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“Toyota claimed the 2005 Camry's main CPU had error

@ detecting and correcting RAM. It didn’t.”
Source: Investigation Report, EDN Network, 28. Oktober 2013
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12 Resilience Assessment by Fault-Injection TUHH
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®m  How susceptible is my software to soft errors (bit-flips)?
= Radiation Experiments: realistic but expensive/slow.
= HAFI/FPGA: systematic, but requires specialized FPGA pool
= Simulation-Assisted Fl: systematic, scales out, efficient for ISA-level
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m  SAFI: Required Tooling and Challenges

- Fault Planning
- Simulator Platform
- Campaign Manager
- Result Analysis

- Accelerating HW Development (RISC-V)
- Specialized ISA extensions (for resilience)
- Same Behavior? Simulator <+ Real Hardware
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How susceptible is my software to soft errors (bit-flips)?

= Radiation Experiments: realistic but expensive/slow.

= HAFI/FPGA: systematic, but requires specialized FPGA pool

= Simulation-Assisted Fl: systematic, scales out, efficient for ISA-level

SAFI: Required Tooling and Challenges

- Fault Planning
Simulator Platform
Campaign Manager
Result Analysis

- Accelerating HW Development (RISC-V)
- Specialized ISA extensions (for resilience)
- Same Behavior? Simulator <+ Real Hardware

Our Approach

= Derive SAFI simulator from formal ISA-level CPU
= Combine with existing FI toolchain (FAIL*)
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E SailFAIL: Overview
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Program(s)-under-Test
C Source
Compile RISC-V CHERI RISC-V
[RV32l] Binaries [RV64l] [AVR] Sail Model Sail Model
Execute ‘L /
L 2 . . AVR
Fail Library |2 | C Emulator [ Sail Compiler |«—
3 Sail Model @
Golden Run 5 Other Sail Products
Fl Campalgn Prover Definitions (Coq, Hol4,
Trace(s) Isabelle), Symbolic Evaluation

i ) Concurrency Model,. .. ’
. N $| -~ - —---——--—--—---1
Trace Anabysis|_[™pp ™ 1@ Introduced [ FAIL® |
Prune & Plan w Modified [JSail

B  Combine existing tools:
= FAIL*: SAFI toolchain that supports multiple backends (Bochs, Gem5)
golden-run recording, fault planning, campaign management

= Sail:  Language to describe ISA-level semantics; many models (RISC-V)
Ships with a “model—C" emulator compiler
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Sail Models
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ISA Model | Sail Compiler C Emulator | 2 | Fail Library
register PC : bits(22)
register nPC : bits(22)
register SP : bits(16)
function clause decode 0b1101 @ (offset : bits(12))

= AVR_RCALL (offset)

function clause execute AVR_RCALL(offset)
write_dmem(SP, nPC);
SP =SP - 2;
nPC = nPC + (offset x 2)

}

m  Sail: Modeling Language for ISA semantics

={

= Pattern matching, dependent typing, scattered definitions
= Definitions for model checkers, symbolic executions, and a C emulator
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=1 SAFI Platform
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ISA Model (— Sail Compiler C Emulator

Fail Library

VIS

m  SAFI platforms require emulator hooks
= Observation: register/memory accesses, breakpoints, traps, interrupts
= Control: start, stop, save/restore, forward execution
= Injection: Modify the volatile state (memory and registers)

m  OQur Approach: Hooks and Automated Modifications
(A) Insert high-level semantic callbacks into the model
(B) Model-independent state save/restore and access mechanisms
(C) Generated emulator traces register accesses
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ISA Model (— Sail Compiler C Emulator

Fail Library

VIS

m  SAFI platforms require emulator hooks
= Observation: register/memory accesses, breakpoints, traps, interrupts
= Control: start, stop, save/restore, forward execution
= Injection: Modify the volatile state (memory and registers)

m  OQur Approach: Hooks and Automated Modifications
(A) Insert high-level semantic callbacks into the model
(B) Model-independent state save/restore and access mechanisms
(C) Generated emulator traces register accesses

m Bit-precise register access
= Modified compiler inserts tracing for register accesses
= Allows for precise bit-field access tracking
— Fibonacci(500, AVR): 9.42 - 10% inj. = 7.9- 105 inj. (-16.17 %)
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SailFAIL: Simulation Performance TUHH

Faitesy, I o i+
(RISC-V 32) : “

SailFAIL
(RISC-V 32) - G446 MHz

SailFAIL + RegTrace
i | 0.0112 MHz

(AVR) 0.327 MHz

SailFAIL + RegTrace
S | 0.0232 MHz

FAIL* Backend

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Instructions per Second [MHz]

Intel Xeon Gold 6262 CPU with 2.10 GHz

Sail emulators are slower than hand-crafted emulators

Checkpoint save/restore: SailFail RISC-V (24 ms) vs. Bochs: 540 ms
Register tracing is rather slow, but is required only once
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Case Study: Bubblesort on (CHERI) RISC-V

CHERI: Hardware-Assisted User-Space Capability

= In a nutshell: User-controlled, HW-enforced unforgeable fat pointers
= Pointers are wider but accesses are more restricted
= Question: Are CHERI programs more or less susceptible to soft errors?

With SailFAIL: Derive six Fl platforms from two Sail models

= 32-bit/64-bit RISC-V with and without CHERI extension
= Additional Variant: Parity-Checked CHERI capabilities

Three Bubblesort Variants

= Static array, single-linked list, double-linked List.
= Same Algorithm, same data, different capability granularity.

Uniform memory FI, full FS coverage, weighted absolute SDCs
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Case-Study: Results TUHH
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= CHERI is less robust with coarse-grained capabilities

= 32 — 64 bit: Robustness is not halved

» Parity-Checking: Improves SDC rate by up to 12 percent.
= Double-Linked: RISC-V suffers, CHERI RISC-V benefits
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Conclusion
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SAFI requires simulator platform

= Hard to obtain, maintain, and to get correct
m Custom ISA Extensions require adapted tool chain

SailFAIL: Derive platforms from formal Sail Models

= Automatically introduce register access tracing
= Bit-precise tracing and pruning of CPU registers
= Five new backends for FAIL*

Case-Study: Bubblesort on (CHERI-) RISC-V

= CHERI: larger attack surface, but sometimes fosters robustness
= Capabilities should contain a parity bit
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=] Bit-Precise Def-Use Pruning
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m  Standard Fault Planing Technique: Def-Use Pruning

= Partition fault space into equivalence intervals
= One FI per interval that ends in a use/read (green)
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Bit-Precise Def-Use Pruning
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Standard Fault Planing Technique: Def-Use Pruning

= Partition fault space into equivalence intervals
= One FI per interval that ends in a use/read (green)

Better Pruning with Bit-Precise Access Tracing

= Register bits are manipulated independently (e.g., CSRs)
= Partition only if bit is actually accessed

AVR: CRC32 over first 500 Fibonacci numbers

= SREG: 1-bit access: 96.4 % instructions, 2-bit access: 3.6%
= 9.42-10° injections = 7.9 - 10° injections (-16.17 %)

cd SailFAIL — Motivation 14/13



	Motivation

