{) { § Leibniz
i ¢; 2] Universitat
too: 4§ Hannover Technische Universitdt Hamburg

SailFAIL: Model-Derived Simulation-Assisted ISA-Level
Fault-Injection Plattforms

SAFECOMP 2022

Christian Dietrich, Malte Bargholz, Yannick Loeck, Marcel Budoj,
Luca Nedaskowskij, Daniel Lohmann

September 7, 2022

Soft Errors are a Problem

Technische Universitit Hamburg

¥*

o -

S A S N | (|
rror Rate
Boeing E-3 (90ties) 1

'] . . 10
1992 1994 1997 1999 2002 2005 2008 2011

cd SailFAIL — Motivation

2/13

Soft Errors are a Problem

Technische Universitit Hamburg

¥

o -

' ' ' ' ' " ' 10
1992 1994 1997 1999 2002 2005 2008 2011

I
cd SailFAIL — Motivation 2/13

Soft Errors are a Problem

Technische Universitit Hamburg

¥

o -

' ' ' ' ' " ' 10
1992 1994 1997 1999 2002 2005 2008 2011

“Toyota claimed the 2005 Camry's main CPU had error

@ detecting and correcting RAM. It didn’t.”
Source: Investigation Report, EDN Network, 28. Oktober 2013

I
cd SailFAIL — Motivation 2/13

12 Resilience Assessment by Fault-Injection TUHH

Technische Universitit Hamburg

®m How susceptible is my software to soft errors (bit-flips)?
= Radiation Experiments: realistic but expensive/slow.
= HAFI/FPGA: systematic, but requires specialized FPGA pool
= Simulation-Assisted Fl: systematic, scales out, efficient for ISA-level

cd SailFAIL — Motivation 3/13

T

1] Resilience Assessment by Fault-Injection

Technische Universitit Hamburg

®m How susceptible is my software to soft errors (bit-flips)?
= Radiation Experiments: realistic but expensive/slow.
= HAFI/FPGA: systematic, but requires specialized FPGA pool
= Simulation-Assisted Fl: systematic, scales out, efficient for ISA-level

m SAFI: Required Tooling and Challenges

- Fault Planning
- Simulator Platform
- Campaign Manager
- Result Analysis

- Accelerating HW Development (RISC-V)
- Specialized ISA extensions (for resilience)
- Same Behavior? Simulator <+ Real Hardware

cd SailFAIL — Motivation 3/13

Resilience Assessment by Fault-Injection

Technische Universitit Hamburg

How susceptible is my software to soft errors (bit-flips)?

= Radiation Experiments: realistic but expensive/slow.

= HAFI/FPGA: systematic, but requires specialized FPGA pool

= Simulation-Assisted Fl: systematic, scales out, efficient for ISA-level

SAFI: Required Tooling and Challenges

- Fault Planning
Simulator Platform
Campaign Manager
Result Analysis

- Accelerating HW Development (RISC-V)
- Specialized ISA extensions (for resilience)
- Same Behavior? Simulator <+ Real Hardware

Our Approach

= Derive SAFI simulator from formal ISA-level CPU
= Combine with existing FI toolchain (FAIL*)

cd SailFAIL — Motivation 3/13

Overview

Motivation
SailFAIL: Model-Derived Fault Injectors
Case-Study: CHERI RISC-V

Conclusion

cd SailFAIL — Motivation

Tec

TUH

hniscl

H

he Universitiit Hamburg

4/13

E SailFAIL: Overview

Technische Universitt Hamburg

Program(s)-under-Test
C Source
Compile RISC-V CHERI RISC-V
[RV32l] Binaries [RV64l] [AVR] Sail Model Sail Model
Execute ‘L /
L 2 . . AVR
Fail Library |2 | C Emulator [Sail Compiler |«—
3 Sail Model @
Golden Run 5 Other Sail Products
Fl Campalgn Prover Definitions (Coq, Hol4,
Trace(s) Isabelle), Symbolic Evaluation

i) Concurrency Model,. .. ’
. N $| -~ - —---——--—--—---1
Trace Anabysis|_[™pp ™ 1@ Introduced [FAIL® |
Prune & Plan w Modified [JSail

B Combine existing tools:
= FAIL*: SAFI toolchain that supports multiple backends (Bochs, Gem5)
golden-run recording, fault planning, campaign management

= Sail: Language to describe ISA-level semantics; many models (RISC-V)
Ships with a “model—C" emulator compiler

cd SailFAIL — Motivation 5/13

Sail Models

Technische Universitit Hamburg

ISA Model | Sail Compiler C Emulator | 2 | Fail Library
register PC : bits(22)
register nPC : bits(22)
register SP : bits(16)
function clause decode 0b1101 @ (offset : bits(12))

= AVR_RCALL (offset)

function clause execute AVR_RCALL(offset)
write_dmem(SP, nPC);
SP =SP - 2;
nPC = nPC + (offset x 2)

}

m Sail: Modeling Language for ISA semantics

={

= Pattern matching, dependent typing, scattered definitions
= Definitions for model checkers, symbolic executions, and a C emulator

cd

SailFAIL — Motivation

6/13

=1 SAFI Platform

Technische Universitit Hamburg

ISA Model (— Sail Compiler C Emulator

Fail Library

VIS

m SAFI platforms require emulator hooks
= Observation: register/memory accesses, breakpoints, traps, interrupts
= Control: start, stop, save/restore, forward execution
= Injection: Modify the volatile state (memory and registers)

m OQur Approach: Hooks and Automated Modifications
(A) Insert high-level semantic callbacks into the model
(B) Model-independent state save/restore and access mechanisms
(C) Generated emulator traces register accesses

cd SailFAIL — Motivation 7/13

[=] SAFI Platform

Technische Universitt Hamburg

ISA Model (— Sail Compiler C Emulator

Fail Library

VIS

m SAFI platforms require emulator hooks
= Observation: register/memory accesses, breakpoints, traps, interrupts
= Control: start, stop, save/restore, forward execution
= Injection: Modify the volatile state (memory and registers)

m OQur Approach: Hooks and Automated Modifications
(A) Insert high-level semantic callbacks into the model
(B) Model-independent state save/restore and access mechanisms
(C) Generated emulator traces register accesses

m Bit-precise register access
= Modified compiler inserts tracing for register accesses
= Allows for precise bit-field access tracking
— Fibonacci(500, AVR): 9.42 - 10% inj. = 7.9- 105 inj. (-16.17 %)

cd SailFAIL — Motivation 7/13

SailFAIL: Simulation Performance TUHH

Faitesy, I o i+
(RISC-V 32) : “

SailFAIL
(RISC-V 32) - G446 MHz

SailFAIL + RegTrace
i | 0.0112 MHz

(AVR) 0.327 MHz

SailFAIL + RegTrace
S | 0.0232 MHz

FAIL* Backend

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Instructions per Second [MHz]

Intel Xeon Gold 6262 CPU with 2.10 GHz

Sail emulators are slower than hand-crafted emulators

Checkpoint save/restore: SailFail RISC-V (24 ms) vs. Bochs: 540 ms
Register tracing is rather slow, but is required only once

cd SailFAIL — Motivation 8/13

Overview

Motivation
SailFAIL: Model-Derived Fault Injectors
Case-Study: CHERI RISC-V

Conclusion

cd SailFAIL — Motivation

TUHH

Technisc/

he Universitiit Hamburg

9/13

@l

Case Study: Bubblesort on (CHERI) RISC-V

CHERI: Hardware-Assisted User-Space Capability

= In a nutshell: User-controlled, HW-enforced unforgeable fat pointers
= Pointers are wider but accesses are more restricted
= Question: Are CHERI programs more or less susceptible to soft errors?

With SailFAIL: Derive six Fl platforms from two Sail models

= 32-bit/64-bit RISC-V with and without CHERI extension
= Additional Variant: Parity-Checked CHERI capabilities

Three Bubblesort Variants

= Static array, single-linked list, double-linked List.
= Same Algorithm, same data, different capability granularity.

Uniform memory FI, full FS coverage, weighted absolute SDCs

cd SailFAIL — Motivation 10/13

Case Study: Bubblesort on (CHERI) RISC-V

CHERI: Hardware-Assisted User-Space Capability

= In a nutshell: User-controlled, HW-enforced unforgeable fat pointers
= Pointers are wider but accesses are more restricted
= Question: Are CHERI programs more or less susceptible to soft errors?

With SailFAIL: Derive six Fl platforms from two Sail models

= 32-bit/64-bit RISC-V with and without CHERI extension
= Additional Variant: Parity-Checked CHERI capabilities

Three Bubblesort Variants

= Static array, single-linked list, double-linked List.
= Same Algorithm, same data, different capability granularity.

Uniform memory FI, full FS coverage, weighted absolute SDCs

cd SailFAIL — Motivation 10/13

—
Case-Study: Results TUHH

mmm RISC-V
600000 ' wuw CHERI RISC-V
mmm CHERI RISC-V + Parity

500000
= 400000
3
o
o
Q 300000
%)
200000
100000
0
= = = = = [Jeand
2@ ig’,ﬁ s@ 2@ %‘5 =¥
2R %8 58 2k 223 8¢

= CHERI is less robust with coarse-grained capabilities

= 32 — 64 bit: Robustness is not halved

» Parity-Checking: Improves SDC rate by up to 12 percent.
= Double-Linked: RISC-V suffers, CHERI RISC-V benefits

cd SailFAIL — Motivation 11/13

Overview

Motivation

SailFAIL: Model-Derived Fault Injectors
Case-Study: CHERI RISC-V
Conclusion

cd SailFAIL — Motivation

chnische Universitit Hamburg

12/13

Conclusion

Technische Universitt Hamburg

SAFI requires simulator platform

= Hard to obtain, maintain, and to get correct
m Custom ISA Extensions require adapted tool chain

SailFAIL: Derive platforms from formal Sail Models

= Automatically introduce register access tracing
= Bit-precise tracing and pruning of CPU registers
= Five new backends for FAIL*

Case-Study: Bubblesort on (CHERI-) RISC-V

= CHERI: larger attack surface, but sometimes fosters robustness
= Capabilities should contain a parity bit

cd SailFAIL — Motivation

13/13

=] Bit-Precise Def-Use Pruning

Technische Universitt Hamburg

0 1 2 3 4 5 6 7 8 9 ‘
3 © e e e o e o o o
YJ/2e e e e o e o o o o
11 e e e e o o e o o o
0e © e e e o o o o o
R,0010 R,0110 R,1001 W,0010 R,0110
W,0011 W,1010 W,0100

m Standard Fault Planing Technique: Def-Use Pruning

= Partition fault space into equivalence intervals
= One FI per interval that ends in a use/read (green)

cd SailFAIL — Motivation 14/13

=] Bit-Precise Def-Use Pruning

Technische Universitt Hamburg

0 1 2 3 4 5 6 7 8 9 ‘
3. 6 e e e e e . . e e i @
D)2 e 3 o o 3 o o 3 o o 3 o o 3 °
11 e | @ e o e o e o e | o
0 e 3 e o 3 e o 3 e o 3 e o 3 °
R,0010 R,0110 R,1001 W,0010 R,0110
W,0011 W,10160 W,0100

m Standard Fault Planing Technique: Def-Use Pruning

= Partition fault space into equivalence intervals
= One FI per interval that ends in a use/read (green)

cd SailFAIL — Motivation 14/13

5] Bit-Precise Def-Use Pruning

0 1 2 3 4 5 6 7 8 9 ‘
s[e]i[e -\f\- -\|I\- o[e e [e]
Q)2fe]i[e ell[e e]jle el[e e]l[e]
S11fefile_ellle e |i[e elje e]i[e]
o[el|le _e][e ell[e e][e e][e]
R,0010 R,0110 R,1001 W,0010 R,0110
W,0011 W,1010 W,0100

m Standard Fault Planing Technique: Def-Use Pruning

= Partition fault space into equivalence intervals
= One FI per interval that ends in a use/read (green)

cd SailFAIL — Motivation 14/13

Bit-Precise Def-Use Pruning

o
=
~
&
[e)]
~
[e]
O

3[e T e el|e eff[e e e e i o]
2 200 e elile ellle o o els]
2\ i[ellle _ellle e ie elle elile

ofe]|[e e '@ ej[[e e & o i o]

R,0010 R,0110 R,1001 W,0010 R,0110

W,0011 W,1010 W,0100

Standard Fault Planing Technique: Def-Use Pruning

= Partition fault space into equivalence intervals
= One FI per interval that ends in a use/read (green)

Better Pruning with Bit-Precise Access Tracing

= Register bits are manipulated independently (e.g., CSRs)
= Partition only if bit is actually accessed

AVR: CRC32 over first 500 Fibonacci numbers

= SREG: 1-bit access: 96.4 % instructions, 2-bit access: 3.6%
= 9.42-10° injections = 7.9 - 10° injections (-16.17 %)

cd SailFAIL — Motivation 14/13

	Motivation

