses to those six registers, the byte-granular def-use pruning method
would require 4.43 · 106 pilot injections into the registers. By taking the access masks
into account, we are able to reduce this number to 3.58 · 106 (−19.28%).

For the CRC32-Fibonacci program on AVR (N=500, 85 511 instructions), the situa-
tion looks similar: a disassembler-based approach would require 9.42 · 105 single-bit
register injections, while SailFAIL plans 7.9 · 105 injections (−16.17%). For AVR, this
reduction stems from the 8-bit wide SREG register, which, in contrast to RISC-V’s ma-
chine status word, is essential to the instruction semantic as it stores condition codes.
From 21 000 SREG reads, our dynamic tracing recorded that 96.4% interpreted a single
bit and 3.6% accessed two bits. Unlike a byte-wise def-user pruner, which would plan
8 injections per access, our bit-wise pruning only plans one resp. two injections.

4.4 Case Study: SDC Counts for Bubblesort

To demonstrate the flexibility of SailFAIL, we execute a comparative FI campaign to
quantify the resilience of different bubblesort implementations on different RISC-V
derivatives. With bubblesort, we sort ten integers (register width) that are stored in a
static array, a single-linked list, and a double-linked list; for the CHERI variants, the
link pointers were capability-protected. Besides RISC-V and CHERI-enabled RISC-V,
we also execute our benchmarks on a CHERI-RISC-V variant that we extended with
parity-protected capabilities. We also compare the 32-bit and 64-bit ISA variants. We
chose these benchmark (variants) as we expect that capabilities, which also provide
hardware-enforced bounds checking, positively influence the SDC rate.
4 FAIL* splits up an access to a 32-bit register in four 4-byte accesses.
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Fig. 5: SDCs for different bubblesort implementations

With our toolchain, we covered the full FS for memory and registers and show
the weighted absolute failure counts [21] for the SDC class in Fig. 5. In total, this
comparative campaign requires six different FI platforms; each with tooling for tracing,
pruning, campaign coordination, and analysis. With SailFAIL, we could provide these
toolchains from two basic Sail models with a small modification to the CHERI RISC-V
model.

From the results, we can deduce the following observations: (1) If using static arrays,
the protection from capabilities does not outweigh the increased attack surface that is
induced by managing those capabilities. (2) Our parity extension improves the SDC
rate of CHERI RISC-V ISA always and up to 12%. (3) Although doubling the size of
the sorted integers from 32 to 64 bit, the SDC does not increase linearly but between
33 percent (Single Linked List on RISC-V) and 60 percent (Static Array on RISC-V).
(4) Using double-linked list instead of single-linked lists the SDC rate decreases for
CHERI-protected ISAs, while it increases for the RISC-V without capabilities.

5 Conclusion

With SailFAIL, we derived five new simulation-assisted FI platforms from three formal
ISA models written in the Sail modeling language. With limited manual effort, we
combined automatically generated C emulators with the FAIL* toolchain, whereby
SailFAIL supports all phases of systematic FI campaigns (tracing, injection planing,
and injection). We also modified the Sail compiler and let the emulator dynamically
record register accesses, down to the level of individual bits. In combination with our
bit-wise def-use pruning, we were able to cover implicitly used architectural registers
(e.g., machine status words) while reducing necessary injections by up to 19%. In a case
study FI, we compared different (CHERI) RISC-V ISAs and showed that parity-checked
capabilities improved the SDC rate by up to 12%.
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