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Nomenclature

ACRONYMS:

AGI Artificial general intelligence

AI Artificial intelligence

CB Conceptual blending

CFB Counterfactual blend (space)

CFC Counterfactual conditional

CogSci Cognitive science

CS Computer science

GI General intelligence

GOFAI Good old-fashioned AI

HDTP Heuristic-driven theory projection

HELCO High entrenchment level concept

KB Knowledge base

KR Knowledge representation

KRR Knowledge representation and reasoning

LEVCO Low entrenchment level concept

NARS Non-axiomatic reasoning system

SME Structural mapping engine

SMT Structure-mapping theory

NOTATIONS:

⟨◻1,◻2⟩ Ordered pair

(◻1,◻2) Tuple / Unordered pair

b (or bi) Conceptual entities / Beliefs

B (or Bi) Blend concept

eV Function for entrenchment values and levels

F c Representation of an arbitrary concept c

G Generalization concept

KB Knowledge base of conceptual entities

KC Set of concept names / Lexicon

S Source concept

T Target concept
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Abstract

In this era of increasingly rapid availability of resources of all kinds, a widespread need

to characterize, filtrate, use, and evaluate what could be necessary and useful becomes

a crucially vital everyday task. Neither research in the field of artificial intelligence (AI)

nor in cognitive science (CogSci) is an exception (let alone within a crossing of both

paths). A promised goal of AI was to primarily focus on the study and design of intelli-

gent artifacts that show aspects of human-like general intelligence (GI). That is, facets

of intelligence similar to those exhibited by human beings in solving problems related

to cognition. However, the focus in achieving AI’s original goal is scattered over time.

The initial ambitions in the 1960s and 1970s had grown by the 1980s into an “industry”,

where not only researchers and engineers but also entire companies developed the AI

technologies in building specialized hardware. But the result is that technology afforded

us with many, many devices that allegedly work like humans, though they can only be

considered as life facilitators (if they even do). This is mainly due to, I propose, ba-

sic changes on viewing what true essences of intelligence should have been considered

within scientific research when modeling systems with GI capacities.

A modern scientific approach to achieving AI by simulating cognition is mainly based

on representations and implementations of higher cognition in artificial systems. Luckily,

such systems are essentially designed with the intention to be acquired with a “human-

like” level of GI, so that their functionalities are supported by results (and solution

methodologies) from many cognitive scientific disciplines. In classical AI, only a few

number of attempts have tried to integrate forms of higher cognitive abilities in a uni-

form framework that model, in particular, cross-domain reasoning abilities, and solve

baffling cognition problems —the kind of problems that a cognitive being (endowed

with traits of GI) could only solve. Unlike classical AI, the intersection between the re-

cent research disciplines: artificial general intelligence (AGI) and CogSci, is promising

in this regard. The new direction is mostly concerned with studying, modeling, and

computing AI capabilities that simulate facets of GI and functioning of higher cognitive

mechanisms.
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Whence, the focus in this thesis is on examining general problem solving capabilities

of cognitive beings that are both: “human-comparable” and “cognitively inspired”, in

order to contribute to answering two substantial research questions. The first seeks

to find whether it is still necessary to model higher cognitive abilities in models of

AGI, and the second asks about the possibility to utilize cognitive mechanisms to enable

cognitive agents demonstrate clear signs of human-like (general) intelligence. Solutions

to cross-domain reasoning problems (that characterize human-like thinking) need to

be modeled in a way that reflects essences of cognition and GI of the reasoner. This

could actually be achieved (among other things) through utilizing cross-domain, higher

cognitive mechanisms. Examples of such cognitive mechanisms include analogy-making

and concept blending (CB), which are exceptional as active areas of recent research

in cognitive science, though not enough attention has been given to the rewards and

benefits one gets when they interact.

A basic claim of the thesis is that several aspects of human-comparable level of GI

are based on forms of (cross-domain) representations and (creative) productions of con-

ceptions. The thesis shows that computing these aspects within AGI-based systems is

indispensable for their modeling. In addition, the aspects can be modeled by employ-

ing certain cognitive mechanisms. The specific examples of mechanisms most relevant

to the current text are computation of generalizations (i.e. abstractions) using analogy-

making (i.e. transferring a conceptualization from one domain into another domain)

and CB (i.e. merging parts of conceptualizations of two domains into a new domain).

Several ideas are presented and discussed in the thesis to support this claim, by showing

how the utilization of these mechanisms can be modeled within a logic-based frame-

work. The framework to be used is Heuristic-Driven Theory Projection (HDTP), which

can model solutions to a concrete set of cognition problems (including creativity, ratio-

nality, noun-noun combinations, and the analysis of counterfactual conditionals).

The resulting contributions may be considered as a necessary, although not by any

means a sufficient, step to achieve intelligence on a human-comparable scale in AGI-

based systems. The thesis thus fills an important gap in models of AGI, because com-

puting intelligence on a human-comparable scale (which is, indeed, an ultimate goal of

AGI) needs to consider the modeling of solutions to, in particular, the aforementioned

problems.

Keywords: Cognitive science, general intelligence, analogy-making, HDTP, concep-

tual blending, noun-noun composition, counterfactual conditionals, creativity.
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1

Prolegomenous Remarks and

Background

The systematic study of the various characteristics that make us attribute intelligence

to cognitive beings, and the investigation of possible ways in which their cognitive abil-

ities could be (biologically or physically) functioning, and could thus affect their level

of intelligence, have always attracted the interest of numerous people over thousands

of years, and among several study areas. For centuries, people have always been (i)
contemplating the quintessence of intelligence in cognitive beings, (ii) fascinated with

the aspects that can be considered fundamental faculties for cognition and intelligence:

what such aspects are, where they originate from, and how they may work, and (iii)
trying to simulate and mimic such aspects in most of their various pieces of artwork,

sometimes mixing fact and fancy (e.g. fiction stories and artificial artifacts).

This thesis tries to contribute to the systematic study and investigation of utilizing

concrete aspects of cognition, by considering contemplation, fascination, and simula-

tion of such aspects, based on a cognitive-scientific approach. Its overall goal is to

affirmatively answer both the following questions:

1. Is it still necessary to suggest general representations and utilizations of higher

cognitive mechanisms (in particular, in building computational models that better

mimic facets of general intelligence), despite the wide availability of a variety of

systems aiming to model and compute their own views of human-like artificial

intelligence?

2. Is it feasible and possible to do so?

The rest of the current thesis will expand over this take-home messages throughout

the chapters it contains, demonstrating that solution models to a range of cognition

3



Chapter 1: Prolegomenous Remarks and Background

problems need to (and can) be resolved by understanding and computationally utilizing

multifaceted, cross-domain, cognitive mechanisms in the modeling.

1.1 Cognitive Sciences

Over the past two millennia or so, the scientific interest, in empirically studying thinking,

intelligence, cognitive abilities, or the human mind as a whole, started as a mere con-

templation of the properties of mind and matter.1 But recently, the interest evolved to

viewing cognition and intelligence as brain activities and sorts of (mental) calculations,

which can potentially be realized by artificial, electronic computations.2 This evolution

of the scientific interest has sometimes undergone unpremeditated paths through dis-

parate disciplines, which did not only seem orthogonal disciplines but their sources of

insights also spread over a very wide range of scientific or artistic traits: from argu-

mentative (the humanities, e.g. philosophy of mind) to abstract and formal (the natu-

ral sciences, e.g. quantum-based models of cognition, logic, and artificial intelligence;

cf. Busemeyer and Bruza [2012]; Engesser et al. [2007]; Wichert [2013]).

1.1.1 The Challenge of ‘Labeling’

Despite their inherent, common connection, especially of studying higher cognition,

these disciplines have continued to develop independently, most of the time. But it

turned out to be hard (for the interested researcher) to both:

1. follow the related advancements in all of these disciplines, whether in breadth or

in depth, and

2. benefit from studying one discipline in advancing another (by providing new so-

lution insights or methods to the the well-known problems in the latter, by means

of applying the recent findings in the former).

Moreover, there has always been an issue of debate regarding the content semantics

and the name labels of these disciplines. What made the challenges even more difficult

(for interested scientists) is to give these disciplines recognizable labels. Not only titles

1This has been mainly led by the theoretical works of pioneering philosophers, linguists, and logicians;

particularly the Greek philosophers’ interest in deductive reasoning, the process by which one assumes
some statements to be true and derives further statements logically from the assumptions [Stillings et al.,

1995, pp. 1].
2This is mainly guided by the theoretical and practical works of contemporary psychologists, neurol-

ogists, computer scientists, and electronic engineers.
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§1.1: Cognitive Sciences

of semantically similar disciplines were not as much syntactically similar1, but also dis-

ciplines with fixed labels had their main content, their set of problems, or their solution

methodologies re-defined.2 This evolution has finally given the birth of a new field that

gathers the intersections of the disparate disciplines and connects their respective parts

in harmony, under the umbrella of a united, scientific area that offered multidisciplinary

ways of understanding the mind and cognition. This area has developed in the past few

decades under the label of “cognitive science” (cf. Boden [2006a,b]).

In the widest sense, various disciplines in the arts and sciences are particularly rel-

evant to the study of (the functionalities of) the human beings’s higher cognition and

intelligence. A few hundreds of entries in psychology, neuroscience, linguistics, philoso-

phy, anthropology, education, computer science, ethology, among other disciplines, are

given in Wilson and Keil [2001] to contribute altogether as encyclopedic definitions of

the most important terms appearing in what collectively can be called the ‘cognitive

sciences’. On the one hand, many ‘cognitive sciences’ have collectively offered multidis-

ciplinary ways to understand the mind and higher cognition during previous centuries.

On the other hand, the intellectual origins and foundations of a unified, interdisciplinary,

academic field have only recently been laid in the mid fifties of the twentieth century

(cf. Thagard in Thagard [2005] and in [Frankish and Ramsey, 2012, pp. 65]; Miller in

[Miller, 2003, pp. 141]; and Gardner in [Gardner, 1987, Ch. 2]). This was when ad-

herents in various fields developed techniques, theories, and theoretical assumptions of

cognition, based on complex representations and computational procedures of thinking

(see e.g. the early seminal works of Newell and Simon in [Newell et al., 1963; Newell

and Simon, 1963, 1972, 1976], and section 1.1.2). This newly-born field focused on a

common set of mind-related problems that have already long-existed in various ‘cogni-

tive sciences’. What was new, however, is uniting their shared theoretical standpoints

and common research strategies and objectives as a way of studying the mind, under

the umbrella of one field; called ‘cognitive science’ since then.3

The title name of this unified science, ‘cognitive science’, as well as its existence

and development, have been affected very much by its organizational origins, which go

all the way back to the seventies when the Cognitive Science Society (CSS) was formed

1For example, “cognitive studies” and “information-processing psychology” were different labels for

the same discipline (cf. [Miller, 2003, pp. 143]).
2Within the field of psychology, for instance, “behaviorism” became no longer the most important

area as it was in the early 1950s (cf. Baum [1994]).
3Instead of always emphasizing that the interdisciplinary field of ‘cognitive science’ is embracing a

multitude of ‘cognitive sciences’, it has become widely acceptable to replace the plural, ‘sciences’, with
the singular, ‘science’, in particular when the interdisciplinarity of the field is of a more important concern

than the involved discipline titles.

5



Chapter 1: Prolegomenous Remarks and Background

and the journal “Cognitive Science” began (cf. Bermúdez [2010]; Thagard [2005]). One

dares to assume that if it were not for the establishment of the latter two organizational

origins with their respective title names, the interdisciplinary field would have been

named differently or have its name changed over time (as already was the case before

their establishment: the field’s name at Harvard, the stronghold of the leaders of the

“cognitive revolution” (cf. section 1.1.2), was ‘cognitive studies’, but was ‘information-

processing psychology’ at Carnegie-Mellon University [Miller, 2003, pp. 143]). More-

over, the label, ‘cognitive science’, began to spread during (and after) the seventieth,

which urged the involved and interested leading researchers to propose their own defini-

tions of the name (according to their perspectives or scopes of work) instead of actually

proposing other names that define what this unified field is for them, or how they view

it from where their work stands. Gardner reflected this situation by mentioning that “in

the course of proposing and founding a new field of knowledge, many individuals will

formulate their own definitions” [Gardner, 1987, pp. 5]. In a sense, this is fortunate

because it could have been undesirable to have disagreeing titles that describe the same

field of interest, especially after the field has gone a centuries-long way of evolution

to become a unifying field of the cognitive sciences. But this also was unfortunate, in

another sense, because the perspectives, the important problems, and the methods to

tackle such problems, among other things, of such ‘cognitive sciences’ were very diffi-

cult to put together to form a single field. Moreover, ‘cognitive science’ means to a large

group of people ‘cognitive psychology’, or even ‘psychology’. This is not less of a misun-

derstanding of labels than that of what “artificial intelligence” (denoted AI, henceforth)

is to them.

So, What is Cognitive Science? Broadly speaking, ‘cognitive science’ (usually: CogSci)

can be viewed as a scientific field of an inter-, and multidisciplinary nature, where each

of its themes may belong to the intersection of more than one discipline (of the ‘cog-

nitive sciences’). Definitions of ‘cognitive science’ have been proposed according to

several scopes, interests, and in many ways. Moreover, when it comes to questioning

the involved disciplines, scholars differ in their presentations, which may range from

the more specific to the very broad or even gelatinous. Here are three presentation

examples by three expert scholars:

1. Thagard introduces cognitive science as “the interdisciplinary study of mind and

intelligence, embracing philosophy, psychology, artificial intelligence, neuroscience,

linguistics, and anthropology” [Thagard, 2005, pp. ix].
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2. Miller considers cognitive science as the “child product” of a time when “psychol-

ogy, anthropology and linguistics were redefining themselves and computer sci-

ence and neuroscience as disciplines were coming into existence” [Miller, 2003,

pp. 141].

3. Gardner defines it as “a contemporary, empirically based effort to answer long-

standing epistemological questions —particularly those concerned with the nature

of knowledge, its components, its sources, its development, and its deployment”

[Gardner, 1987, pp. 6].

Nonetheless, to give one precise definition of what CogSci is, seems very challenging, if

at all possible.1 The interested reader may refer to [Bermúdez, 2010; Boden, 2006a,b;

Frankish and Ramsey, 2012; Gardner, 1987; Stillings et al., 1995; Thagard, 2005, to

mention a few], where several, classic, and modern, definitions and views of CogSci are

presented and argued in depth.

1.1.1.1 The Sloan Initiative’s Report

Specifying the common problems that appear in CogSci takes one back in time to one of

the most famous roots of stressing the importance and promise of the interdisciplinary

field. Namely, the State of The Art Report commissioned by the Alfred P. Sloan Foun-

dation: an unpublished2 report that is usually referred to as SOAP (the report is cited

here as Keyser et al. [1978]). The SOAP report gives both a serious attempt to describe

the state of research in ‘cognitive sciences’, as well as a broad outline of the theoretical

viewpoints and research objectives of scholars in these fields. Here is an attempt to

introduce the rising field of ‘cognitive science’ by a number of leading scholars:

“the study of the principles by which intelligent entities interact with their

environments” [cf. Keyser et al., 1978, pp. 3, emphasis added].

Faced with the challenge to integrate many considerations into a coherent science of

cognition, the State of The Art Committee sketched a handful of cognitive problems and

a handful of possible approaches that necessitate interdisciplinary collaboration in their

pursuit. The report factored the complicated problem of specifying the main ‘cognitive

sciences’ into the simpler problem of looking for disciplines that “interact strongly with

1Only to recall, the thesis focusses on the systematic study of intelligence aspects and the investigation
of the possible ways these aspects can function, which helps in artificially modeling or computing them.

2Many scientists contributed to the Sloan initiative’s report, which is edited by Keyser, S.J., Miller,
G.A., and Walker, E. in 1978. A scanned copy can be retrieved from the Cognitive Science Journal’s

archive webpage at http://csjarchive.cogsci.rpi.edu/misc.
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each other but only weakly with everything else” [Keyser et al., 1978, pp. vi]. The basic

criteria is that solutions to some problems of one particular discipline “depend critically

on the solution of problems traditionally allocated to other disciplines” [Keyser et al.,

1978, pp. vii].

Figure 1.1: A reproduced copy of the original illustration given in [Keyser et al., 1978,

pp. 4]. It depicts the 6 primary disciplines (in rectangles), and the 11 subdomains

suggested in the SOAP report to constitute the cognitive sciences: 1. cybernetics, 2. neu-

rolinguistics, 3. neuropsychology, 4. simulation of cognitive processes, 5. computational

linguistics, 6. psycholinguistics, 7. philosophy of psychology, 8. philosophy of language,

9. anthropological linguistics, 10. cognitive anthropology, and 11. evolution of brain.

Dashed lines indicate weaker interdisciplinary ties than those indicated by solid lines.

Since the time of the SOAP report, the 6 disciplines enclosed within rectangles in

Figure 1.1 have been widely considered the primarily involved ‘cognitive sciences’. The

interconnections (or “major bonds”) among these disciplines give rise to 11 well-defined

areas of inquiry, each is called a “subdomain”. The 6 primary disciplines and the 11 sub-

domains are seen as an integral part contributing to the established branch of cognitive

science. A subdomain involves the intellectual and physical tools of the two disciplines

this subdomain ties together. Subdomain 4, ‘simulation of cognitive processes’, for in-

stance, is of a highly important concern to the thesis. The “simulation of cognitive

processes has combined computer science and psychology in order to formulate explicit

theories of thinking and problem solving” [Keyser et al., 1978, pp. 5].
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1.1.1.2 The AI Debut as an Outmatching CogSci Discipline

The original SOAP report included ‘computer science’ (also CS), not AI, as one of the pri-

mary CogSci disciplines, whereas, in more recent references, websites, and precursors

to the interdisciplinary branch, AI usually replaces CS in the corresponding re-produced

hexagonal diagrams. For instance, ‘computer science’ appears in Keyser et al. [1978,

pp. 4] and Miller [2003, pp. 143], whereas ‘artificial intelligence’ replaces it in Gardner

[1987, pp. 37] and Bermúdez [2010, pp. 91]. Given that the seminal event for the

birth of AI has already taken place in the summer of 1956, it means that more than

two decades after the label ‘artificial intelligence’ took the chance to prevail, the leading

scientists of the SOAP report chose ‘computer science’ as a primary cognitive science

(cf. section 1.2.1). This may seem like a minor thing that could simply be a matter of

taste in preferring one label over another, but, I hypothesize, it is not (at least according

to the current chapter’s prolegomenous context). On the contrary, this is a basic motiva-

tional observation that indicates how conceptions are changing over time and by usage,

so that their development and entrenchment can be affected.1 My main argument is

that there is an apparent gradual change of the common (scientific) views, both about

(i) the interrelation between AI and other disciplines, and about (ii) which of CS and

AI appears to contribute more as an interdisciplinary field of study.

Back in the 1970s, CS was treated by the (scientific) community (in particular, the

leading scholars who contributed to the SOAP report) as a cornerstone discipline that is

as foundational and contributive to the ‘cognitive sciences’ as any of the other primary

disciplines. This was the case because, similar to other primary CogSci disciplines, CS al-

ready contained mature directions of scientific interest, as well as major problems (and

solution methodologies) related to studying human intelligence. In this sense, each pri-

mary discipline is an irreplaceable cornerstone. AI was seen as a rising subfield that

could not have been considered as much foundational or irreplaceable. At that time,

the (scientific) impact of AI on the (scientific) community, as a stand-alone discipline,

may have ranged from very small to small, whereas that of any other primary CogSci

discipline was remarkably high, I presume. Over time, AI has become more widespread,

with a higher impact, creating ties with other CogSci disciplines. The same SOAP re-

port’s view of primary CogSci disciplines as those which “interact strongly with each

other but only weakly with everything else” [Keyser et al., 1978, pp. vi] favors AI now

as a more integrable CogSci discipline.

1This idea of “concept development” and “concept entrenchment” is related to one of the thesis’

contributions, extensively elaborated on in Chapter 7.
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1.1.2 Computational Processing of Cognitive Mechanisms

The general term “cognition”, of natural (biological) entities, is customarily used for

forms of “mental processing” that involve ongoing manipulation of “knowledge”. This

may include remembering, reasoning, learning, planing, decision making, problem solv-

ing, communicating deep ideas, among many other operations. Using both theoretical

and empirical methods, cognitive scientists study all these higher mental “processes”,

and the underlying “mechanisms”, whereas advocates of AI aim to apply the studies

to computationally simulate the processes and mechanisms. “In cognitive psychology

and cognitive engineering, cognition is typically assumed to be information processing

in a participant’s or operator’s mind or brain” [Blomberg, 2011, pp. 85]. Cognition is

usually the faculty for “processing” of “knowledge” and, in fact, the word “cognition”

originates from the Latin cognoscere (co- + gnoscere); meaning: “to come to know”.

This additionally reflects the importance of discussing “knowledge” when discussing

“cognition”, and attracts one’s attention to the importance of “processing”, in general,

and processing “knowledge” in particular (cf. section 1.3.1).

Having talked about the importance of knowledge processing, note that other CogSci

disciplines may study the humans themselves, whilst AI should study and develop im-

plementations. AI and CS can still work together as two sides of the same CogSci coin

that connects ‘computer science’, ‘linguistics’, ‘psychology’, ‘computational linguistics’,

and ‘simulation of cognitive processes’ in Figure 1.1. CS deals with “creating the right

model for thinking about a problem and devising the appropriate mechanizable tech-

niques to solve it” [Aho and Ullman, 1995, Ch. 1], which inescapably brings issues of

knowledge representation and reasoning (KRR) to focus, when simulating and manipu-

lating representations of higher cognitive mechanisms within computational models of

cognition —a subject that is brought to discussion in sections 1.3, 4.2, and 7.2.

Once Upon a Time, There was a Revolution: “Behaviorism” (cf. Baum [1994]) was

the most important area of psychology in the thirties and forties of the twentieth century,

where (a school of) psychologists believed that it was only important to pay attention to

actions and observable behaviors of people (and animals) which one could measure, not

with unobservable events that take place in their minds (cf. [Skinner, 1984]). Behav-

iorists maintain that behaviors can be described scientifically without recourse either to

internal physiological events or to “hypothetical constructs” such as “thoughts” and “be-

liefs”, and made no distinction between animal behaviors, infant behaviors, and those

behaviors of mature adults (cf. Baum [1994]; Gardner [1987]). Gardner indicates that

the behaviorists do not talk about any kind of “internal representation”, ideas, models
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in the mind, or anything inside the black box called “the mind”. Gardner also points out

that cognitive scientists escaped this dead-end, where their idea was that people think,

compute, solve problems, have images in their heads, and operate among these things

—which is what thinking seem to be all about.

During the period of the Second World War, researchers “had developed a series of

technologies that lent themselves to anthropomorphic description, and once the war

ended these technologies inspired novel forms of psychological theorizing” (cf. [Agre,

1997, pp. 1]). Very few years after the war, when the use of electronic machines (a.k.a.

computers) became more prevalent, a number of technologically sophisticated scientists,

mainly cognitive psychologists, were ambitious enough to continue using their acquired

knowledge of technical systems, and apply it to the study of the mind and behavior.

Coming not only from cognitive psychology, but from philosophy, artificial intelligence,

and other disciplines as well, the scientists styled themselves as “cognitive scientists”.

Their knowledge included (i) formal notions of theoretical machines (a.k.a. the “Turing

Machines”; [Turing, 1936]) that could in principle carry out any possible calculation

[Turing, 1950], as well as (ii) psychological notions, particularly neuropsychological

syndromes, such as “aphasia (language deficit), agnosia (difficulty in recognition), and

other forms of mental pathology consequent upon injury to the brain” (cf. [Gardner,

1987, pp. 22]). These scientists already had the chance to understand how computers

work, and closely experienced how they can solve problems, which made them think

about the human mind as being a certain kind of an information processing system

(cf. [Gardner, 1987; McCorduck, 2004]).

According to how Gardner delivers it, a very important part of cognitive science was

to point the science in a positive direction (rather than to a dead-end). This major

paradigm shift of the twenties century came to be known as the “cognitive revolution”.

It was an intellectual movement in the modern context of a greater interdisciplinary

research that is not restricted to cognitive psychology, but combines psychology with

approaches developed within AI, CS, and neuroscience, for example. As Agre puts it,

“[t]he new psychology sought to describe human beings using vocabulary that could be

metaphorically associated with technologically realizable mathematics” [Agre, 1997, pp. 1;

emphasis added]. As an example of describing human beings using this metaphorical

vocabulary association, Agre pointed out that Miller1 observed that “aiming a gun at

a target by continually sensing the target’s location” can be described, in human-like

terms, as “pursuing a purpose based on awareness of the environment”. Another exam-

1Miller was a key player in the cognitive revolution [Fellbaum, 2013, pp. 1] (together with Jerome

Bruner and Noam Chomsky).
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ple is that “new methods for signal detection” could be described as “making perceptual

discrimination” (cf. [Agre, 1997]).

Studying “thinking”, and the related “mental processes” in cognitive psychology, was

the key idea in the cognitive revolution movement that started in the 1950s, and had

become the dominant research line of inquiry in most psychology research fields by

the 1980s. The cognitive revolution movement replaced “behaviorism” as the leading

psychological approach to understanding the mind. Nowadays, it is both feasible and

attractive to test posed hypotheses about how these mental processes function and, in

addition, study computational frameworks that develop the functions in AI.

Transitioning: In this section, I briefly mentioned that the interdisciplinary field, con-

cerned with studying thinking in cognitive beings, has finally been widely recognized as

‘cognitive science’. This raised a challenge for the scientific community to agree on spec-

ifying and ‘naming’ the dispersed domains of the interdisciplinary field; a challenge that,

to a great extent, has been resolved by the SOAP report. I also pointed out that, over

time, AI become widely recognized as a primary CogSci discipline (that outmatched CS

as a CogSci alternative). In the next section, I briefly discuss the historical challenge

of ‘fine-tuning’ the AI field itself and its core contents to fit better within the CogSci do-

main (and to link to its sub-disciplines in a stronger way). Understanding this historical

challenge plays an important role in building modern artificial computer systems that

are cognitively inspired.

1.2 Artificial General Intelligence (AGI)

1.2.1 Roots of AI and Intelligent Agents

Artificial Intelligence: Although its label is now very widely and publicly known, AI

does indeed suffer from not having commonly agreed-upon definitions or standard spec-

ifications of many of the terms it uses. There are even debates on what “intelligence” is,

in the first place, and McCarthy himself, who introduced the AI label, points out that we

cannot yet characterize in general what kinds of “computational procedures” we want to

call intelligent (cf. McCarthy [1998]). He, nonetheless, defines AI as “the science and

engineering of making intelligent machines, especially intelligent computer programs”

[McCarthy, 1998, emphasis added], which is acceptable in the sense that the ultimate

goal of AI was to study and develop “thinking machines”: computer systems that pos-

sess human-comparable intelligence. Russell and Norvig also list eight definitions of AI,

12



§1.2: Artificial General Intelligence (AGI)

organized into four categories, and laid out along the two dimensions of “thinking” and

“acting” (cf. [Russell and Norvig, 2010, pp. 2]). In addition, other sources try to specify

what AI does or how it operates, leaving “intelligence” itself aside as an issue of debate

(mostly in psychological contexts about theories of intelligence).

The label “Artificial Intelligence” has been coined in the summer of 1956, where

McCarthy first used it in the proposal for the Dartmouth conference, which conjectured

that “every aspect of learning or any other feature of intelligence can in principle be so

precisely described that a machine can be made to simulate it” [McCarthy et al., 2006,

pp. 12]. The Dartmouth Summer Research Project on AI is considered the point in

time to which the big-bang of AI is rooted. It was in this event that the proposal with

introducing the term AI is credited [McCarthy et al., 2006; McCorduck, 2004], and the

plan for next years of work in the field is foreseen by the pioneers who participated in

the event. The Dartmouth conference itself “did not lead to any new breakthroughs”,

but it introduced “all the major figures” in AI to each other (cf. [Russell and Norvig,

2010, pp.18]), and listed main ideas and contributions in the field, such as Newell

and Simon’s “Logic Theorist” (cf. Newell and Simon [1956]) which was “received with

interest” [McCorduck, 2004, pp. 104] and “stole the show” [Russell and Norvig, 2010,

pp. 17] in the event. Other rooting ideas are also found in the collection of classic

papers by pioneers, such as that of Turing’s (the English mathematician and logician),

and Marvin Minsky’s (the American co-founder of the MIT’s AI laboratory), who both

were behind the pivotal advances in artificially simulating human thought processes

with computers (cf. Feigenbaum et al. [1995]).

Intelligent Agents: The AI field’s initial goal was to primarily focus on “the study and

design of intelligent agents” [Poole et al., 1998, pp. 1]. But “what is exactly an intelli-

gent agent?” is another (philosophical) question that is embarrassing “in just the same

way that the question what is intelligence? is embarrassing for the mainstream AI com-

munity” [Wooldridge and Jennings, 1995b, pp. 116; emphasis original]. Nevertheless,

it is customary to view an intelligent agent as anything (computationally) approximat-

ing a system that possesses the ability to perceive its surrounding environment (through

sensors) and take actions (through actuators) to maximize its chances of success in

intelligently solving a given problem.

Lots of texts in the literature give more elaborations on the definitions, properties,

and attributes of intelligent agents, and the several applications they can be used in

(cf. [Nilsson, 1998; Russell and Norvig, 2010; Wooldridge and Jennings, 1995a,b, to

mention just a few]). Russell and Norvig, in particular, give more details about the
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traditional depictions of different types and characterizations of agents, sensors, actua-

tors, and environments (cf. [Russell and Norvig, 2010, §2.4]). Wooldridge and Jennings

argue that AI researchers, in particular, use the term “agent” in a more specific sense

that means a computer system, which is either conceptualized or implemented reflect-

ing mentalistic notions (i.e. concepts that are more usually applied to humans, such as

knowledge, belief, intention, and obligation) [Wooldridge and Jennings, 1995b]. In a

sense, these are how “intelligent agents” may be viewed in this text. But one should

note also that the set of concepts that are more usually applied to humans can be very

large (or fuzzy). For example, Steels focusses on behavior-oriented AI and presents

“self-preservation” as an emerging property of agents that adapt their behavior in in-

teraction with dynamically changing environments (cf. Steels [1993]). Steels’s notions

are easy to present in deterministically formalized frameworks for physical agents, but

would take cognitive scientists ages to agree on general specifications.

Artificially Intelligent Technology: Historically and scientifically, the cognitive rev-

olution was behind the wide interest in AI and its flourishing as an interdisciplinary

field. However, many AI projects concerned themselves with commercially producing

physical, “intelligent devices” that allegedly work like humans. That was how the idea

spread, especially when AI turned out to be more of an industry of “expert systems”

than of a research field of an interdisciplinary nature (cf. [Russell and Norvig, 2010,

§1.3]). The initial ambitions in the 1960s and 1970s had grown by the 1980s into an

“industry”, where not only researchers and engineers but also companies developed the

AI technologies in building specialized hardware. Large consultant-based businesses

of “knowledge engineering” also grew, which entailed extracting knowledge from hu-

man experts and encoding it in machine readable formats using specialized languages

(e.g. LISP). “The AI industry boomed from a few million dollars in 1980 to billions of

dollars in 1988 [. . . but soon] after that came a period called the “AI Winter”, in which

many companies fell” [Russell and Norvig, 2010, pp.24].

This has definitely a big effect on the meaning of the AI field, on the goals of its

projects, on the ambitions of its adherents, and on almost every related aspect to AI

as a scientific field (e.g. what criteria signify AI agents?). But in the very first years of

the twenty-first century, notable technological achievements in the field started to show

up again, and funding was increased again. IBM, for instance, has single-handedly

been able to impress the global community, twice, by showing that the continuation

along the technological line of improving AI by industrial projects is still plausible and

impressive. IBM first succeeded in 2002 to present the first chess-playing computer,
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DeepBlue [Hsu, 2002a], that could beat the human chess-master at the time. Then,

in 2011, IBM succeeded again in delivering the question-answering system, Watson

[Ferrucci et al., 2010], that could beat human participants in the American TV quiz

show, Jeopardy!.

Artificially Intelligent Cognitive Agents: Can what Watson-like devices are really

doing be considered “intelligent”? Would that be considered a theory of intelligence?

According to the main objectives of studying human cognition and building human-

comparable intelligent entities, and according to the position1 taken in this thesis, this

is definitely not the case. Without going into further traditional debates, let us not for-

get that people in the modern era are not astonished by the hands-on experience they

already have with intelligent “technological” systems (e.g. Apple R©’s Siri, Google R©’s on-

line services, Microsoft R©’s 3D motion sensing input device: “Kinect”, and smart phones

and tablet devices, which are now considered utilities for mundane usage). Moreover,

existing AI systems can already reason, plan, and perform actions, but their behavior

may not be viewed as originally motivated by essential cognitive abilities that reflect

one aspect of intelligence or another. Many of these systems neither focus on integrat-

ing human-comparable competencies nor on applying such competencies to a wider

range of directions, but are usually designed to rather solve a specific task, and fail

not only in solving another task but also in compatibly parsing that other task’s input.

Note that IBM’s Watson and DeepBlue systems can neither deal with each other’s main

functionalities nor even parse each other’s input. Their impressive success obscures

that these systems clearly lack “general intelligent action” as suggested by Newell and

Simon (cf. Newell and Simon [1976]). Moreover, “while both of these artifacts are intel-

ligent simpliciter, they most certainly aren’t general-intelligent” [Bringsjord and Licato,

2012, p. 26]. If we even go back to the roots of the AI field, the Dartmouth conference

proposed that ‘intelligence’, as a central property of human beings, can be so precisely

described that it can be simulated by a machine (cf. McCarthy et al. [2006]). But ‘gen-

eral intelligence’, the integrated view, is not yet achieved, and is still among the AI field’s

long term goals. Here is exactly where the modern view of AI (e.g. AGI) plays the role.

1.2.2 AI Reloaded: The AGI Debut

Researchers use terms such as ‘classical AI’, ‘narrow-AI’, and ‘good old-fashioned AI’

(GOFAI) to indicate that they take a traditional approach to achieving human-like think-

1Particularly regarding the integration of representations and utilization of specific higher cognitive

mechanisms in solving problems that signify aspects of intelligence.

15



Chapter 1: Prolegomenous Remarks and Background

ing. This traditional approach aims at producing systems demonstrating “intelligence”

in very specific, highly constrained tasks, based only on symbolic “manipulation” of sorts

of ideas, such as classical (propositional) logic and problem solving.

The modern approach to achieving AI by simulating cognition is mainly based on

representations and implementations of higher cognition in artificial systems. Such sys-

tems are designed with the intention to be acquired with “human-like” level of “general

intelligence”, so that their functionalities are supported by results (and solution method-

ologies) from other CogSci disciplines, such as philosophy, psychology, or linguistics.

Advocates to this latter approach adopt terms other than AI to refer to their research

field. For example, ‘strong-AI’, ‘cognitive systems’, or ‘artificial general intelligence’ (AGI).

The notion of “general intelligence”, abbreviated ‘GI’ henceforth, does not only focus

on treating “intelligence” as one factor of problem solving by machines; e.g. the way “in-

telligence” is treated by ‘narrow-AI’. GI is, however, a general problem solving capability

of cognitive beings that is:

1. “human-comparable”: the required intelligence capability is very close to (i.e. ex-

actly like, better than, or a little bit below) that of smart humans; and

2. “cognitively inspired”: the required intelligence capability behaves in a way that

simulates the functioning of higher cognitive mechanisms.

In this thesis, the use of the term “human-comparable” is preferred over “human-like”

because (i) the modern direction of treating intelligence as a whole (i.e. the direction

followed by advocates to strong-AI and AGI) aims at achieving humans’ general intelli-

gence or even beyond, and (ii) humans are not the only example of generally intelligent,

cognitive beings. “Human-comparable” is less anthropocentric, since many living crea-

tures (e.g. birds, dolphins, ants, etc.) are already known to show exciting types of GI

(though humans are usually considered the best available exemplar of generally intelli-

gent, cognitive entities). Having already given this distinction, note that all problems

discussed in this thesis are restricted to, and based on, human cognition.

AI in this modern, cognitively inspired sense should not only reflect on such an ability

that can be measured by IQ tests, for example, but should reflect on the ability to solve

a multitude of problems the way cognitive entities (especially humans) do; where the

solution, in essence, involves and utilizes the cognitive capacities (e.g. making analogies,

blending concepts, taking a “rational” decision, and being “creative”, to mention some

of the concerned examples). There is indeed a loose relationship between GI and the

notion of “g-factor” in psychology, which is an attempt to measure intelligence across

various domains in humans (cf. [Goertzel and Wang, 2007, pp. 1]).
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Artificial General Intelligence (AGI): Not only has AI always been a challenging do-

main for its advocates (who belong to a wide spectrum that ranges from daily users of

specific computer-based applications to experts in advanced scientific research), but so

has also the notion of “intelligence” raised several discussion debates about whether an

uncontroversial jargon is available in the first place (cf. Legg and Hutter [2007]; Wang

[2008]). Wang, for example, clarifies, analyzes, and compares five typical ways to de-

fine AI, in order to argue how these ways led the AI research to very different directions;

most of them have trouble to give AI a proper identity (cf. [Wang, 2008]). As a lively

new research area, AGI inherits all such kinds of challenges. Over the past decade, there

have been many attempts to define GI as prescriptions to model and develop strong-AI

systems. AGI is used here as a widely accepted term that stresses the general nature

of the desired intelligence capabilities of the strong-AI systems being researched. The

expanded versions of [Bach et al., 2012; Baum et al., 2010; Schmidhuber et al., 2011;

Wang and Goertzel, 2012] contain overviews and discussions about AGI as one of the

widest strong-AI terms in use. Unlike other scientific disciplines, a major part of re-

search in AGI still focusses on attempts to reaching an agreement on defining general

intelligence. This goes side by side with the challenges the AGI field faces in developing

working models and systems.

With the research advancements in CogSci disciplines, researchers increasingly ac-

knowledged the indispensability (and recognized the feasibility) of returning back to

the original goals. In recent years, the AGI researchers have (willingly) focused on

reaching that ultimate, original goal by exploring “all paths”, including theoretical and

experimental CogSci disciplines, using their interdisciplinary methodologies. There is

no doubt that this task of confronting the more difficult issues of human-comparable in-

telligence is immoderately tough. The toughness however encouraged many in the field

to remarkably focus on recovering the path to the original goals, so that AI really flour-

ishes as an interdisciplinary CogSci. The earlier observation in section 1.1.1.2, about

exchanging CS with AI in the primary cognitive sciences, provides a further witness to

this development.

1.2.3 The Crossroad: A CogSci/AGI Compact Viewpoint

Cognitive Modeling, Architectures, and Agents: Cognitive scientists usually use the

term “computational cognitive modeling” (or its variant, “computational psychology”;

cf. Boden [1984]) to explore the essence of cognition and various cognitive function-

alities. This exploration is achieved through developing detailed, process-based un-
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derstanding, by specifying corresponding computational models (in a broad sense) of

representations, mechanisms, and processes (cf. Sun [2008]; Sun and Ling [1998]).

Computational cognitive modeling hypothesizes internal mental processes of human

cognitive activities, and expresses such activities by computer program models, which

often consist of many components. Some researchers even take the position that “com-

putational cognitive models can be true theories of cognition” (cf. Sun [2009]).

A cognitive model tries to generally exhibit abstracted mock-ups that structurally cap-

ture basic characteristics of the cognitive entities, in order to explain the major features

of cognition and the cognitive processes. In simple words, cognitive models:

1. elucidate what such major features are (i.e. aspects of GI),

2. predict how the major features and their underlying processes function, and

3. explain how two or more major features relate to, or interact with, each other in

the model.

A cognitive architecture, then, allows modeling to be more beneficial, by proposing (arti-

ficial) computational processes that approximately act like the corresponding modeled

cognitive entities.

Many cognitive scientists (predominantly cognitive psychologists) would agree that

a cognitive architecture is more of a theoretical entity in CogSci than of a computational

model of GI. In fact, a proposed architecture basically attempts to encapsulate an in-

tegrated, broad “theory of cognition” about the many aspects of human cognition and

performance. The aspects, too, are usually grounded on experimental data from cog-

nitive psychology. But what I want to emphasize more is that a proposed architecture

should also be able to provide us with a way to build human-comparable computational

models, that satisfy as many GI aspects as possible, based on the architecture’s theory

of cognition (and on solution models describing how to solve cognition problems).

There are already too many cognitive models and architectures for intelligent agents,

which poses a challenge on its own in advancing the (restricted) field of interest. The

many different views of the “theories” behind these models and architectures seem re-

markably difficult to integrate. The majority of the AI history makes it obvious that

focus has always been on simulating isolated components of intelligent agents (e.g. vi-

sion systems, theorem-provers, voice recognition, question-answering, etc.) rather than

on whole agents (cf. [Russell and Norvig, 2010, pp. 59]). This inadvertently helped in

widening the gap between narrow-AI and AGI, for instance, by continually modeling

isolated aspects of intelligence that may be more difficult to amalgamate in later im-
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provements of any single model or architecture (which could have basically been built

on such isolated aspects).

On the one hand, I claim that specific cognitive mechanisms are more important

as intelligence aspects than others, and are easier to embed into existing models to

endow the models with these aspects. But existing models, on the other hand, still

need to update their views about how GI aspects can be integrated. This view of whole-

agent became widely accepted and a central theme in recent texts (cf. Nilsson [1998];

Poole et al. [1998]; Russell and Norvig [2010]). It takes us back to the roots of AI,

and agrees with Newell and Simon’s original ideas of implementing systems that are

capable of “the same scope of intelligence as we see in human” [Newell and Simon,

1976, p. 116]. Examples of whole-agent cognitive modeling are “ACT-R” and “SOAR”,

which are among the currently popular cognitive modeling architectures (cf. Anderson

et al. [2004]; Laird [2008, 2012]; Laird et al. [1987]).

Restricting Cognitive Modeling: The thesis neither intends to provide a general the-

ory of cognition nor a complete cognitive model, but rather promotes and adopts the

restricted view of CogSci and AGI that: models of artificial, computational systems can

be designed in a way that does not only enable ingenious solutions of baffling problems

(related to higher-level cognition), but can also be endowed with the ability to solve

problems the way a generally intelligent, cognitive entity (like a human being) does.

The main focus is not on proposing a new cognitive architecture. It is rather on exten-

sively investigating specific, essential cognitive capacities of human beings that deliver

solution models to important problems related to higher cognition (also cf. Abdel-Fattah

and Schneider [2013]). The given solution models are intended to be based on cogni-

tive scientific studies, and not on the design of one particular cognitive model or another

(although they are based on a specific framework called “HDTP”; cf. Chapter 3). How-

ever, the solution models given throughout the thesis are as abstract and general as

possible, so that their underlying ideas can serve in general computational models seek-

ing to simulate the same GI aspects. Existing studies from various cognitive science

disciplines will be used to consolidate the suggested solution models. Furthermore,

the selected capacities are computationally plausible, which means they can be com-

puted by developing computer programs for artificial systems. Their utilization will be

founded on using specific representational and structural treatments (cf. sections 1.3.1,

3.1, and 4.2). But the overall ideas can still be utilized within general cognitive models

or architectures like ACT-R, SOAR, or others.
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1.3 Representing Concepts for Computational Cognition

In order to be cognitively inspired, an AGI model should endow an artificial agent with

the ability to mimic human beings in several aspects, particularly sensing, (intelligently)

thinking, and (intelligently) acting. The three (sensing, thinking, and acting) have to

be connected by a central component of the agent (an analogue to the human mind)

that would be responsible for utilizing the cognitive mechanisms by means of collect-

ing and organizing the stream of information, usually called “beliefs”, which the agent

(continuously) perceive or (intelligently) conclude. Thus, agents in AGI models need to

build, maintain, and continuously manage, a repository of beliefs, that correspond to

the collected pieces of information and the valid inferences that may be (intelligently)

concluded.

About Knowledge Representation: Despite the widely accepted fact that there is a

fundamental, epistemological difference between “beliefs” and “knowledge”, the repos-

itory of belief entities is usually labeled “knowledge base” and denoted “KB”. Moreover,

the notions of “beliefs” and “knowledge entities” will be used interchangeably through-

out the text to reflect the same meaning.

A KB needs to consider the basic issue of how knowledge entities (i.e. beliefs that

constitute the agent’s knowledge base) are represented (cf. diSessa [1988]; Gärden-

fors [1988]). Knowledge representation, or KR, is a supremely crucial notion, which

the modeling of artificially intelligent agents, in particular, must consider very carefully

(cf. Davis et al. [1993]; Gutiérrez [2012]). Indeed, KR is even considered a corner-

stone AI sub-discipline, the research in which focusses on how to translate ‘knowledge’

from being completely ‘available’ in one medium to being approximately (or better yet,

equivalently) ‘describable’ in another: from descriptions, by which knowledge about

the surrounding world is present in the human mind, to other descriptive interpreta-

tions that an agent can use to account for (and act upon) the corresponding part of its

environment.

KR’s main job (with regard to cognitive mechanisms, agents, models, and architec-

tures) should be to sufficiently approximate descriptions of needed knowledge entities,

where the description of these entities (and the relationships among them) affect (and

are affected by) the described part of the surrounding environment, with which an agent

is concerned. Thorny discussions about identifying many of the terms in this latter view

are unavoidable. Many questions arise too. For example, “how, and what, knowledge is

described in the human mind?”, “what description may be used for knowledge entities
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in artificial agents?”, “how much ‘sufficient’ is a sufficiently approximate description?”,

and “what part of a surrounding environment is an agent concerned with?”. For a text of

the current size, however, I would rather prefer to only consider needed identifications

(and crisply mention related literature), and stress that this representation issue is in-

evitable to be encountered whenever it comes to solution models of cognitive problems

(e.g. related discussions are given in sections 4.2 and 7.2).

1.3.1 Concepts: Knowledge as Grouped Conceptual Entities

To start with, the next few paragraphs clarify both the difficulty and importance of

reaching a generally satisfying representation, by means of dealing with “concepts” as

consisting basically of knowledge entities. The intention is to introduce the issue of

concept representation as well as to support why the particular representational views

given later are chosen (cf. sections 3.1, 4.2, and 7.2).

Concepts: Cognitive psychology assumes that cognition is information processing in

one’s mind, where the basic elements of thought are considered to be conceptual enti-

ties, or broadly concepts (cf. Murphy [2004]; Schank [1975]). All conceptual entities

in memory can be interrelated to categorize conceptualizations of all the present ele-

ments in the world. This categorization usually results in forming a web or “ontology”

of linked concepts that are grouped together. According to a specific “ontology”, one

concept can have links to higher level concepts of which the concept itself may be a

part. A wheel can for example be a part of a car, so the concept WHEEL may have thus

a link to the concept CAR, which in turn can be seen as a part of the concept VEHICLE.1

Concepts may also have links in the other direction, namely to their constituent parts

(and parts can have parts, and so on).

Concepts are considered here as “the glue that holds our mental world together

[. . . , where] they tie our past experiences to our present interactions with the world,

and because the concepts themselves are connected to our larger knowledge structures”

[Murphy, 2004, pp. 1; emphasis added]. Therefore, conceptual entities will be basic

elements on which all forthcoming discussions are based. However, the difference in

the discussions between the “representations” of concepts and the concepts themselves

should be clear. There is an extremely vital difference between the “thing-in-itself”

and its representation, both on the (Kantian) philosophical level and the computational

1To distinguish a real entity from a corresponding representation of this real entity as a CONCEPT or
constituting conceptual entities, slanted font will be used to typeset the former and small caps to typeset

the label of the LATTER. This convention is also maintained throughout the rest of the thesis.
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level. Form is not substance: e.g. the blueprint is not the house, and the receipt is not

the dish (cf. [Fauconnier and Turner, 2002, pp. 4]).

Roles of KR and Conceptual Entities: In a seminal discussion of the KR essences,

Davis et al. argue about five distinctly different roles that a representation plays, and

claim that each of which places different and at times conflicting demands on the proper-

ties a representation should have (cf. [Davis et al., 1993] and [Wagman, 1996, Ch. 1]).

The very first role KR plays is being considered “most fundamentally a surrogate, a

substitute for the thing itself, that is used to enable an entity to determine consequences

by thinking rather than acting” [Davis et al., 1993, pp. 17]. I agree with Davis et al.

that “all representations are imperfect approximations to reality” [Davis et al., 1993,

pp. 19; emphasis added], which is precisely one of the major sources where error may

come from. Nevertheless, this is also the exact reason why I find it better for a GI

model to represent knowledge using conceptual entities. Remember that “conceptual

entities” refer to existing knowledge pieces (or beliefs) in the agent’s KB. These can

be categorized to constitute an approximate interpretation that reflects a conceptual

understanding (i.e. conceptualization) of an ideation or a conception. A representation

of the latter is referred to, here, as a “concept”.

By representing the KB of a cognitive agent using conceptual entities, any knowledge

entity (i.e. beliefs) that the agent may acquire will affect the “understanding” (i.e. the

representation) that the agent has already acquired about the specific “concept” (i.e. the

concept that the belief contributes to its description). In general, a knowledge entity

affects the relationships among the concepts that share such an entity too. Moreover,

using conceptual entities helps in overcoming the challenge of how detailed should a

representation be. The model designer will be responsible for deciding upon the granu-

larity level for representing the KB, but this should not affect the overall KR description

structure of the KB (whence, affecting the whole KR level). The presented conventions

are needed for the discussions about conceptions and their corresponding concept rep-

resentations, presented within the context of section 4.2. Parts of the ideas given in

Chapters 7 and 8 will also be based on these discussions.

KR plays its second role according to Davis et al. as a set of “ontological commit-

ments”, where “selecting any representation [. . . ] unavoidably [make] a set of deci-

sions about how and what to see in the world” [Davis et al., 1993, pp. 19; emphasis

added]. But then, they indicated that their choice of the phrase “ontological commit-

ment is perhaps not precisely correct for what [they] have in mind here, but it is the

closest available approximation” [Davis et al., 1993, pp. 32]. I argue that the use of con-
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ceptual entities as KR entities collapses the first and second roles of KR (given in Davis

et al. [1993]) into only one: an approximate surrogate of ontological commitments. In

other words, the use of conceptual entities as a way of representation enables KR to

achieve (at least) both its first and second roles in modeling aspects of GI: that is, KR is

an approximate surrogate which is, inherently, also a set of ontological commitments.

1.3.2 Levels of Representation

Consider the two pictures given in Figure 1.2, which contrast two representational views

of the same scene. The pictures emphasize how the same (part of the) world can be

represented based on completely different views. Human beings can recognize a wide

range of possible representations (e.g. abstract or theory-driven), but artificial agents

are not able to do exactly so —a situation that certainly requires a model designer to

take several design decisions concerning the representation of knowledge.

By looking at Figure 1.2a, humans would recognize a depiction of a natural land-

scape scene, with drawings that illustrate both animate objects (such as flying ‘birds’

and a ‘rabbit ’ holding a ‘carrot ’) as well as inanimate objects (such as the ‘carrot ’ itself,

a faraway ‘mountain ’, and the ‘ground ’, through which part of a flowing ‘river ’ is also

illustrated). People can categorize different parts of the figure only by tracing some

curves and lines in the figure (that is, a “processed sensing”). They understand for ex-

ample that the upper half of the figure reflects the ‘sky ’, whereas the lower half of the

same figure reflects the ‘ground ’, although both parts are not painted in any distinguish-

ing colors. Also, they can even recognize a ‘mountain ’ between these two halves. In

addition, at the top-left corner of the same figure, the drawing reflects the ‘sun ’ and

an ‘aura ’ (that may be recognized as the ‘corona ’) by simply drawing a part of a circle

surrounded by a part of another geometrical curve that looks like a hypocycloid of a

bigger, unseen circle.1

Humans, who can recognize objects (in Figure 1.2a) such as ‘sun ’, ‘rabbit ’, ‘river ’,

‘tree ’, etc., must have already “learned” a lot in reality about such objects and their

underlying conceptions to reach this level of identification. They must have already

developed conceptualizations about what these objects are, what their main properties

are, what their nouns or meanings imply, how they can be illustrated in drawings like

the one in the figure, how they are linked, etc. This development of conceptualizations

about objects is a process of developing understanding of the particular conceptions,

as well as about the possible interrelations that lie within. Conceptions are not always

1In geometry, a hypocycloid is a special plane curve generated by the trace of a fixed point on a small

circle that rolls within a larger circle.
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(a)

(b)

Figure 1.2: KR is one of the biggest challenges for modeling higher cognition: The

world may be seen abstractly or as theory-based. This picture is taken from Abstruse

Goose’s “World View” (cf. http://abstrusegoose.com/275).
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developed in isolation, but also with possible relations to others. One recognizes that

the (visible part of the) hypocycloid curve in Figure 1.2a represents the corona (of

the sun), not because one directly has the belief entity that: “the corona is illustrated

in figures by drawing a geometrical curve that looks like an aura in the form of a

hypocycloid”, but rather because one can “theorize” such an entity from one’s previous

experience in the KB; from the many “exemplars” of illustrations and images one has

previously seen, in which rays that surround the sun are illustrated in an analogous way.

This is highly related to well-known cognitive scientific views of concept representations,

outlined in section 4.2.

Perhaps, a generally intelligent agent may have sensors to perceive the surrounding

environment (or even take photo images of it, then store them in the KB). However,

in almost all the cases, an agent is not expected to understand the environment by

only storing percepts. Conceptual entities have to be arranged as KB contents through

ontological relations that relate these entities. The agent would need to have internal

information about the several knowledge entities, in order to grasp the kind of scenes

given in Figure 1.2a. This is where the issue of using concepts as KR entities becomes

very important for modeling GI aspects.

How Deep Should a Representation Approximate Reality? A direct answer to the

question “how much to represent?” is always “it depends”. It depends on storage ca-

pacity, on the processing speed, on the accepted degree of precision, on the importance

of optimizing other resources, etc. The decision is crucial, however, because the choice

always depends on the more important application or set of applications that need to

be frequently performed. Implicitly, the decision also informs the KR engineer “what

not to represent” as well. The same representation can be very beneficial in speeding

up the computation of concrete processes and efficiently solving concrete problems, but

very inefficient with respect to computing other processes and solving different kind

of problems. Nonetheless, a decision must be taken anyway, because everything that

follows (with respect to the utilization of the KB mentioned earlier) depends on it (also

cf. section 4.2).

Figure 1.2b, for example, gives a representational view of the same illustration of

Figure 1.2a, but uses a different KB that is richer in terms of representational formulae.

On the one hand, the equations shown in Figure 1.2b seem inevitable if one needs not

only to study surface features of the objects in the scene but also their deeper charac-

teristics and the physical relations among them. Chemical reactions, for instance, are

represented by equations that represent the interactions between objects: e.g. photo-
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SSD Screen:

Figure 1.3: A symmetric hexadecimal code: “a3d52bea”. The dotted, vertical line rep-

resents an imaginary axis of symmetry.

synthesis (by the plants in the scene) uses carbon dioxide (CO2) to extract oxygen (O2),

whereas the breathing process (by the rabbit in the scene) does the opposite. Natu-

ral scientists (like physicists or applied mathematicians, in particular) may think that

such lots of details are important for the representation and may in addition be able to

identify other equations, such as:

1. the hydrogen fusion in the sun (hint: the equations to the top-left),

2. Navier Stokes continuum equations of flow (hint: the water flow of the ‘river ’),

3. (biological) combustion of glucose (hint: the rabbit eating the carrot),

4. photosynthesis (hint: the plants),

5. Bernoulli’s equation (hint: the flying birds),

as well as many other equations (like a Fourier series, a linear system of equations, Ein-

stein’s field equations, and Schroedinger’s and Maxwell’s equations). On the other hand,

this formulae-rich representation seems to be only needed in a very limited number of

applications, perhaps natural-scientific ones, if at all. But if the rich representation

is needed, then it must be used. Otherwise, the difference between the approximate

representation and the real existing knowledge could be satisfying. In arithmetic, for

instance, the number system used for representing the numerals plays a differentiating

role, simplifying some procedures and complicating others. What makes one system

preferable over another is not only the way the system elements are represented, but

also the processes that can be performed utilizing these corresponding representations.

Again, it depends on the applications.

Representing the Environment: Representing the environment is another difficult

task for a model designer, since it is of an utmost importance for achieving the function-

ality (i.e. processing) of some aspects of intelligence. Clark and Chalmers argue that not

only can the environment sometimes be an important resource for cognition, but that
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SSD Screen:

Figure 1.4: How a representation of the incorrect equation: “5+7 = 7” can be made into

a representation of a correct equation: “6 + 1 = 7” by moving one “segment” from its

“location”.

bits of it sometimes actually become proper parts of the cognitive system (cf. [Blomberg,

2011, pp. 87–88]). In fact, thinking in terms of a specific representation for the environ-

ment may be “the” way to solve problems that can only be circuitously solved. Just think

of how difficult it would be to recognize whether or not the hexadecimal codes that

correspond to 10-digit decimal numbers, such as the codes “a3d52bea”, “bbddbbdd”,

or “e5a25a23”, are symmetric, without representing the hexadecimal codes on a 7-

segment-display screen and defining the axis of symmetry to be vertical (cf. Figure 1.3).

Now, if we assume the representation has been fixed to represent the conceptual enti-

ties as segments on 7-segment-display screens, would not it be considered intelligent if

a cognitive agent can figure out how to correct the incorrect equation 5+7 = 7 to 5+1 = 7
by changing the location of only one segment (cf. Figure 1.4)?

A Summary: To sum up, the above discussion stresses KR as a fundamental issue that

must be considered in modeling cognitive agents, while keeping in mind that KR is

rather sensitive to many factors (such as the level the representations should be at).

Representations in the KB are affected by the driving force to capture as equivalent

interpretations of percepts (and their interrelationships) as possible. However, ways to

represent knowledge varies depending on many factors, such as the richness level of

details that is needed for the modeled applications and processes, as well as how these

details are viewed in the first place. In modeling cognitive agents, the designer must

take decisions in these regards from the beginning, because the decisions affect not only

the details to be represented, but also the ways (or methods) to be followed, in order

to model the needed processes. Moreover, in some cases we may not even be able to

talk about modeling without also talking about a specific type of representation. The

way any piece of information is represented affects almost every utilization to deal with

such information, especially when it comes to devising ways of processing knowledge

that contain many interrelated pieces of information.
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1.4 A General Overview of the Thesis

All discussions have so far provided a collection of general backgrounds. One aim was

to give directive hints to cover the restricted view of the thesis, which could help as

an overview of related literature. Another aim was to mention selective ideas that will

enrich discussions in forthcoming sections. Hopefully, this may also help to answer

unasked, rather expected, questions. The remaining chapters in this (first) part of the

thesis (namely, Chapters 2, 3 and 4) continue to give rather more specific and condensed

backgrounds:

1. In the next chapter, Chapter 2, “analogical reasoning” is presented. It has a central

position as a GI aspect that manifests cross-domain intelligent thinking. Examples

of artificial systems of analogy-making will also be briefly mentioned, along with

their main components and simulated processes.

2. A framework is important to, at least, affirm that a realization of computational

solutions to the posited cognition problems is achievable. The selected framework

is based on the powerful analogy engine, HDTP. An overview that focusses on

HDTP is given in Chapter 3. (But the problems themselves are presented within

the second part of the thesis.)

3. Another multifaceted, cross-domain mechanism that greatly helps in explaining

various forms of GI is “conceptual blending” (or conceptual integration). Con-

ceptual blending, which is fundamental to computational models of cross-domain

thinking and creativity, is thoroughly elaborated on in Chapter 4. The elaboration

is pivotal for all the chapters that follow.

The main contribution of the text is to confirm positive answers to the research

questions whether multifaceted cognitive mechanisms are necessary, and if they can be

utilized to endow cognitive agents with clear signs of GI manifestations in an integrable

form of modeling. The second group of chapters gives more elaborate support to such

affirmative answers. That part contains the following chapters, which exhibit main

contributions and results of the study:

1. Chapter 5 is concerned with modeling manifestations of creativity, as a funda-

mental GI aspect that helps in stepping further towards achieving computational

creativity in AGI models by means of cross-domain mechanisms. The major por-

tion of this chapter is based on a copyrighted, published article that follows the

same thematic research trace. (The presented text includes ideas and materials

already co-authored as parts of Abdel-Fattah et al. [2012b].)
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2. Given that “rationality” is an indispensable GI criterion of human beings (who are

the best known generally intelligent exemplar), Chapter 6 puts an emphasis on the

possibility to achieve human-style rationality in AGI systems. It also claims that

classical systems fail to interpret deviations in such behavior precisely because

they lack to utilize higher cognitive mechanisms in appropriate ways. The major

portion of this chapter is based on copyrighted, published articles that follow the

same thematic research trace. (The presented text includes ideas and materials

already co-authored as parts of Abdel-Fattah et al. [2012a] and Gust et al. [2011].)

3. A proposed solution model of how to interpret novel noun-noun combinations,

based on representing nouns as concepts and utilizing cross-domain mechanisms,

is extensively discussed in Chapter 7. The major portion of this chapter is based

on copyrighted, published articles that follow the same thematic research trace.

(The presented text includes ideas and materials already co-authored as parts of

Abdel-Fattah [2012] and Abdel-Fattah and Krumnack [2013].)

4. Chapter 8 identifies yet an additional benchmark aspect of GI: the capacity of hu-

mans to analyze counterfactual conditionals by utilizing cross-domain cognitive

mechanisms. The chapter introduces the problem of analyzing counterfactual con-

ditionals, emphasizing that such a crucial trait indicates intelligent and creative

reasoning, and needs thus to be considered in modeling AGI systems. Therefore,

Chapter 8 also explicates a method to utilize cognitive mechanisms in computa-

tionally analyzing counterfactual conditionals. The major portion of this chapter

is based on copyrighted, published articles that follow the same thematic research

trace. (The presented text includes ideas and materials already co-authored as

parts of Abdel-Fattah et al. [2013a] and Abdel-Fattah et al. [2013b].)

Finally, some conclusive remarks and a summarized overview of the presented ideas

are given in Chapter 9. In addition to discussions mentioned throughout the various

chapters, this conclusive overview includes ideas and materials already co-authored as

parts of Abdel-Fattah and Schneider [2013]; Mart́ınez et al. [2011] and [Wang and

Goertzel, 2012, Chapter 12]. The chapter quickly elaborates on future research subjects

that may be needed to render some broad views more concrete.
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2

Analogical Reasoning

Broadly speaking, analogy making is an act of comparing potentially dissimilar things,

typically referred to as domains, by highlighting the respects in which they may be per-

ceptually, or functionally similar. What is being reflected by this contrasting comparison

is an analogy; and any type of thinking that relies upon it is usually termed analogi-

cal reasoning. Reasoning based on analogies is one of the most fundamental cognitive

abilities to human thought (cf. Kokinov and French [2003]) and, arguably, to some

non-human animals (cf. Bartha [2013]). In this chapter, the basic cognitive aspects of

making analogies and its modeling approaches are introduced and discussed.

2.1 Cognitive Science, AI, and Analogy-Making

Analogies play a significant key role in a wide range of problem-solving contexts and in

learning, with analogical reasoning providing a heuristic way of reasoning that differs

from ways of exact, logical reasoning. This cognitive ability to reason analogically al-

lows a cognitive reasoner to selectively retrieve needed information from the reasoner’s

memory (or knowledge base), based on a matched situation to the reasoner’s current

situation. This facilitates the drawing of inferences that the reasoner thinks are specif-

ically related to the current circumstances, because the very idea of making analogies

depends on previously encountered experiences (e.g. the knowledge available in, or

retrieved from, the reasoner’s memory or KB) and not on deterministic, formal rules.

Many forms of analogical reasoning have the potential to be formalized and modeled.

In fact, various modeling approaches and systems for computing analogies already ex-

ist. Computational modeling provided valuable sources of insights that led to a deeper

understanding of analogy and the roles it plays in human cognition (cf. [Gentner and

Forbus, 2011, pp. 266] and [Hofstadter and Sander, 2013]).
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2.1.1 Using the Analogy Label in AI and CogSci

Analogies have been studied from a variety of perspectives. This gives different senses of

usages and interpretations of what the term “analogy” itself means, as well as variations

of the exact roles played by analogical reasoning in cognitive scientific studies. Three

modes of using the analogy label are usually mentioned (cf. Indurkhya [1989]):

Analogy by Rendition: The term “analogy” can be used to render a less-familiar object

as being alike in an uncommon way to another more familiar object, or vice versa.

A characteristic of this usage mode of analogy is that similarity between objects do

not originally exist prior to discovering (or, in fact, synthesizing) an interpretation.

In cases of analogy by rendition, no further (actual) inferences about any of the

objects can be drawn from the analogy. For example, the words “desserts” and

“stressed” can be seen similar according to the serendipitous observation that they

are the same if spelled backwards. Going further by inferring “that is why we eat

desserts when we feel stressed” is at least as synthetic as the observation. To the

best of my knowledge, analogy by rendition has not been explicitly addressed by

computational models of AI so far, but systems do exist that exhibit features very

much like analogy by rendition (cf. [Indurkhya, 1989, pp. 226]).

Proportional Analogy: A “proportional analogy” indicates the proportion of two pairs

of four general objects A, B, C, and D in a statement: “ ‘A’ is to ‘B’ as ‘C ’ is to ‘D’ ”,

denoted “(A ∶ B) ∶∶ (C ∶ D)”. An analogical reasoning problem in this usage mode

tries typically to find a possible D that balances the proportion suggested by the

analogy “(A ∶ B) ∶∶ (C ∶ D)”. For example, “dog is to bark as cat is to . . . (what?)”

or “sun is to the solar-system as nucleus is to . . . (what?)”, and so on. Proportional

analogies are probably closest to the original Greek meaning of analogia —(ana- +

logia) that means “proportion”— which seems to give an explanation of why ‘dis-

covering an analogy’ means ‘discovering a relative proportion’, and then applying

it (e.g. to find a D alternative; also cf. Figure 2.2 on page 48). For proportional

analogies, there do exist computational systems that can model it. Reitman et al.’s

information processing model of thinking can be historically considered the first

computer program that solves proportional analogies (cf. Reitman et al. [1964]).

Ideas from Evans’s system, dedicated entirely to solving geometric proportional

analogies (cf. Evans [1964]), are crisply presented in section 2.3.

Predictive Analogy: This is the particular mode of analogy-based reasoning that the

majority of analogy-making systems are studying and modeling. Unlike propor-
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tional analogy, which is considered an end in itself, the predictive mode of analo-

gies usually serves as a heuristic in some larger context of problem solving (cf. [In-

durkhya, 1989, pp. 226]) —and will be utilized as a heuristic in the rest of the

thesis’ contexts as well.

A predictive analogy plays at least two crucial roles in cognition, since it typically

helps in enriching knowledge about a recent conceptualization (referred to as the

target) by:

1. observing possible similarities with an already-known conceptualization (call-

ed the base or source) retrieved from memory, and then

2. trying to transfer new information from the already-known to the newly en-

countered.

The ordering in the latter enrichment process is specific, which is what distin-

guishes predictive analogies from analogy by rendition: in the latter it is neither

the case that similarities are always observed before information is transferred, nor

is it always the case that information is transferred from the already-known to the

recently encountered. Moreover, observing ‘possible’ similarities when working

out predictive analogies is an indication that other possibilities of similarities may

be drawn in a reasoning process (e.g. by having a different context or by changing

the reasoner’s KB). This allows predictive analogies to provide more “predictions”

of similarities between the given conceptualized domains than the mere “render-

ing” in analogy by rendition (which seems intentional or synthetic in its nature).

Throughout the rest of this text, it will become more evident that these predictions,

in turn, play other crucial roles in modeling clear signs of cognition and GI.

An obvious aspect of higher-level cognition would be the ability of a cognitive agent

to figure out whether or not the same ‘system of relations’ holds among the entities

across their domains (cf. Gentner [1983]; Jee et al. [2013]). The domains are always

assumed to be structured representations of conceptual entities in some KR language

(cf. section 1.3.1 and section 4.2). Typical cases of analogy involve two of such struc-

tured domains or concepts:

1. one, that is referred to as the “source” (or the base) domain, about which more is

already known, and

2. the other, that is called the “target” domain, which indicates a recently encoun-

tered situation or a new experience.
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Intelligent reasoning allows humans to compare the underlying relations between enti-

ties in each domain, roughly highlighting distinctly notable (or unnoticeable) similari-

ties (cf. Gentner [1989]; Gentner et al. [1993]). “For instance, when a person is told

that the interior of the earth is like a peach, they are unlikely to assume that a sub-

stance with the taste, color, and texture of a peach can be found beneath the earth’s

crust. Rather, they understand the message to be that comparable spatial relationships

hold within each of the two objects” [Jee et al., 2013, pp. 2–3]. The following discus-

sions include somewhat extensive overviews of why analogy is important to cognitive

scientists, and how prominent AI models succeed in computing several forms of it.

2.1.2 General Motivating Examples

As an important element of cognitive development, humans develop their ability to

make analogies from the very early ages, in parallel to developing their comprehension

of every conceptualization they encounter over time —an issue that further supports se-

lecting analogy-making to serve as the basis for numerous other kinds of human think-

ing (cf. Chapters 5, 6, 7, and 8). Starting with “the simple ability of babies to imitate

adults and to recognize when adults are imitating them”, progressing to “children’s be-

ing able to recognize an analogy between a picture and the corresponding real object”,

and, ultimately, culminating in “the adult ability to make complex analogies between

various situations” (cf. [Kokinov and French, 2003, pp. 113]).

People employ analogies in many real-life situations that range from solving pro-

portional analogies (e.g. the type of exercises in proportional analogy that became a

standard part of various intelligence tests; cf. [Indurkhya, 1989, pp. 217]), to under-

standing deep, metaphorical, pictorial conceptualizations (cf. Figure 3.6). In fact, many

cognitive processes involve analogy-making in one way or another, and this happens in

a variety of situations such as:

• diagnosing an illness of a patient by a doctor, based on prototypical symptoms or

on blood, or urine tests,

• founding a new formal or scientific theory, such as proving a new mathematical

formula (cf. Kerber [1989]), or solving a problem based on the way a similar one

was previously solved1,

• writing a poet, composing a song, or creating any new piece of art (e.g. the shapes

presented in Penrose and Penrose [1958], and Escher’s implementation of them

1A simple example in education would be, e.g. the practicing of mathematical induction by students

in discrete mathematics lessons.
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in [Seckel, 2004, pp. 92] and [Seckel, 2004, pp. 91]; also see Abdel-Fattah and

Schneider [2013] and Chapter 5),

• recognizing the same content or “spirit” of drawn images (e.g. perceiving a square

in a painting as a human’s head) or hand-written texts (cf. [Hofstadter and the

Fluid Analogies Research Group, 1996, Chapter 10, in particular Figure 10.2 and

10.4, pp. 413 and 418, respectively]), even if the styles look different, or

• supporting or refuting judgements following a line of argumentation (e.g. “argu-

ing in court for a case based on its common structure with another case” [Kokinov

and French, 2003, pp. 113], and assimilating a new case in Islamic law guided by

earlier cases [Sowa and Majumdar, 2003, pp. 18–19]).

Many other daily life situations can be mentioned, like learning (e.g. a foreign lan-

guage), teaching (e.g. natural or programming languages), understanding metaphors

and making them (cf. [Gust et al., 2006; Indurkhya, 1992]), or communicating with

others by conveying and comprehending ideas or even emotions (e.g. by perceiving

similarly experienced facial expressions). These are just a few of the many, many ap-

plication scenarios that consolidate analogy-making as being a core aspect of cognition

that helps in acquiring, communicating, and creating ideas (cf. [Gentner et al., 2001;

Kokinov and French, 2003]). All of the above (and more) have rendered cross-domain

reasoning based on analogy-making into an important aspect of intelligent thinking that

seems to be essential in computational models of AGI.

A Core Cognitive Realm: Analogies attracted the attention of many researchers in

cognitive science and AI since these disciplines started (cf. Indurkhya [1989]), but

the way in which analogy is approached has changed during the last few decades

(cf. [Clement, 2008; Gentner et al., 2001; Holyoak and Thagard, 1996; Schwering et al.,

2009b]). For a relatively long period of time, analogy was considered merely as a spe-

cial case of reasoning that is rarely applied, but that is giving rise to creative solutions

and poetic writing. Important roles have long been ascribed to analogical thinking, in

particular, in:

• problem solving (cf. Helman [1988]; Pólya [1954]),

• measures of intelligence (cf. Sternberg [1977]),

• the development of concepts (cf. Lakoff and Johnsen [2003]), and
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• creativity and scientific discovery (cf. Clement [2008]; Holyoak and Thagard

[1996]).

Then, science studies provided more evidence that analogy was used by preeminent sci-

entists in formative research meetings in leading laboratories [Clement, 2008, pp. 9],

and that analogical reasoning can be important in both learning scientific models as well

as transferring this learned knowledge to new, unfamiliar problem domains (cf. [diSessa,

1988; Rumelhart and Norman, 1981]). Quotes and discussions by prominent scien-

tists, especially in the philosophy of science, clarify the respect they all have for the

role of analogies, and suggest that analogies may be a source of hypotheses in sci-

ence (cf. Campbell [2013]; Einstein and Infeld [1966]; Gentner et al. [1997]; Hesse

[1966]). They argue that scientists “not only find patterns of empirical observations in

their work”, but also “think in terms of theoretical explanatory models”, which “consti-

tute a different type of hypothesis than empirical laws” [Clement, 2008, pp. 14].

Analogies attracted the attention of several cognitive science groups over the last

few decades, especially those working in the AI field (cf. [Bartha, 2013]). Extensive re-

search on analogy has been conducted, focusing on the central importance of analogical

reasoning in diverse areas (like perception, learning, memory, language, and thinking).

As these areas were realized to depend on relational matching, “analogy-making moved

from the periphery to the core of human cognition” [Schwering et al., 2009b]. Some

prominent figures even consider analogy as “the leading fact in genius of every order”

[James, 1950; Mitchell, 1993], as “one of the ultimate foundation-pillars of the intel-

lectual life” [James, 1950], or as ‘the’ most important aspect of cognition [Hofstadter,

1995; Hofstadter and Sander, 2013]. Specifically, Hofstadter’s view is that “analogy-

making should not be thought of as a special variety of reasoning”, but rather “the very

blue that fills the whole sky of cognition” [Hofstadter, 2001, pp. 499; emphasis original].

According to his view, analogy is nearly everything and is “a core of cognition”.

2.1.3 The Structure-Mapping Theory (SMT)

The literature in cognitive science provides several theories and experiments on ana-

logical reasoning (cf. Forbus et al. [1997]; Gentner [1983]; Helman [1988]; Holyoak

and Thagard [1996]; Hummel and Holyoak [1997]). Whilst earlier models tended to

understand the basic “constraints that govern human analogical thinking” [Hummel

and Holyoak, 1997, pp. 458], the predominant objectives of recent theories have be-

come to uncover psychological mechanisms of the sub-processes involved in analogy

making, and to model the functioning of these sub-processes (cf. Bartha [2013] and
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section 2.2.1). The experiments aim to support the theories by reporting on either (i)
completing “presented analogies”, in which parts of analogies are given to human par-

ticipants and are asked to complete these parts, or (ii) finding “spontaneous analogies”,

where the participants initiate and form the entire analogy (cf. Clement [2008]).

As for theories, Gentner’s “structure-mapping theory” (SMT) is an influential theo-

retical framework for analogy that introduces and describes psychological processes

utilized in analogical reasoning (cf. [Forbus et al., 1997; Gentner, 1983, 1989]). In

order to founding analogy as being a way of focusing on relational commonalties, in-

dependently of the objects in which those relations are embedded, the SMT explicitly

emphasizes the importance of both “structural similarity” and “structural consistency”

of objects in the source and target domains by stressing that:

1. good analogies are determined by mappings of relations and not attributes (cf.

[French, 2002, pp. 202]), and

2. mappings of coherent systems of relations are preferred over mappings of indi-

vidual relations (cf. [Hofstadter and the Fluid Analogies Research Group, 1996,

pp. 276]).

This is revealed in SMT through the central principle of “systematicity” (cf. Clement and

Gentner [1991]), which shifts the emphasis in analogy-making to the structural simi-

larity between the source and target domains. One observes systematicity by keeping

“relations belonging to a systematic relational structure in preference to isolated rela-

tionships” [Falkenhainer et al., 1989, pp. 6]. The principle of systematicity states that

people “prefer to map connected systems of relations governed by higher-order1 rela-

tions with inferential import, rather than isolated predicates” [Gentner, 1989, pp. 201;

emphasis original].

Example of SMT’s Systematicity Principle: The role that systematicity plays can be

explained by considering a concrete example, such as a famous analogy between the

solar system (as the source domain) and the Rutherford atom model; namely: “the atom

is like our solar system” (cf. Gentner [1983]).2 A conceptualization of the source domain

1Keep in mind that constructs like (first-order) functions or predicates connect items (of a represen-

tation) with certain relationships, and perhaps give results of some sorts (like in the case of function

constructs). A construct can also be of an order higher than 1, so it has at least another construct of a
lower order as an argument (or gives such a lower-order construct as output in the case of a higher-order

function).
2Section 3.2 elaborates more on this and presents other concrete analogy domain examples. It also

describes specific representations of higher-order constructs in more detail.
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would involve entities (e.g. the sun and the planets), as well as properties and (higher-

order) relations between those entities (e.g. “the sun is yellow”, “the planets revolve

around the sun”, and “the sun attracts planets, which causes them to revolve around it”).

Similarly with respect to the target domain, a conceptualization would involve entities

(e.g. the nucleus and the electrons), surface properties, and relations (e.g. “the electrons

revolve around the nucleus”). In this sample analogy situation, the intended inferences

about the atom being like the solar system concern more the relational structure than

the mere surface properties of the involved entities (cf. [Gentner, 1983, pp. 159]). By

predicting the sun as analogous to the nucleus and the planets as analogous to the

electrons, the nucleus plays a role (w.r.t. the atom model of Rutherford) like that of the

sun (w.r.t. the solar system) not because both are massive or have similar colors, for

example, but rather because one can observe that electrons revolve around the nucleus

just as planets revolve around the sun. Higher-order relations that are present in the

source, such as “the sun attracts planets, which causes them to revolve around it”, can

be mapped to the target (that is, “the nucleus attracts electrons, which causes them to

revolve around it”).

Indeed, cognitive scientific studies consolidate the principle of systematicity by show-

ing that people do not simply fetch any isolated fact from the source (that does not exist

in the target) and infer a counterpart in the target. They rather infer a counterpart to

a fact that is connected (in the source) via a higher-order relation to other matching

facts (cf. Clement and Gentner [1991]) —an implication that inferences are implicitly

oriented to find a larger matching system than isolated facts (cf. [Gentner and Forbus,

2011, pp. 266]). Thus, structural consistency requires that not only should objects in the

source have correspondences with objects in the target, but arguments of corresponding

predicates should also correspond. Alignments are found that parallel (as much as pos-

sible) the structure of connectivity among the objects in the respective domains, with

inferences projected from the source to the target based on alignments. On the basis of

these alignments too, further inferences are projected from source to target.

Cheng and Holyoak’s Proposal: In contrast with Gentner’s proposal that people pre-

fer “structural consistency” in analogical reasoning, Cheng and Holyoak propose —

based also on experimental results— that “goal relevance” is responsible for determin-

ing, for example, what is selected in the mapping of an analogy. According to Cheng

and Holyoak’s pragmatic focus, people are more oriented in analogical reasoning to-

wards attaining goals (cf. [Cheng and Holyoak, 1985]). Holyoak and Thagard integrate

both ideas (i.e. the structural and the pragmatic) in their approach to analogical map-
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ping, commonly known as the multi-constraint theory (cf. Holyoak and Thagard [1989,

1996]). Holyoak and Thagard also focus strongly on analyzing the mapping process

as the most difficult process to account for, arguing that it is easier to find a possibly

analogous case but not so easy to find good or meaningful analogy (cf. [Holyoak and

Thagard, 1989]). They argue that evaluating the soundness of an analogy is a more

complex and goal oriented process (cf. [Clement, 2008, §2.1.3]).

In any case, the SMT and its emphasis on the structural aspects of analogical map-

pings has been, and still is, more influential in contexts ranging from child development

to folk physics (cf. French [2002]; Gentner et al. [1997]). Furthermore, the family

of computational models that are based on SMT have been traditionally considered

the most influential, in particular because numerous psychological experiments have

confirmed the crucial role of relational mappings in producing sound and convincing

analogies (cf. [Kokinov and French, 2003, pp. 116]). Assumptions that underly the

computational implementations of SMT are given by Falkenhainer et al. in their “struc-

tural mapping engine” (SME) (cf. [Falkenhainer et al., 1989]), and will be elaborated

on in section 2.3.

Sub-Processes in Analogy-Making: With regard to sub-processes, few interrelated

phases traditionally characterize the cognitive process of analogical thinking, when one

is exposed to a new (target) situation. According to Falkenhainer et al., for instance, the

SMT views analogical processing as being decomposed into three consecutive stages or

phases (cf. [Falkenhainer et al., 1989, pp. 3–4]), on which models of similarity-based

retrieval can be built (cf. Forbus et al. [1995] and section 2.2):

Access: The access phase retrieves a target description from the long term memory

(LTM), based on a given base (source) situation.

Mapping and Inference: This phase constructs correspondences between the source

and the target, and includes candidate inferences acceptable by the analogy. The

candidate inferences specify what additional knowledge in the source can poten-

tially be transferred to the target.

Evaluation and Use: In this phase, a quality of the match is estimated, according to

three kinds of assessment criteria: structural (e.g. number of similarities and dif-

ferences), validity (e.g. inferences must be checked against current world knowl-

edge), and relevance (e.g. whether or not the analogy is useful to the reasoner’s

current purposes).
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Broadly speaking, the number, labels, and order of phases may differ from one theory

presentation to another, or from one situation of analogy-making to another.1 As an-

other example, the following (also three) steps are suggested as the core of the analogy-

making process in [Schwering et al., 2009a, pp. 2], which slightly differ from Falken-

hainer et al.’s:

Retrieval: similar to the access phase in Falkenhainer et al. [1989], retrieval identifies

a source domain to which the new (target) situation can be related,

Mapping: this step concentrates on (only) establishing a mapping between the source

and target cases, based on their common structure or relations, and

Transfer: a translation of information between the two domains takes place in this step,

which also (possibly) infers new elements in the target (based on the mapping).

Cognitively speaking, the “mapping” may be seen at the core of the process of estab-

lishing a feasible comparison between dissimilar domains in analogical reasoning. In

this comparison, (i) the “retrieval” initiates a contrasting process (which is triggered

depending on suggestions for the source by the familiar background knowledge of the

reasoner), (ii) the “mapping” characterizes and formalizes this contrast (by aligning a

system of elements in one domain to a corresponding system of elements in the other),

then (iii) the “transfer” stresses and finalizes the process (opening the door to further

possible enrichments of the reasoner’s background knowledge, based on analogical in-

ferences or on creative assumptions; also cf. Chapters 5, 7 and 8). Still, of course, steps

other than the previous ones could as well be considered. For example, the cognitive

thinker may need to

• refine the understanding of the source before applying results to a target problem

(cf. [Clement, 2008, pp. 24]),

• re-represent one (or both) of the base and the target domains in terms of the other

one (cf. section 3.1.3),

• evaluate the soundness of the mapping that the thinker initially focused on, or

• abstract the schemes of the involved cases (cf. Gentner and Forbus [2011]).

1Gentner et al. went even further and suggested that different sub-processes utilize different kinds
of similarity (cf. [Gentner et al., 1993, pp. 527]). The SMT also distinguishes analogies from “literal

similarity” statements or other distinct types of comparison.
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The mostly relevant steps involved in artificially computing analogies simulate the above-

mentioned sub-processes. They are depicted in Figure 2.1, and will be elaborated on in

the next section, which changes the focus from cognitive science to AI by giving a crisp

overview on formalizing and modeling analogical thinking.

2.2 Computational Models for Analogy-Making

Is analogical thinking amenable to computing? Unlike usually encountered chal-

lenges in searching for a working definition of “intelligence” (cf. section 1.2.1), there is

a wide agreement on specifying the major elements underlying one of its core aspects

—namely making, and thinking in terms of, analogies. Analogical reasoning may be

considered a domain of non-formal reasoning (cf. Clement [2008]; Sowa and Majum-

dar [2003]), but existing models show that ‘analogy-based thinking’ is more amenable

to specification and formalization than the multifaceted ‘intelligent thinking’. Many el-

ements of analogy-making can be characterized, formalized, and modeled. Analogy-

making can even be effectively or efficiently computed. In addition, essential sub-

processes that are thought to be involved in making analogies are widely agreed upon

by the adherents.

Analogy-making, be it human-based or computational, is typically conceived of as

precisely involving:

1. “two domains”, called the “source” (or base) domain and the “target” domain:

these can be represented and manipulated within models in many ways —in this

thesis, conceptual entities will be represented using a first-order language (cf. sec-

tions 3.1, 3.2, and 4.2); and

2. (representational or structural) “connections” between the individual entities and

their relations in these domains. This can measure the extent to which the do-

mains are comparably similar: the connections are modeled by a matching that is

typically taken to be a mapping from the known source domain into the novel tar-

get domain. Depending on the KR used to model analogy-making, an analogical

mapping relates entities in the source with others in the target.1 This is how anal-

ogy efficiently provides a computational way as “a basic mechanism for effectively

1There is a controversial discussion whether or not this mapping relations or assignments must de-

fine a function. Broadly speaking, it does not necessarily have to be a (partial) function unless all the
assignments are one-to-one (like in SME; cf. section 2.3), but assignments in general can be allowed to

be one-to-many or many-to-many (cf. section 3.1).
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connecting a reasoner’s past and present experience” [Hall, 1989, pp. 39; emphasis

added].

2.2.1 Processes Involved in Computing Analogy

When the modeling of analogy-making as a cognitive process is considered, it is tradi-

tional to decompose it into multiple “abstract processes” that reflect the stages of com-

puting analogical reasoning, inspired by characterizing cognitive phases of analogical

thinking mentioned in section 2.1.3. In addition to its cognitive-plausibility, this decom-

position helps in modeling the father process of analogy-making in AI by modularizing

it (i.e. making the process consists of concrete modules to facilitate implementations).

The following listing tries to systematically debrief guidelines to (ideally) building a gen-

eral framework for analogy-making, by combining and abstracting proposals of several

eminent works (such as e.g. [Hall, 1989], [French, 2002], [Kokinov and French, 2003],

[Schwering et al., 2009a], and [Gentner and Forbus, 2011]).1 The given schematization

suggests that a computational framework for the main process of analogy-making may

need to (ideally) employ (as many as possible of) the following sub-processes (cf. Fig-

ure 2.1):

Representation-Building: Producing or formalizing representations based on input. The

sub-process of “representation-building” is mostly absent in cognitive models of

analogy-making, and is typically achieved by supplying (hand-made) represen-

tations into the model. Certain models may produce high-level representations

based essentially on unprocessed input, and attempt to build context-sensitive

representations during the “mapping” sub-process (e.g. the Copycat model [Hofs-

tadter, 1984; Hofstadter and the Fluid Analogies Research Group, 1996]).2

Re-Representation: In contrast to “representation-building” which comes at the begin-

ning of analogy-making, “re-representation” allows the modification and adapta-

tion of the original representations during analogy-making (but it may not be

clear at which point during analogy-making). The idea is that, in most of the

times, structural commonalities characterizing potentially analogous domains are

1A description of some involved processes in analogical reasoning from a cognitive scientific perspec-

tive is given in Forbus et al. [1997] and Gentner [1983], whilst Gentner and Forbus [2011] and Kokinov

and French [2003] focus more on summarizing the widely known computational models that implement
these processes.

2This step can be essential when a cognitive system needs to connect several capacities, such as
linking vision with reasoning (e.g. perceiving some object first, then building representations and finding

analogy, and finally drawing inferences or creating new concepts).
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not obvious in advance, but become more visible as a result of the main process of

analogy making itself (cf. Schwering et al. [2009a]). During the establishment of

an analogy, it could be very essential to change the representation of one or both

domains to allow the discovery of implicit common structure (cf. Clement [2008];

Indurkhya [1992] and the first analogy situation in section 3.2.1).

Retrieval: Recognition of a candidate, analogous base given a target description. The

“retrieval” sub-process seems to be a rather difficult step, and it heavily depends on

the reasoner’s background knowledge.1 However, it is an important step in find-

ing and accessing an analogous base case from permanent memory (cf. [Forbus

et al., 1997; Gentner, 1983]). Retrieval is usually guided by the shared scheme

of (familiar) properties between an already-known base (source) and a newly en-

countered target —the so-called “superficial similarity”. Superficial similarity has

been extensively studied experimentally and found to play the major role in the

retrieval of a base for analogy (cf. [Kokinov and French, 2003, pp. 114]), since

a generally shared scheme makes it easier for a reasoner to retrieve a suitable

source in an analogical reasoning process. Gentner et al. give empirical evidence

(cf. Gentner et al. [1993]) that indicates the higher tendency of a reasoner to

retrieve items from memory, based more on surface similarity (i.e. accessing ob-

jects and attributes) than on relational similarity (i.e. accessing common relational

structures). In many models, retrieval is based on exhaustive search of “long term

memory” (LTM) and on the assumption that old memory episodes have “context-

independent, encapsulated representations”.2

Mapping: Elaboration of an analogical mapping generated between corresponding enti-

ties in the structures of the source and target domains. The “mapping” sub-process

takes as input two structured representations of the source and the target, then

possibly produces (cf. [Gentner and Forbus, 2011, pp. 267]):

1. a set of “correspondences” that indicate ‘what corresponds to what’ by aligning

individual entities and their relation in the source with counterparts in the

target,

2. a set of (analogical) “candidate inferences” that follow from the alignment

and imply what may be true in one description based on projecting structure

1This has been shown, e.g., in the experiments by Gick and Holyoak when participants attempt to
solve Duncker’s radiation problem (cf. [Gick and Holyoak, 1983, pp. 3]).

2An exception is AMBR (cf. [Kokinov and Petrov, 2001]), which relies on context-sensitive reconstruc-
tion of old “episodes”, performed in interaction with the mapping process (cf. [Kokinov and French, 2003,

pp. 114]).
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from the other, and

3. a “structural evaluation” score that provides a numerical measure of how well

the domains align (hence, the soundness of the analogy can be assessed).

Unlike the case in “retrieval”, relational similarity is preferred over surface simi-

larity in the “mapping”, emphasizing the role of Gentner’s systematicity principle

(cf. section 2.1.3). Unquestionably, the “mapping” sub-process is the core defining

sub-process (cf. [Gentner and Forbus, 2011, pp. 267]), and is therefore included

in all computer models of analogy-making.

Transfer: The transfer of information from the source to the target domain based on

the “mapping”. Sometimes, “transfer” is considered an extension of the already-

established mapping (and, thus, integrated within the “mapping” sub-process).

Evaluation: The evaluation of the mapping and inferences in some context of use, in-

cluding justification, repair, or extension of the mapping. “Evaluation” should

establish “the likelihood that the transferred knowledge will turn out to be appli-

cable to the target domain” [Kokinov and French, 2003, pp. 116].

Learning: The consolidation of the outcome. This is implemented in only few models

of analogy-making, despite the fact that “analogy-making is clearly a driving force

behind much learning” [Kokinov and French, 2003, pp. 116].

Abstraction: The generalization that may accompany the establishing of a “mapping”.

Psychologically, the comparison of the domain descriptions of the source and tar-

get can lead to a generalization, but it is still an open question how and when

this happens [Gentner and Forbus, 2011, pp. 272]. The “results of comparison

may be stored as an abstraction, producing a schema or other rule-like structure”

[Gentner and Forbus, 2011, pp. 267].

To the best of my knowledge, no existing model incorporates all the sub-processes

altogether. Models rather focus on basic sub-processes (as also pointed out in Koki-

nov and French [2003]). The precise modeling steps constituting one concrete compu-

tational framework or another may slightly deviate from the previous schematization

(e.g. Chalmers et al. [1992]), but it is highly unlikely that the main functions are com-

pletely distinguishable.

Labels of the Sub-Processes: The names of the sub-processes listed in the given

scheme are mainly based on Kokinov and French’s, Schwering et al.’s, and Gentner
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Figure 2.1: A depiction of the phases of analogy-making based on the debriefing given

in section 2.2.1 and Schwering et al.’s (cf. [Schwering et al., 2009a, pp. 3]).

and Forbus’s decompositions. However, (i) recognition, (ii) elaboration, and (iii) con-

solidation were initially presented in Hall [1989], then listed again in French [2002],

to reflect the essence of (i) retrieval, (ii) mapping, and (iii) learning, respectively.

French considered “transfer” and “evaluation” as one sub-process, unlike Kokinov and

French who in addition (i) added the process of “representation-building”, (ii) renamed

Hall’s “recognition” to “retrieval”, and (iii) renamed Hall’s “consolidation” to “learning”.

French also pointed out the additional suggestion of Chalmers et al. to include dynamic

representation-building mechanisms and parallel sub-process interaction in such a basic

framework. The sub-processes given in Gentner and Forbus’s decomposition of analogy-

making are: “retrieval”, “mapping”, “abstraction”, and “representation”. Gentner and

Forbus’s “abstraction” (or “generalization”) sub-process is of a special interest to this

thesis’ cognitive-scientific focus, and will be extensively discussed later. Schwering et al.

presented the framework for analogy-making, on which this thesis’ contributions are

based, namely HDTP, which is presented in section 3.1. The previously mentioned sub-

processes will also be recalled when introducing and discussing HDTP (cf. section 3.1).

2.2.2 Modeling Approaches

Many scientific schools emerged in cognitive science and AI that concentrated on theo-

retically suggesting frameworks on how analogy-making functions in principle, and ex-

perimentally realizing the proposed functionality by developing computational models

and systems. There are currently many models, which may be categorized depending

on their chief characteristic features (cf. [Kokinov and French, 2003] and [Gentner and

Forbus, 2011, Table 1; pp. 268]). In particular, according to the underlying architectural

paradigm, the models are usually attempted to be grouped into three classes:

Connectionist Models: Sub-symbolic processing is generally characterized by (fuzzy)
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constraints affecting continuous, distributed representation tokens. Systems that

are based on the connectionist approach employ overlapping patterns of activation

in a neural network in order to represent objects, relations, and episodes. Thus,

analogical reasoning in such systems is mostly based on the relational interconnec-

tions between distributed tokens (e.g. neurons of an artificial neural network [Jain

et al., 1996]) and the propagation of activation patterns among these tokens. The

distributed representations provide an internal measure of similarity, which is what

allows overcoming the problem of similar, but not identical, relations in a rela-

tively straightforward manner. According to Kokinov and French, this latter inher-

ent capability of modeling relational structures “is crucial to analogy-making and

has proved hard for symbolic models to implement” [Kokinov and French, 2003,

pp. 117]. A glimpse of cognitive adequacy is inherently maintained in connection-

ist models: they have drawn their inspiration from the computational properties

of neural systems, so the proposed functionalities of human brains are assumed to

be artificially simulated by networks of neuron-like processing units. They are also

inherently capable of easily learning and adapting. However, distributed represen-

tations make it extremely difficult to trace what actually happens in connectionist

models to achieve a solution. One of the good examples in this category of models

is Holyoak and Thagard’s ACME (cf. [Holyoak and Thagard, 1989]).

Symbolic Models: Symbolic processing is generally characterized by hard-coded, ex-

plicit rules operating on discrete, static tokens. In systems based on classical sym-

bolic models, the mechanisms of representing, storing, and processing information

employ separate local representations of objects, relations, propositions, episodes,

etc. Thus, analogical reasoning in such systems is explicitly based on manipulat-

ing symbol structures, which is what makes these systems well-equipped to process

and compare the complex structures required for computing analogy-making. Se-

lected representatives of this type of models, such as SME (MAC/FAC) and HDTP

will be further discussed (cf. section 2.3 and section 3.1, respectively).

Although it is possible to track and reconstruct the implementations in symbol-

based models, they are traditionally criticized for lacking a needed glimpse of cog-

nitive adequacy (e.g. they do not mimic the way the human brain seems to work

nor the way humans adapt to unforeseen situations). Having already brought the

subject, it is worth clarifying that the framework, on which the thesis’ contribu-

tions are based is symbolic (cf. section 3.1), yet has successfully proved cognitive
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plausibility in a variety of application scenarios.1 The focus in this text is on em-

phasizing the modeling possibility of cognitive adequacy, no matter what the type

of the model is. This emphasis is based on (and inspired by) the way the proposed

solutions follow in order to model cognitive abilities, not the other way round.2

Hybrid Models: Systems that are based on hybrid models combine the symbolic and

sub-symbolic approaches by combining symbolic representations with connection-

ist activations. They are based on the ideas that (i) “cognition is an emergent

property of the collective behavior of many simple agents”, and (ii) “high-level

cognition emerges as a result of the continual interaction of relatively simple, low-

level processing units, capable of doing only local computations” [Kokinov and

French, 2003, pp. 115–117]. By combining principles from the two approaches

into a hybrid approach, some of the typical drawbacks of one can be recovered by

some of the typical advantages of the other. Hybrid models would in general be

of higher cognitive adequacy levels.3 Of this type of models, AMBR (cf. [Kokinov

and Petrov, 2001]) and Copycat (cf. [Hofstadter, 1984]) are two famous represen-

tatives.

2.3 Concrete Symbol-Based Systems

A quick overview is intended in the following to cover main underpinnings, on which

the modeling of two familiar symbol-based systems of analogy-making are based. The

first model is commonly accepted as being historically the first advanced computational

system that solves a special type of analogies; namely proportional analogies (cf. sec-

tion 2.1.1), whereas the second has always been inspiring computational models of

analogy-making systems that are based on the SMT (cf. section 2.1.3). In addition to

continue the literature overview in this chapter, the purpose of this listing is to cover

ideas that underpin further discussions about the computational modeling of analogy-

1Overviews of such scenarios are given in, e.g. Abdel-Fattah and Schneider [2013]; Guhe et al. [2011,

2010]; Mart́ınez et al. [2011, 2012], but others will further be explicitly detailed in the forthcoming

chapters. Section 4.2.2 elaborates in particular on this issue of cognitive plausibility when representing
concepts.

2After all, I think that the best models should combine key features of symbolic and connectionist
models (the latter models are not discussed in the current text, though).

3Despite the fact that some disadvantages may remain as such in hybrid models (like the problem in

connectionist approaches to trace how a solution is achieved), it is still important, in my opinion, to utilize
some low-level processes in achieving high-level cognition. Mitchell shows, for example, that analogy-

making is related to low-level processes and that high-level perception is an emergent phenomenon
arising from large numbers of low-level, parallel, non-deterministic activities [Mitchell, 1993]. However,

this issue is not discussed here (but cf. Chalmers et al. [1992]).

47



Chapter 2: Analogical Reasoning

making. Table 2.1 summarizes key features of the systems (as well as of HDTP, which

is extensively discussed separately in section 3.1).

The ANALOGY System: Early computational paradigms in AI was aiming at getting

machines to solve problems, by implementing any tasks that imitate intelligent thinking

(cf. [Ringle, 1979, pp. 1–20]). At least three systems in the 1960’s selected analogical

reasoning as a proof-of-concept that computational intelligence is achievable (cf. Becker

[1969]; Evans [1964]; Reitman et al. [1964]).

A historically popular system is Evans’s “ANALOGY” program, which has been devel-

oped to solve geometric-analogy problems on the form of proportional analogies. To

recall, a “proportional analogy” has the general form “(A ∶ B) ∶∶ (C ∶ D)” (that is, “ ‘A’

is to ‘B’ as ‘C ’ is to ‘D’ ”). In the type of the geometric proportional analogies consid-

ered by Evans’s system, a problem consists of eight figures, each composed of one or

more geometric objects (i.e. comprising elements from the same domain of geometric

figures): the first two of them, namely A and B, define the source domain, whereas C

and five answer alternatives for D define the target domain. The task is to find the way

in which A has been changed to B, then apply the same way of change to figure C in

order to select a resulting figure from the five answer alternatives, or indicate that no

solution could be found (cf. [Hall, 1989, pp. 44]). Figure 2.2 gives an example of one

such a problem: Figure 2.2a shows the three given geometric objects (A, B, and C),

and Figure 2.2b shows five (possible D) answer alternatives.1

(a) (b)

Figure 2.2: An example of a traditional geometric-analogy problem. As addressed by

Evans: (a) depicts the three components of the problem (A, B, and C), whereas (b)

depicts five answer alternatives (1, 2, 3, 4, and 5). (This is basically Case 5 in [Evans,

1968, pp. 330], for which the answer is alternative 3.)

The ANALOGY system does not take high-level descriptions of the problems, but

rather low-level descriptions of each component of the geometric objects (e.g. dots, sim-

ple closed curves or polygons, and sets of closed curves or polygons). It then builds

1The problems for Evans’s system are generally taken from typical IQ tests and college entrance exams

such as the GMAT.
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its own high-level representation describing the figures of A, B, C, and all the given

answer alternatives, along with their properties and relationships.1 The program rep-

resents the relationship between A and B as a set of possible transformation rules that

describe how figure A is transformed into figure B (and also counts in how many steps

such a transformation is obtained). Then, each rule is applied to C in order to get one

of the alternative answers (or indicate no such answer could be found). During this

“comparison process”, the program finds numbers that somehow reflect the mapping

complexity and uses them in comparing the answer alternatives.2

The ANALOGY system and its implementation are introduced in Evans [1964], yet a

more detailed presentation appears in [Minsky, 1968, Chapter 5]. The system is symbol-

based: this is obvious in the ways in which (i) the problem inputs are represented and

coded, (ii) the storage is explicitly manipulated, and (iii) the rules are created and

handled. The system employs the sub-processes of ‘re-representation building’ and a

form of ‘mapping’. The comparison of figures is specific to the working of the ANALOGY

program, and cannot be thus seen as an ‘evaluation’ of analogy-making (in the sense of

section 2.2.1), because it has nothing to do with the applicability of the mapping to the

target (cf. Table 2.1).

Evans’ program is usually (or even indisputably) considered as “the most famous

early attempt to model analogy-making on a computer” [Hofstadter and the Fluid Analo-

gies Research Group, 1996, pp. 269]. However, at about the same time in the 1960’s3,

Reitman et al. presented a less popular, rather more general, more cognitively inspired,

information-processing model of thinking, called “Argus” (cf. Reitman et al. [1964]). Ar-

gus solves proportional analogies too, but they seem rather trivial by today’s standards

(cf. [French, 2002, pp. 201]).

The Argus model is based on the sequential processing organization, used in the

General Problem Solver (GPS) of Newell and Simon [1963]. It aims to represent com-

plex cognitive structures by semantic networks, and claimed to be applicable to a broad

range of cognitive functions. But, as Reitman et al. stated, the running version of the

Argus model was limited at the time to only solving proportional analogies of the form

“(A ∶ B) ∶∶ (C ∶ (W,X,Y, or Z))” (cf. [Reitman et al., 1964, pp. 274]). Argus’ architec-

1In a sense, this can be considered as a “representation-building” sub-process of analogy-making

(cf. section 2.2.1).
2According to the ANALOGY implementation in Evans [1964], but in my own terms, if n(O1,O2) is

the number of modification steps (e.g. addition or removal of elements) needed to transform object O1

into another O2, then the equality n(A,B) = n(C,Di) is an indication that “‘A’ is to ‘B’ as ‘C ’ is to ‘Di’ ”,
for an answer alternative Di. The system does not, however, process any semantics of the considered

properties and relations (e.g. no interpretation is given of the geometrical meaning of a figure element

being ‘left’ to, or ‘inside’, another figure element).
3Or even earlier; cf. [Hofstadter and the Fluid Analogies Research Group, 1996, pp. 270].
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ture included “far-sighted principles”, such as “the interactions between the concept net-

work and the problem to be solved” [French, 2002, pp. 201]. Nevertheless, a significant

aspect of the ANALOGY program —beside its recognition as the earliest symbol-based

model of analogy-making— is its ability to automatically build representations of the

source and target domains on its own. Kokinov and French indicate that this feature

has unfortunately been dropped in most recent models (but the success of this kind of

analogy-making programs crucially depends on the procedures that build the descrip-

tions). As also pointed out by Hall in [Hall, 1989, pp. 43], Evans’ system focuses on

elaborating an analogical mapping between source and target descriptions to solve a

restricted type of proportional analogies.1

The SME Family of Systems: Based on Gentner’s SMT (cf. section 2.1.3), Falken-

hainer et al. presented the “structure-mapping2 engine” (SME) to simulate the theory

and provide a “tool-kit” for constructing matching algorithms. Falkenhainer et al.’s pur-

pose is not to give a single matcher, but a simulator for a class of matchers (cf. [Falken-

hainer et al., 1989, pp. 8]). That is, SME states assumptions underlying the computa-

tional implementation of, not only one system, but rather a family of models consistent

with SMT. The assumptions underlying the SME include the following ones:

1. the mapping mechanism is isolated from other sub-processes (such as representa-

tion, retrieval, and evaluation),

2. matches based on relations are preferred over those based only on mere proper-

ties,

3. relations must be (syntactically3) identical in both domains in order to be put into

correspondence, and

4. the principle of systematicity (cf. section 2.1.3) is followed, so that systems of

relations are favored over isolated relations.

According to Falkenhainer et al. [1989], SME uses typed higher-order predicate cal-

culus4 to represent knowledge facts, by means of constructs that Falkenhainer et al. call:

1Models of the 1960’s other than Evans’, such as Becker’s JCM and Reitman et al.’s Argus, seem to be

more cognitively inspired. They embed analogical comparison in more general problem solving frame-
works, which also address some of the composing sub-processes mentioned earlier. But developments of

these models have not been continued.
2Also, the “structural mapping” engine.
3Two relations are seen as analogous if they exactly match in terms of their number of arguments, as

well as in terms of the types of these arguments.
4Since actual computations are known to always work on a propositional level, SME’s “predicate

calculus” can in fact be seen as a propositional-like version of predicate logic, or a propositional logic
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“entities” (logical individuals), “predicates” (functions, attributes, and relations), and

“description groups” (collections of primitive entities and facts about them). SME con-

structs all “structurally consistent mappings” between two given descriptions of source

and target domains. These mappings consist of pairwise matches between statements

and entities in the source and target, plus the set of analogical inferences sanctioned

by the mapping. SME also provides a “structural evaluation score” of each mapping ac-

cording to the constraints of systematicity and structural consistency (cf. [Falkenhainer

et al., 1989, pp. 8]).

Based on the SME assumptions, Forbus et al. developed the MAC/FAC as a model

of similarity-based retrieval coupled with the SME and later used as SME’s front-end

(cf. [Forbus et al., 1995; Gentner and Forbus, 1991]). In MAC/FAC, “episodes” are what

encapsulate representations of past events, with an episode having a double character

of encoding in the long-term memory (LTM). An episode gives both:

1. a detailed “predicate-calculus representation” (of all the properties and relations of

the entities within this episode), and

2. a shorter vector representation (that summarizes the relative frequencies of pred-

icates used in the detailed representation).

MAC/FAC is a two-stage analogical retrieval engine, of which the first stage sweeps

through the LTM, retrieving potential source episodes that match the target (based on

superficial search, and using the short vector representations of episodes); whereas

the second stage selects the best episode that matches the target (using the detailed

predicate-calculus representations; cf. French [2002]; Kokinov and French [2003]).

Gentner’s main focus in the SMT is the explanation of an analogy-making after a tar-

get has been retrieved from memory. Accordingly, the “structure-mapping” phase in the

front-end of the SME (i.e. MAC/FAC) builds a mapping between the retrieved source

and target based on their structures and their overall coherence.

The SME family of models are symbol-based systems, with systems in such a family

employing at least the “mapping” sub-processes (MAC/FAC clearly performs “retrieval”

as well; cf. Table 2.1). A detailed outline of the SME and an extended discussion of the

MAC/FAC model are given by Forbus in Forbus [2001].

that has relations. SME’s “predicate calculus” should not be seen as an alternative of, for example, first-

order logic or whatsoever, because this “predicate calculus” of SME neither makes use of variables nor
quantifiers that are crucial in this regard (though it clearly employs relations). (Cf. section 3.1.3 for a

related discussion about SME’s expressivity compared to HDTP’s.)
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Model: Processes & Key Characteristics:

ANALOGY

Geometric proportional analogy-making – Employs

“representation-building” and “mapping” – Hand-coded

descriptions – Automatically builds representations for

geometric proportional analogies from the descriptions of input

figures (cf. [Evans, 1964, 1968])

SME

(MAC/FAC)

Analogical “retrieval” provides input to SME – Employs

“mapping” (based on SME) and lately “re-representation” –

Dual encoding in LTM – Predicate calculus representations

(and vectors for representing frequencies) – First-stage vector

match to filter candidates; SME used as stage 2 matcher

(cf. [Falkenhainer et al., 1989; Forbus, 2001; Forbus et al.,

1995])

HDTP

General-purpose analogy making – Many-sorted, first-order KR

– Employs “mapping” , “transfer”, and “re-representation” –

Uses anti-unification to construct “generalizations”

(cf. [Schwering et al., 2009a] and section 3.1)

Table 2.1: Three computational models of analogy-making and their key characteristics.

Other Models: The literature of analogy-making models provides tens of such models.

Hall gives extensive descriptions of many other (relatively early) symbolic models of

analogy-making (cf. [Hall, 1989]). In addition, many SME-based models have been

developed within the past forty years or so, modifying parts of the base SME model

just mentioned (e.g. MAGI, IAM, I-SME, SEQL, CARL, etc. [cf. French, 2002, pp. 202–

203]). Table 2.1 lists names of three selective, symbol-based analogy-making models:

ANALOGY, SME (MAC/FAC), and HDTP. The former two are quickly presented in this

chapter, whereas the latter, HDTP, is the main model for analogy-making on which later

discussions about aspects of intelligence are based. Details about the HDTP framework

are presented and explained in the next chapter, along with some concrete analogy

examples.
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A Logical Framework for Modeling

Analogical Reasoning

Based on ideas and results from cognitive science, the SMT’s principle of systematic-

ity provides an essence for comparing (potentially analogous) situations in SME-based

families of symbolic models for computing analogies. Even for a model that is not

entirely symbol-based, such as the hybrid model Copycat (cf. [Hofstadter, 1984]), it

agrees with SME-based models at least on such a crucial principle (cf. [Hofstadter and

the Fluid Analogies Research Group, 1996, Chapter 6, pp. 275–299]). Therefore, it is

obvious that what qualifies a mapping as being successful in capturing an analogy be-

tween source and target domains is not the mere existence of an alignment between

(low-level) facts in the source and the target domains, but rather the power to preserve

the coherent way in which the facts interact with each other. That is, an alignment

that generalizes the roles played by individual entities and their relationships in their

respective domains. To capture this view, a computational model for analogy-making

is presented in this chapter, which also provides the basic framework for all next chap-

ters. The presentation, therefore, carries more detailed and essential descriptions of the

model.

3.1 Heuristic-Driven Theory Projection (HDTP)

Heuristic-Driven Theory Projection (HDTP) is a symbolic analogy-making model, which

is based on first-order logic and reasoning techniques (cf. Schwering et al. [2009a]),

and has a front-end implementation in Prolog (cf. Schmidt [2010]). The basis of all

operations and processes in the formal framework of HDTP is the formalization of the

source and the target domains as sets of many-sorted, fist-order formulae.
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HDTP is a framework for computing analogical relations between two (conceptual)

domains, where the two domains are represented using finite many-sorted first-order

logic axiomatizations. This way of representation using first-order logic axiomatizations

allows the framework to incorporate reasoning mechanisms of AI. It thus enables us to

view each of the input domains as a formal theory defined by basic conceptual entities

given as axioms. Axiomatizations constitute formulae that conceptualize a domain with

a finite number of “facts” and “rules” in an expressive logic-based KR formalization

(cf. section 3.1.2). Moreover, HDTP still retains the goal of only drawing inferences

that are cognitively inspired.1

The task of HDTP is to compare the formulae of the source and target domain theo-

ries to analyze them and find common patterns (i.e. structural commonalities). These

common patterns suggest alignments via finding a generalized axiom system that, in

turn, describes a generalized theory of both input theories. Thus, based on alignments

that result from finding commonalities, HDTP establishes an analogical relation via a

generalization of the domains. Entities from the source can later be mapped and trans-

lated to enrich the target domain and help in drawing newer inferences. But in order

to achieve a sought generalization of analogous pairs (of axioms or formulae) from the

input domains, a crucial idea of HDTP is to employ the formalism of anti-unification.

3.1.1 First- and (Restricted) Higher-Order Anti-Unification

The anti-unification technique is one possible model of generalization that “involves

finding the least general unifier of two expressions” [Gentner and Forbus, 2011, pp. 267].

A unifier of two expressions is a statement with variables, which will be identical to the

two expressions when appropriate substitutions of values for the variables are used.

Anti-unification is mathematically sound, and is particularly fundamental for the pre-

sentation of the HDTP framework, because it produces simple schemas of the common

structures within given source and target domains (cf. Plotkin [1970, 1971]). Since

the very first time it has outlined by Reynolds and introduced by Plotkin (cf. [Plotkin,

1970, 1971; Reynolds, 1969]), anti-unification has mostly been used in the context of

inductive learning and proof generalization. The basic goal of the (first-order) anti-

unification formalism was to generalize pairs of terms in a simple, yet meaningful way

by producing for each term an anti-instance. Within each anti-instance, distinct sub-

terms are replaced by variables, which themselves can restore the original terms by

replacing the new variables by appropriate sub-terms. Three examples of Plotkin’s first-

1There is an extended, yet related, discussion in section 4.2.2 regarding the cognitive plausibility of

using this way of representation of domains.
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f(a, b) g(a, b)
Figure 3.1: Examples of Plotkin’s first-order anti-unification (cf. [Plotkin, 1970, 1971]),

with terms in braces indicating substitutions of variables (X and Y ) by instances (a or

b, and f(a, b) or g(a, b), respectively).

order anti-unification are given in Figure 3.1 to demonstrate how generalizations can

possibly be seen to induce an analogical relation.

Anti-unification is typically seen as a dual counterpart of unification: while in the

latter the most general unifier (mgu) needs to be computed (by making terms equal

via appropriate variable assignments), in anti-unification more general terms are con-

structed for given pairs of terms. Anti-unification aims to find a most specific anti-unifier

(referred to as a least general generalization) that is minimal with respect to the instan-

tiation ordering. From such a generalization of terms, an analogical mapping relation

can be constructed by associating terms with a common generalization (cf. [Schwering

et al., 2009a, pp. 6]).

Anti-unification has been shown by Plotkin to always succeed in finding a unique1

“least general generalization” (lgg) for an involved pair of terms. But mere first-order

structures of anti-unification do not have enough expressivity to capture the systematic-

ity, required when domains are represented by first-order formulae. On the one hand,

this motivates the use of higher-order anti-unifications instead of applying first-order

anti-unifications. But, on the other hand, an unrestricted application of higher-order

anti-unification opens the door for generalizations to become arbitrarily complex and

may no longer reflect structural commonalities of the original terms: the structural

commonalities are ignored in such case (cf. Schwering et al. [2009a]). Furthermore,

and in fact even more crucially when using (unrestricted) higher-order anti-unification,

there can be infinitely many anti-instances, and no longer is there the most specific

anti-instance. This dilemma is approached in HDTP by extending Plotkin’s classical first-

order anti-unification to a restricted form of higher-order anti-unification (cf. Krumnack

et al. [2007]).

1Up to renaming of variables, of course.
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3.1.2 HDTP’s Language: Conventions and Terminologies

Detailed descriptions of the language, which encodes knowledge of domains in HDTP,

is briefly presented in the following. All notations and assumptions used in the presen-

tation are mainly based on, and understood in the sense of, the settings defined in Gust

et al. [2006]; Krumnack et al. [2007]; Schwering et al. [2009a]. In particular:

1. A many-sorted signature Σ provides the vocabulary strings that are used as build-

ing blocks for domain formalization. It describes a domain by comprising entities

such as predicates and functions. (Constants are functions of arity 0.) The signa-

ture is identified by:

(a) a set SortΣ that forms a partially ordered set of sorts, which can be inter-

preted as high-level concepts of an ontology (e.g. object, integer, real, time,

massterm, bool),

(b) a set FuncΣ that provides “function symbols” of the form

f ∶ s1 × . . . × sn → s, where s1, . . . , sn, s ∈ SortΣ,
which are used to represent functions that map individuals to individuals,

and

(c) a set PredΣ that provides “predicate symbols” of the form

p ∶ s1 × . . . × sn, where s1, . . . , sn ∈ SortΣ,
which are used to express relations between individuals.

2. Individual variables have sorts (i.e. variables are typed), and formulae can be

well formed similar to how well-formed formulae are defined in classical first-

order logic. However, in HDTP’s jargon, (classical) first-order terms are extended

by introducing variables of arity n, where n ≥ 0, with n = 0 explicitly indicating

classical first-order variables. In this setting, a term is either a first-order or a

higher-order term, and variables can represent any possible term.

3. Logical operators (e.g. ∧ and ∨) and quantifiers (e.g. ∀ and ∃) are used in con-

structing complex “facts” and “rules”. A domain can thus be described by a finite

set of formulae, which is called an “axiomatization”. All formulae that can be in-

ferred from an axiomatization of a domain constitute the domain theory. Different
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equivalent axiomatizations for the same given domain are possible.1

4. A substitution σ on terms is a partial function that acts on the terms’ variables,

mapping the variables to terms. A substitution σ can formally be represented as

σ = {x1 ↦ t1, . . . , xn ↦ tn}, where sorts of each ⟨xi, ti⟩ pair match, xi ≠ xj , and

i ≠ j for all i, j ∈ {1, . . . , n}. For two terms t and t′, if t′ is obtained from t by a

substitution σ then the notation t
σ
Ð→ t′ is used to indicate that t′ is an instance of

t and t is an anti-instance of t′.

5. A generalization g of a pair of terms t and t′ is denoted by t
ρ
←Ð g

σ
Ð→ t′, where

σ and ρ are substitutions. Nevertheless, since the classical notion of substitution

is replaced by higher-order substitution, generalizations can also be defined for

variables.

HDTP allows not only the anti-unification of terms but also of formulae, where the set of

possible generalizations are extended in a controlled way by introducing a new notion

of “basic substitution”. The idea is to control resulting generalizations from becoming

arbitrarily complex by restricting applicable substitutions in HDTP to only compositions

of the following four basic substitution kinds (cf. [Krumnack et al., 2007]):

Renaming: A renaming is a substitution that replaces one variable2 by another of

the same argument structure. The notion ρXY denotes the replacement of a vari-

able X by another Y of the same argument structure. That is: X(t1, . . . , tn) ρX
YÐ→

Y (t1, . . . , tn), where ti is a term for i ∈ {1, . . . , n}.
Fixation: A fixation is a substitution that replaces a variable by a function symbol of the

same argument structure. The notion φX
f denotes the replacement of a variable X

by a function symbol f of the same argument structure. That is: X(t1, . . . , tn) φX
f

Ð→

f(t1, . . . , tn), where ti is a term for i ∈ {1, . . . , n}.
Argument Insertion: This kind of substitution replaces a subset of arguments of a vari-

able by another variable. Specifically,

X(t1, . . . , tn) ı
X,Y

Z,i

Ð→ Y (t1, . . . , ti,Z(ti+1, . . . , ti+k), ti+(k+1), . . . , tn)
denotes the replacement of k of the n arguments of a variable X by a variable

Z (with k arguments) after the ith argument of X, resulting in a variable Y with

m ∶= n − (k − 1) arguments.

1Some formalizations are given in section 3.2.
2In the sense just described (cf. [Schwering et al., 2009a]).
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Figure 3.2: Examples of higher-order anti-unifications illustrating the four basic sub-

stitutions of the restricted higher-order anti-unification (cf. [Schwering et al., 2009a,

pp. 260]).

Permutation: Permutation is a kind of substitution that re-arranges the arguments of

a term. The arrangement uses a bijection α ∶ {1, . . . , n} → {1, . . . , n}, and the

permutation is denoted by: X(t1, . . . , tn) π
X,Y
αÐ→ Y (tα(1), . . . , tα(n)).

Examples of restricted higher-order anti-unification substitutions are given in Figure 3.2.

It has been shown that the utilization of the given four forms of restricted higher-

order substitutions provides the needed capability of detecting structural commonali-

ties not accessible to first-order anti-unification (cf. [Krumnack et al., 2007]). Using

restricted higher-order anti-unification, anti-unifiers always exist for a pair of terms

(i.e. anti-unifiers are well-defined). Moreover, this utilization will never make a term

less complex, which guarantees that only finitely many anti-instances (up to the renam-

ing of variables) coexist for any given term (cf. [Schwering et al., 2009a, pp. 256]).

A drawback is, however, that the least general generalization is still no longer unique

under restricted higher-order anti-unification. But having multiple possible generaliza-

tions is not necessarily counted as a bad criterion. It can be interpreted as delivering

an advantage, particularly in the context of computing analogies, because humans too

may simultaneously conceive more than one plausible mapping from the source to the

target, with different degrees of plausibility. Figure 3.3 gives 3 higher-order anti-unifiers

for the same pair of terms f (g (a, b, c) , d) and f (d,h (a)). All the three anti-unifiers

are also least general generalizations (i.e. the 3 are most specific). No substitutions are

shown in the figure, since there can be an infinite number of valid, basic substitution

chains (e.g. by using renaming or permutation substitutions indefinitely).
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f(X,Y )
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Figure 3.3: Higher-order anti-unification examples with several least general general-

izations. All of f(X,Y ), F (d,G (a)), and F ′ (G (a) , d) are most specific anti-unifiers for

the terms f (g (a, b, c) , d) and f (d,h (a)).
3.1.3 HDTP’s Framework: Characteristics and Aspects

As it will become more evident in later chapters (e.g., cf. Chapters 7 and 8), the core

anti-unification procedure can be further used for more than implementing analogical

reasoning. HDTP allows for a more flexible merge of domains (not only generaliza-

tions), which can be used in merging domains for conceptual blending (cf. Chapter 4)

as already explored in Guhe et al. [2011]; Mart́ınez et al. [2012], for instance. Exten-

sive, detailed presentations of HDTP’s algorithms and implementations can be found

in Schmidt [2010].1 This section, however, informally presents certain core principles

behind the computational implementation of HDTP’s heuristics and algorithms. This

serves to connect the previously discussed formal language and the later less-formal

parts that mainly focus on modeling GI aspects (but uses HDTP as a grounding frame-

work).

Heuristics, Ranking, and Coverage: The establishment of an analogy between two

domains is carried out in HDTP via anti-unifying their sets of formulae (i.e. axiomati-

zations). Since this is not an anti-unification of only two formulae, it can be the case

that one formula of the target domain is aligned with several of the source. Thus,

HDTP gives ordering criteria to rank competing generalization alternatives, based on

the complexity2 of substitutions in the generalizations. HDTP selects a generalization

with minimized complexity as a “preferred generalization”. Broadly speaking, a preferred

generalization is a least general generalization that has no less-complex least general

generalization that play the same role (in anti-unifying the same pair of terms).

As the notion of “heuristics” in its name implies, HDTP uses a sequential heuristic-

driven algorithm to compute preferred generalizations. Generic heuristics are imple-

1HDTP has a front-end implementation in Prolog, which is released as open source under the GNU
General Public License. Also, HDTP’s state of computational implementation, source codes, and stable

publicly released versions can be downloaded from http://cogsci.uni-osnabrueck.de/ ai/analogies/.
2Complexity of substitutions can be defined as the processing effort, in terms of the needed steps, for

the basic four substitutions given earlier (cf. [Definitions 7 and 8 Schwering et al., 2009a, pp. 256]).

59



Chapter 3: A Logical Framework for Modeling Analogical Reasoning

mented to speed up the mapping, and thereby the construction of analogies. Accord-

ing to Schwering et al. [2009a], this is achieved by consecutively selecting formulae

of the target domain, and searching for corresponding formulae in the source for anti-

unification, in a manner that minimizes the complexity of alignments between the input

domains. The generalized formulae form a generalized theory that links the source and

target and represents their commonalities at an abstract level.

A resulting analogy is influenced by the ordering in which formulae are anti-unified.

Substitutions that were required earlier to anti-unify two formulae might be applicable

again to a later anti-unification of other formulae. Beside the plausible computational

property to reuse substitutions without any cost of processing effort, a mapping that

includes reused substitutions is more cognitively plausible than another that does not.

The former is more likely to allow for achieving systematicity than the latter. Whence,

the former is both computationally and cognitively preferred over the latter, since it

leads to a coherent mapping.

HDTP implements a principle (by using heuristics) that maximizes the coverage of

the involved domains (cf. [Schwering et al., 2009a]). Intuitively, this means that the

sub-theory of the source (or the target) that can be generated by re-instantiating the

generalization is maximized: the higher the coverage the better, because more support

for the analogy is provided by the generalization. A further heuristics in HDTP is the

minimization of substitution lengths in the analogical relation: the simpler the analogy

the better (cf. [Gust et al., 2006]). There is a trade-off between high coverage and

simplicity of substitutions: an appropriate analogy should intuitively be as simple as

possible, but also as general and broad as necessary, in order to be non-trivial. This

kind of trade-off is similar to the trade-off that is usually the topic of model selection in

machine learning and statistics.

Two-Phase Analogy-Making System: HDTP finds an analogical relation by specifying

a generalized theory of two domain theories.1 Based on this generalization (and the

involved substitutions), formulae in the source domain that have no correspondences

in the target domain can be found, which enables the sub-process of analogical transfer.

In fact, HDTP proceeds in two phases:

Mapping: In the mapping phase, the source and target domains are compared to find

structural commonalities, and a generalized description is created that subsumes

the matching parts of both domains. The mapping phase constructs a set of gen-

1Domain theories will also be referred to as “conceptual domains” or “concepts”, starting Chapter 4

onwards.
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eralized axiomatizations that anti-unifies two input sets of axiomatizations, each

with a finite number of rules and facts.

Transfer: In the transfer phase, unmatched knowledge in the source domain is mapped

to the target domain to establish new hypotheses.

Figure 3.4 depicts HDTP’s overall approach to creating analogies, in which analogical

transfer results in structure enrichment of the target side. This usually corresponds to

the addition of new axioms to the target theory (but may also involve the addition of

new first-order symbols).

analogical transfer

anti-unification
Source (S)

Target (T )

Generalization (G)

Figure 3.4: HDTP’s overall approach to creating analogies. HDTP applies anti-

unification to find analogical relations between the source and target domains, then

proposes analogical transfer based on generalizations.

HDTP and SME: HDTP is similar in spirit to SME with respect to the mentioned map-

ping and transfer phases, and the utilization of symbolic formalisms for the representa-

tion of domains (though the formalisms and their expressivity differ). Also, preferring

reused substitutions is more likely to allow for achieving the cognitively plausible prin-

ciple of systematicity, principally aimed at by the SME-based family of models. Never-

theless, HDTP also differs significantly from SME at least with respect to:

1. the stronger expressive power that HDTP provides by the underlying domain the-

ories (many-sorted first-order logic in HDTP vs. propositional-like logic in SME)

enables HDTP not only to represent situations but general laws as well,

2. the requirements for labeling in HDTP are more flexible (SME requires labels to

be identical for the alignment of attributes and relations, whereas HDTP is flexible

in this regard),

3. the establishment of the analogy relation in HDTP is always available as a by-

product of an explicit abstraction, which can be useful in many ways,
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4. the massive usage of heuristics that differ from the ones used in SME,1 and

5. the possibility for HDTP to account for semantic information (also cf. [Krumnack

et al., 2013a, 2010]).

Re-Representation: As briefly mentioned in section 2.2.1, the establishment of an

analogy may essentially need to change the representation of the potentially analogous

domains to allow making implicit analogous structures explicit (cf. Clement [2008];

Indurkhya [1992]; Schwering et al. [2009a]). Indurkhya argues that the process of “re-

description” or changing representation is realized to underly creative metaphors and

analogies (cf. [Indurkhya, 1992, pp. 409]), but the sub-process of re-representation is,

unfortunately, maltreated in most models of analogy-making. The HDTP framework

entails a mechanism for re-representation in a quite natural way, since a logical repre-

sentation of a domain does not only provide the explicitly given axioms, but also makes

available their logically deducible formulae. HDTP’s idea is to incorporate the derived

formulae into the mapping process whenever the original axiomatizations do not lead

to a satisfying analogical relation (cf. the first example in section 3.2.1 and [Schwering

et al., 2009a, pp. 258]).

3.2 Application in Analogy Domain Examples

This section discusses three scenarios of analogy-making to show how HDTP can rep-

resent and find mappings between the involved domains (and transfer knowledge be-

tween them). Full-fledged axiomatizations that formalize representations for HDTP are

already presented and extensively discussed in several places (cf. Guhe et al. [2010];

Krumnack et al. [2013a, 2007]; Mart́ınez et al. [2012] and, in particular, [Figure 2, Fig-

ure 7, and the Appendix of Schwering et al., 2009a]). These representations do not only

show the power of the HDTP framework in finding analogical mappings and executing

analogical transfer by means of generalizing the axiomatizations of given conceptual

domains, but they also explain HDTP’s potential capability of re-representing such con-

ceptual domains when an analogy cannot directly be found from the originally given

axiomatizations. In the following, yet a new analogy-making scenario is thoroughly

1Note that SME-based models also use heuristics. The SME framework is not heuristics-free, though
this is not prominently focused on or mentioned explicitly (e.g. local and global matches do not just use

plain searching algorithms, but employ some heuristics as well; cf. Falkenhainer et al. [1989]; Forbus
et al. [1995] and section 2.3). However, the usage of many heuristics in HDTP is more fundamental and

prominent.
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presented after concrete, particularly interesting ideas are discussed about two of the

analogy-making situations given in Schwering et al. [2009a]. In typesetting the axioma-

tizations, certain conventions are followed: (i) domain entities (such as predicates and

functions) are shown in typewriter font, (ii) CONSTANT entities are capitalized, and

(iii) sorts are italicized.

3.2.1 Two Classical Analogy Situations

The Rutherford Analogy: A well-known situation is the analogy between the solar

system and the Rutherford atom model, typically stated as: “the atom is like our solar

system” [Gentner, 1983, pp. 159]. The source domain simplifies a description of the

solar system, where a planet revolves around the sun because the differences in mass

result in different gravitational forces. (They do not, however, collide with each other.)

The target domain describes the Rutherford atom model, where the Coulomb force re-

sults in lightweight electrons being attracted by the nucleus. The electrons and the

nucleus keep a distance greater than zero, which is an abstraction of the results form

Rutherford’s gold foil experiment (cf. Rutherford [1911]). Formalizations of this sce-

nario are given in Table 3.1. The analogy situation illustrates several aspects of HDTP

by comparing (simplified and partial) knowledge representations about the solar sys-

tem, on the one hand, with representations (from a different field of knowledge) about

the Rutherford atom model, on the other hand.

A generalized theory ThG of the two input domain theories (that are given in Ta-

ble 3.1) is shown in Table 3.2. Entities that originally have similar string symbols keep

their names unchanged when anti-unified in the generalization, such as the revolves-

around predicate. Whilst, matched entities with different strings in the input domains

are anti-unified in the generalization using new symbols. In Table 3.2 for example, the

function symbol F is an anti-instance of both centrifugal from the source and coulomb

from the target. Thus, the fact ∀(t) ∶F (o1, o2, t) > 0 in ThG generalizes the idea of hav-

ing a continuous nonzero interrelationship (i.e. attraction force) between two objects,

where ⟨o1, o2⟩ ∈ {⟨SUN,PLANET⟩, ⟨NUCLEUS,ELECTRON⟩}.
The formalizations in Table 3.1 were chosen in a way that do facilitate the direct dis-

covery of an analogy by matching the axioms of the two domains. This treatment is sim-

ilar to the treatment of the same specific analogy situation by structure-mapping in Gen-

tner [1983], for example. Unlike Gentner’s treatment, however, if formalizations of the

solar system and the Rutherford atom model are given in a different way, such as those

in Table 3.3, the discovery of the analogy becomes indirect. For example, there is no di-
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Source: Target:
SOLAR SYSTEM RUTHERFORD ATOM MODEL

sorts sorts
real, object, time real, object, time

entities entities
SUN, PLANET∶ object NUCLEUS, ELECTRON∶ object

functions functions
mass∶ object→ real × {kg} mass∶ object→ real × {kg}

dist∶ object× object × time → real × {m} dist∶ object× object × time → real × {m}

gravity,

centrifugal∶ object× object × time → real × {N}
coulomb∶ object× object × time → real × {N}

predicates predicates
revolves around∶object × object revolves around∶object × object

facts facts

mass(SUN)>mass(PLANET) mass(NUCLEUS)>mass(ELECTRON)

mass(PLANET)> 0 mass(ELECTRON)> 0

∀(t ∶time)∶gravity(SUN,PLANET,t)> 0 ∀(t ∶time)∶coulomb(NUCLEUS,ELECTRON,t)> 0

∀(t ∶time)∶dist(SUN,PLANET,t)> 0 ∀(t ∶time)∶dist(NUCLEUS,ELECTRON,t)> 0

laws laws
∀(t ∶time)(o1, o2 ∶object)∶dist(o1, o2, t)> 0∧
gravity(o1 , o2, t)> 0 →
centrifugal(o1 , o2, t)=-gravity(o1 , o2, t)

∀(t ∶time)(o1, o2 ∶object)∶0 < mass(o1) < mass(o2) ∧
dist(o1, o2, t)> 0 ∧ centrifugal(o1 , o2, t)< 0 →
revolves around(o1 , o2)

Table 3.1: Axiomatizations of the solar system domain (base) and the Rutherford

atom model domain (target). (Reproduced from [Schwering et al., 2009a, Figure 2,

pp. 254].)
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Generalization:
ThG

sorts
real, object, time

entities
X,Y ∶ object

functions
mass∶ object→ real × {kg}
dist∶ object× object × time → real × {m}
F ∶ object× object× time → real × {N}
centrifugal∶ object× object × time → real × {N}

predicates
revolves around∶ object× object

facts

mass(X)>mass(Y )

mass(Y )> 0
∀(t ∶time)∶F (X,Y, t) > 0
∀(t ∶time)∶dist(X,Y, t)> 0

laws
α ∶∀(t ∶time)(o1, o2 ∶object)∶dist(o1, o2, t)> 0 ∧ F (o1, o2, t) > 0 → centrifugal(o1 , o2, t)= −F (o1, o2, t)
β ∶∀(t ∶time)(o1, o2 ∶object)∶0 < mass(o1) < mass(o2) ∧ dist(o1, o2, t)> 0 ∧ centrifugal(o1 , o2, t) < 0 →
revolves around(o1 , o2)

Table 3.2: A generalized theory ThG of the solar system and the Rutherford atom model

domains (cf. Table 3.1). α and β are generalizations from the transfer. (Reproduced

from [Schwering et al., 2009a, Figure 6, pp. 257].)

rect way to achieve a formula that generalizes the idea of having a continuous nonzero

attraction force between objects (i.e. the role ∀(t)∶F (o1, o2, t) > 0 plays within ThG). But

using Table 3.3’s axioms, one can logically deduce ∀(t) ∶gravity(SUN,PLANET,t)> 0 on

the source side, and ∀(t) ∶ coulomb(NUCLEUS,ELECTRON,t)> 0 on the target side, which

can be anti-unified. HDTP’s entailed mechanism for re-representation allows to general-

ize not only explicitly given axioms, but their logically deducible formulae too. Thus, by

allowing logical deduction before anti-unification, the matching can still be achievable.1

The Heat-Flow/Water-Flow Domains: The “heat/water”-flow is another classic sce-

nario, in which “two connected vessels filled with different quantities of water are ana-

logically related to two massive bodies of different temperature that are connected via

some metal bar”. This famous analogy situation was originally given in [Falkenhainer

et al., 1989, Figure 1, pp. 3] and is being graphically depicted in Figure 3.5.

According to axiomatizations given in [Appendix of Schwering et al., 2009a, pp. 264–

1But note that this is not always possible, because of the nature of the first-order logic used for the
representation. Cases exist in which no useful analogy can be computed if one only considers the given

domain axiomatizations (cf. [Schwering et al., 2009a, pp. 259]).
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Source: Target:
SOLAR SYSTEM RUTHERFORD ATOM MODEL

mass(SUN)>mass(PLANET) mass(NUCLEUS)>mass(ELECTRON)

mass(PLANET)> 0 charge(ELECTRON)< 0

∀(t)∶dist(SUN,PLANET,t)> 0 ∀(t)∶dist(ELECTRON,NUCLEUS,t)> 0

∀(x)∀(y)∀(t)∶mass(x)> 0∧mass(y)> 0 →
gravity(x, y, t)> 0

charge(NUCLEUS)> 0

∀(x)∀(y)∀(t)∶gravity(x, y, t)> 0 →
attracts(x, y, t)> 0

∀(x)∀(y)∀(t)∶charge(x)> 0∧charge(y)< 0 →
coulomb(x, y, t)> 0

∀(x)∀(y)∀(t)∶attracts(x, y, t)∧ dist(x, y, t)> 0

∧mass(x)>mass(y) → revolves around(y, x)

∀(x)∀(y)∀(t)∶coulomb(x, y, t)> 0 →
attracts(x, y, t)

background knowledge
∀(x)∀(y)∀(t)∶dist(x, y, t)=dist(y, x, t)
∀(x)∀(y)∀(z)∶ x > y ∧ y > z → x > z

Table 3.3: Another formalization of the Rutherford analogy situation. (Reproduced

from [Schwering et al., 2009a, Figure 7, pp. 259].)

265], a direct comparison of the terms height(in(WATER,BEAKER),tstart) in the source

and temp(in(COFFEE,CUP),tstart) in the target might lead to the assumption that the

individual entity WATER should be mapped to COFFEE, and BEAKER to CUP. But this is a

fundamental misunderstanding of the analogy the way it is given in Schwering et al.

[2009a]. By considering the other parts of the axiomatizations, another preferred

generalization can map height(in(WATER,VIAL),tstart) to temp(ICE-CUBE,tstart) which

means that the height of the water currently being in the vial maps to the temperature

of the ice cube. This clarifies the importance of the role that a preferred generalization

plays, as well as the importance of the deeper commonalities captured by the “argument

insertion” kind of basic substitutions (cf. section 3.1.2).

Figure 3.5: The “heat/water”-flow analogy situation. (Re-produced according to [Schw-

ering et al., 2009a, Figure 8, pp. 260]; also cf. [Hofstadter and the Fluid Analogies

Research Group, 1996, Figure 5.1, pp. 276].)
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3.2.2 The Flower/Brain Metaphor

The Scenario: Looking at Figure 3.6 for the first time, humans would perceive it as

being categorized into two parts: one to the left and another one to the right.1 Based

on their knowledge, available from previously encountered mundane situations, it is

highly likely that the individual entities composing the left part form a more coherent

domain (with more deeply related entities) to humans than those composing the right

part: common knowledge tells us that a cloud is known to have some obvious relation

with rain drops that, in turn, have some obvious relation with nourishing the flower

by increasing the (intensified) water it contains. The two parts of Figure 3.6 can, thus,

define two separate domains (i.e. the left and the right parts). By comparing these

domains, an analogy is triggered to establish a mapping between the entities appearing

in the two parts, and a metaphorical relation is brought to one’s mind. It makes sense

to assume the left part as the source domain in such scenario, since it contains richer

background knowledge and multiple interrelations between the entities it comprises.

The cloud, the rain drops, the plant, and the flower pot can be matched with the book,

the ink drops, the brain, and the head, respectively. This also can be clearly seen by

comparing individuals in the two domains and their interrelationships.

Figure 3.6: A matching of the components in the left part of the image (source) can be

found by contrasting them with those in the right part (target). The governing relations

among the components can also be mapped, enriching an understanding of what the

target may conceptualize (irrespective of what it could have conceptualized if initially

given alone).

A deeper understanding of the ‘system of relations’ that holds among the individual

entities within the source domain would allow people to efficiently transfer knowledge

1This perceiving competency may alone need to utilize complex capacities, such as vision, categoriza-

tion, spatial reasoning, as well as others.
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from the source to the target, perhaps even in a metaphorical manner. They may even

start to see the ink drops playing the role of information gathered by reading the book

(though none of these views is explicitly mentioned). For example, one may infer an

effect of (metaphorically) “growing one’s knowledge” inside the “brain” by “reading”

in the same manner that rain helps a flower to naturally “grow” by nourishing. One

may further infer that “information” nourishes “knowledge” like “water” nourishes the

“plants”.1 To humans, this definitely reflects at least one more important aspect of

cognition and intelligence; namely finding a metaphorical relation (through analogy)

and applying it (cf. Gust et al. [2006]): note that “information” in the previous sentence

is the metaphorical use of the “ink” that is actually present in the figure. The following

explanations show that cognitively inspired models of analogy-making are very helpful

in endowing cognitive agents with the capacities needed to perform this task, which by

far seems to be a human-directed task (cf. [Gust et al., 2006; Indurkhya, 1992]).

Axiomatizations, Mapping, and Transfer of Knowledge: Assume that the KB of a

cognitive agent already contains required representations (in a many-sorted, first-order

logic language). The HDTP framework can be used to find the aforementioned system

of relations that connects the book, the ink drops, and the brain, by considering the

base system of relations that connects the cloud, the rain drops, and the flower. The ex-

ample is explained in terms of the suggested domain axiomatizations given in Table 3.4,

beside using visual representations and illustrating graphs akin to semantic networks

(cf. Figures 3.7 and 3.8) to simplify the explanations.

Figure 3.7 is an attempt to visually explain what the axiomatizations of Table 3.4 for-

mally state. The source domain in this example is referred to as “the flower domain”, and

the target as “the brain domain”. Knowledge that is initially available within the “brain”

(target) domain would not (normally2) imply an obvious connection between the sub-

domain represented by the “book” entity and the sub-domain containing the “brain”

entity (each is separately encircled in Figure 3.7). The axiomatizations in Table 3.4 list

entities, facts, laws, and background knowledge that represent the knowledge of the

two domains. For example, in the flower domain axiomatization, the idea that the rain

drops feed the flower is represented by nourish(RAIN,FLOWER). Also, the given law rep-

1I showed Figure 3.6 (with both its left and right sub-images) to four personal contacts, then asked

about what they see, and which sub-image looks more natural. In their responses, all of them used
metaphorical terms to interpret “growing” (or “feeding”) the flower, and indicated that “drops of infor-

mation are falling from the book into the brain”. They also reported that the right sub-image seems more

artificial (yet more creative).
2When the source (flower) domain is completely absent, for instance.
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Source: Target:
FLOWER BRAIN

sorts sorts
object, massterm, real, bool object, massterm, real, bool

entities entities
CLOUD, FLOWER, PLANT, POT, VESSEL∶ object BOOK, BRAIN, ORGAN, HEAD, SKULL∶ object
WATERVAP, RAIN∶massterm INK, INFO∶massterm

functions functions
solid∶ object→ bool solid∶ object→ bool

amount∶ object→ real amount∶ object→ real

intensify∶ massterm→ object intensify∶ massterm→ object

predicates predicates
isa, supply, contain, protect,

role∶ object× object
isa, supply, contain, protect∶ object× object

synthesize, nourish∶ massterm × object synthesize∶ massterm × object

ersatz∶massterm ×massterm

incrLvl∶ object× object× real

facts facts

isa(FLOWER,PLANT) isa(BRAIN,ORGAN)

solid(VESSEL)= TRUE solid(SKULL)= TRUE

contain(POT,FLOWER) contain(HEAD,BRAIN)
synthesize(WATERVAP,CLOUD) synthesize(INK,BOOK)

supply(CLOUD,intensify(RAIN)) supply(BOOK,intensify(INFO))

ersatz(WATERVAP,RAIN)

role(POT,VESSEL)

nourish(RAIN,FLOWER)

laws laws
∀(o1 ∶massterm)∀(o2 ∶object)∶nourish(o1,o2) →
∃(o ∶object) ∶synthesize(o1,o) ∧
incrLvl(o,o2,amount(intensify(o1)))

background knowledge

dewPoint ∶ real
humid∶ real → bool
∀(x, y ∶object):solid(x)∧ contain(x,y)→ protect(x,y)

∀(d ∶real):(humid(d)∧d ≤ dewPoint)→ supply(CLOUD,WATERVAP)

∀(d ∶real):(humid(d)∧d > dewPoint)→ supply(CLOUD,RAIN)

Table 3.4: Suggested axiomatizations of the flower/brain analogy situation. (The used

function and predicate names should be obvious from the given explanations. The

predicate incrLvl is a shorthand of “increase level”, so that incrLvl(◻1,◻2,◻3) reflects

an increase in the level of ◻1 within ◻2 by an amount ◻3. Furthermore, dewPoint

corresponds to the temperature at which water vapor condenses into water.)
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Figure 3.7: A possible (graphical) illustration for representing the source and target

domains in the flower/brain analogy (cf. Table 3.4).

resents the idea that: “if an object o2 nourishes another o1, then an increase1 happens

to o’s level in o1, where o is an object that results from intensifying o2. The increase of

o’s value (in o1) equals the amount of the intensification caused by nourishing”.

HDTP can generalize the “flower” and “brain” domains, and a generalization is

shown in Table 3.5. Individual entities, and relations between them, within the “flower”

domain are mapped to entities and relations that play similar roles within the “brain” do-

main. There can in principle be several possible ways to map the individuals and their

relations. In this particular example, and depending on the part of knowledge being

represented, a preferred generalization by HDTP would result in the mapping depicted

in Figure 3.8 (also see the generalization’s formalization in Table 3.5). Among other

things, (i) the CLOUD under consideration is mapped to BOOK, (ii) intensify(RAIN) is

mapped2 to intensify(INFO), and (iii) FLOWER is mapped to BRAIN.

An analogical transfer is triggered, which enriches the “brain” domain with new

entities and relations, implying that the sub-domain represented by the “book” entity

and the sub-domain containing the “brain” entity become now linked (they were initially

not linked, in the sense of Figure 3.7). After the mapping is established, a copy of the

1The predicate incrLvl(◻1,◻2,◻3) in Table 3.4 shorthands the “increase in the level of ◻1 within ◻2
by an amount ◻3”.

2This mapping captures, somehow in a metaphorical sense, the underlying idea that “knowledge”
(the intensified metaphorical version of INFO) feeds BRAIN, like “water” feeds the FLOWER. Note, however,

that neither “water” nor “knowledge” are defined in the given representation.
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Generalization:
ThG

sorts
object, massterm, real, bool

entities
E1,E4,E5,E6,E7,X1 ∶ object
E2,E3 ∶massterm

functions
solid∶ object→ bool

amount∶ object→ real

intensify∶ massterm→ object

predicates
isa, supply, contain, protect, P2 ∶ object× object
synthesize, P3∶massterm × object
P1∶massterm ×massterm

P4 ∶ object × object× real

facts

isa(E4,E5)

solid(E7)= TRUE

contain(E6,E4)

synthesize(E2 ,E1)

supply(E1,X1)

P1(E2,E3)
P2(E6,E7)
P3(E3,E4)

laws
∀(o1 ∶massterm)∀(o2 ∶object)∶P3(o1, o2) → ∃(o ∶object)∶synthesize(o1, o) ∧ P4(o, o2,amount(intensify(o1)))

Table 3.5: A generalized theory of the flower/brain analogy situation, on which the

analogical mapping and transfer are based. (The anti-unifications can be easily obtained

by consulting Table 3.4.)
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fact: nourish(RAIN, FLOWER), for instance, is transferred from the “flower” domain

to enrich the “brain” domain with the fact: nourish(INFO, BRAIN). Using Table 3.5,

both facts can be obtained as instances by applying the following substitutions in the

(generalized) fact P3(E3,E4) (which appears in Table 3.5’s generalized theory ThG):

1. substituting P3 with nourish (in both domains),

2. substituting E3 with RAIN and INFO, in the flower and the brain domains, respec-

tively, and

3. substituting E4 with FLOWER and BRAIN, in the flower and the brain domains, re-

spectively.

CLOUD

WATERVAP
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FLOWER

PLANT

VESSEL

POT

BOOK

INK
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ORGAN
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HEADsolid solid

synthesize
supply

ersatz

nourish
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protect
contain
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ersatz
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protect
contain
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Figure 3.8: After establishing a mapping from the flower domain to the brain domain,

the system of relations in the latter becomes richer.
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4

Cross-Domain Reasoning via

Conceptual Blending

A simple puzzle given by the famous mathematician (and magician), Smullyan, is the

Rate-Time Puzzle, which is stated as follows (cf. [Smullyan, 1978, pp. 12]):

“A train leaves from Boston to New York. An hour later, a train leaves from

New York to Boston. The two trains are going at exactly the same speed.

Which train will be nearer to Boston when they meet?”

Regardless of whether an intelligent, cognitive reasoner can find the correct answer1 to

this puzzle, it is highly likely that the reasoner will somehow be stimulated to combine

clues from two imagined or conceptualized domains, firstly, then form a third coherent

domain, before reaching such an answer.

Cases like this, which stimulate us to merge knowledge, happen quite often in many

reasoning situations that involve thinking of conceptualized domains. After a cognitive

reasoner is somehow stimulated to integrate knowledge pieces (such as the spatial, tem-

poral, or directional knowledge about the trains and cities in the given puzzle) from two

or more different conceptualizations, a conceptual mixture of cross-domain elements

results from a process, widely known as “conceptual blending”. In such situations, the

pieces of knowledge are initially dispersed or belong to different conceptualizations,

and their mixing or “blending” is achieved by establishing a coherently combined con-

ceptualization that fuses salient entities of the former ones into the latter.

Conceptual blending (henceforth CB) provides a powerful mechanism for facilitat-

ing the creation of new conceptions by constrained integration of conceptual knowl-

edge from diverse situations. Whence, it is also referred to as “conceptual integration”

1Obviously the two trains will be at the same distance from Boston when they “meet” (cf. [Smullyan,

1978, pp. 19]).
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(cf. Fauconnier and Turner [1998, 2002]; Turner and Fauconnier [1998]). No com-

monly agreed upon definition of CB exists. Nevertheless, it can roughly be described as

the creation of concepts by a principle driven combination of existing ones. “In general,

there are many ways to combine the same concepts but in any case the result maintains

parts of their initial structure. Furthermore, the blending of two concepts is not a simple

union, but may give rise to emergent structure” (cf. [Mart́ınez et al., 2011, pp. 210]).

Fauconnier and Turner introduced the early ideas of a framework for performing

CB in the 1990’s. CB was originally intended to explain specific cognitive phenomena,

such as metaphor and metonymy [Fauconnier and Turner, 1998]. Then, it has devel-

oped to explain a variety of other cognitive phenomena that are ubiquitous to everyday

thought. About a decade later, Fauconnier and Turner proposed the newer version of

the CB framework of reasoning as a theory of cognition that explains “the nature and

origin of cognitively modern human beings” (cf. Fauconnier and Turner [2002]). Fau-

connier and Turner acknowledge Koestler’s forerunner idea of “bisociation of matrices”

(cf. [Koestler, 1964]) as an earlier “symptom” that is akin to CB and is “shared by all

examples of remarkable creative invention” [Fauconnier and Turner, 2002, pp. 37]. Al-

though Fauconnier and Turner’s proposal of CB as a theory of cognition is a bold claim,

and did stimulate some critics1, CB is still continuing to develop and show its impor-

tance and applicability in a wide range of areas.

This chapter gives a foundational background that serves to introduce, motivate, and

try to characterize facets of modeling the CB process. Critics will also be crisply men-

tioned, in particular because pivotal components of CB are still ill-defined for computa-

tionally oriented modeling. Nevertheless, throughout the rest of the thesis, it is intended

to strongly advocate the CB process as a fundamental higher-level cognitive mechanism,

by demonstrating and explaining concrete, uncontroversial key roles it plays in a variety

of cognition situations that show clear signs of human intelligence.

4.1 General Assumptions and Basic Elements

This section introduces the basic components of, and lists general assumptions about,

the CB framework, using a model-independent view. The presentations in this section

are thus intended to be as broad as possible but, at the same time, as concise as possible,

because they are used later to describe the functioning of the framework.

The first important assumption about CB that should be made clear is that I consider

1Some critics are briefly mentioned in [Pereira, 2007, §3.2.2, for example] and section 4.4.
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CB an explanatory cognitive mechanism. Unlike Fauconnier and Turner’s proposal of

the CB framework as a theory of cognition, I view the framework as a basis for simu-

lating aspects of higher-level cognition. The framework itself does not tell us to always

blend our knowledge conceptualizations in order to reason, nor is it a method showing

how one becomes creative. It has rather the power to explain how concrete types of

reasoning and creativity could be achieved (consequently, simulated in computational

models of reasoning or creativity; also cf. Abdel-Fattah and Schneider [2013]).

The next assumption concerns the idea that all approaches for blending assume

that knowledge is organized in some form of “spaces”, or “domains”. Therefore, the

underlying knowledge base of computational models for CB should be able to provide a

way to represent these spaces as conceptual entities (cf. section 1.3) that can be grouped

and taken as input knowledge structures to the blending process. Such a process will be

described after the elements, needed for modeling a general CB framework, are outlined

(cf. section 4.2).

4.1.1 Conceptual Spaces and Frames

Conceptual Spaces: The CB process is described as involving two knowledge struc-

tures, referred to in Fauconnier [1994] as “mental spaces” and in Fauconnier and

Turner [2002] as “conceptual spaces” (also cf. [Goguen, 2006; Magnini and Strapparava,

1990]). Fauconnier defines conceptual spaces as “small conceptual packets constructed

as we think and talk, for purposes of local understanding and action” [Fauconnier and

Turner, 2002, pp. 102]. They can be seen as partial representational structures for

understanding a perceived (or imagined) situation (especially in linguistics).

A conceptual space needs to be somehow connected to long-term knowledge, since

it is considered a partial assembly containing interconnected elements that are typically

structured by “frames” and “cognitive models” (cf. Fauconnier [1994, 1997]; Faucon-

nier and Turner [1998, 2002]). Fauconnier and Turner hypothesize that “elements” in

the spaces correspond to activated neuronal assemblies, with interconnections corre-

sponding to a “kind of neurobiological binding, such as co-activation” [Fauconnier and

Turner, 2002, pp. 102]. Conceptual spaces can be activated in many different ways

and for many different purposes, where the interconnected elements of a space “can be

modified as thought and discourse unfold” [Fauconnier and Turner, 2002, pp. 41]. Con-

ceptual spaces are built up “dynamically in working memory, but they can also become

entrenched in long-term memory” [Fauconnier and Turner, 2002, pp. 103; emphasis

added]. Thus, mental spaces “can be used generally to model dynamic mappings in
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thought and language” [Fauconnier and Turner, 2002, pp. 41], because they are “built

up in any discourse according to guidelines provided by the linguistic expressions” [Fau-

connier, 1994, pp. 16].

For models concerned with the processing of CB, mental spaces could be represented

in many ways, such as semantic network graphs, cases (in case-based reasoning), or an

activation pattern of a neural-network at a given moment (cf. [Pereira, 2007, pp. 56]).

In relevance to this thesis, concepts consisting of grouped conceptual entities (cf. sec-

tion 1.3) are assumed as a means for representing mental spaces. Using this way to

represent concepts, conceptual entities and relationships between them can substitute

the notion of “elements” given in the above definition of a conceptual space for process-

ing simulated computations (cf. [Fauconnier, 1994; Fauconnier and Turner, 2002]).

Frames: On a linguistically motivated account, Fillmore defines a frame as a collection

of categories whose structure is rooted in motivating context experiences. Fillmore

also emphasizes the role these experiences play in building word meanings (cf. Coulson

[2006]; Fillmore [1982] and Chapter 7). This is paralleled in AI by Minsky’s proposal of

frames as data structures that represent commonly encountered, stereotyped situations

(cf. Minsky [1974]).

Entities (e.g. knowledge pieces or beliefs) and relationships between them are the

essence of representing conceptual spaces. A conceptual space contains “a partial rep-

resentation of the entities and relations of a particular scenario”, where frames play

in this representation the role of a pattern representing “the relationships” that exist

between the entities (cf. [Coulson, 2006, pp. 21] and section 7.2.2). Thus, when the

entities and relations can be organized in patterns, as packages that we already know

about, the organized packages are called “frames”, and the conceptual space is, thus,

framed. “A single mental space can be built up out of knowledge from many separate

domains”, where several sources of knowledge help in building the spaces, such as pat-

terns of experience and assertions by other people (cf. [Fauconnier and Turner, 2002,

pp. 102–103]). In this sense, frames are “entrenched mental spaces that we can activate

all at once” [Fauconnier and Turner, 2002, pp. 103; emphasis added].

Frames provide a kind of an abstract prototype of (interrelated) entities, actions,

or reasonings that —unlike frames and scripts from early AI— can be dynamic (i.e. it

changes with time, person, or context) and compositional (i.e. it may have many layers

of abstraction). The principal frame that underly a given conceptual space is called the

“organizing frame”. For example, entrenched sources of knowledge for a conceptual

space like ‘BUS’ could include frames of “transport means” and “container”, whereas the
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latter frame may not be the organizing frame in most situations. Frames are important

in guiding the blending construction process to “recognizable wholes” of repeated pat-

terns, but this does not result in a blend having one single frame. In fact, an acceptable

blend should mostly inherit a mix of structures from the (organizing) frames of the

input conceptual spaces that are forming it (cf. [Pereira, 2007, §3.2.1; pp. 57-58]).

Representing Spaces and Frames: Illustrations of conceptual spaces and frames in

this thesis employ compact visual representations of graphs akin to semantic networks,

in which nodes that identify conceptual entities correspond to the structured, intercon-

nected elements of conceptual spaces. For example, a depiction of two mental spaces

for Smullyan’s Rate-Time Puzzle is given in Figure 4.1. In each one of the spaces, there

are entities that correspond to:

1. two cities (NY and BOSTON representing New York and Boston, respectively),

2. a train (moving from one city to the other, where the direction of traveling is

indicated by a pointing arrow),

3. the time (in hours) at which the train starts to travel (with the starting time being

denoted by t0 for the train leaving away from Boston, and by t1 = t0 +1 for the one

leaving away from New York an hour later),

4. the distance between the train and the city it departed from, and

5. the current location of the train.

This kind of visual illustrations is customarily used for simplifying the representa-

tions of what are being referred to as mental, or conceptual spaces. Due to the vague

nature of spaces and frames in Fauconnier and Turner’s treatment of CB1, this way helps

in delivering the basic entities in involved spaces (perhaps also their interrelationships)

without the need to give detailed or more specific representations, which will definitely

have to be based on one particular KR formalism or another. Similar examples that give

two very simple conceptual spaces, representing “BOAT” and “HOUSE” domains, can be

found in [Goguen, 2006, Figure 1] (or its variant in [Goguen, 1999, Figure 1]; also see

Figure 4.2 below).2 Classic examples, such as Goguen’s, which are often cited in various

classic work on CB, will be referred to as “established examples”. Richer representations

1Refer to section 4.4.2 for more clarifications, and to section 7.2 for a proposed treatment.
2There is a little difference between the representations of “BOAT” and “HOUSE” given in [Goguen,

2006, Figure 1] and those given in [Goguen, 1999, Figure 1]. Figure 4.2 is based on the former (and so

do the figures that follow in this chapter).
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to
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t 0 d 0

NY
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Figure 4.1: A simple illustration of the two conceptual spaces involved in Smullyan’s

Rate-Time Puzzle. In each space, entities exist that correspond to the two cities, a train,

a direction of traveling, the distance between the train and the city it departed from,

and the time (in hours) at which the train starts to travel from one city to the other. The

starting time is t0 for the train leaving Boston (left), and t1 for that leaving New York

(NY) an hour later (right).

of established examples of two conceptual spaces for “COMPUTER” and “VIRUS” are de-

picted in [Pereira, 2007, Figure 5].

4.1.2 Cross-Space Mappings

In order for a blending process to take place, it is (inherently) essential that the reasoner

detects a correspondence between some elements in one space with others in another

space. Interconnected elements (or frames thereof) in a given conceptual space can

be linked during the CB process to corresponding elements (or frames, respectively) in

other conceptual spaces.1

Figure 4.2 depicts a mapping between Goguen’s established conceptual spaces that

represent the “BOAT” and “HOUSE” domains. A more detailed visual illustration of a

possible mapping between the mental spaces “COMPUTER” and “VIRUS” is shown in

[Pereira, 2007, Figure 6] for explaining a cross-space mapping in the blending of the

two spaces, forming a “COMPUTER VIRUS” blend.

It should not come as a surprise that this linking process plays a similar role to what

an analogical mapping plays in finding corresponding entities in the structures of a

given source and target domains in analogical reasoning (cf. section 2.2.1). Moreover,

and also similar to an analogical mapping, this cross-space, or cross-domain, mapping

1Note that this ‘linking’ can be found in may ways, such as identity, structure alignment, or analogy.

The reasoner’s background knowledge and current context affect how the reasoner views elements in one
space as being linked to elements in another. This also opens the door for a modeled version of CB that

helps in computing forms of creative thinking (cf. Chapters 5 and 7).
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does not have to be unique, since elements or frames of elements of one space could cor-

respond to zero or more counterparts of another space. Therefore, and as will become

clearer in the following part of the thesis, an analogy engine can be utilized to facilitate

the process of blending in models seeking to attain the CB framework computationally

(cf. Chapters 7, and 8).

on

live in ride

on

HOUSE

LAND

RESIDENT

BOAT

WATER

PASSENGER

Figure 4.2: A mapping between Goguen’s simple mental spaces that represent the

“HOUSE” and “BOAT” domains (cf. [Goguen, 2006, Figures 1 and 4]).

4.2 A Cognitively Plausible View of Conceptual Spaces

for the CB Framework

The CB framework is not yet well-formalized enough to precisely define notions such as

“conceptual spaces”, “mental spaces”, “mental domains”, and sometimes even “mental

models”1, or to sharply distinguish them from each other. The view undertaken in this

text is that they may all be used interchangeably within the CB framework to only serve

the same purpose of representing “knowledge domains” or “concepts” in a proposed

modeling context (cf. section 1.3). (Though, of course, they can in general be used to

capture different ideas in other texts.)

Throughout the rest of the thesis, “conceptual spaces”, or simply “concepts”, replace

the use of “mental spaces” and the related notions. However, and before any further

continuation of the main CB discussion itself, characterizations and representation as-

sumptions are proposed in the following for the view hereby undertaken of “concepts”

or “conceptual spaces” (in AGI modeling contexts).

1The mental models theory is proposed by Johnson-Laird, where models are considered “the natural
way in which the human mind constructs reality, conceives alternatives to it, and searches out the con-

sequences of assumptions” [Johnson-Laird, 1995, pp. 999]. The text does not further discuss this issue,
but a view about model construction in general intelligence is proposed in Abdel-Fattah and Schneider

[2013]; Schneider et al. [2013] (also cf. Clement [2008]).
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4.2.1 Characterizations of Concepts

It should be kept in mind that the essence of the notions about “concepts” in cogni-

tive science share at least the following underlying assumptions (cf. [Fauconnier and

Turner, 2002; Fodor, 1998; Lamberts and Shanks, 1997; Mareschal et al., 2010; Mur-

phy, 2004]):

1. For modeling aspects of intelligence in cognitive agents, the proposed perspective

is based on Murphy’s view that concepts are “the glue that holds our mental world

together” (cf. [Murphy, 2004] and section 1.3.1).

2. Concepts are considered as the basic elements of thought that abstract conceptions

(i.e. ideations), objects, or actions.1

3. Concepts can embody not all but “much of our knowledge of the world” (cf. [Mur-

phy, 2004]), since we cannot always “comprehend every microscopic detail of

entities in the world” (cf. [Clement, 2008]). Therefore, in modeling aspects of

cognition, concepts are considered incomplete naive theories that are often ideal-

ized, always simplified, and may in minor cases be contradictory (the contradic-

tions must, however, be maintained; see below and Murphy and Medin [1985]).

Concepts can be developed at different levels of detail (cf. section 1.3.2), where a

single concept may be used to account for many events, making it an efficient way

to store knowledge.

4. Concepts are more useful when they represent the important interrelationships in

a system, as opposed to being a collection of isolated facts. Cognitive science has

shown that cognitive beings perceive their environments as structures and changes

in the relationships among the structures (cf. [Clement, 2008; Fodor, 1998]).

5. Very few concepts are static, whereas most of the concepts can be changed with

respect to many factors, such as time, person, and context.

The previous assumptions form a subset of the most predominant traits, common to

existing, debatable views that characterize and define what concepts are in cognitive

science. They serve guiding a general, computational modeling of the CB framework.

Of at least an equal relevance should be the more debatable views of how concepts

seem to be represented for cognition. Basics of both view types (i.e. “characterizing” and

1A broad sense of distinction should be kept in mind between conceptions and concepts. With the

exception of this subsection of “concepts” in cognitive science, I usually use “concepts” (on the modeling
side) to indicate representations that can be used as surrogates (cf. section 1.3) that account for aspects

of structure or knowledge of “conceptions” (i.e. ideation on the cognition side).
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“representing” concepts in cognitive science) can help in AI models that computationally

aim at simulating aspects of general intelligence. The view about representing concepts

is introduced in the following as a further support for the discussions. The reader can

refer to [Lamberts and Shanks, 1997; Mareschal et al., 2010; Murphy, 2004; Wrobel,

1994, for example] for extensive and comprehensive discussions of both views.

4.2.2 Representations of Concepts

It has long been assumed that concepts can be represented in the mind by the Aris-

totelian tradition of giving necessary and sufficient conditions based on properties. Mod-

ern approaches in cognitive semantics that focused on the notion of “concepts” as a cog-

nitive phenomenon1 have undertaken sharp turns by not neglecting natural fuzziness

of conceptual processing, and presenting representation views that consider more plau-

sible assumptions regarding “gradations of typicality” and the existence of “borderline

cases” [Murphy, 2004, pp. 64].

The following are three of the most current general views, typically considered as

theories of concept representations:

The Prototype Approach: Rosch’s experiments resulted in a theory of human concepts

that greatly differs from the classic tradition based on strictly explicit properties

(cf. [Goguen, 2005; Rosch, 1975]). The “prototype view” of concept representa-

tion is based on innovative results showing that concepts exhibit prototype effects,

which indicate membership degrees (based on frequency), correlating with simi-

larity to a central member, or basic-level concept (cf. [Rosch, 1975]). This view

explains why TABLE, for instance, has been (empirically) found more prototypical

as a piece of FURNITURE than CLOCK, and why ORANGE is more prototypical of

FRUIT than OLIVE (cf. [Murphy, 2004, Table 2.1; pp. 33]).

Rosch’s theory views a concept as being represented based on a summarized pro-

totype, which is assumed to have the average characteristics (or purposes) of the

concept (e.g. a prototype of BIRD would be characterized by having wings, hav-

ing feathers, and flying). There are basic level concepts that tend to (i) occur in

the middle of concept hierarchies, (ii) have the most associated knowledge and

shortest names, and (iii) be the easiest to learn. One of the shortcomings of the

prototype view is its inability to account for concepts with dimensions that do not

have set feature values, since concepts may not be static entities defined with a

1More precisely, cognitive semanticists treat meaning “as a cognitive phenomenon invoked to construe

conceptual content” [Coulson, 2006, pp. 17].
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fixed set of properties. For example, a dimension, say ‘size’, may either be repre-

sented as ‘small’, ‘medium’, or ‘large’; or as some continuous measurement of ‘size’

(cf. [Murphy, 2004]). The prototype view is commonly applied in AI systems that

represent concepts as attribute value sets [Pereira, 2007, pp. 48].

The Exemplar Approach: In the “exemplar view”, proposed by Medin and Schaffer, rep-

resentations of concepts are assumed neither to encompass an entire concept def-

inition, nor to arrange a list of features according to their typicality. Instead, a

concept is more or less the remembered set of the most salient exemplars (plus

some fuzzily remembered ones) that could be consulted when one wants to make

decisions regarding this particular concept. According to this view, there is no

summary that stands for all members of the concept and, in a sense, there is no

real concept. For example, one’s concept of DOG is the set of all dogs that one

remembers, and if one wants to figure out whether a newly perceived object is a

DOG, one has to consult sets of exemplars and decide.1 The exemplar view makes

a good sense from a cognitive scientific point of view, since it can account for some

psychological behaviors (cf. [Murphy, 2004]). However, at least it contradicts ba-

sic intuition, on the one hand, and gives no room for abstraction, on the other.

Moreover, applying this theory (as it is) to represent “concepts” in computational

systems would (unrealistically) require a potentially infinite memory. In addition,

and given that the theory does not say anything about defining characteristics2, it

would not be possible to relate to a concept in some usage modes. For instance,

how would the metaphorical usages of ‘doggy’ or ‘snaky’ be defined? The exemplar

view is commonly applied in case-based reasoning systems that employ episodic

memory to compare old and new problems [Pereira, 2007, pp. 48].

The Theory Approach: The “theory view” was introduced in Murphy and Medin [1985]

to view the whole knowledge as a kind of a (consistent) theory. It is also referred to

by the “knowledge view”. This view is built (in some sense) upon the previous two

views, but it emphasizes that concepts are “the part and parcel” of one’s “general

knowledge” of the world. Murphy and Medin’s approach to represent concepts

argues that “concepts are part of our general knowledge about the world”: they

1This consultation assumes that the perceived object is not merely fairly similar to some of the exem-

plars in the set of dogs, but the object should be mostly similar to more of the exemplars in the set of

dogs than of those in other sets of exemplars. The consultation is assumed to be done as extremely quick
as the speed of thought —something very difficult to attain in current computational models, if at all.

2That the exemplar theory does not say anything about defining characteristics can be considered an
advantage, because problems for the classical views are no longer problems for this view (cf. [Murphy,

2004, pp. 50]).
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are not learned in isolation but as “part of our overall understanding of the world”

[Murphy, 2004, pp. 60]. Knowledge about animals, for example, integrates with

knowledge about biology, behavior, and climate, as well as other domains. This

integration relation works both ways, so that concepts both are influenced by

whatever knowledge and experience we already have, and cause a change in our

overall understanding. This gives a pressure for concepts to be “consistent” with

whatever else one knows (cf. [Murphy, 2004; Murphy and Medin, 1985]), and mo-

tivates the use of the “theory” label in some sense. One may consider the represen-

tation of a specific concept as being based on smaller parts (or sub-theories) that

describe the concept with facts about related conceptual entities (or concepts), as

well as causal connections between them all.

In the context of this thesis, the previous views are seen as a guide-lining background

that utilizes existing theories in suggesting ways in which conceptual domains can be

represented. Hopefully, this helps in facilitating the computational modeling of general

intelligence aspects that agree with cognitive science-based results.

Analysis: On the one hand, and as concluded in [Murphy, 2004, pp. 64–65], it is ex-

tremely important to point out that no “single form of conceptual representation will

account for everything”. Even according to the prototype theory itself, exemplar knowl-

edge must exist side by side with prototype knowledge: e.g. if one encounters an object

for the first time, then one can form a prototype based only on that single exemplar. Also,

neither the prototype view denies that people learn and remember exemplars, nor the

exemplar view prevents people from relying on summary representations rather than

specific exemplars in making judgments about a concept (especially when the concept

representation has grown to be mature enough). Moreover, the theory view advocates

must “admit that there is an empirical learning component to concepts”, whereas the

exemplar theorists must agree that a level of general knowledge (that is separate from

exemplar knowledge) does in reality affect concepts and their usage. Thus, several

views need to be combined with one another to form a comprehensive, complete theory

about representation of concepts.

On the other hand, the theory view is commonly applied in logic-based AI systems

or systems that use semantic networks1, which renders this view more connected to

previous (and forthcoming) ideas considering the modeling of concepts for CB and

systems showing GI aspects. The view further supports, and fits better to, the overall

text and its underlying framework, namely HDTP. Recall that the KR language of the

1For example, Copycat (cf. [Hofstadter, 1984; Mitchell, 1993]).
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HDTP framework is a many-sorted, first-order logical one, and can thus account for

beliefs, facts, and laws, in terms of axiomatizations, and also account for the overall

knowledge in terms of theories (cf. sections 3.1 and 3.2). Therefore, the theory view

will be used here for motivating the representation of conceptual domains.

However, this adoption raises some deficiencies, which are typical when applying

the view itself. First of all, the view is referred to by the “theory” view, though it must

be accepted under the natural constraint that “people’s naive theories are incomplete

and in some cases contradictory, given our incomplete knowledge and understanding

of the things around us” [Murphy, 2004, pp. 61]. Striving to achieve a cognitively plau-

sible way of representing concepts (in artificial models) should not imply that humans

think only in terms of (scientific) theories. So, one must not confuse the view about

theories (in the sense of a cognitive agent having an incomplete mental theory that

mostly depends on experience) with consistent logical theories (in the sense of official,

rigid, scientific theories).1 Secondly, note that if a model applies the ideas of Murphy

and Medin’s approach to modeling similar representations for concepts in an agent’s

KB, it would require that the whole KB is viewed as a network of (sub) concepts, with

coherent links and rules that should remain consistent. One should make a decision, for

example, about the limit to which concepts are allowed to decompose into sub-theories

(and what entities would we like to represent at all, in the first place). This raises a chal-

lenge similar (if not identical) to the decision challenge regarding how deep the level

of details in KR should be (cf. section 1.3.2).2 A related challenge would be to consider

how dynamic changes of concepts (and their comprising conceptual entities) may be

represented. Representing dynamic concepts in terms of theories would raise sorts of

challenges akin to those typically encountered in non-monotonic reasoning, such as the

problem of (tractably) maintaining consistency.

4.3 The Conceptual Blending Framework

CB is being more widely considered an important part of cognition now than ever. There

is currently more to CB than just facilitating the creation of new concepts and ideas

by constrained combination of available knowledge. It does provide explanations of

central features of human-comparable intelligence like the ability to understand, learn,

reason, and creatively construct new concepts and theories. Hence the inevitability of

1But, of course, one must work hard to rectify arising inconsistencies as the knowledge and experience

of the agent develop in a computational modeling that adopts this view.
2Solving this challenge is an important goal, since this would hopefully contribute to overcoming the

related challenge of formalizing the CB framework for computational models (cf. section 4.4.2).
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incorporating CB in AGI models, though there are still very few formal or algorithmic

accounts on CB.

4.3.1 The Network Model: Constructing Blend Spaces

Broadly speaking, the process of CB operates by mixing two input concepts (e.g. in the

sense explained in section 4.2) to form a third one that basically depends on mapping

identifications between the former two. The third, generated concept, the “blend space”,

maintains partial structure from the inputs and adds an emergent structure of its own.

In the process of generating (or computing) a blend in the CB framework, three

steps usually take place. The ordering of the steps is not necessarily sharp, and can

be changed. Moreover, the blending process may even need several iterations of these

steps. They can be broadly characterized as follows (cf. Fauconnier and Turner [2002];

Pereira [2007]):

Composition: In the composition step, a new space is constructed by pairing selec-

tive constituents from the input spaces, then projecting them into the constructed

space. The space, constructed during this step, may only serve as an initial trial to

fill-in details in forming a useful conceptual blend. A potentially useful (or accept-

able) blend will also be referred to as a feasible blend. It should neither be unique

nor meaningful at this point of the CB process, and will therefore be referred to

as a candidate —a “blend candidate”. The composition step is also called the fu-

sion step, where the pairing of two different elements, one from each of the input

spaces, fuses these elements into one in the blend candidate.

Emergence: This step is a source of emergent contents, that fills some gaps in the po-

tential blend. It helps in completing existing contents that were fused in the newly

constructed blend during the composition step (cf. Coulson [2006]). In the emer-

gence step, which is also called the completion step for an obvious reason, a pattern

in the formed blend (that is, the blend candidate from the composition) is filled

with projecting structures that match long-term memory information (e.g. based

on knowledge of background frames).

Elaboration: The actual functioning of the blend comes in the third step, the elabora-

tion step, in which a performance of cognitive work within the blend is simulated

according to its own emergent logic (i.e. according to how the reasoner views the

projected structures’ functionality). This simulation is called running the blend.
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Figure 4.3 illustrates the prototypical four-space model of CB as a network, in which

two concepts, denoted by SPACE1 and SPACE2 , represent the input conceptual spaces.

Common parts of these inputs are matched by “identification”, where the matched parts

can be seen as constituting a GENERIC space. The BLEND space has an emergent struc-

ture that arises from the blending process and consists of some matched and possibly

some of the unmatched parts of the input spaces in the network of concepts.

identification

SPACE1 SPACE2

GENERIC

BLEND

Figure 4.3: The four-space, network model of CB: common parts of SPACE1 and SPACE2

are identified, defining a GENERIC space and a BLEND. The connections within the

concepts reflect the internal structures of relations among the conceptual entities.

Example: To further explain the CB process and the underlying network model, con-

sider again Smullyan’s Rate-Time Puzzle and the illustrations given in Figure 4.1 of its

(isolated) input conceptual spaces. Figure 4.4 depicts the blending process for reasoning

about an answer to the puzzle using the network model of CB:

1. In the blending process, commonalities between the input spaces of Figure 4.1

can be first found by means of cross-space mappings and generalized into the

“GENERIC” conceptual space shown in Figure 4.4. The GENERIC space “maps onto

each of the inputs and contains what the inputs have in common” [Fauconnier

and Turner, 2002, pp. 41]. It holds commonalities between SPACE1 and SPACE2 ,

such as the two cities, as well as the spatial, temporal, and directional knowledge

about the moving train.

2. Composition allows elements from the inputs to fuse into the candidate blend,

such as the cities, the distances between them and the trains departed from them,

and a (general) time point at which the space runs. This also makes available

new relations (between the fused elements) that might have not existed in the
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(isolated) inputs: e.g. only in the blend we have two trains, and only in the blend

one would think of a decreasing distance between these trains.

3. Completion can fill-in missing details by bringing additional structure to the BLEND,

if necessary. For example, in the BLEND space, the reasoner integrates the familiar

frame of “two trains moving opposite to each other”, by virtue of which the BLEND

runs (i.e. elaboration). This allows to apply intuitive movement laws in opposite

directions, which eventually make the decreasing distance between the moving

trains reaches zero, so that they meet at at some location. The reasoner now fo-

cusses on a specific time point, tm > t1, and a specific location, at which the two

trains meet somewhere between the two cities. This affects the reasoner’s concep-

tualization of the distance between the trains and the cities, allowing the reasoner

to focus on the distances from the meeting location to BOSTON (as stimulated by

the puzzle statement).

4. The blending (of train locations, in particular) allows the reasoner to discover that

both distances (between BOSTON and each one of the trains) must be the same

regardless of where the (blended) meeting location lies or what time exactly tm is

(because t = tm in this space, and the trains share the same location).

to

to

NY

BOSTON

t 0 d 0

NY

BOSTON

t 1d 1

NY

BOSTON

td

NY

BOSTON

t md m

BLEND

SPACE1

SPACE2

GENERIC

Figure 4.4: Solving Smullyan’s Rate-Time Puzzle by the network model of CB.
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Fauconnier and Turner laid out the central principles of the network model by schema-

tizing a similar reasoning for a different classic puzzle. In [Fauconnier and Turner, 2002,

pp. 40–44], Koestler’s Riddle of the Buddhist Monk is used for revealing how the blending

processes can be elaborated using the network model of CB (cf. Fauconnier and Turner

[1998, 2002]; Koestler [1964]).

4.3.2 An Overview of Former Accounts

Within the realm of modeling higher-level cognitive mechanisms related to achieving

general intelligence, work on formalizing computational models for CB is very little.

Moreover, most of those formalizing models have neither focused on how to mainly

compute blending in general frameworks, nor on utilizing CB in modeling GI aspects for

cognitive agents. It can even be viewed the other way round, since they rather utilized

the way their proposed systems behave in computing a form of CB restricted to their

systems. Nonetheless, these contributions are credited for being prominent in modeling

a computation of CB. Amongst them, the following ones can be mentioned (cf. [Goguen,

1999; Lee and Barnden, 2001; Pereira, 2007; Veale and O’Donoghue, 2000]):

1. Goguen’s approach to describe CB by an algebraic semiotic formalism provides

a theory and a computational treatment of sign systems (cf. Goguen [1999]).

Blends in this approach are described as structure-preserving mappings of systems

of signs (i.e. sign systems are used as input spaces).

2. Veale and O’Donoghue’s approach provides a computational model relying on

a metaphor interpretation system that is an extension of their Sapper system

(cf. Veale and O’Donoghue [2000]).

3. Lee and Barnden’s approach analyzes reasoning of counterfactual conditionals

from a CB perspective based on their ATT-Meta system (cf. Barnden et al. [2002];

Lee [2010]; Lee and Barnden [2001]).

4. Pereira’s Divago system implements CB into a model of computational creativity

that uses a parallel search engine based on genetic algorithm (GA) (cf. Pereira

[2007]).

One of these formal accounts on CB is the classical work of Goguen and his col-

leagues, which is especially influential to the approach undertaken in this thesis. Goguen

formulated CB at an abstract level in category theory (cf. [Diaconescu, 2008, Chap-

ter 2]), describing blending of concepts using algebraic semiotic formalisms (cf. [Goguen,
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1999, 2006; Goguen and Harrell, 2004, 2010; Goguen and Malcolm, 1996, among oth-

ers]). Goguen built on insights from CS that discrete structures can be described by

“algebraic theories” with extra structure. He proposed to treat theories as being com-

putational treatments of systems of “signs”, giving his formalizations credit as the first

attempts to characterize specific CB components. The theories included axioms, sorts,

and constructors, where sorts can be used to enrich the representations of Fauconnier’s

conceptual spaces with types (cf. [Goguen, 2006, §1]), while constructor functions build

complex signs from simpler ones (cf. Goguen [1999, 2005]). These sign systems can

therefore handle features for special types of representations. For example, in a rep-

resentation of the words in a sentence, or in representing the visual constituents in a

diagram, the components can be treated as complex signs that have parts, in which

relations between the parts can only be put together in certain ways to constitute the

representations (cf. Goguen [1999, 2005]).

Combining notions from semiotics and category theory, Goguen applied algebraic

semiotics to formalize CB by describing blends as being semiotic morphisms of sign sys-

tems (simply stated, these are structure-preserving mappings between signs). Goguen’s

version of CB can be described by the diagram in Figure 4.5, with C1 and C2 repre-

senting two input conceptualizations (i.e. two given sign systems being treated as input

spaces). In this diagram, two input concepts C1 and C2 are related by correlations that

are induced by a generalization G. Like in the network model, a generalization G is first

looked for, then a blend B is constructed in such a way as to preserve the correlations

between C1 and C2 established by the generalization G. This may involve taking the

morphisms to B to be partial, in that not all the structure from C1 and C2 is mapped to

B. One should in any case be assured that the blend respects the relationship between

C1 and C2 implicitly established by the generalization. So the diagram will commute

and in fact will be a pushout (cf. [Goguen, 1999]).1

Goguen’s approach implicitly accounted for basic processes of CB. It however left

out the specification of many details of how important issues can be realized, such

as the three traditional steps of the construction process in the network model of CB

(cf. section 4.3.1), and Fauconnier and Turner’s “optimality principles” (cf. section 4.4.1).

A standard example, discussed in Goguen [2006], is that of the possible concep-

tual blends of the concepts HOUSE and BOAT (cf. Figure 4.2) into concepts such as

BOATHOUSE and HOUSEBOAT (cf. Figure 4.6), as well as other less-familiar (and less-

obvious) blends (see e.g. [Goguen, 1999, Figure 7] and [Argamon et al., 2010, Fig-

1Refer to the briefing of Goguen’s work given in [Pereira, 2007, pp. 63–64] for more elaborations
about signs and pushouts. See [Diaconescu, 2008, Chapter 2] for a more detailed, rather condensed,

presentation on category theory.
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Figure 4.5: Goguen’s version of CB (cf. Goguen [1999, 2006]).

ure 12.3]). According to Goguen and Harrell [2010] (cf. Figures 4.2 and 4.6), part of

the conceptual space of HOUSE reflects that a RESIDENT lives in the HOUSE, and part

of BOAT reflects that a PASSENGER rides on the BOAT. These parts can be aligned (as

already illustrated in Figure 4.2). Conceptual blends are then created by combining fea-

tures from the two spaces, while respecting the constructed alignments between them.

As argued in Fauconnier and Turner [2008], newly created blend spaces will coexist

with the original spaces. For example, the concepts of HOUSE and BOAT are still needed

in Goguen’s example, even when we are aware that a BOATHOUSE has some relation

to both HOUSEs and BOATs. In [Argamon et al., 2010, Figure 12.3], a quite unusual

BOATHOUSE blend is given, in which the BOAT ends up living in the HOUSE. The idea is

that RESIDENT is mapped to BOAT with no type checking, which gives a type of metaphor

referred to in literary theory as “personification”: an object being considered a person

(cf. [Goguen and Harrell, 2010, pp. 303]). Examples like the previous one link to ear-

lier work on computational aspects of blending, which has been carried out in cognitive

linguistics (cf. for example Veale and O’Donoghue [2000]).

Another more recent algorithmic account is given in Pereira [2007], where the CB

mechanism has been implemented in a system that uses a parallel search engine based

on genetic algorithm (GA). This consists of six modules: (i) a Knowledge Base in which

a set of concepts is defined, (ii) a Mapper which builds structural alignments between

concepts, (iii) a Blender which takes in a structural alignment and produces a set of

projections that implicitly define the set of all possible blends, (iv) a Factory which is

a reasoning mechanism based on a GA, (v) a Constraints module (which is based on

an implementation of the “optimality principles”; cf. section 4.4.1), and (vi) a logic

and rule-based Elaboration module. In Pereira’s account, a pair of concepts is selected

from the KB and passed to the Mapper which builds a structural alignment between

them. This is then passed to the Blender, which passes the set of all possible blends to

the Factory. The Factory then uses a GA parallel search engine to search for the blend

that best complies with the evaluation given by the Constraints module. When the GA

reaches a satisfactory solution, or after a specified number of iterations, the Factory
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Figure 4.6: Goguen’s standard example for blending the HOUSE and BOAT domains. The

domains, two blends (HOUSEBOAT and BOATHOUSE) and a generalization are shown

(cf. [Goguen, 1999, Figure 6]).

stops the GA and returns the best solution.

Other work on CB can be found in several application domains, such as in creative

production of new conceptions (cf. Abdel-Fattah et al. [2012b]; Guhe et al. [2011];

Pereira [2007] and Chapter 5), investigating meanings of novel noun compositions

(cf. Abdel-Fattah [2012]; Abdel-Fattah and Krumnack [2013]; Coulson [2006]; Veale

and O’Donoghue [2000] and Chapter 7), reasoning about counterfactual conditionals

(cf. Abdel-Fattah et al. [2013a,b]; Lee and Barnden [2001] and Chapter 8), and un-

derstanding certain mathematical developments (cf. Alexander [2011]; Hersh [2011];

Lakoff and Núñez [2000]; Mart́ınez et al. [2012]). It is expected that formalizations of

CB and its many peculiarities produce significant development in AI, when basic parts

of its framework are (partially) formalized. Unfortunately, some components of the CB

framework still pose hard challenges to this end, because they lack a clear specificity. A

computational realization of a formal framework of CB is still a big challenge in AI.

4.4 Challenges and Weaknesses of CB

Based on the previous discussions and its relatively short literature, CB is still a young,

ongoing research paradigm. As such, it must be the case that CB faces valid critics.
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Constructive criticisms hopefully point the evolution of the research to the right direc-

tion, by answering the questions the critics are mostly concerned with. More elaborate

formalizations of the CB components, in particular, are expected to produce significant

development in modeling aspects of general intelligence and cognition.

As an important part of cognition, CB already proved its importance in expressing

and explaining some cognitive phenomena, such as metaphor-making, counterfactual

reasoning, as well as its usefulness in analogical reasoning and creating new theories.

Nevertheless, there is no general computational account of blending as a framework

model, that has been proven powerful enough to cover all the examples in the liter-

ature.1 Only few accounts have been given to formalize CB or its aspectual compo-

nents, yet they are not broad enough to suit generic computational accounts of CB

(cf. Alexander [2011]; Goguen [2006]; Mart́ınez et al. [2012]; Pereira [2007]; Veale

and O’Donoghue [2000] and section 4.3.2). Nonetheless, the overall CB framework

itself suffers from the evident lack of formality. Even Fauconnier and Turner’s insight-

ful and well-discussed ideas in their intellectually profound book, entirely dedicated to

discussing the framework, are still insufficient to cover various sorts of challenges to

characterize and formalize (or even well-define) the framework.

4.4.1 Principles of Optimality for Conceptual Integration

Developing characterizations or formalizations for computational models of CB faces

many challenges. One is raised by the well-known “optimality principles” of CB, which

are broad “principles and pressures that guide the formation of integration networks”

(cf. [Fauconnier and Turner, 2002, pp. 90]). They provide the network model of CB

with general guidelines, which are assumed (in theory) to help in generating feasible

blends and distinguishing good blends from highly unacceptable ones. However, they

also provide (in practice) an extremely challenging stumbling block in characterizing,

formalizing, or modeling the CB framework.

Vital Relations and Constitutive Principles: It is obvious that the selective projection

in the blending process brings considerable complexity when searching the (huge) space

of potential blends for a new blend construction. There is, in general, no constraint

preventing one specific element or another of one particular input space or another from

being included in (or excluded from) a resulting, potential blend or another. Moreover,

1Nor is it promised to give such an account in this thesis. The thesis rather focusses on proposing,
at a conceptual level, how the mechanism can be better utilized in many directions to emphasize the

importance of overcoming modeling challenges.
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elements from input spaces can be projected into a resulting blend space in at least two

ways: (i) by fusing them with their counterparts (e.g. NY in the blend of Figure 4.4 is

a fusion of the two corresponding NY entities of the inputs), or (ii) by accompanying

them with other elements in the blend (e.g. one can think about two meeting trains in

the blend of Figure 4.4). Projection of the latter type is referred to as “composition”, in

contrast with the former type: “fusion”.

Under blending, the relatively large amount of conceptual knowledge, available

in (representations of) input spaces, are compressed in a blend within a network of

conceptual spaces. The establishment of connection links between mental spaces and

blended spaces aims at maintaining “global insight, human-scale understanding, and

new meaning” [Fauconnier and Turner, 2002, pp. 92]. Fauconnier and Turner refer

to links between the input spaces by “outer-space links”. These links can be compressed

into relations inside the blend, which are referred to by “inner-space relations”. Blending

plays “imaginative tricks” with these links, so that outer-space links between the inputs

have compressed inner-space counterparts in blends. For instance, conceptual relations

like “cause-effect” or “time” are scaled down to tighter “cause-effect” or briefer “time”

in blends, and incompatible physical spaces may possibly be compressed into the same

physical space in blends (cf. [Fauconnier and Turner, 2002, pp. 93]).

Fauconnier and Turner hypothesize that certain such conceptual relations “show up

again and again” in compressing the input spaces under the blending process, and call

these all-important, conceptual relations “vital relations”. They identify, and deeply dis-

cuss, 15 different types of these repeatedly shown-up, conceptual relations in [Faucon-

nier and Turner, 2002, pp. 93–102], and propose to maximize and intensify the vital

relations as a guiding constraint for identifying good blends. Fauconnier and Turner

present a handful of examples to explain the roles of relations in human thinking, but

fail to (i) generalize the major aspects characterizing the given examples, (ii) abstract a

description of what they call “maximization and intensification of vital relations”, (iii)
distinguish the level their 15 relations are presented at from the level these relations

are widely understood1, or (iv) clarify why they chose these 15 relations in particu-

lar. Moreover, and although the optimality principles suggest strategies for (somehow)

characterizing and optimizing emergent structures of blends, none of these strategies

is constitutive enough for the blends. In other words, the strategies are governing (but

not constitutive) principles, in the sense that they do not tell us what should blends

exactly constitute or how blends precisely are constructed from compressing or fusing

1For example, Fauconnier and Turner consider “identity”, “analogy”, “disanalogy”, “property”, “simi-
larity” as different vital relations with meanings different from what may come directly into one’s mind

about such vital “relations”.
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entities from the (outer-space links of) input spaces (cf. [Fauconnier and Turner, 2002,

pp. 310–311]). Clearly, tens of distinguishable, yet operational, ways could be sug-

gested to interpret Fauconnier and Turner’s unsatisfactorily defined notions, depending

on purpose-oriented examples (cf. Pereira’s Divago system in Pereira [2007]).

Governing Principles: The proposed “principles and pressures” that are assumed to

govern blend construction are introduced and extensively discussed in several parts of

[Fauconnier and Turner, 2002, e.g. Chapters 6, 7, 8 and 16]. The discussion give a

glimpse of how perplexing it is for models to characterize such a fundamental feature

of the (not yet well-defined) CB framework. Moreover, “the relative weight of a guiding

principle can depend on purpose” [Fauconnier and Turner, 2002, pp. 330]. Therefore,

the optimality principles are sometimes competing or working against each others: the

individual influence of one principle varies according to the situation, and may grow or

decrease whilst another’s influence decreases or grows, respectively. For instance, an op-

timality principle (called “integration”) requires that blends should constitute a tightly

integrated scene that can be manipulated as one unit. Whilst, another (called “pattern

completion”) requires elements in potential blends to be completed by using already

existing, integrated patterns and frames as additional inputs. The “relevance” principle

also necessitates that important outer-space links between inputs have corresponding

compressions in blends (cf. [Fauconnier and Turner, 2002, pages 328, 329, and 333,

respectively]).

To the best of my knowledge, there is only one contribution in the literature that

subjectively studies these principles, by measuring some blend examples of two specific

domains (HORSE and BIRD; cf. Pereira and Cardoso [2003]). The work by Pereira and

Cardoso is exceptional in the sense of proposing for a first time formalizations of the

optimality principles, for the sake of building an AI-based system. On the other hand,

the proposed set of (constraint-restricted) measures in Pereira and Cardoso [2003] tries

only to “reflect as much as possible the rationale behind each principle”, based specifi-

cally on reporting experiments using the Divago system (cf. [Pereira and Cardoso, 2003,

§4]). Objective studies of the principles that generally define and formalize them, or

even specify these principles in more detail, are so far not present (but are still neces-

sarily needed).

4.4.2 What Concepts are “not” Blends?

The most troublesome (and most obvious) weakness of CB is its apparent “vagueness

and lack of formality across its many aspects” [Pereira, 2007, pp. 66]. It is unclear what
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exactly conceptual spaces are, despite the many works that thoroughly study them, and

although they have been used extensively in explaining functionalities of CB (as well as

in other areas of linguistics). Given the (bold) claims by Fauconnier and Turner of CB

as a theory of cognition, and given the (undeniable) fundamental roles that CB plays as

an aspect of cognition, it is still unclear to which extent mental spaces are cognitively

plausible or computationally feasible. “This problem of definition of mental spaces be-

comes harder when discussing domains and frames” [Pereira, 2007, pp. 66], which are

at least as unclearly characterized as mental spaces (for the purpose of computational

modeling, in particular). If the CB framework employs both frames and mental spaces,

with blending being defined only in terms of the latter (i.e. mental spaces), then can

we tell the difference between frames and mental spaces in the CB process? I think

this is very hard, if at all possible, because a singled out frame cannot be prevented

from being thought of as a mental space, and a mental space with tightly connected

entities can be considered as a single frame (cf. section 7.2.2). A distinction needs to be

made.1 The CB framework according to Fauconnier and Turner’s presentation may be

irrefutable, which renders it susceptible to the falsifiability problem. That is, as long as

CB is not falsifiable, it cannot be a theory either. As also implied in Pereira [2007], this

obscurity further affects the vagueness of defining other aspects of CB, such as (defining

or computing) the optimality principles.

People may sometimes trace concepts back to original components, so that concepts

are seen as (evolutionary) blends of (developed) combinations of basic constituents,

and so on.2 For example, youngster biological creatures (e.g. human children) may be

seen as a result of continuously blending inherited chromosomes that carry character-

istics of their parents (or even grandparents) from a microscopic, DNA-based level up.

Thus, it is neither common to clarify whether or not input spaces can themselves be

considered blends, nor to clarify what concepts cannot be considered blends in the first

place. That is, it is not clear to what degree we are allowed to decompose spaces, or at

which level we should stop to continue blending blends.

1This is one of the most important reasons why a decision in this thesis has been taken to differentiate

between whole “concepts” and their composing, interrelated “conceptual entities”. The former notion
generally indicates “conceptual spaces” or “mental spaces” that represent knowledge conceptions (or

ideas) in modeling aspects of cognition, whereas the latter refers to the constituents (e.g. beliefs, frames,

relations, etc.) of such spaces (cf. section 1.3 and Chapter 7).
2In fact, this still makes perfectly sense according to the current characterization of CB. Fauconnier

and Turner discussed the idea of multiple blends, where they emphasize that blending can operate over
any number of mental spaces as inputs, because the product of blending can become the input to a new

operation of blending [Fauconnier and Turner, 2002, Chapter 14].
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4.4.3 Strengths Vs. Weaknesses: Searching for a Missing Link

Despite the evident strengths of the cross-domain, multifaceted mechanism of blending

in explaining many aspects of human-level intelligence, the previous discussions also

clarify evident weaknesses to satisfactorily compute blends within the CB framework

in its current form of presentation. The inability to formally characterize or define

fundamental facets of the framework can block further advancements in modeling the

blending process. I think that adequate characterization and formalization of CB and its

aspects will overcome such challenges. For example, and although it did not consider

many important formalization challenges, Goguen’s approach succeeded in coherently

formalizing notable aspects of CB which allows to suggest and implement algorithms to

compute blends. In my opinion, this was mainly because the domain of discourse has

been well-specified before building further works on it (even though it was restricted to

systems describable as sign systems).

For achieving a more generally applicable theory of the CB framework, a missing

link needs to be established between (i) mental processes responsible for our cognitive

ability in characterizing feasible, meaningful blends (as well as rejecting nonsensical

ones), and (ii) formally characterizable processes that could reasonably simulate these

mental processes. Such a missing link would render Fauconnier and Turner’s interesting

insights amenable to computational modeling. I think such a link is related to our cogni-

tive ability of making coherent combinations of our knowledge and conceptualizations.1

In addition, defining formal semantics for CB would help in restricting the discussions

to meaningful parts of the world that reflect a current context or situation. One would

perhaps need a mathematical framework for representing the CB framework to achieve

that, but this would be harder done than said.

1Formalizing components that appear in the CB framework could be connected to a formalization of
coherence in thought. See [Joseph, 2011; Murphy and Medin, 1985; Thagard, 1989, 2002, for example]

for more about ‘coherence in thought’. More discussions are also given in Chapter 6.
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5

Roles of Multifaceted Mechanisms in

Logic-Based Computational Creativity

A central, distinguishing capacity of humans is being creative in, for example, utilizing

acquired knowledge and skills for solving newly encountered problems or inventing

novel conceptualizations. Therefore, systems that intend to model aspects of GI have

to be endowed with the capability to somehow show a mode of creativity. Over many

centuries painters, writers, poets, and other workers in the creative arts have frequently

discussed creativity (cf. Runco and Pritzker [1999]). However, creativity is usually not

considered a major issue in current research mainstream focused on modeling aspects

of cognition and intelligence (though it clearly does deserve to be considered as such).

Creativity (be it natural or artificial) is approached in the current chapter as a spe-

cific means to distinguishing human-comparable intelligence from other forms of intel-

ligence, since it is a clear-cut aspect of human-level general intelligence. The idea ad-

dressed in this chapter is that some creativity challenges are possible to be modeled by

taking multifaceted cognitive mechanisms into account. Creative production of concep-

tions is proposed to be achieved through computation of generalizations of concepts and

theories, reducing it to, particularly, analogy-making and concept blending (cf. Chap-

ters 2 and 4). The latter mechanisms can best be modeled using (non-classical) logical

approaches (also cf. Chapters 6, 7, and 8). So, the chapter also argues for the usage of

logic-based approaches in modeling manifestations of creativity in order to step further

towards the goal of building computational models of artificial general intelligence and

creativity.
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5.1 Introduction

Broad interest in creativity is as old in time as the human history of cognition.1 But the

study of creativity from a scientific perspective “has been neglected until the second half

of the twentieth century”, because (as also pointed out in Sternberg and Lubart [1999])

scientific schools in the early twentieth century (e.g. behaviorism; cf section 1.1) “de-

voted practically no resources at all to the study of creativity” (cf. [Pereira, 2007, pp. 7]).

Guilford’s contribution to studying creativity as an important attribute of intelligence is

typically cited as the foremost turning point in this regard (cf. [Guilford, 1950, 1967,

in particular]).2 Since then, modern definitions of creativity as an intelligent aspect are

moving away from the mere focus on aesthetics, constructions, or discovery to consid-

ering creativity as “a social phenomenon that is facilitated by some social factors, and

inhibited by others” [Runco and Pritzker, 1999, pp. 511], or even to confronting recent

issues about our relationships with intelligent machines (cf. McCormack and d’Inverno

[2012]).

During the last decades many cognitive abilities of humans have been modeled with

computational approaches trying to formally describe such abilities, to develop algo-

rithmic solutions for concrete implementations, and to build robust systems that are of

practical use in application domains. Whereas in the beginnings of AI as a cognitive

science discipline the focus was mainly based on higher cognitive abilities, like rea-

soning, solving puzzles, playing chess, or proving mathematical and logical statements

(cf. Newell and Simon [1956, 1963]), this has been changed during the last decades.

In recent years, many researchers in AI focus more on lower cognitive abilities, such as

perception tasks modeled by techniques of computer vision, motor abilities in robotic

applications, text understanding tasks requiring the whole breadth of human-like world

knowledge, etc. In experimentally studying higher cognitive abilities, some cognitive

scientists are concerned with low-level factors that could affect the functioning of these

abilities. In chess-playing, for instance, studies investigate how better chess-master

players win more often.3

1Ancient examples include the artificial persons resembling the Greek Gods (cf. [McCorduck, 2004,
pp. 4]), the novel constructions of the Great Pyramid in Egypt and the Great Wall in China, the discussions

in Plato’s Ion about the society’s need for creative people (cf. [Runco and Pritzker, 1999, pp. 512]), etc.
2Guilford is well-known as the pioneer who proposed that intelligence could not be characterized in a

single numerical parameter (e.g. IQ), and proposed three necessary dimensions for accurate description

of intelligence; namely the operations, content, and products dimensions. Guilford also introduced the
operation of “divergent production” (that is, cognition that leads in various directions) in his “Structure Of

Intellect (SOI)” model (cf. Guilford [1950, 1967]), which has 180 different kinds of intellectual processes

and skills (cf. [Runco and Pritzker, 1999, pp. 577]).
3Holding, for example, reported that the excellent chess-player needs to be aware of a general plan of
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Due to the undeniable success of these endeavors, the following question can be

raised: what is a cognitive ability that makes human cognition unique in comparison to

animal cognition on the one hand and artificial cognition on the other? At the beginning

of AI most researchers would probably have said “higher cognitive abilities” (as may be

indicated by the above examples), because only humans are able to reason in abstract

domains. In current (classical) AI research, many researchers would, on the contrary,

(perhaps) say that all in all still “lower cognitive abilities” like performing motor actions

in a real-world environment, perceiving natural (context-dependent) scenes, the ability

to integrate multi-modal types of sensory input, or the social capabilities of humans are

the basis for all cognition as a whole, and therefore also the key features for human-

level intelligence. Finally, a researcher interested in aspects of “GI” and (higher-level)

cognition would probably stress the combination and integration of both aspects of

cognition: a successful model of “AGI” should be able to integrate higher and lower

types of cognition in one architecture.1

Beside these possibilities, there is nevertheless an important cognitive ability that

seems to be usable as a rather clear feature to distinguish human intelligence from all

other forms of animal or artificial intelligence: “creativity”. Although we can ascribe

creativity to many human actions, we would hardly (or, at most, seldom) say that a

certain animal shows creative behavior or a machine solves a problem creatively. Even

in the case of IBM’s chess-playing computer (DeepBlue; cf. Hsu [2002a]) and question-

answering system (Watson; cf. Ferrucci et al. [2010]) —where the latter is probably the

most advanced massive knowledge-based system that exists so far, most people would

not ascribe general creative abilities to either. At most we may say that certain particular

solution methods of the systems seem to be creative (in the sense of being new or non-

classical), because they are extremely hard to achieve for humans.2

This chapter conceptually discusses some aspects of creativity, as well as the possibil-

ity to explain creativity with cognitive principles and to subsequently model creativity

with logic-based means. The underlying main idea is not to model creativity directly

with classical logic, but to reduce many forms of creativity to cognitive mechanisms

action for each game, and that verbal memory is an integral part of (blindfold) play (cf. Holding [1985]).
The Dutch psychologist de Groot also presents psychological enquiry into the minds of chess-players

(cf. de Groot [2008a]).
1See for example the discussions in [Hofstadter and the Fluid Analogies Research Group, 1996, Chap-

ter 4], where an argument is given on the inability of models, that separate conceptual processes from

perceptual processes, to lead to satisfactory understanding of the human mind.
2Looking at the issue philosophically, Searle argues that Watson —regardless of whatever impres-

sive capabilities it really has, cannot truly think. Drawing on his “Chinese Room” thought experiment
(cf. Searle [1980]), philosopher Searle argues that Watson does not even know it won on a competition

(cf. Searle [2011]).
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like analogy-making and concept blending (cf. Chapters 2 and 4). Such mechanisms in

turn can be modeled with (non-)classical logical formalisms that mainly depend on a

utilization of cross-domain intelligence. In section 5.2, some forms and manifestations

of creativity are sketched. Section 5.3 discusses the possibility to describe creative acts

by cognitive mechanisms, such as analogy-making and concept blending. It is explained

that this cannot only be done for examples of creativity from highly structured domains

but for a broad variety of different domains. Section 5.4 revisits basic principles of

the logical HDTP framework (cf. section 3.1), and proposes HDTP for analogy-making

and concept blending, in order to model creativity. Section 5.5 concludes the chapter’s

discussions.

5.2 Forms of Creativity

Creativity describes a general cognitive capacity that is in different degrees involved

in any process of generating an invention or innovation. Both concepts, invention and

innovation, describe properties of concrete products, services, or ideas. The distinction

between them in the following is based on Burki and Cavalluci [2011].

From a more engineering- and business-oriented perspective, an invention is usually

considered as the manifestation of the creative mental act, resulting in a new artifact

(prototype), a new type of service, a new concept, or even the mental concretization

of a conception. An innovation requires standardly the acceptance of the invention

by the market, where market is not exclusively restricted to business aspects. In this

chapter, creativity is considered as a cognitive ability, but one has to also refer to inven-

tions, innovations, new concepts, new findings, etc., in order to exemplify creativity in

a concrete setting.

Creativity appears in various forms and characteristics. Creativity can be found

in science, in art, in business processes, and in daily life. Creative acts can occur in

highly structured and clearly defined domains (like in mathematics), in less structured

domains (like business processes), or even in relatively unstructured domains (like a

marketing department of a company having, for instance, the task to design a new

advertisement for a certain product).

Different types of creativity are summarized in Table 5.1. Taking into account the var-

ious domains in which creativity can occur, it seems hard to specify a domain, in which

creativity does not play a role. Rather certain aspects of creativity can appear in nearly

all environments and situations. This is one reason why the specification of common

properties and features of creativity is a non-trivial task. For example, some attempts

102



§5.3: Creativity and Cognition

Domain Areas Examples for creative acts

Science

Mathematics Argand’s geometric interpretation of complex numbers

(cf. Argand [1813]; Mart́ınez et al. [2012])

Linguistics Chomsky’s recursive analysis of natural language syntax

(cf. Chomsky [1957])

Physics Einstein’s theories of special and general relativity

Art

Music Invention of twelve-tone music by Arnold Schönberg

Poetry The invention of a novel (as a genre of poetry)

Visual arts Usage of iconographic and symbolic elements in paint-

ings (Jan van Eyck)

Other
Daily life Fixing a household problem

Business Nested doll principle for product design

Table 5.1: Some domains, areas, and examples of manifestations of creativity are men-

tioned. Clearly, the table is not considered to give a complete overview of domains in

which creative inventions of humans can occur.

have been made to specify certain phases in the creative process (cf. Wallas [1926]).

Unfortunately, such phases, as for example a “preparation phase”, are quite general

and hard to specify in detail. It is doubtful whether any interesting consequences for a

computational model can be derived from such properties.

5.3 Creativity and Cognition

Studying creativity for computationally modeling aspects of human-level intelligence

was not considered as important and attractive to researchers in AI and cognitive sci-

ence as it currently is. As aspects of cognition and general intelligence are becoming

more and more connected to both disciplines (i.e. AI and cognitive science), it is also

becoming more clear that creativity deserves to be considered as a major issue in main-

stream research focused on modeling these aspects in AGI. But one must acknowledge

that the topic is extremely intense in width (e.g. ways of defining creativity and func-

tioning types of creativity), depth (e.g. previous works done), and intertwining with

many other topics, especially in cognitive science.

A cognitive scientific study of creativity may not provide a detailed explanation of all

various ways, in which creativity can be approached by interested cognitive scientists.

Nonetheless, the general processes to noticeably demonstrate a glimpse of creative be-

havior in computational models of creativity and general intelligence may well be found

in each of these domains. In fact, it is still a big challenge for the interested cognitive

scientists and AI researchers to exhaustively define the notion of ‘creativity’. During only

103



Chapter 5: Roles of Multifaceted Mechanisms in Logic-Based Computational Creativity

the past few years, a multitude of relatively new (interdisciplinary) theories and ideas

on creativity were introduced, which multiplied the number of numerous studies that

have already been given during the past few decades.1 Moreover, creativity and intelli-

gence require knowledge, but they can be distinguished from each other, and much the

same can be said about creativity and problem solving (cf. [Runco and Pritzker, 1999,

pp. 511]).

For many people, there may seem to be an opposition between creativity and logical

frameworks. Certain creative insights, inventions, and findings do seem to be creative

precisely because the inventor did not apply a deterministic, strictly regimented form

of formal reasoning (the prototypical example being classical logical reasoning), but

rather because the inventor departed from the strict corset of logic. Therefore, often a

natural clash and opposition between logical modeling and creativity seem to typically

be perceived. The ideas in this chapter stress that this claim should be rejected. On the

contrary, it is advocated here that the natural way to start is to model creativity with log-

ical means (at least in highly structured domains like science, business applications, or

classical problem solving tasks). The reason for this is based on the hypothesis that cre-

ativity is to a large extent based on certain cognitive mechanisms like analogy-making

and concept blending. But now, due to the fact that analogy-making and concept blend-

ing essentially employ the cross-domain identification and association of structural com-

monalities, in turn a natural way to model the mechanisms are logic-based frameworks.

Although creativity seems to be an omnipresent aspect of human cognition (compare

Table 5.1), not much is known about its psychological foundation, the neurobiological

basis, or the cognitive mechanisms underlying creative acts. One reason might be that

examples for creativity cover rather diverse domains, where completely different mech-

anisms could play important roles. Nevertheless, the next discussions hypothesize that,

in many interesting cases, classical examples for creativity can be reduced to two im-

portant cognitive mechanisms, namely analogy-making on the one hand and concept

blending on the other. Some examples are mentioned first in order to make this hypoth-

esis more plausible:

1. Conceptually, the usage of analogy-making is rather clear in cases where one is

using a general principle in a new domain. For instance, consider the use of the

nested doll principle in design processes (cf. Figure 5.1), in which creativity can

1Such theories and ideas are not needed here, with the exception of scratching the surface of Colton
et al.’s computational creativity theory in section 5.5 (cf. Colton et al. [2011]; Pease and Colton [2011]).

The interested reader may still refer to McCormack and d’Inverno [2012]; Runco and Pritzker [1999]
or the list of references given in [Boden, 1996, Chapter 9] for more about such theories. There is a

somewhat longer, related discussion in Abdel-Fattah and Schneider [2013].
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Figure 5.1: Two design examples (one from the engineering domain and one from

product design) that are based on the same principle, namely the nested doll principle:

Objects are contained in similar other objects in order to satisfy certain constraints. The

left image is taken from http://en.wikipedia.org/wiki/Planetary gears which is licensed

under the terms of the GNU Free Documentation License. The image to the right is a

set of “Pyrex Nesting Bowls”, found at http://www.whitetrashnyc.com/products/set-of-

pyrex-nesting-bowls/1780.

be considered as a transfer of a structure from one domain (e.g. the structure of

a planetary gearing, namely gears that revolve about a central gear) to another

domain (e.g. the design of nesting bowls containing each other). This transfer of

structural properties is best described as an analogy.

2. In science, analogies and blend spaces do appear quite regularly. For example, in

Guhe et al. [2011] it is shown how analogies can be used to learn a rudimentary

number concept and how concept blending can be used to compute new math-

ematical structures. Furthermore, in Mart́ınez et al. [2011, 2012] it is shown

that concept blending can lead to a geometric interpretation of complex numbers,

inspired by the historically important findings of Argand mentioned in Table 5.1.

3. Also, the interpretation of certain visual inputs can easily be described by analogy-

making (visual metaphor, as shown in Schwering et al. [2009c]). Figure 5.2 gives

an example, depicting an advertisement. In order to understand this advertise-

ment a mapping between tongue and fish as well as a transfer of properties of fish

need to be performed.

The number of examples, which show that analogy-making and concept blending

can be used to explain manifestations of creativity, are numerous. If it is true that sev-

eral characteristics of creativity can be modeled by analogies and concept blending, a

computational approach towards creativity can naturally be based on an algorithmic

theory of analogy and concept blending. Due to the fact that analogy-making is the
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Figure 5.2: A creative advertisement on the left side depicts an association between

a tongue and a fish. In order to understand this advertisement (as a marketing tool

for the widely-known “Eliminate bad breath” campaign of Clorets R©’ hard candy) the

establishment of a mapping between tongue and fish is necessary. Then, hard candy

can be used as a means against breadth odor. In Schwering et al. [2009c], a formal

modeling of a similar advertisement is specified.

identification of structural commonalities and concept blending is the (partial) merger

of cross-domain structures, the natural way for an algorithmic approach is to use logic as

the methodological basis. Whereas for concept blending, a symbolic approach for mod-

eling may be quite undisputed (but cf. sections 4.2 and 4.4), the situation in analogy-

making is more complicated. Concerning the modeling of analogies, also several neu-

rally inspired and hybrid models have been proposed. Nevertheless, when having a

closer look, it turns out that the most important subsymbolic aspects of such models

are activation spreading properties or synchronization issues in a (localist) network,

whereas the basic computational units of the network still are quite often symbolic en-

tities (cf. section 2.2.2).1 Additionally, logic-based models of analogy-making have a

wider application domain in comparison to neurally inspired or hybrid models. There-

fore, in total, it seems a natural choice to apply logical means in modeling these two

cognitive mechanisms.

5.4 Towards a Logic-Based Framework

A Tool for Making Analogies (HDTP): In what follows, Heuristic-Driven Theory Pro-

jection, HDTP (cf. Schwering et al. [2009a]), is used as the underlying modeling frame-

work. HDTP is already presented and extensively discussed in Chapter 3, but the current

chapter discusses HDTP’s potential to be employed as a powerful analogy-making en-

1For example, cf. Hummel and Holyoak [2003] and Kokinov and Petrov [2001] for two of the best

known neurally inspired analogy models.
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gine in modeling facets of creativity.

To recall, HDTP is a mathematically sound framework for analogy making, together

with the corresponding implementation of an analogy engine for computing analogical

relations between two logical theories, representing two domains. Domains are rep-

resented in HDTP as sets of axioms formulated in a many-sorted, first-order logic lan-

guage. HDTP also provides an explicit generalization of these domains as a by-product

of establishing an analogy, where a generalization can be a base for concept creation by

abstraction. HDTP applies restricted higher-order anti-unification (cf. Krumnack et al.

[2007] and section 3.1.1) to find generalizations of formulae and to subsequently pro-

pose analogical relations between source and target domains. Proposed analogical rela-

tions can later be used as a basis for an analogy-based transfer of knowledge between

the two domains.

Figure 3.4 (cf. page 61) depicts HDTP’s overall approach to creating analogies, in

which analogical transfer results in structure enrichment of the target side. There are

application cases in which two conceptual spaces (here, the input source and target

theories) need not to be (partially) mapped onto each other, but rather partially merged

in a new conceptual space. In such cases, HDTP uses the computed generalization, the

given source and target theories, and the analogical relation between source and target

in order to compute a newly constructed conceptual space (cf. explanations in the next

paragraph).

The Other Facet of the Same Tool (CB): The integration of concepts by utilizing the

network model of CB (cf. section 4.3) has been proposed as a powerful mechanism that

facilitates the creation of new concepts by a constrained integration of available knowl-

edge. CB also operates on conceptual domains by merging (at least two) input knowl-

edge domains to form new domains, which crucially depend on (and are constrained

by) structural commonalities between the original input domains. New domains are

the blends, with each blend candidate maintaining partial structure from both input

domains and presumably adding emergent structures of its own. Figure 5.3 is a summa-

rized reproduction of the ornamented illustration given in Figure 4.3, of the prototyp-

ical conceptual integration network model (cf. page 86). Notwithstanding, Figure 5.3

is based on the way, explained below, in which the HDTP framework functions toward

creatively constructing concept blends from two given inputs.

To constructively help in creating new concepts, the HDTP framework’s view of

blending is proposed to function as follows (cf. Figure 5.3):

1. Two concepts, such as Source and Target (denoted by S and T , respectively, in
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Figure 5.3), can be used to represent two input spaces (the mental spaces).

2. Common parts of the input spaces are matched by identifying their structural com-

monalities using HDTP. The matched parts of S and T may be seen as constituting

a generic space, or the Generalization (denoted by G in Figure 5.3). Such a gener-

alization G is computed by anti-unifying S and T .

3. As previously illustrated (in Figure 3.4), an analogical relation (denoted in Fig-

ure 5.3 by m), which can be found by HDTP between S and T , facilitates the

transfer of some knowledge from S to T based on the generalization G.

4. A blend space candidate, Blend (denoted by B in in Figure 5.3), has an emergent

structure that arises from the blending process that imports additional knowledge

from the input concepts. Based on the generalization G, a blend candidate, B,

consists of some matched and possibly some of the unmatched parts of the input

spaces. The dashed arrows in Figure 5.3 from S to B and from T to B reflect the

importation of new (non-conflicting) conceptual entities form source and target

to the blend candidate B.

S T

G

B

m analogical transfer

anti-unification

injectionSource
Target

Generalization

Blend

Figure 5.3: HDTP’s view of concept blending: S and T represent source and target input

theories, where their identified common parts can define generalizations (i.e. generic

spaces) and blend candidates. A generalization G is computed by anti-unifying S and

T , with m representing the analogical relation between S and T (cf. also Figure 3.4).

The dashed arrows S → B and T → B describe the injections of facts and rules from

source and target to the blend candidate B. Due to the fact that the input theories may

contain inconsistent information, the injections are partial in general.

As discussed in Chapter 4, conceptual blending has already shown its importance

as a substantial part of cognition and a means of constructing new conceptions. It

has been extensively used in the literature in attempts at expressing and explaining

cognitive phenomena, such as the invention of new concepts, the meaning of natural

language metaphors, as well as its usefulness in expansion, reorganization, and creation
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of mathematical thoughts and theories (Abdel-Fattah et al. [2012a]; Alexander [2011];

Fauconnier and Turner [2002]; Goguen [2006]; Guhe et al. [2011]). Nevertheless, CB

itself noticeably still suffers from the lack of a formally precise model integrating its

many aspects (cf. section 4.4).

5.4.1 Roles of Analogy and Blending in Modeling Creativity

What makes the process of cross-domain reasoning special to creativity is the “inter-

esting characteristic” of analogies that “by seeming to move away from a problem the

subject can actually come closer to a solution” [Clement, 2008, pp. 61]. An argument

would start by emphasizing that “it is impossible for people to create new ideas out of

the air”, but rather discover or create new ideas based on their “knowledge, experience,

or expertise working with problems in a given domain”, because available evidence in-

dicates that multifaceted, principle-based knowledge structures certainly “represent a

necessary foundation for creative achievement” [Runco and Pritzker, 1999, pp. 72–73].

Clement emphasizes the usefulness of analogical reasoning, indicating that people infer

knowledge from an analogy that could be useful in at least 3 possible ways (cf. [Clement,

2008, pp. 61]):

1. in predicting an answer to a specific problem,

2. in providing a suggested method of attack, and

3. in providing a principle that applies to the target.

But exactly how people do use extant knowledge to create something new takes us to the

role of blending in creative thinking. In various domains, many interested scholars have

been perplexed over time in proposing answers to the latter question (cf. [Boden, 2003;

Clement, 2008; Finke et al., 1992; Guilford, 1950; McCormack and d’Inverno, 2012;

Newell et al., 1963; Sternberg and Lubart, 1999; Wallas, 1926; Weisberg, 1993, to men-

tion a few]). Their proposals range from the notion of “divergent thinking to the idea

that creative thought might be based on remote associations” [Runco and Pritzker, 1999,

pp. 73; emphasis added], which succeed in capturing some truth about certain funda-

mental aspects of the creative process. According to this chapter’s view, associations

may generally be achieved through cross-domain, analogical reasoning. Conceptual

blending also captures creative thoughts based on remote associations, and achieves di-

vergent thinking (which does play a particular role in idea generation). Consequently, it

seems plausible to claim that creative thoughts should mostly involve structured knowl-
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edge entities (based on experience), analogical reasoning, and blending of conceptual

entities. However, it seems also hard to provide a grounding proof in the meantime.

As can be entailed from the above discussions, the ideas of CB are very much related

to the properties of a creative process, since a creative process can result in new insights

as a result of a ladder-ascending procedure that steps through “background knowledge”,

and subsequently increasingly refines the insights to spell-out an innovation (cf. sec-

tion 5.2). Undoubtedly, in realizing a computational modeling of cognitively inspired,

creative agents, it must also be the case that the agents have (enough) background

knowledge before a creative process can take place. Mere knowledge most likely is still

not sufficient, and even analogy-making alone helps us only to build up new knowledge

by starting from old knowledge and make the unfamiliar familiar. But, for instance,

simply having knowledge about Maxwell’s equations, the principles of semi-conductors,

and the principles of graph theory almost surely by itself is not enough in order to de-

vise the ideas of very-large-scale integration (i.e. the creation of integrated circuits by

combining thousands of transistors into one single chip), unless an additional cognitive

process is utilized. The claim in this chapter is that here is exactly where multifaceted

cognitive mechanisms, namely conceptual blending (in addition to analogy), come into

play.

Roles of the Framework: Now, as for HDTP, it provides a potential framework for a

CB-based computation of novel concepts, given a source and target domain axiomatiza-

tions:

1. Assume two input theories S and T are given.

2. The computation of an analogical relation between S and T by HDTP outputs

(besides other things) a shared generalization G of S and T by the anti-unification

process. This generalized theory G functions in the further process as the generic

space in CB mentioned above.

3. The construction of the blend space is computed by

(a) first, collecting the associated facts and rules from S and T generated by the

analogical relation between S and T , and

(b) second, by projecting unmatched facts and rules from both domains into the

blend space.

4. The latter (second) step can result in clashes and inconsistencies. Furthermore,

the coverage of the blend space concerning S and T can be more or less maximal.
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Taking additionally into account that for every given S and T HDTP can compute

different analogical relations, there can be many possible blend spaces for a given

input.

It is worth mentioning that HDTP has successfully been used to compute concept

blends in complex domains like mathematics. For example, Guhe et al. use HDTP

to model Lakoff and Núñez’s mathematical grounding metaphors, which are intended

to explain how children can learn a rudimentary concept of numbers based on simple

real-world actions in their environment (cf. Lakoff and Núñez [2000]). The mathemat-

ical grounding metaphors and the emergence of an abstract number concept can be

explained by analogy-making and concept blending (cf. Guhe et al. [2011]). In addi-

tion, the invention of a geometrical interpretation of complex numbers (i.e. the complex

plane) was computationally modeled by concept blending in Mart́ınez et al. [2011] and

Mart́ınez et al. [2012]. This example shows that even for rather formal and complex

theories the creative generation of a new concept can be computed using a logic-based

approach. Other examples related to creative construction of concepts based on the

HDTP framework are explained later (e.g., cf. Chapter 7).

5.5 Conclusive Remarks and Related Ideas

A particular issue for AGI systems is that creative problem solving abilities and the

finding of novel solutions in unknown situations need to be more crucially considered

in current systems than ever before. The idea of creativity is being delivered here as

a yet more foundational step towards building a general form of AI. From a cognitive

perspective, this chapter stresses that creativity can often be reduced to multifaceted

cognitive mechanisms such as analogy-making and concept blending, which in turn

can neatly be modeled using logic-based approaches. The apparent tension between

creative abilities of agents and a logical basis for their modeling, therefore, disappears.

A Related Theory of (Computational) Creativity: To a certain extent, the chapter’s

view of creativity is compatible with recent proposals for computational creativity. In

particular, one of the newest models for computational creativity is Colton et al.’s FACE

model (cf. Colton et al. [2011]; Pease and Colton [2011]), which employs four “aspects”

to capture and describe eight kinds of “generative acts” in artificial, computational sys-

tems that can be considered creative. According to the FACE model, each of its four

“aspects” can be considered at two “levels”: the ground and the process levels (g and

p, respectively). A “generative act” can thus occur at either levels, and a creative act is
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defined as a non-empty tuple of generative acts. Newly produced artifacts (e.g. poems

or compositions) by creative systems that are based on the FACE model need to invent

ways (i.e. processes) to generate and assess these artifacts (cf. [Colton et al., 2011,

pp. 91]). The descriptive model’s four aspects (in a strongly simplified sense) are: (i)
“concept”; (ii) “expression” (of a concept); (iii) “aesthetic measure”; and (iv) “framing

information”. With a somewhat liberal interpretation of these aspects, the HDTP ap-

proach can be subsumed by the FACE descriptive model. That is, the FACE model can

be instantiated with HDTP in the following way:

Concept: An executable program (e.g. an algorithmic realization of analogy-making

and concept blending).

Expression (of a Concept): An instance of the input/output when the program is ex-

ecuted (e.g. pairs consisting of input theories and analogical relations or blend

spaces).

Aesthetic Measure: An evaluation function that takes as input a concept and an expres-

sion and outputs a real number (e.g. ranking heuristics of potential candidates for

analogical relations and conceptual blends; cf. section 3.1.3).

Framing Information: A contextual embedding (e.g. the retrieval problem in analogy-

making and concept blending).

As a further support to the above claim, it should be noted that the ideas given in

this chapter are not the first ones to investigate the computational modeling of creativ-

ity as a cognitive capacity. The chapter can be seen to stress the idea and propose a

way to achieve such a modeling in logic-based frameworks. Going back already to work

by Newell et al. (cf. Newell et al. [1963]), researchers in AI and related fields over

the decades repeatedly have addressed different issues and aspects of creative thought.

The results of these investigations range from contributions on the more conceptual side

(as, for instance, Boden’s theory of P- and H-creativity; cf. Boden [2003]), to concrete

implementations of allegedly “creative systems” (as, for instance, “The Painting Fool”;

cf. Colton [2011]). And also in the computational analogy-making domain, there al-

ready is relevant work on the relation between creativity and analogy, most prominently

exemplified by Hofstadter’s contributions related to the Copycat system (cf. Hofstadter

[1984]). Still, on the one hand, work on issues of creativity within human-style intel-

ligent systems this far has not gained wide attention in an AGI context. On the other

hand, even within the more general setting of computational creativity research, only
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very few approaches try to integrate models of different cognitive capacities into a sys-

tem aiming for general creativity capacities, instead of limiting the focus to modeling

one specific kind of creative act or another.

The chapter sketches a necessity to tackle the hard problem of creativity in AGI

systems. Although the described HDTP framework has been applied to show that the

computation of interesting blend spaces can be achieved in certain rather complex (but

highly specific) domains, no generalizations of such specific examples exist so far. This

remains a task for future work (besides a further formally sound and complete charac-

terization of concept blending on a syntactic and semantic level; cf. section 4.4).
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6

Rationality-Guided Aspects of General

Intelligence

For more than five decades, AI has always been a promising field of research on model-

ing aspects of human-like intelligence. The recent success of projects like IBM’s Watson

(cf. Ferrucci et al. [2010]), for instance, increases the hopes in achieving not only lan-

guage intelligence but also inference mechanisms at a human level and paves the way

for solving more baffling tasks. However, AI has turned into a vague, unspecific term,

in particular because of the tremendous number of applications that belong, in fact,

to seemingly orthogonal directions. Philosophers, psychologists, anthropologists, com-

puter scientists, linguists or even science fiction writers have disparate ideas as to what

AI is (or should be). The challenge becomes more obvious when AI is looked at from

a cognitive scientific perspective, where the focus is mainly on explaining processes of

general cognitive mechanisms, not only on how one or another intelligence task can be

solved by a computer.

The AGI research paradigm takes AI back to its original goals of confronting the

more difficult issues of human-level intelligence as a whole (cf. Chapter 1). It is there-

fore becoming more necessary to give AGI a more prominent place within cognitive

science, by elaborating on several indispensable cognitive criteria, as well as modeling

them. Chapter 5 contributes to this issue by discussing the roles of cognitive mecha-

nisms when considering “creativity” as one of such indispensable criteria of GI, and this

chapter approaches cognition in AGI systems by particularly promoting “rationality” as

an equivalently important, indispensable criterion. In particular, the current chapter:

(i) focusses on some divergent, sometimes seemingly irrational, behaviors of humans,

(ii) analyzes such behaviors, and (iii) proposes the utilization of cognitive mechanisms

to overcome some of their challenges in modeling AGI systems. The text allocates ideas
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from AGI within cognitive science, then gives a conceptual account on some principles

in normative rationality-guided approaches. Arguments are given to constitute out-

ward evidence that normative models of human-like rationality are vital in AGI systems,

where the treatment of deviations from traditional rationality models is also necessary.

After explaining one suggested approach at a general level, the chapter explains how

two cognitively inspired systems, namely NARS and HDTP, have the potential to handle

(ir)rationality. The chapter concludes by some remarks and future speculations.

6.1 AGI and Rationality

Why AGI? It is clarified in section 1.2 that AGI has currently a stronger relation to

cognitive science than what conventional AI had in the past. From a cognitive scientific

perspective, the kind of intelligence characterizing classical AI problems is not yet ex-

haustive enough, where solutions to most of the problems are not cognitively inspired:

neither do they consider essential cognitive mechanisms (or general intelligence results)

nor do they show the biological plausibility of the solutions. Current AGI research ex-

plores all available paths, including theoretical and experimental computer science, cog-

nitive science, neuroscience, and innovative interdisciplinary methodologies (cf. Baum

et al. [2010]). On the cognitive science side, AGI offers its adherents the possibility to

think in less anthropocentric terms, so as to better treat “intelligence” and “cognition”

as general notions that are not limited to individual human beings, but instead can be

abstracted into a general systems theory. AGI treats intelligence as a general-purpose

ability, and takes a holistic attitude towards intelligent systems. In current AGI research,

there are approaches following different paths, including those

• inspired by the structure of human brain or the behavior of human mind,

• driven by practical demands in problem solving, or

• guided by rational principles in information processing.

The latter approach is of a special interest, because it has at least three essential advan-

tages:

1. One advantage of the rationality-guided approach from an AGI perspective is that

it is less bound to exactly reproducing human faculties on a functional level.

2. Another advantage of such an approach on a scientific meta-level is that it gives AI

the possibility of being established in a way similar to other disciplines, where it
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can give a theoretical explanation to intelligence as a process that can be realized

both in biological systems and computational devices.

3. The third advantage of the rationality-guided approach is that it is not limited to

a specific domain or problem.

Other related features of AGI (cf. [Baum et al., 2010; Goertzel and Pennachin, 2010,

for instance]) further support the claim that AGI, in general, ties into cognitive science

more closely than mainstream AI.

What is Rationality? The term rationality is used in a variety of ways in various dis-

ciplines. In cognitive science, rationality usually refers to a way a cognitive agent de-

liberatively (and attentively) behaves in, according to a specific normative theory. It

is discussed in many contexts, such as problem-solving systems, where such systems

obtain knowledge and problems from their environment, and solve problems according

to this knowledge. The prototypical instance of cognitive agents that can show rational

behavior is humans, who so far are also the ultimate exemplar of generally intelligent

agents.

Surprisingly, little attention has been paid so far in AI towards a theory of human-

comparable rationality (as an important GI aspect). A reason might be that the concept

of rationality was too broad in order to be of interest to AI, where for a long time usu-

ally relatively specific cognitive abilities were modeled and heuristics were suggested.

Moreover, an artificial cognitive agent is usually intended to reproduce rational behav-

ior, not to act in seemingly irrational ways. Consequently, even generally interested

AI researchers are not particularly interested in well-known results of some classical

rationality puzzles. Still, a move towards integrating AGI in cognitive science cannot ig-

nore rationality issues; neither the remarkable abilities nor the originalities that human

subjects show in rationality tasks.

When modeling GI aspects, it is reasonable to initially take the remarkable abilities

of humans into account with respect to rational behavior, but also their apparent defi-

ciencies that show up in certain tasks. Two main challenges of the rationality-guided

AGI research can immediately be seen. First, given the richness and complexity of the

human mind, it is extremely challenging to find a small number of clearly specified prin-

ciples and laws to explain all the relevant phenomena. Second, common particularities

in human behavior need to be explained and justified for human thinking to really be

taken as mostly rational —that is, the well-known “irrational” behaviors. Two possible

answers to this can also be seen immediately:
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1. one may confess that intelligent systems are often irrational, since they fail to

follow classical normative theories, or

2. one may argue that intelligent systems are rational, though this rationality has not

yet been summarized into traditional normative theories.

The second position is going to be advocated, believing that intelligent systems (like

humans) are rational, and this rationality can be summarized into a positive, and finally

even normative theory, though the traditional theories failed (and new principles are

needed).

6.2 Traditional Models of Rationality

Different models of rationality use significantly different methodologies. Clustering

such models according to the underlying formalism usually results in at least the fol-

lowing classic groups:

1. logic-based models, for which a belief is considered rational as long as it has

been derived through a logically valid reasoning process, given the background

knowledge (cf. Evans [2002]),

2. probability-based models, for which a belief is considered rational if its expecta-

tion value is maximized with respect to given probability distributions of other

beliefs in the background knowledge (cf. Griffiths et al. [2008]),

3. game theory-based models, for which a belief is considered rational if the expected

payoff of maintaining it is maximized relative to other possible beliefs (cf. Osborne

and Rubinstein [1994]), and

4. heuristic-based models, which utilize the use of heuristics to give accounts on

rationality (cf. Gigerenzer [2010]).

Several of these models have been proposed for establishing a normative theory of ratio-

nality, normally by judging a belief as rational if it has been obtained by a formally cor-

rect application of the respective reasoning mechanism, given some background knowl-

edge (cf. e.g. Gust et al. [2011]; Wang [2011]). Therefore, such theories of rationality

are not only intended to model “rational behavior” of humans, but to postdictively de-

cide whether a particular belief, action, or behavior is rational or not. Nonetheless,

although a conceptual clarification of rational belief and rational behavior is without
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any doubts desirable, it is strongly questionable whether the large number of different

(and quite often orthogonal) frameworks makes this task easier, or if the creation of

a more unified approach would not be recommendable. From this thesis’ perspective,

multifaceted cognitive mechanisms seem to offer a basis for such an endeavor. This is

explained later in this chapter, after some challenges are mentioned.

6.2.1 Some Rationality Challenges and Puzzles

Although the models mentioned above have been proven to be quite successful in mod-

eling certain aspects of intelligence, all four types of models have been challenged.

1. In the famous Wason selection task (cf. Wason and Shapiro [1971]) human sub-

jects fail at a seemingly simple logical task (cf. Table 6.1a).

2. Similarly, Tversky and Kahneman’s Linda problem (cf. Tversky and Kahneman

[1983]) illustrates a striking violation of the rules of probability theory in a seem-

ingly simple reasoning problem (cf. Table 6.1b).

3. Heuristic approaches to judgment and reasoning try to stay closer to the observed

behavior and its deviation from rational standards (cf. Gigerenzer [2010]), but

they fail in having the formal transparency and clarity of logic-based or probability-

based frameworks with regard to giving a rational explanation of behavior.

4. Game-based frameworks can be questioned due to the various forms of optimality

concepts in game-theory that can support different “rational behaviors” for one

and the same situation.

In order to make such challenges of rationality theories more precise, some aspects of

the famous Wason selection task and the Linda problem are discussed in more detail.

Wason Selection Task: This task shows that a large majority of participants are seem-

ingly unable to evaluate the truth of a simple logical rule of the form “if p then q”

(cf. Wason and Shapiro [1971]). In the version of the task, presented in Table 6.1a, this

rule is represented by the sentence (Wason-Cards):

“If on one side of the card there is a D,

then on the other there is the number 3”.

(Wason-Cards)
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Every card which has a D on one side has a 3 on the other side (and knowledge that

each card has a letter on one side and a number on the other side), together with four

cards showing respectively D, K, 3, 7, hardly any individuals make the correct choice

of cards to turn over (D and 7) in order to determine the truth of the sentence. This

problem is called “selection task” and the conditional sentence is called “the rule”.

(a) Wason Selection Task (cf. Wason and Shapiro [1971]):

Linda is 31 years old, single, outspoken and very bright. She majored in philoso-

phy. As a student, she was deeply concerned with issues of discrimination and social

justice, and also participated in anti-nuclear demonstrations. After they are given

background information, the task for the participants is to rank statements about

Linda according to their probability. The particular statements are:

(Feminist): Linda is active in the feminist movement.

(Teller): Linda is a bank teller.

(Teller&Feminist): Linda is a bank teller and is active in the feminist movement.

More than four fifth of the participants ranked the conjunctive statement (Teller&-

Feminist) as more probable than the statement (Teller) or (Feminist).

(b) Linda Problem (cf. Tversky and Kahneman [1983]):

Table 6.1: (a) A short description of the Wason selection task. (b) An abbreviated

version of the Linda problem setting.

In order to verify or to falsify this rule by assigning a truth-value to it, participants need

to turn D and 7. That is, according to classical logic, participants need to check the direct

rule application and the contrapositive implication (modus tollens of the rule). This is

not, however, what the large majority of participants suggest when evaluating the truth

of the rule (cf. Wason and Shapiro [1971]). What is interesting in this regard is the fact

that a slight modification of the content of the rule to a setting more familiar from daily

life, while keeping the structure of the problem isomorphic, makes participants perform

significantly better (as e.g. shown in Cosmides and Tooby [1993]).

Linda Problem: Regarding the Linda problem, it seems to be the case that human

subjects have problems to prevent the so-called conjunction fallacy (cf. Tversky and Kah-

neman [1983]). Subjects are told a story specifying a particular profile about someone

called Linda. Then, some statements about Linda are shown and participants are asked

to order them according to their probability (cf. Table 6.1b). About 85% of participants
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decide to rank the statement (Teller&Feminist) as more probable than the statement

(Teller) or (Feminist):

“Linda is a bank teller”, (Teller)

“Linda is active in the feminist movement”, (Feminist)

“Linda is a bank teller and is active in the feminist movement”.

(Teller&Feminist)

This ranking conflicts with the laws of probability theory, because the probability of two

events (Teller&Feminist) is less than or at most equal to the probability of one of the

events (e.g. (Teller)).

6.2.2 Classical Resolution Strategies of Irrationality

Many strategies have been proposed to address the mentioned challenges, ranging from

the use of non-classical logics to the modeling of participants’ behavior in the Wason se-

lection task (cf. Stenning and van Lambalgen [2008]), to considerations involving rea-

soning in semantic models instead of (syntactic) deductions (cf. Johnson-Laird [1988])

in the case of the Wason selection task. With respect to the Linda problem, it has been

argued that pure probability theory is not appropriate for addressing the problem prop-

erly. Busemeyer et al., for example, give a recent explanation for types of probability

judgement errors, such as the conjunction fallacy encountered in the Linda problem,1

but a foundation of the analysis of this problem in coherence theories would be neces-

sary (cf. Pfeifer [2008]).

Another resolution strategy applicable to both puzzles is to question whether tasks

were appropriately phrased in the respective experiments. In the Wason selection task

the “if-then” rule presented in natural language is usually not equivalent to its interpre-

tation in classical logic, and in the Linda puzzle the term “probable” can be interpreted

differently by the participants (cf. Gigerenzer [2005]).

In any case, and although there are many proposals to address the challenges, there

is no generally accepted rationality concept available yet. Moreover, specific frameworks

1Busemeyer et al.’s work is based on a model of “quantum cognition” (cf. Busemeyer and Bruza

[2012]; Rijsbergen [2004]). Although this thesis is not concerned with approaching such type of

quantum-based models at any level, it is worth mentioning my opinion that these models seem very
promising in modeling human-like cognition, because they have a great potential to provide formal, yet

relatively complicated, explanations of many cognitive phenomena. Some are already related to this
thesis’ accounts on aspects of general intelligence and cognition, such as interpreting novel concept com-

binations presented in Chapter 7 (cf. Aerts and Gabora [2005a,b], for instance).
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can address specific challenges, but do not generalize to the breadth of the mentioned

problems.

For a generally intelligent cognitive system, a question that can be raised is: which

principles of rationality can be transferred to (and modeled in) AGI systems, in order to

achieve intelligence on a human-like scale? The discussions in this chapter argue for

models that link rationality to the ability of humans to establish analogical relations, and

to the ability to adapt to the environment by making good use of previously obtained

experiences.

6.3 Non-Standard, CogSci-Based Approaches

The two examples discussed above definitely show that humans have sometimes prob-

lems to apply rules of classical logic correctly (at least in rather abstract and artificial

situations), and to reason according to the Kolmogorov axioms of probability theory.

Nonetheless, the most that can be concluded from the experiments is that human agents

are neither classical deduction machines nor probability estimators, but rather perform

their indisputable reasoning capabilities by other means, necessarily linked to their cog-

nitive capacities.

6.3.1 Resolving the Selection Task by Cognitive Mechanisms

As mentioned above, participants perform better in the Wason selection task, if content

change makes the task easier to access for participants. (Here, “better performance” of

participants is interpreted in the sense of “more according to the laws of classical logic”.)

The conjecture is that the performance of participants seems to have a lot to do with

their ability to establish appropriate analogies between already-experienced situations

and newly encountered ones. Participants are assumed to perform badly in the classical

version of the Wason selection task, because they perhaps fail to establish a correct

analogy with their experiences.1 Therefore, participants fall back to other (less reliable)

strategies to solve the problem. In a content-change version of the task the situation

is different, because participants can do what they would do in an everyday analogous

situation.

Recall that evaluating an analogy as being good depends on whether it involves (i)
mappings of relations (not of only mere attributes), and (ii) mappings of coherent sys-

1Unless their reasoning indeed follows classical logic, so they can mentally represent the whole situa-

tion in terms of a logical implication, then apply modus tollens.
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tems of relations (not of only individual relations; cf. section 2.1.3). The content-change

version of the Wason problem provides the participants with means by which they can

establish a good analogy. Whereas, in the original version of the task, participants are

not able to establish as good an analogy between their experience (as a source domain)

and the current situation (as a target domain). In addition, and as indicated by Gentner

and Forbus, for instance, relations (e.g. causal relations) often serve as higher order

relations in analogical processing (cf. Gentner and Forbus [2011]). This seems to allow

the reasoners (i.e. the participants) to project parts of their already-known relations

(of the source situation) to complete missing parts of corresponding, newly constructed

relations (within the target situation):

“When the antecedents of a causal relation are matched, the consequent is

projected to hold in the new (target) situation (prediction); and if instead

the consequents are matched, the antecedents are projected to hold in the

new situation (explanation or abduction)” (cf. [Gentner and Forbus, 2011,

pp. 266]).

In short, cognitive scientific studies further support the claim that the success or failure

of managing the task is crucially dependent on the possibility to establish a meaningful

analogy.

Another related resolution is to study the mode of the inference that should underly

a normative theory of rationality. As one of the case studies presented later in this chap-

ter suggests (cf. section 6.4), one way is to follow Wang’s accounts on having intelligent

reasoning based on insufficient knowledge and resources (cf. Wang [2011]). Wang’s

form of reasoning utilizes a logical formalism that is claimed in Wang [2004] to avoid

some commonly encountered problems when explaining or reproducing cognition us-

ing predicate logics.1 Based on Wang’s ideas (and using his terms2), when a system has

sufficient knowledge and resources (with respect to the problems to be solved), an ax-

iomatic logic (such as classical logic) can be used, which treats the available knowledge

as axioms, and derives theorems from them to solve a given problem. When the system

has insufficient knowledge, however, it has no absolute truth to be used as axioms, so it

has to follow some “non-axiomatic logic” (cf. Wang [2006, 2013]), whose premises and

conclusions are all revisable by new “evidence” (cf. Wang [2009]). In Wason’s task, the

1Wang also gives an implemented reasoning system, called “Non-Axiomatic Reasoning System

(NARS)”, that can be considered as a cognitive approach towards reasoning (cf. Wang [2004, 2013]
and section 6.4.1 below).

2An article on which this chapter is based was co-authored with Wang (cf. Abdel-Fattah et al. [2012a]).
All descriptions of Wang’s ideas and the NARS system (in this chapter) are very minor modifications of

his own text contributions.
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expected results are the ones assuming an axiomatic system, while the actual results

may be consistent with a non-axiomatic one. Therefore, the “mistake” here seems to be

mainly the misunderstanding between the cognitive scientists who run the tests and the

human participants who take the tests. In such an artificially structured experiment, it is

valid for the scientists to assume sufficient knowledge and resources, therefore to expect

the application of an axiomatic type of inference mechanism. The mistake, however, is

the failure to see the result as possibly coming from another type of inference. On the

side of participants, since non-axiomatic reasoning is used more often in everyday life,

most of them fail to understand the experiment setting as a testing of their capacity of

using an axiomatic inference mechanism. This explains why many participants admit

their mistake afterwards, and do better in the content-change task (as soon as they real-

ized that the expected way of reasoning is not their default one, they have less problem

to adapt to follow it).

6.3.2 Resolving the Linda Problem by Cognitive Mechanisms

In the case of the Linda problem, a natural explanation of participants’ behavior is that

there is a “lower degree of coherence” of Linda’s profile plus the statement (Teller) in

comparison to the degree of coherence of Linda’s profile plus the statement (Teller&-

Feminist):

“Linda is a bank teller”, (Teller)

“Linda is a bank teller and is active in the feminist movement”.

(Teller&Feminist)

In the conjunctive statement, (Teller&Feminist), at least one conjunct of the statement

fits quite well to Linda’s profile.

Coherence is a complicated concept (cf. Thagard [2002]) that may need to be dis-

cussed in more detail (as does its connection to notions like the idea of representa-

tiveness proposed as an explanation for the Linda problem by Tversky and Kahneman

themselves). Here, however, it can only be mentioned that coherence is essential for

the successful establishment of an analogical relation, as well as for guiding adapta-

tion of obtained knowledge and experiences. In order to make sense out of the task,

participants tend to rate statements with a higher probability where facts are arranged

in a theory with a higher degree of coherence. Also, this can be thought of as a form

of coherently adapting beliefs, which also depends heavily on participants’ experiences

rather than on their knowledge of Kolmogorov axioms of probability theory.
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6.4 Modeling Rationality: Case Studies

Formal and computational models in cognitive science can be roughly divided into two

major types:

Descriptive: A descriptive model explains how a system actually works, and its estab-

lishment is based on empirical data. A descriptive model’s quality is evaluated

according to its behavior’s similarity to that of humans.

Normative: A normative model, on the other hand, specifies how a system should work,

and its establishment is based on certain general principles or postulates. Such a

normative model’s quality is evaluated according to its behavior’s coherence with

these basic assumptions.

Though the two types of models are closely related, they are still built and evaluated

differently (cf. Wang [2011]).

When building a model of rationality, a central issue is the selection of the assump-

tions on which the model is based, since all conclusions about the model are derived

from, and justified against, these assumptions. There is a need for focusing on the

conceptual analysis of such assumptions, as well as their implications in the model of

intelligence, as a form of rationality.

In the following, two examples for cognitively inspired systems are given —namely

NARS and HDTP. Both systems stand in a certain tradition to classical cognitive ar-

chitectures like the well-known models ACT-R and SOAR (cf. Anderson and Lebiere

[1998]; Laird et al. [1987] and section 1.2.3), because they attempt to model cognition

in breadth and not relative to highly specialized abilities. Nevertheless, and because

NARS and HDTP stand in a tradition of modeling the competence aspect of general

intelligence, they attempt to integrate a handful of different human-inspired reasoning

abilities, and try to integrate these abilities in uniform models. Both systems also dif-

fer significantly from the mentioned classical cognitive architectures. In the following,

a discussion is given on how these systems can account for “irrational” behaviors in

tasks, such as the “Selection Task” and the “Linda Problem”. The basically needed de-

tails about NARS are briefly introduced first (whereas details about HDTP are already

presented in Chapter 3).

6.4.1 NARS: GI with Relative Rationality

The Non-Axiomatic Reasoning System, NARS, is an AGI system designed under the as-

sumption that the system usually has insufficient knowledge and resources with respect
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to the problems to be solved, and must adapt to its environment. Therefore, the sys-

tem realizes a “relative rationality”. That is, the solutions are the best the system can

get under the current knowledge/resource restriction (cf. Wang [2011]). The system

is comprehensively described in Wang [2006, 2013]1, but only the treatments of the

“Selection Task” and “Conjunction Fallacy” in NARS are briefly explained here.

NARS assumes insufficient knowledge and resources (cf. Wang [2011]). Beliefs in

the NARS model are, therefore, not representing “absolute truths” but rather summa-

rizing the system’s experience. In particular, the truth-value of a statement measures

its evidential support. This evidence can be either positive or negative, depending on

whether the evidence agrees with the statement. In concrete terms, consider the state-

ment (Wason-Cards):

“If on one side of the card there is a D,

then on the other there is the number 3”.

(Wason-Cards)

For this statement, one would have the following types of evidence:

1. The D on the card always provides evidence, which is positive if the other side is

3, and negative otherwise.

2. The 3 on the card may provide positive evidence if the other side is D.

3. The 7 on the card may provide negative evidence if the other side is D.

4. The K card provides no evidence.

To determine the truth-value of the (Wason-Cards) statement, all cards except K, should

be checked. But due to insufficient resources, the system may fail to recognize all

evidence. In this case, D is the easiest, while 7 the hardest. This result is consistent with

the common responses of human beings.

In NARS, the meaning of a concept, such as “Linda” or “feminist bank-teller”, is

determined by the available information about it, in terms of how it relates to other

concepts, as far as the system knows.2 For a given concept, such information may be

either extensional (indicating its instances or special cases) or intensional (indicating

its properties or general cases). To decide the extent to which a concept, “Linda”, is

1Also, cf. http://www.cis.temple.edu/∼pwang/papers.html for more publications.
2For a detailed discussion on the categorization model in NARS, see Wang and Hofstadter [2006].

Particularly, a connection is made to NARS’ categorization model in section 7.2, where more aspectual

considerations are discussed of how “conceptual entities” and “concepts” are proposed to be interrelated.
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a special case of another one, “bank-teller” or “feminist bank-teller”, the system will

consider all available evidence. In this example, the most accessible evidence about

all three concepts are intensional (i.e. about their properties), so the system reaches its

conclusion by checking if Linda has the properties usually associated with “bank-teller”

and “feminist bank-teller”, respectively. Since, according to the given information, Linda

has more common properties with “feminist bank-teller” than with “bank-teller”, Linda’s

“degree of membership” is higher to the former than to the latter. This is judged as a

“fallacy” when probability theory is applied extensionally to this situation, so only the

base rates matters, while the properties do not.

In summary, as soon as a normative model of rationality as a general intelligence

aspect makes more realistic assumptions, many “heuristics”, “biases”, and even “falla-

cies” can follow from them. In the above examples, there are strong reasons (cf. Wang

[2009]) for assuming that the truth-value of a statement should depend on both posi-

tive and negative evidence (rather than negative only), and the meaning of a concept

should depend on both extensional and intensional relations (rather than extensional

only). These examples are believed to mainly show the limitations of traditional models

(classical logic and probability theory, for instance), rather than human errors. The prac-

tice of NARS or similar systems should show us that it is possible for a new normative

model to explain and reproduce similar results in a unified way (as further elaborated

on in the rest of this chapter).

6.4.2 HDTP: GI-Based Rationality Through Analogy

As the second case study, a sketch is given of how HDTP can be used to implement

some crucial parts of the suggested cognitively based theory of rationality. Heuristic-

Driven Theory Projection, HDTP (cf. Chapter 3), provides a framework for computing

analogical relations between two domains that are axiomatized in many-sorted first-

order logic (cf. Schwering et al. [2009a]). It also provides an explicit generalization of

these domains as a by-product of establishing an analogy. Such a generalization can be

a base for concept creation by abstraction.

The modeling of the Wason selection task with HDTP is quite simple as long as ap-

propriate background knowledge is available, in case an analogy should be established,

or the lack of appropriate background knowledge prevents analogy making, in case no

analogy should be established. In other words, the availability of appropriate resources

in form of background knowledge is crucial.

If appropriate background knowledge for an analogous case is missing, then there
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is no chance to establish an analogical relation or a potential analogy (with low cover-

age1 and complex substitutions) is misleading the participant. Hence, participants have

to apply other strategies. This is the situation when participants are confronted with

the original Wason selection task based on properties of cards. Most participants have

problems to establish a meaningful analogy with a well-known domain due to the high

degree of abstractness of the task itself.

In the other case, if there is a source theory with sufficient structural commonalities,

then the establishment of an analogical relation is straightforward. This happens if

the task is changed in the following way. The rule that needs to be checked is now

(Wason-Ages):

“If someone is drinking beer in a bar,

then someone must be older than 21”.

(Wason-Ages)

In the experiment, participants can choose between “drinking beer”, “drinking coke”,

“25 years old”, and “16 years old” (cf. Cosmides and Tooby [1993]). In the correspond-

ing experiments, participants behave significantly better than in the original selection

task.

With analogy making, the improvement of the human subjects in mastering the

task can be explained. They can establish an analogy between the sketched set-up

of the experiment and a standard situation in daily life, in which they would simply

do the necessary actions (based on their background knowledge) to check whether

there is someone who is drinking beer in the bar without being older than 21: (i)
check people who are drinking beer, and (ii) check what people are drinking who are

16. As both situations are structurally very similar to each other, the generalization is

straightforward, substitutions length are small, and coverage2 is high.

The Linda problem is structurally different in comparison to the Wason selection

task. In an analogy making context, an explanation of participants’ behavior in terms of

coherence maximization is promising. Coherence aspects of input theories are crucial

for establishing analogies in several ways. Roughly speaking, the statement (Teller),

“Linda is a bank teller”, (Teller)

1Cf. section 3.1.3 for more on the idea of “coverage”.
2Remember that the higher the coverage the better, because more support for the analogy is provided

by the generalization. For more on the idea of “maximizing coverage of the involved domains”, refer to

the part discussing “ranking heuristics” in section 3.1.3.
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has less coherence with Linda’s profile than the statement (Teller&Feminist),

“Linda is a bank teller and is active in the feminist movement”.

(Teller&Feminist)

Therefore, it is easier to establish an analogy between Linda as given in Linda’s pro-

file and Linda as described in (Teller&Feminist) than in the pure “bank teller” case,

statement (Teller). Notice that from an abstract point of view the coherence-based res-

olution of the task is rather similar with the intensional interpretation of the task in

NARS, where “feminist bank teller” has a higher degree of membership with Linda’s

profile than “bank teller”.

6.5 Conclusive Remarks and Related Ideas

There are multiple models of rationality, each with its own assumptions and applica-

ble situations. The traditional models are based on certain idealized assumptions, and

thus are limited to the domains where the latter are satisfied. Since human cognition

has evolved in (and is usually used in) realistic situations where those idealized as-

sumptions do not hold, those models of rationality express their deviations from actual

human behavior (not the other way round). Indeed, the models are what cannot actu-

ally be universally applicable, and observed human violations, therefore, should not be

deemed “irrational” per se. The seemingly irrational behaviors are there not because the

intelligent systems (e.g. humans) are irrational, but because the traditional normative

theories do not cover rationality very well.

Instead of normative approaches, the ideas and discussions in this chapter advocate

and stress a conceptually different view. In concrete terms, what seems to be precisely

needed are new “models of rationality” that should be based on more realistic assump-

tions, and developed in a more holistic, cognitively inspired “framework”. Such models

must take humans’ multifaceted cognitive capacities, as well as limitations of their cross-

domain style of reasoning, into account. The “models of rationality” should be able to

provide an adequate and feasible positive account of actual human rationality, with-

out neglecting e.g. “bounded rationality” (cf. Simon [1955]) nor “ecological rationality”

(cf. Rieskamp and Reimer [2007]). The models should as well accommodate particu-

larities of human-style reasoning (a.k.a. irrational behaviors) based on the utilization

of their cognitive mechanisms. The sought “framework” could form a cornerstone of

a closer connection between AGI and cognitive science, embedding important parts of
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the AGI program within a cognitive scientific context, whilst making the more general

methods and theories of AGI accessible to the cognitive science side. In fact, the overall

appeal for a “more cognitive” view on rationality models and systems is infrequent, but

not unusual. Amongst others, already Kokinov reaches the conclusion that the concept

of rationality as a theory in its own right ought to be replaced by a multilevel theory

based on cognitive processes involved in decision-making. On the more technical side,

there is a growing body of evidence that analogy engines (like HDTP) and general-

purpose reasoning engines (like NARS) can be used for implementing these cognitive

mechanisms and, thus, also as foundations of a rationality-guided approach to general

intelligence.

This chapter should merely be considered as a point of departure, leaving ques-

tions for future research galore. For example with respect to the present proposal con-

cerning HDTP, it seems recommendable to figure out to which extent different types

of coherence concepts can be integrated into the framework. In particular, the chal-

lenges mentioned above need to be addressed, and a formal treatment of coherence in

HDTP needs to be fleshed out (e.g. similar to the presentations given in Joseph [2011]).

Furthermore, an implementation of coherence principles for retrieval, mapping, and

re-representation purposed in the analogy making process needs to be formulated. Re-

garding competing theories for rationality, clarifying to what extent cognitive capacities

and limitations have already been taken into account (implicitly as well as explicitly)

when designing the theories, and to what extent the classical frameworks can be re-

instantiated by a cognitively based approach, has to be considered one of the principal

questions for future research. Finally, also on a fundamental conceptual level, a broader

definition of rational beliefs is still needed, especially when representation and model-

ing issues are considered about employing beliefs as conceptual entities within concepts

(cf. section 1.3 and Chapter 7).
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7

Concept-Based Interpretation of Novel

Noun Compounds

Cognitive scientists have long been interested in analyzing how people interpret a novel

combination of two or more known words, the meanings of which are known, but that

of the compound itself may have never been encountered before. In some human lan-

guages the combination that involves known words can itself range from the idiomatic

or very well-known (e.g. Typewriter, Highway, Railway, Snowflake, etc.) to the un-

precedented (e.g. Butterfly Milk, Cactus Finger, Computer Smile, Snake Glass, etc.).

(Idiomatic combinations can also be referred to as lexical compounds.) Humans can

create meaningful interpretations of novel compounds, even if the interpretations dis-

tantly differ from that of the two nouns they comprise. For example, people may think

of the compound “Butterfly Milk” as reflecting something very difficult or impossible

for a person to achieve. Generally intelligent cognitive agents like humans possess this

amazing ability to understand such meanings of newly encountered compositions of

arbitrary words, or create unprecedented such compositions to reflect composite mean-

ings (e.g. “Brain Wash”).

Whether expressed in exact or metaphorical senses, several models were proposed

to show how such interpretations could be performed (cf. [Coulson, 2006; Estes, 2003;

Keane and Costello, 2001; Wisniewski, 1997; Wisniewski and Gentner, 1991, for in-

stance]). Cognitive psychologists often use the notion of “conceptual combination” to

refer to the GI aspect that humans have of constructing meaningful novel concepts as

combinations of input concepts, based on knowledge of the individual concepts com-

posing such combinations. Linguists usually refer to resulting compounds of more than

one word as compound nominals, which can act as nouns themselves.1 For instance,

1Compound nominals are nouns in most of the cases, but they need not be. For example, ‘get the ball
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the compound “High Entrenchment Level Concept” is used in this chapter to refer to a

concept that has an entrenchment level with a high value (cf. section 7.2). Both terms

(i.e. conceptual combination and compound nominals) are referred to here as concep-

tual compounds, or simply compounds, because words are assumed to be represented

as concepts on a language-independent level. The treatment of the process of juxtapos-

ing two nouns is proposed here as a creativity-based production process. A conceptual

compound thus denotes a newly established single entity that usually has a different

interpretation than that of the (two) composing entities. Two forms of the compositions

of arbitrary words have a particular familiarity: (i) adjective-noun compound forms

(e.g. “red Nose”) and (ii) noun-noun compound forms (e.g. “Book Box”), but this

chapter focusses on the latter form. It is even preferred in this chapter to use the more

specific notion of modifier-head, noun-noun compound, because it reminds the reader of

the nature of the two-noun conceptual compound; that is, one noun acts as a modifier

to the other head noun.

This chapter expounds a way of realizing “knowledge representation assumptions”

in a special purpose concept-based framework, in order to interpret modifier-head com-

pounds. It suggests a method to interpret novel modifier-head conceptual compounds,

along with an illustrative example, in a particular type of concept-based models. The

methodology to be employed in the interpretation is the blending of concepts. The claim

is that a CB-based framework can feasibly be used to interpret novel compounds, where

the interpretation of modifier-head compounds is achieved by a language-independent

method that suggests elegant interpretations to conceptually blend the corresponding

concepts.

7.1 Problem Importance and Challenges

A solution heuristic to interpret modifier-head compounds is proposed in this chapter

that, in addition to employing the mechanism of CB, borrows notions from nature-

inspired intelligence and belief revision to simulate the development of knowledge ac-

quisition. In this section, a condensed overview is given first to motivate the importance

of the problem in hand and to discuss some of its challenges found in the literature.

rolling’ can be interpreted as ‘Initialization’.
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7.1.1 Motivations and Goals

The construction of noun-noun compounds is an indication of human cognition, yet in-

terpreting (or creating) meanings for novel noun-noun constructions is an even more

fundamental sign of general intelligence —that is, a GI aspect that is necessary to be cap-

tured by AGI models. Cognitive scientists are interested in explaining how the cognitive

ability of constructing meanings is performed by human reasoners, while AI researchers

aim at developing artificial models or systems that implement the ability. In the context

of computational models of cognition, creativity, or general intelligence, a proposal to

solve the problem (of interpreting novel noun compounds) eventually helps in affording

cognitive agents the ability of creating possible meanings of newly formed combinations

of known words.1 Investigating the way humans interpret previously unseen modifier-

head compounds helps in endowing cognitive agents with a simulated mechanism of the

interpretation. The specific problem type addressed here is that of interpreting unprece-

dented modifier-head, noun-noun compounds. That is, previously unseen compounds

that comprise exactly two already known nouns, the modifier followed by the head.

Plausibly speaking, a module in a cognitively inspired, computational model may

be suggested to interpret previously unseen compounds à la human. That is, based on

findings in cognitive science that report ways in which humans presumably assign mean-

ings to new compositions of nouns. This necessitates deeper insights into how humans

themselves develop interpretations of the compounds, based on their already-existing

knowledge of the composing nouns as conceptual knowledge entities (cf. sections 4.2

and 1.3.1). Moreover, the ultimate goal would even be to develop an entire cognitively

inspired, concept-based computational model of general intelligence that is based on

cross-domain reasoning and accumulation of past experiences. This chapter discusses

only concrete aspects of the problem of interpreting novel modifier-head, noun-noun

combinations, and suggests only some characteristics needed in a concept-based model

that can provide a solution method for the problem. The given discussion and sugges-

tion do not ultimately provide a programming implementation, but rather a conceptual-

level proposal of an abstract solution model based on combining knowledge domains in

general, concept-based, models of general intelligence and computational creativity. In

order to suggest a relationship possibility between the modifier and the head nouns in

compounds, the given method utilizes an analogical relation to help generalizing, then

blending domain representations of the constituent nouns.

As concepts are essential entities in representing and building the knowledge of

1Though the nature of the “interpretation construction” has many applications in various domains

(e.g. in natural language processing (NLP) and information retrieval (IR); cf. Gay and Croft [1990]).
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cognitive agents, nouns are assumed to be represented as concepts that develop by

knowledge acquisition and revision (cf. section 7.2). A plausible artificial mechanization

of the interpretation problem is suggested, which works through developing concept

representations that give the interpretations of the nouns and their compositions.

7.1.2 An Overview of Problem Challenges

Some proposals related to analyses in the literature are listed next, linking them to previ-

ous presentations about concepts and ways of their representation. Beside acknowledg-

ing previous work, the analyses help in further clarifying the inherently baffling nature

of the problem (and further illustrate that no agreement among researchers on a ubiqui-

tous solution exists). Both the problem’s importance and extreme difficulty are implied

by the literature dedicated to solving it [Butnariu and Veale, 2008; Gagné, 2002; Gagné

and Shoben, 1997; Gay and Croft, 1990; Hampton, 1997; Ryder, 1994, to mention just

a few]. Without delving into details of the aforementioned contributions, their influence

on inspiring the proposed solution model are highlighted in the following.

• The meaning of a novel compound may not even be simple to interpret by humans

because it highly depends on many factors, as extensively discussed in Hampton

[1997]; Wisniewski [1997]; Wisniewski and Gentner [1991]. For instance, a novel

compound’s meaning depends not only on the corresponding meanings of the com-

posing words (which do not always have unique semantic mappings themselves),

but also on the particular uses of such meanings, the surrounding context, and an

implicit relationship between the composing words. The latter is a main challenge,

since implicit relationships between a modifier and a head are extremely difficult

to abstract. Compare for instance what “Wound” contributes to in a compound like

“Hand Wound”, to what it contributes to in the compound “Gun Wound” (cf. Coul-

son [2006]; Hampton [1997]; Levi [1978]). Existing experiences also influence

one’s comprehension; e.g. a “Decomposing Compound” to a chemist may differ

from that to a linguist (cf. Gagné [2002]). A compound does not simply equal the

sum of its parts, and its meaning is as sensitive to arbitrary changes as its under-

lying concepts, which can themselves develop over time by knowledge revision.1

Specialized contexts and artificial anecdotes, from which a deviated meaning may

possibly be inferred, can easily influence the background of a person. A person

may say to someone else: “I will bring you whatever you need, even the ‘Butterfly

1Concepts in general are relativistic notions, and are sensitive to many sources of change. Think for
instance about the relativity of a concept like being big, or about the changes in meaning over time of the

concept COMPUTER: clerk, huge machine, PC, laptop, portable or handheld device, and so on.
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Milk’ ”, to exaggerate someone’s readiness of performing very difficult tasks, for

example.

• Having no consensus on what generally relates the head to the modifier, many re-

searchers do have the consensus that comprehension requires the presence of rela-

tional inferences between the concepts in a conceptual compound. Nine recoverably

deletable predicates are proposed by Levi, for instance, to characterize the seman-

tic relationships between the composing nouns. Levi suggests that noun com-

pounds “result from a syntactic transformation”, in which relative clauses (e.g. “a

wound caused by a gun”) are converted into compounds (e.g “Gun Wound”). Se-

mantic relationships between the composing nouns can, thus, be characterized as

encoding one of these nine predicates: “cause”, “have”, “make”, “use”, “be”, “in”,

“for”, “from”, and “about” (cf. [Coulson, 2006, pp. 126] and Levi [1978]). Further-

more, Gagné and Shoben’s abstract relations theory indicates a limited number of

predicates to relate a modifier with a head (cf. Gagné and Shoben [1997]).

• The dual process model (cf. Wisniewski [1997]) claims that attributive and rela-

tional combination are two distinct processes resulting from comparison and in-

tegration, respectively, whereas other linguistic models raise the possibility that

a single-process integration model could account for all concept combinations

(cf. Estes [2003]; Gagné [2002]). Other works could also be mentioned, such as

the constraints theory of Costello and Keane, and the composite prototype model of

Hampton (cf. Costello and Keane [2000]; Hampton [1997]), but the conclusion

remains: the challenge is hard (and there is no consensus). Proposals showing

how interpretations (of concept combination) might be performed by humans can

be found in [Estes, 2003; Keane and Costello, 2001; Mareschal et al., 2010; Wis-

niewski and Gentner, 1991, for instance].

• Butnariu and Veale present a concept-centered approach to interpret a modifier-

head compound, where the acquisition of implicit relationships between the mod-

ifier and the head is captured by means of their linguistic relational possibilities

(cf. Butnariu and Veale [2008]). Unlike many other approaches, the approach

indeed is concept-centered but, unlike this chapter’s, it is linguistic-oriented and

English-specific, so the approach may be difficult to apply to situations where on-

line concept creation (i.e. on demand) is needed in achieving a GI level.1 The

outlined solution model in this chapter simulates the emergence an interpreta-

1However, unlike Butnariu and Veale’s, the approach presented in section 7.3 does not use relational

possibilities by means of both the modifier and the head.
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tion of an unknown composition undergoes by employing multifaceted cognitive

mechanisms, and prioritizing past experiences in suggesting the relational infer-

ence. It partly follows the claims of Gagné and Shoben; Wisniewski; Wisniewski

and Gentner that relational possibilities may only be suggested by the modifier,

which is the source concept in our case. In the present contribution, only the mod-

ifier plays the big role, and only an analogy-based relation (e.g. “looks-like”) is

implicitly assumed.

7.2 A Proposed Concept-Based Model

A method that provides a way to overcome several challenges of the problem of in-

terpreting novel modifier-head compounds is presented in Abdel-Fattah [2012]; Abdel-

Fattah and Krumnack [2013]. The method suggests, on a conceptual level, a concept-

based solution to the problem, based on utilizing the CB framework within a presump-

tive model of computational creativity and general intelligence.

The reader will hopefully notice that the solution model to be described is cogni-

tively inspired. It complies for example with Chomsky’s ideas about the description of

language and properties that all natural human languages share, and his proposals for

innate predisposition abilities to learn languages (cf. Chomsky [1956]; Cook and New-

son [2007]). In addition, the presented ideas agree with Gärdenfors’s suggestions about

not giving up beliefs that have high epistemic entrenchment (cf. Gärdenfors [1988]).

That is, the more the beliefs (i.e. the knowledge entities) are used, the higher their epis-

temic entrenchment, the more difficult it should be for cognitive agents to forget (and

vice versa: the less the knowledge entities are used, the less their entrenchment, the eas-

ier they can be forgotten). Furthermore, the construction of the suggested model’s KB is

influenced by Fodor’s language-of-thought hypothesis (cf. Fodor [1983]), which encour-

ages the assumption that beliefs, frames1, or concepts are provided in modular groups

to serve as input to the blending process. Accordingly, enough established (i.e. highly

entrenched) concepts are assumed to be available at the agents’ disposal in the model,

so that the solution model obeys the case for humans where “a person has a repertoire

of available concepts and ways of combining those concepts into higher-order concepts

and into propositions” (cf. Hampton [1997]).

The proposed solution method posits, however, concrete (design) assumptions on a

special-purpose model wherein the method could function. These posited assumptions

1In this chapter, the notion of “frames” is used in Fillmore’s sense discussed in section 4.1.1 (also

cf. section 7.2.2).
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are presented in this section, before a detailed explanation of the method is explained

in section 7.3.

7.2.1 Special Assumptions for Knowledge Acquisition in a Concept-

Based Model

In modeling aspects of cognition and general intelligence, one may assume that the

representation of the entire KB of cognitive agents in a model is built from conceptual

entities (or beliefs that can be organized into knowledge concepts; cf. section 1.3). In

addition to the related ideas already discussed in sections 1.3 and 4.2, this is also linked

to Chalmers et al.’s discussions on aspects of “high-level perception” (cf.Chalmers et al.

[1992]). Chalmers et al. consider (mental) representations as “the fruits of perception”,

with high-level perception enabling the construction of conceptual representations of

situations.1 Chalmers et al. also argue that perceptual processes cannot be separated

from other cognitive processes even in principle. Thus, high-level perception is viewed

as being “deeply interwoven with other cognitive processes, and that researchers in arti-

ficial intelligence must therefore integrate perceptual processing into their modeling of

cognition” [Hofstadter and the Fluid Analogies Research Group, 1996, pp. 170]. More-

over, in gestalt psychology, the argument is that “human perception is holistic: instead

of collecting every single element of a spatial object and afterwards composing all parts

into one integrated picture, people experience things as an integral, meaningful whole.

The whole contains an internal structure described by relationships among the individual

elements” (cf. [Krumnack et al., 2013b, pp. 50; emphasis added]).

Therefore, the special solution model proposed here is assumed to, firstly, enable

agents to acquire and store sorts of conceptual knowledge entities as experiences that

direct the organization process. Some conceptual entities may be innate, some may be

perceived facts, or beliefs given as inputs, others may be deduced, and so on. When

agents need to make rapid (rather coherent) decisions, some experience-based ‘mental

shortcuts’ enable them to categorize the knowledge they acquired by building schemas

(or conceptual spaces; cf. section 4.1). In this way, the organization of the conceptual

entities into knowledge concepts comes about. This affects the creation (and the en-

trenchment level) of another type of (internally organized) knowledge entities that do

not result directly, or only, from perception, but rather from the repeated interplay be-

tween the already available knowledge and experience. That is, and recalling Gärden-

1More explications of this particular use of the notion of “situation” are given in Abdel-Fattah and

Schneider [2013]; Schneider et al. [2013].
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fors’s ideas about beliefs that have high epistemic entrenchment, useful beliefs of all

types will keep being reinforced, establishing links and ties to other knowledge where

they are of use, whereas knowledge that is not always in use will typically be less re-

membered. As knowledge undergoes an internal screening, depending on the agents’

history of experiences, some of the relations between acquired conceptual entities may

fade out over time or partly forgotten. Agents can still form new frames of conceptual

entities to compensate knowledge shortage, by means of linking seemingly related or

analogical conceptual entities to create new ones.

A way in which agents can combine two existing concepts, for example, in order

to create a third one depends on what, and how, entities are organized in each of

the former two concepts (this occurs, in particular, when agents construct a meaning

of an unknown word combination that consists of two nouns: a modifier- followed

by a head-noun). Note that a model in which the proposed solution method can be

implemented should be able to interweave the employment of perception and cognitive

processes. One possible suggestion to achieve this is by allowing the model to employ

ideas, in particular, from swarm and nature-inspired intelligence processes, such as the

ant-colony optimization (ACO) techniques (cf. Dorigo and Stützle [2004]), in order to

simulate the previously mentioned type of experience intensification and forgetting. In

fact, Dorigo and Stützle’s ACO approach was originally suggested as an approximation

heuristic to solve hard, graph-theoretical optimization problems such as the traveling

salesperson and the coloring of graphs (cf. Abdel-Fattah et al. [2005]). Their ideas

are based on the way by which a population of ants communicate in a real-life ant-

colony, where ants lay “pheromone trails” to mark the paths they take as they move

around. Over time, the chemical substance (i.e. the pheromone) is either intensified (in

case more ants keep following former ants’ same paths) or evaporated. The very same

idea can be used to simulate experience intensification (or forgetting) by adding (or

decreasing) values that play the role of the pheromone trails.

Agents are also assumed to build and manipulate their KB in this special-purpose

model using a KR framework that allows categorizing conceptual entities in (organized)

knowledge domains. It should thus be possible for these entities and their organizing

relationships to be expressed in a formal language (e.g. first-order logic in the case

of the HDTP framework). On the one hand, the KR language should therefore allow

more frequently used knowledge parts to be reinforced, establishing a kind of intensified

experience that links to other knowledge parts where they are of use. On the other hand,

knowledge that is not in use for a while will typically become less remembered.
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Note: The study of a model of this kind is important in itself from both a theoretical

and a practical points of view, and its applications are abound. The underlying assump-

tions discussed above intend to characterize abstract properties of such a model. This

clearly raises at least as many challenging and interesting questions as the number of

the aspects that can be considered in the study. For example, the formal descriptions

call several ideas from AI and cognitive science, such as knowledge representation, con-

cept learning and formation, and belief change (cf. for instance, Agre [1997]; diSessa

[1988]; Gärdenfors [1988]; Zull [2002] and section 1.3). Moreover, there is no general

consensus among cognitive psychologists and philosophers as to what concepts are, how

they develop, or how they are represented (for an overview, cf. Lamberts and Shanks

[1997]; Mareschal et al. [2010]; Murphy [2004]; Wrobel [1994] and section 4.2). In

addition to its inherent difficulty, the latter issue of representing concepts is even con-

nected with the expressiveness of the selected formal language. Furthermore, it is worth

alerting the reader now that the discussions given below (until the end of this section;

§7.2) explain the overall ideas of the proposed solution model in a general way, which

employs graph-based illustrations to represent conceptual structures (cf. Sowa [1984,

2011]). This helps to understand the primary ideas about experience intensification and

forgetting in an obvious way, and show the feasibility of possibly implementing the pro-

posed solution model in different frameworks. However, in section 7.3, the discussions

are centered around HDTP, which uses first-order logic. The chapter does not spell out

details regarding how both ways of representation (i.e. graph-based and logic-based)

are related, or in which sense they can be equivalent, because this is unnecessary for

the current discussion purposes (but more about this can be found in [Chein and Mug-

nier, 2010, in particular §12.1.4; pp. 344–346]). Limitations of various sorts prevent a

satisfying investigation of the model in this chapter, but the needed principles for the

current problem focus are addressed as necessary.

7.2.2 Principles and Notations for a Concept-Based Model

The rest of the chapter uses the following principles and notations, which are based on

characterizations and assumptions of the posited concept-based model:

1. The KB will be denoted by KB. It provides all conceptual entities (and their in-

terrelations), and stores experiences as frames, formed from interrelated beliefs.

Individual beliefs that belong to KB are the main conceptual entities. They can be

represented by propositions using the formalism of an underlying KR framework

(e.g. a belief b can represent a predicate like Shape(MadameWhiteSnake, curved), or
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any axiom). Beliefs may be found to be interrelated, based on inputs or inferences.

In such cases, the interrelations should reflect an update to the KB.

2. An acquired “experience” is a frame1, which connects interrelated beliefs. It can be

written in a form that combines beliefs ⋃i bi ∈ KB, for some index i. But a frame

must also (implicitly) determine a network of the related conceptual entities that

belong to it (i.e. those beliefs bi as well as their interrelationship links). A frame

can thus be given in a form similar to that of a graph —that is, a set of nodes and

another of connecting edges. For example, the ordered-pair F = ⟨⋃i bi,RF ⟩ can

indicate that the beliefs bi ∈ KB are interrelated through relations listed in a set of

(unordered) pairs RF = {. . . , (bi, bj), . . .}.
3. Based on the discussions given in sections 1.3.1 and 4.2, a “concept representation”

can be thought of as a collection of conceptual entities that form two mutually

disjoint sets: a set of frames and a set of individual, isolated beliefs. (A visual

representation of an arbitrary concept that has two frames and two individual

beliefs is shown in Figure 7.1.)

4. A “concept name” identifies a concept’s representation by assigning a unique string.

Denote the set of concept names by KC and consider it the model’s lexicon that

contains the names that shorthand the concept representations. For a concept

with the name c ∈ KC , its representation (which consists of a set of frames and

isolated beliefs) will be simply denoted by F c. This should be thought of as an

organized collection of conceptual entities of KB, but F c can also be explicitly

identified by listing the categorized frames and beliefs composing such a represen-

tation as a graph disjoint union (cf. Harary [1994]). For example, the notation

F c = ⟨ cb

⋃
i1=1

bi1 ,
cf

⋃
i2=1

Fi2⟩ can be used to indicate that cb ≥ 1 individual beliefs and cf ≥ 1
entire frames are used in the representation of c, for some indices i1 and i2.

The sets KB and KC have different essences: the former is the set of all low-level con-

ceptual entities, organized in terms of knowledge experiences (frames of interrelated

beliefs) and expressed (somehow) in the KR’s formal language, while the latter is a set

of strings formed using an arbitrary alphabet of symbols. Still, however, for each (con-

cept name) c ∈ KC there is a (concept representation) F c. Figure 7.1 shows a visual

illustration of an arbitrary concept representation with 2 frames and 2 isolated beliefs.

1Recall form section 4.1.1 that Fillmore’s linguistically motivated account of frames —as collections

of categories, whose structure is rooted in motivating context experiences (that play an important role
in building word meanings)— parallels Minsky’s proposal of frames as data structures —that represent

commonly encountered, stereotyped situations (cf. Coulson [2006]; Fillmore [1982]; Minsky [1974]).
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F c

F1
F2

b1

b2

Figure 7.1: A visual illustration of a concept representation F c (where c is an arbitrary

concept). The illustration shows that the representation consists of two frames (F1 and

F2) and two isolated beliefs (b1 and b2).

It is worth pointing out that the modeling of some cognitive processes based on more

specific ways in which conceptual knowledge entities can be organized into concepts do

already exist. Without giving further low-level representation notations specific to these

models, one example to mention is Wang’s NARS system (cf. Wang [2006, 2011, 2013]

and section 6.4.1), which presumes a model of belief categorization that is close to the

described one, though it uses a different representation formalism. Details of how cat-

egorization is achieved in the NARS system are thoroughly explained in Wang [2007];

Wang and Hofstadter [2006]. Also, conceptual structures and conceptual graphs would

of course be another closely related direction of modeling examples that apply ideas

akin to those presented above (cf. Chein and Mugnier [2010]; Sowa [1984, 2011];

Sowa and Majumdar [2003]).

7.2.3 Development of Conceptual Knowledge Entities

Entrenchment Values and Levels: The functioning of the suggested solution model

is based on allowing agents not only to store past experiences as organized conceptual

entities but to rank them as well (e.g. by assigning numeric values). A function is

used here to serve as mnemonics of belief occurrences and rank beliefs according to

importance and frequency. Namely, eV ∶ KB ∪ KC → [0,1]. Based on this function,

entrenchment values, denoted by eV (b), can be assigned to beliefs b ∈ KB , depending on

any number of factors1, such as how recently, and how many times, the beliefs have been

retrieved by an agent from KB (e.g. when beliefs are retrieved in a concept formation

process). In addition, the entrenchment values assigned to beliefs b ∈ KB contribute,

in turn, to assigning entrenchment levels, eV (c), to concepts c ∈ KC if b occurs in F c.

In other words, entrenchment values of individual conceptual entities that underlie

1For example, Wang’s system, NARS, makes use of two function values to reflect a frequency and a

confidence for each knowledge entity (cf. Wang [2013]).
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representations of concepts contribute to the entrenchment levels of these concepts.1

This quantitatively reflects what knowledge is already known about a concept, and how

‘much’ has it been dealt with (i.e. not only “how ‘many’ times” has it been dealt with, but

also “at what frequency” has it recently been experienced). In a sense, this can be used

to parallel the amount of knowledge that is already known about a noun (in case KC is

the English alphabet, for instance).

The (overloaded) function eV ∶ KB ∪KC → [0,1] is used for indicating both the en-

trenchment value of b ∈ KB, and the entrenchment level of c ∈ KC . By appropriately

defining and manipulating eV , a simulation of knowledge development based on experi-

ence can be achieved by mimicking, in particular, the ant-colony optimization approach

mentioned previously (cf. Dorigo and Stützle [2004]). That is, it is possible to simulate

an effect on updating eV values by methods that parallel how ACO-based methods up-

date “pheromone trails”. Values of eV can be intensified or weakened while building and

organizing the knowledge frames of the concepts (and their blends). The function eV

can thus be used anyway to constantly update the entrenchment values of conceptual

entities and, consequently, the entrenchment levels of concepts that involve these enti-

ties in their representations. Entrenchment values of more frequently used conceptual

entities should be increased, indicating their importance in representing the frames (or

concepts) they compose. Values decrease over time to simulate, in some sense, forget-

ting or a lowering in the importance of the conceptual entities’ interrelationships with

the frames (or concepts) they belong to.

A concept c ∈ KC will be called a “high entrenchment level concept” (abbreviated

HELCO) if eV (c) ≥ η, otherwise a “low entrenchment level concept” (abbreviated LEVCO);

where 0 < η < 1 is a threshold value.2 Some conceptual entities (or whole frames or con-

cepts) can be identified as ‘innate’ (i.e. built-in conceptual entities), with entrenchment

values (or levels) equal (or very close to) one. Others obtain by concept formation, as

is the case in concept blending, with entrenchment values (or levels) being initially less

than η.

Description: In the presumed solution model, the interpretation of a novel compound

by means of already-known nouns transfers to the process of forming new LEVCOs

c ∈ KC (and their corresponding representations F c) by the conceptual blending of

already-existing HELCOs. This means that when HELCOs combine, LEVCOs result with

entrenchment levels that depend on those of the composing HELCOs. For a recently

1More precisely, entrenchment values contribute to the entrenchment levels of concept names (since

the function, eV (c) is defined here as an entrenchment level for a concept c ∈ KC).
2Clearly, a decision will have to be taken about η by the model engineer.
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blended LEVCO, say B ∈ KC , its entrenchment level eV (B) would be a function in eV (S)

and eV (T ) of the composing HELCOs S and T , where S,T ∈ KC .1 Of course, many

parameters need to be set for such an abstract model. For example, one may need to

specify factors on which a calculation of eV depends, and select an appropriate value for

η (as well as a specification of this ‘appropriateness’). More importantly would be the

specification of how an entrenchment level for a recently blended LEVCO can be found,

based on those of its composing HELCOs.

7.3 A Framework for Modeling Interpretations

This chapter is confined to handling the interpretation of a specific set of noun-noun

composites, namely the modifier-head compounds. A combination of two already-

known nouns, represented as concepts S and T , will be written in the form B = “ST ”:

(i) S represents the modifier noun, (ii) the second concept, T , represents the head

noun, and (iii) B refers to a resulting blend of the two input noun concepts. As pointed

out by Wisniewski and Gentner, the modifier is used to adapt the meaning of the head,

which interprets the combination “S T ” as a function application S(T ), because S acts,

in a sense, as an operator on T that, more or less, changes T ’s meaning (cf. Wisniewski

and Gentner [1991]). The method presented here does not use function application,

rather utilizes HDTP as a basis framework for CB, whereby the relational possibilities

can be suggested only by the modifier (as suggested in Gagné and Shoben [1997]). An

advantage is made of analogical transfer in CB, so that a new enriched domain is created

while keeping the original target domain unchanged. This is clarified in the following,

where a way is posited, by which HDTP helps in creating blends that represent novel

combinations.2

7.3.1 From HDTP to CB

According to standard theory, a word is understood by the company of words it keeps

(cf. Firth [1957]) or, according to the HDTP’s jargon, by the background knowledge an

1In fact, eV (B) should be a function in eV (S), eV (T ), and the entrenchment values of the conceptual
entities defining (i) the representations of S and T , and (i) the representation of the generalization that

results (cf. discussions at the end of next section; § 7.3.1).
2As briefly mentioned in the notes at the end of section 7.2.1, a tension should be avoided by the

reader in the transition from the previous section to this one. Unlike in section 7.2, the representations

in this section are not based on general or graph-based conceptual structures but rather centered around
HDTP (which is logic-based). In addition to visual illustrations that help the purpose of explanation,

concrete representations of concepts are therefore given in first-order logic.
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agent possesses about the words as well as about the context in which they appear. For

a combination B=“S T ”, once S and T are appropriately axiomatized (i.e. represented)

in sorted, first-order logic, they are provided to HDTP as source and target concepts,

respectively. Accordingly, an axiomatization of (the operator) S is used as the source

domain for HDTP, and an axiomatization of (the head) T as the target. In this way,

HDTP provides a step towards the blending of the two given nouns (as concepts) and

the usage of resulting candidate blends to interpret the combination.

analogical transfer

m

anti-unification

injection
Source (S)

Target (T )

Generalization (G)

Blends (Bi)

Figure 7.2: HDTP’s overall approach to creating analogies and CB. S and T are source

and target inputs, m represents the analogical transfer relation from S to T , and G is

the generalization computed by anti-unifying S and T . The dashed arrows S → Bi and

T → Bi describe the (partial) injections of facts and rules from the source and target

into candidate blend spaces Bi.

The blending starts after providing S and T to HDTP, where an analogy is estab-

lished and an explicit generalization, G, is computed (cf. Figure 7.2), which can be a

base for concept creation by abstraction. When HDTP is applied to the domain inputs,

blend candidates result that give possible interpretations of the compound (referred

to by Bi in Figure 7.2). The transfer of knowledge, during analogical reasoning, is

allowed in only one direction (and not the other) to pave the way for the “composi-

tion” and “emergence” steps of CB to come into play (cf. section 4.3.1). According to

the outline in section 3.1.3, what happens is that HDTP proceeds during its two-phase

analogy-making as follows:

1. in the mapping phase, S and T are compared to find structural commonalities1,

and to create a generalized description that subsumes the matching parts of both

domains, and

2. after unmatched knowledge in the source domain is mapped to the target domain

(during the transfer phase), blend hypotheses Bi, where i ≥ 1, can be established as

1As can be viewed now, structural commonalities correspond to the ‘identification’ between SPACE1

and SPACE2 shown in Figure 4.3, page 86.
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Source Axiomatization S =“SNAKE”

∀x ∃w Width(x,w) (1a)

∀x ∃l Length(x, l) (1b)

∀x Typical
S
(x)→ Shape(x, curved) ∧ Skin(x, scaled) (1c)

∀x∃l ∃w Length(x, l) ∧Width(x,w) → l > w (1d)

Target Axiomatization T =“GLASS”

∀x ∃w Width(x,w) (2a)

∀x ∃h Height(x,h) (2b)

∀x Typical
T
(x) → Transparent(x) ∧ Fragile(x) (2e)

Blend B =“SNAKE GLASS”

∀x ∃w Width(x,w) (3a)

∀x ∃l Length(x, l) (3b)

∀x Typical
S
(x)→ Shape(x, curved) ∧ Skin(x, scaled) (3c)

∀x∃l ∃w Length(x, l) ∧Width(x,w) → l > w (3d)

∀x Typical
T
(x) → Transparent(x) ∧ Fragile(x) (3e)

Table 7.1: Parts of suggested noun axiomatizations and their combination.

interpretation suggestions of the composition “S T ”. Blends are injected with facts

and rules from the inputs, based on the abstraction obtained by a generalization.

Additional types of implicit relationships between the modifier and the head may later

be suggested and established during the transfer phase.

An Example: As a specific instance, consider the “SNAKE GLASS” compound. Accord-

ing to Wisniewski and Gentner, a group of human participants described the compound

as a “tall, very thin drinking glass” (cf. Wisniewski and Gentner [1991]). The exam-

ple given below illustrates a possible blend of (partial formalizations of) the domains

representing the source and target nouns SNAKE and GLASS, respectively (cf. Table 7.1).

Irrespective of whether or not other constituents are included in the formalization, a

representation of the concept SNAKE should normally emphasize the existence of some

salient SNAKE characteristics. A suggested formalization is given in Table 7.1, in which

the common-sense emphasis is on a SNAKE having a length that is much bigger than its

width, a curved body shape, and a skin that is covered in scales. Also, the characteristics

that a typical GLASS exemplar must have, among other salient characteristics, are its

transparency and fragility. A GLASS object has dimensions determining its width and

height. The blended domain, SNAKE GLASS, is an expansion of GLASS, the target, in

which notions of ‘shape’ and ‘skin’ frames are added, taken from SNAKE (i.e. transferred).

In principle, the blended domain theory can be thought of as coming from enriching the
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first-order theory by which the target is represented with new notions (or frames) taken

from the source, and then importing the axioms of the source into it (cf. Figure 7.3).

SNAKE GLASS

SNAKE GLASS

1a
1b

1c
1d

2a

2b
2e

3a

3b

3c

3d 3e

Figure 7.3: The form of the noun-noun blend, ‘SNAKE GLASS’, that results from the

transfer phase of the blending between ‘SNAKE’ and ‘GLASS’ (cf. Table 7.1).

A blend of the two concepts that represent SNAKE and GLASS would import salient

properties of SNAKE (i.e. highly entrenched conceptual entities or frames) that do not

‘conflict’ with GLASS’s. In particular, based on Table 7.1, a blend candidate should

indicate a relation between the dimensions of the SNAKE GLASS. From Table 7.1 and

Figure 7.3, one can see that (1a) and (1b) are identified with (2a) and (2b), respectively,

using HDTP, which also enables the inference (by injecting (1d) into (3d)) that one

dimension of SNAKE GLASS is much larger than the other. Furthermore, SNAKE GLASS

would have conceptual entities indicating a curved shape (by injecting (1c) into (3c)),

and other non-conflicting constituents of SNAKE (in addition to injected, non-conflicting

GLASS constituents, such as (3e)).

7.3.2 From CB to Interpretations

It is worth emphasizing that the suggested framework does not aim to function in the

sense that two given nouns will only (or always) produce a unique result to interpret

the compound under consideration. Cognitive science experiments show that humans

too do not always agree on one meaning of the same given noun-noun combination,

neither do they exactly follow one particular model each time they encounter a similar

combination (cf. Mareschal et al. [2010]; Wisniewski [1997]; Wisniewski and Gentner

[1991]).

The proposed framework rather enumerates alternative blends, ranked by the com-

plexity of the underlying mappings. This is a desirable property in my view, because it

(i) allows various possible interpretations instead of only one, and (ii) leaves space for

experiences to play a role in deciding whether or not a specific blend is favored over
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another.1 People also interpret novel combinations by drawing on past experience with

similar combinations (cf. Gagné [2002]). Moreover, combinations exist that are unlikely

to be encountered in life, such as BOOK TIGER (cf. Wisniewski and Gentner [1991]), or

have a meaning that distantly deviates from what the forming concepts refer to (e.g. a

PIT BULL is a breed of dogs, and can be considered as a lexical compound).

What Values Can Affect Interpretations? In the example given above, every resulting

SNAKE GLASS blend is intended to be interpreted (or represented) by an enumerated

potential LEVCO, Bi ∈ KC , with 0 < eV (Bi) < η and i ≥ 1. Broadly speaking, and for any

hypothesized blend interpretation Bi that can be constructed from a generalization G of

modifier and head nouns, represented by S and T , respectively; the calculation of each

eV (Bi) depends on the calculation of many other values. (Note that, in the suggested

model, the represented characteristics of a given concept become more salient when

their corresponding conceptual entities get reinforced most of the (more recent) times

the concept is retrieved.) The following are particular values that need to be considered

among those on which eV (Bi) depends:

1. Entrenchment values of the conceptual entities that contribute to the representation of

each input concept: In fact, the values eV (b) for each conceptual entity b ∈ F S ∪F T

tell us how much each conceptual entity from the inputs should contribute to the

overall entrenchment level of a resulting generalization from HDTP.2

2. Entrenchment values of the conceptual entities that contribute to the representation

of the constructing generalization: Since resulting blends are to be constructed

based on generalizations, entrenchment values of entities representing a general-

ization will affect the construction (and the entrenchment level of) blends that are

constructed based on this generalization.

3. Salient characteristics imported from the inputs: The more salient a characteristic

is (in an input concept), the more likely it should affect a blend.3 Salient charac-

teristics may not only have very high entrenchment values, but also appear within

a frame, in which most of its composing conceptual entities do also have high

1A concept would be less favored for example if entrenchment values of most of its conceptual entities

are low, or if it contains many sparse, individual conceptual entities that do not form a frame.
2Note that unions of concept representations (or even of frames, such as in ⋃

cf

i=1
Fi) may be inter-

preted as a graph disjoint union (cf. Harary [1994]).
3Being “infectious” and “self-replicating” are more salient characteristics of VIRUS than, for example,

being an organic structure or a form of life (scientific opinions are different, in any case). Thus, in a blend
such as COMPUTER VIRUS (or even BOAT VIRUS), one would highly likely think more about the former

two characteristics of VIRUS than about the latter.
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entrenchment values. This would typically result in most of the frame appearing

in the generalization (i.e. the whole frame having salient characteristics is itself

highly entrenched).

4. Conflicting entities imported from the inputs: One should in general avoid injecting

an entity from one of the inputs that could conflict with another entity imported

from the other input. When an entity is selected as a candidate for injection into

a potential blend, this means it might have not already been part of generaliza-

tions offered by HDTP. Therefore, the relative importance of the entity should be

assessed with respect to completing the frame within which it appears.1

How precisely eV (c) values of LEVCOs c ∈ KC can be computed, or how several implicit

relationships can be retrieved during the transfer phase in the analogy-making process,

seem to be crucial questions left for a later, deeper analyses and formalizations of the

proposed solution framework.

7.4 Conclusive Remarks and Related Ideas

Finding a meaning of a novel combination is a difficult (creative) task, yet providing

a computational account that simulates the task in human cognition is an even more

difficult one. Humans employ cross-domain cognitive mechanisms, especially analogy-

making and concept blending, in developing their understanding of newly introduced

conceptions that are basically combinations of already-known ones. Inspired by this

claim, the chapter shows how it could be possible to propose a computational model

of (creativity and) general intelligence that employs both mechanisms to contribute to

solving the presented problem.

Basic challenges of the modifier-head interpretation problem (cf. section 7.1.2) incite

not only a proposal to approach its solution using a non-classical method, but also en-

couraged preliminary characterizations of a conceptual model, suggested to implement

the proposed method. A concept-based, logic-based, language-independent, cognitively

inspired approach is presented, which has the potential to contribute to tackling the

problem. The feasibility of constructing a blend in the described manner exemplifies

the suggestion of how this form of noun-noun combinations could be approached in

models similar to the one given in this chapter. Nevertheless, the chapter proposes

1One way is to compare the percentage of the entity’s enclosing frame that is already in a generaliza-

tion to the rest of the frame not included in this generalization.
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ideas to confront some challenges but raises others, which need further elaboration and

formalization.

The presented approach amounts to developing conceptual interpretations for creat-

ing new concepts. This is directed to emulate (creative) thinking via utilizing cognitive

capabilities in making analogies and blends of concepts. The intuition behind the emula-

tion goes as follows. While the mental process of interpretation (of a new modifier-head

compound) is evolving, a meaning is ‘invented’ online using a cross-domain reasoning

process. In this process, a virtual copy of the head noun is first thought of or imagined.

Then, the copy is tweaked in a sense affected by the modifier noun’s essential traits or

salient characteristics.1 In such a process, it makes sense to further assume that the

newly created meaning can be a combination of the salient characteristics of the two

words appearing in the compound, depending on how much in common the two words

have, and on one’s background knowledge. In the suggested model’s terms, one can

say that the frames defining the newly created concept result from blending the salient

frames defining the composing concepts. The resulting features depend on (i) the or-

ganized entities representing the modifier and head concepts, (ii) previous encounters

of the meanings (that is, enforcing previous experiences), as well as (iii) how a head

noun may “look like” when it is attributed to the modifier noun. For instance, how may

a BOX look like when it is attributed to a BOOK in the compound BOOK BOX, and how

may a GLASS look like when it is attributed to a SNAKE in the compound SNAKE GLASS,

etc. Note that the “saliency” of a concept’s feature or trait results from enforcing and

re-enforcing repeated experiences that are related to the concept’s defining frames, and

this is one reason why notions about the ant colony optimizations’s “pheromone trails”

are recalled here.

I believe this agrees with people’s continuous re-conceptualization of their under-

standings of conceptions as they are encountered over time (and in different contexts).

I do not claim, however, that this is precisely how concepts are processed mentally, nei-

ther do I claim that this way always gives best meaningful outputs. There are some

inspiring and motivational reasons, however, why a combination is proposed to be pos-

sibly modeled as explained. For example, the principles given in Costello and Keane

[2000]; Keane and Costello [2001], the developmental psychology literature in [Lam-

berts and Shanks, 1997; Mareschal et al., 2010, for instance], the discussions in Gust

et al. [2011], the studies and experimental results in Wisniewski [1997]; Wisniewski

and Gentner [1991], the discussions of concepts in Chapters 1.2.2 and 4, and the

1When one encounters BOAT VIRUS, for instance, one would normally start to think about VIRUS and

tweak it by BOAT, but not about BOAT first.
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other ideas (of Chomsky; Fodor; Hampton) mentioned within this chapter’s discussions

(cf. section 7.2.3). All this provides a support from research in cognitive science why

novel combinations are proposed to evolve the given way. Moreover, this way allows a

form of blending that respects the dual process of comparison and integration, on which

famous models are already based (cf. Estes [2003]; Gagné [2002]; Keane and Costello

[2001]; Levi [1978]), yet relational possibilities still can only be suggested by the modi-

fier, which is the source concept in the current case (but it is not unusual; cf. Gagné and

Shoben [1997]; Wisniewski [1997]; Wisniewski and Gentner [1991]).

From a modeling point of view, the way analogy-making is made use of in identi-

fying common parts of the source and target concepts of a modifier-head compound,

in generalizing them, and creating blends, serves maintaining relational and attribu-

tive combinations at the same time. However, the implicit relational possibility that

analogy provides us with between the head and the modifier still does not account for

many of the different cases that can be encountered (because a combination B=“S T ”

is interpreted as “T that looks-like S” or “T that is in-the-form-of S”), though it seems

promising and could be improved by using the relationships between the underlying

frames of the given concepts.

Of course, neither HDTP nor the CB framework alone intend to solve the challenges

altogether, but the method presented here is considered a first starting step towards the

interpretation of noun-noun compounds using a new concept-based perspective. It pre-

sumably overcomes some representation challenges that are usually faced in designing

cognitively inspired models of (computational creativity and) general intelligence; the

model is promising and can be used in other applications, I presume. The encoding

of rated experiences and the use of levels of entrenchment for concepts in comparable

concept-based models can help in achieving solutions to other challenges, such as when

concepts get changed or externally affected by newly observed facts.
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8

An Implementation-Oriented

Explication of Analyzing

Counterfactual Conditionals

8.1 ‘Being Smart’: Essences and Mechanisms

There is a growing need to identify various benchmark aspects of what makes humans

more generally intelligent than other cognitive beings. Particular aspects that charac-

terize human-level cognition (e.g. creativity and rationality) are identified in former

chapters (cf. Chapters 5 and 6). This chapter identifies an additional benchmark as-

pect: how humans analyze counterfactual conditionals? The chapter emphasizes that

the problem of analyzing counterfactual conditionals is crucial to be identified as a

benchmark aspect in artificial systems that aim at modeling general intelligence.

Proposing methods (or entire systems) that can abstractly or computationally model

identified aspects is of no less importance, since a better understanding of how a spe-

cific aspect operates may better be realized when the methods efficiently describe how

an aspect works. Aiming at an implementation-oriented explication, the chapter thus

investigates the roles of cognitive mechanisms responsible for reasonable analyses of

counterfactuals. It proposes how to computationally contribute to solving the problem

by AGI systems, and point out some challenges that artificial systems may encounter in

computationally solving this problem. As in former chapters, the given arguments in the

current chapter show that the operational utilization of analogical mapping and concep-

tual blending is helpful in overcoming these challenges. In fact, this utilization leads to

reasonable analyses of counterfactual conditionals in artificial cognitive systems.

This chapter seeks to achieve three connected goals concerning the problem of ana-
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lyzing counterfactual conditionals:

1. First, it attracts the reader’s attention to humans’ cognitive competency of ana-

lyzing the reasonability of counterfactual conditionals. This sheds light on the

importance of a problem that has been maltreated in artificial systems that aim

at modeling human-comparable intelligence, despite its wide importance and de-

spite its long history across several fields (cf. [Byrne, 2005; Fauconnier and Turner,

1998; Lewis, 2001; Turner and Fauconnier, 1998, for example]).

2. Secondly, it discusses cognitive phenomena that could be responsible for this par-

ticular competency in humans. Here, it is argued that the ability to analyze this

kind of conditionals is one of the essential aspects of intelligence, which needs to

be better treated and better understood when building artificial cognitive systems.

3. Finally, the chapter shows that the analyzability has the potential to be represented

and computed by integrating the functionalities of analogy-making and concep-

tual blending; two of the fundamental, multifaceted cognitive mechanisms that

have proved to play important roles in endowing cognitive systems with essences

of cognition (cf. [Fauconnier and Turner, 2002; Hofstadter, 2001; Mart́ınez et al.,

2011, for example] and Chapters 5 and 6).

The rest of the chapter is structured as follows. The problem of counterfactuals is in-

troduced in section 8.1.1. An elaboration on how a cognitive system might approach

the problem is conceptually discussed from a high-level perspective in section 8.2. In

section 8.3, a proposal on how to formally achieve this is presented. A detailed worked-

out example is given in section 8.4, before section 8.5 concludes the chapter with final

remarks.

8.1.1 Counterfactual Conditionals (CFC)

A counterfactual conditional (from here on CFC), is a conditional sentence in the sub-

junctive mood: an assumption-conclusion conditional that designates what would be

(or could have been) the case if its hypothetical antecedent were true. CFCs are also

known as subjunctive conditionals or remote conditionals. They are contrasted with

both

1. “material conditionals”: in which the antecedent and the consequent may have no

relation in common, yet the conditional itself can be true (because its truth value

depends only on those of the antecedent and the consequent); and
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2. “indicative conditionals”: which can be thought of as operations given by state-

ments of the form “If antecedent, (then) consequent”.

Although indicative conditionals, too, may be sometimes seen as contrary-to-fact state-

ments, a straightforward comprehension difference between indicative and subjunctive

conditionals is classically shown by the well-known Oswald/Kennedy pair of examples

given by the sentences 8.1 and 8.2 (cf. Adams [1970]):

If Oswald did not kill Kennedy, someone else did. (8.1)

If Oswald had not killed Kennedy, someone else would have. (8.2)

Sentence 8.1 shows an indicative conditional, while sentence 8.2 is a subjunctive ver-

sion. The majority of people would accept the former as reasonable yet reject the latter

(cf. Adams [1970, 1975]; Pearl [2011]). Another difference is given in Santamaŕıa

et al. [2005], where participants read presupposed facts very rapidly, indicating that

a “priming effect” occurs when human participants read CFCs and not when they read

indicative conditionals.

Table 8.1 gives a general form and some examples of other (sentences that para-

phrase) counterfactual conditionals. A major part of the CFCs can be given in the gen-

eral form of sentence 8.4, but other sentences may also be paraphrased to agree with

this form. For example, sentence 8.5 can be written as:

If Nashwa had not cooked the dinner,

then Ahmed would have cooked the dinner. (8.3)

The general form of sentence 8.4 has two parts: an antecedent (i.e. the assumption) and

a consequent (i.e. the conclusion), which are both hypothetical statements. According

to standard semantics, both parts could be ‘false’ (at least the assumption is a known

falsehood). The concern, thus, is not with binary truth values of CFCs, like the case for

material implications, but rather with analyzing and verifying CFCs and their conditions

for being considered meaningful or reasonable.

In addition to the importance of their computational evaluation per se, CFCs situate

themselves within entertaining scopes of end-to-end artificial systems. Counterfactual

reasoning is involved, and plays an important role (one way or another), in problems

and puzzles of domains as diverse as learning, theory-of-mind, moral judgement, or

decision-making under risk and uncertainty. In the field of theory-of-mind, for example,

the children in the famous muddy-children problem (cf. Shoham and Leyton-Brown
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If (it were the case that) antecedent,

then (it would be the case that) consequent. (8.4)

Ahmed would have cooked the dinner if Nashwa had not done so. (8.5)

If Mubark had not stepped down after the revolution in 2011,

Egypt would have suffered from a military coup in 2011. (8.6)

If Mursi had stepped down in 2012,

Egypt would not have suffered from the military coup in 2013. (8.7)

In France, Watergate would not have harmed Nixon. (8.8)

If Julius Caesar was in command during the Korean war,

then he would have used the atomic bomb. (8.9)

If Julius Caesar was in command during the Korean war,

then he would have used the catapult. (8.10)

Table 8.1: A list of sentences that represent or paraphrase counterfactual conditionals.

[2009]) take actions because they fail to verify “what-if” situations that are contrary to

their (common) knowledge. The general case of the problem is described in Table 8.2,

where n honest, logical-reasoner children commonly know that both (i) 1 ≤ k ≤ n of

them is muddy, and (ii) the question: “do you know whether you are muddy?” have

already been asked publicly for k rounds. A child would know she is muddy not only

by the common knowledge but also by first thinking to herself: “if I were not muddy, I

would have known by the (k − 1)st repetition of the question (the common knowledge)

that the rest already know they are muddy”. Then, and as the child fails to verify this

CFC, the child concludes she must be muddy.

A group of n children played in the mud. Their father notices that k of them have

mud on their foreheads and says: “at least one of you has mud on his forehead”. The

children can all see each other’s foreheads, but not their own. All of the children are

intelligent, logical reasoners, honest, and answer simultaneously. The father keeps

repeating the question: “do any of you know that you have mud on your forehead?”

without receiving any responses for exactly k − 1 rounds. Immediately after the kth

repetition of the question, all the children with muddy foreheads raise their hands

simultaneously, indicating that they now know they are the k muddy children.

Table 8.2: A description of the “Muddy Children” situation (adopted from [Shoham and

Leyton-Brown, 2009, pp. 393–394]).
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8.1.2 Analyzing CFCs by Humans and in Artificial Systems

A CFC is considered to be verifiable if its contrary-to-fact conclusion consistently fol-

lows from its contrary-to-fact assumption by a reasonable judgement. The analysis of

a CFC is the reasoning process that leads to the judgment, which is assumed to hold

in a (third) contrary-to-fact world that, in turn, depends on the reasoner’s background

and reasoning strategies. The verification of a CFC is a judgement of reasonability that in-

volves the subjective importation of knowledge-based facts (cf. [Lee and Barnden, 2001,

p. 8]) and is weaker than logical validation. Yet this judgement can always be disputed

(cf. Goodman [1947]; Quine [1960]), using CFCs like sentence 8.9 and sentence 8.10,

for instance (cf. section 8.4).

The reasonable analysis of CFCs is seen as a fundamental cognitive competency that

may be used to designate, evaluate, and compare superior cognitive systems. It obvi-

ously requires a cognitive system to proficiently create contrary-to-fact conceptions, in

order to reasonably analyze a given CFC. Humans, the ultimate exemplar of cognitive

beings, are without any doubts the unique species that can perform such a reasonable

analysis. They can do this because, in particular, they utilize logical reasoning, create al-

ternatives to reality, communicate with language, hold rational beliefs, show rational be-

havior, as well as employ several cognitive capacities (cf. Abdel-Fattah et al. [2012a,b]).

It is dazzling how humans smoothly analyze a given CFC and may convincingly estimate

a rough truth degree, and even argue about it. In general terms, this can be achieved in

humans by the imagination of a whole set of alternative conceptualizations that differ

in certain aspects from their real world counterparts, but in which the CFC’s antecedent

holds. The reasoning process is then carried out in creatively imagined worlds, yielding

coherent results (cf. Byrne [2005]). It is proposed that this process can be achieved

in artificial systems when the system is endowed with (computationally plausible ver-

sions of) such abilities. In the following, a short literature overview identifies the most

important ones of these abilities.

8.1.3 A Crisp View of Specific Treatments

The representation and verification of CFCs have always delivered debates within many

disciplines, like philosophy, psychology, computer science, and linguistics. Important

contributions in the literature are mentioned to back up the ideas in the later discussion.

Philosophical treatments: Beside Goodman’s discussion of CFCs (cf. Goodman [1947]),

another classical line of work by Lewis and Stalnaker uses possible world seman-

tics of modal logic to model CFCs based on a similarity relation between possible
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worlds. According to Lewis’s account (cf. Lewis [2001]), the truth type of a CFC in

the form of sentence 8.4 can be either vacuously true, non-vacuously true, or false.

This depends on the existence of a closely similar possible world to the real world,

in which the antecedent and the consequent are true. The account is unclear as to

what ‘similarity’ (or ‘closeness’) mean, and it did not use values to represent truth

degrees.

Psychological treatments: Many cognitive scientists would agree that reasoning, in

general, requires the creative production of mentally constructed conceptual en-

tities (cf. Gentner and Stevens [1983]; Johnson-Laird [1983]; Johnson-Laird and

Byrne [1991]; Mareschal et al. [2010]). The creation and verification of CFCs, in

particular, as alternatives to reality are widely explored in the pioneering work of

Byrne (cf. Byrne [2005]), where many experiments about reasoning and imagi-

nation are carried out. In Byrne’s context, human imagination is seen as rational

thinking, where people rely on background knowledge when they try to think

logically. Accordingly, “a key principle is that people think about some ideas by

keeping in mind two possibilities” (cf. Santamaŕıa et al. [2005]). This means that

two mentally constructed domains are needed in assessing the truth of a given CFC

(which are treated in this thesis as conceptual spaces, and referred to as source

and target domains).

Linguistic treatments: Classical approaches view language as consisting of statements

that can be reasoned about in terms of their truth functions. But some linguists

also deal with meaning construction in natural language by means of mentally

constructed spaces and their blending (cf. Coulson [2006]; Fauconnier [1994]).

Of a particular interest to this chapter is Lee and Barnden’s analysis of CFCs in

cognitive linguistics (cf. Lee and Barnden [2001]), which based on the mapping

between different reasoning spaces and the drawing of analogies between these

spaces. This analysis is also implemented in an AI reasoning system and applied

to the verification of certain CFCs (cf. Lee and Barnden [2001]), which further

indicates that a form of analyzing CFCs can already be computed by artificial

systems.

Algorithmic treatments: Recently, an algorithmic approach towards CFCs was pre-

sented by Pearl (cf. Pearl [2011]). Complete procedures for discerning whether

a given counterfactual is ‘testable’ and, if so, expressing its probability in terms

of experimental data are given in Shpitser and Pearl [2007]. Pearl’s basic thesis

of treating counterfactuals states that their generation and evaluation is done by
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means of “symbolic operations on a model” that represents the beliefs an agent

has about the “functional relationships in the world” (cf. Pearl [2011]). In this

way, Pearl views the procedure as a concrete implementation of Ramsey’s idea

(cf. Ramsey [1929]), in which a conditional is accepted if its consequent is true

after its antecedent is (hypothetically) added to the background knowledge, making

whatever minimal adjustments that are required to maintain consistency.

8.2 A Tale of Two Multifaceted Mechanisms

The modeling of counterfactual reasoning is not only highly disputed, but can also be

considered to be AI complete: while seemingly easy for humans, the treatment of CFCs

poses a hard problem for artificial systems. However, the utilization of computationally

plausible cognitive mechanisms in the analysis of CFCs appears to be achievable in arti-

ficial systems. The analysis of CFCs is a clear competency of humans (cf. section 8.1.2),

which obviously requires a high level of artificial intelligence if cognitive agents were

to acquire this competency (or approximate it) in any cognitive system that models it.

Thus, and particularly when it comes to developing computational cognitive systems

that can analyze the reasonability of CFCs, this competency is considered as a complex-

structured mechanism. The verification of CFCs is proposed to be achieved by means

of reducing this complex mechanism to simpler, rather essential, cognitively motivated,

and computationally plausible mechanisms (such as analogy-making and conceptual

blending).

By abstracting the major ideas of the various treatments given in section 8.1.3, one

can discover that ‘similarity’ between ‘domain worlds’ (or creatively imagined ‘concep-

tions’) plays a shared role in all the treatments. One can also note that an artificial

modeling system may need to, at least, develop processes that (i) consider ‘conceptual

domains’ as inputs (cf. section 1.3), (ii) compare the ‘similarity’ between these domains

(cf. Chapter 2), and (iii) judge the reasonability of a given CFC by deciding whether

or not a ‘blend’ of these concepts ‘remain consistent’ after ‘adding the antecedent’ of a

given CFC to the background knowledge.

Analogy Making: The Role of “The Core of Cognition”: Analogies are an important

aspect of reasoning and “a core of cognition” (cf. Hofstadter [2001]), so they can be

used to explain various types of behavior and decisions (cf. Abdel-Fattah et al. [2012a];

Kokinov [2003] and Chapter 6). Analogy is important for concept learning and can

also be seen as a framework for creativity (cf. Abdel-Fattah et al. [2012b]; Hofstadter
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and the Fluid Analogies Research Group [1996]; Holyoak and Thagard [1996] and

Chapter 5). The ability to see two dissimilar domains as similar, based on their common

relational structure, is fundamental and ubiquitous for human cognition (cf. Gentner

et al. [2001]). Former chapters show that an analogy engine can be useful in modeling

several aspects of cognition. This chapter continues the same trend and shows that

it also helps in analyzing CFCs in computational cognitive systems. Like in former

chapters, HDTP is used as an example of an analogy-making system for computing

analogical relations between two domains (cf. Chapter 3).

Creation by Integration: The Role of “The Way We Think”: Conceptual integration

(conceptual blending, or CB) is claimed by Fauconnier and Turner to underly “the way

we think” and explain “the nature and origin of cognitively modern human beings”

(cf. Fauconnier and Turner [2002]). Chapter 4 thoroughly presents CB as a multifaceted

mechanism that facilitates the creation of new concepts by a constrained integration of

available knowledge.

The Combined Role: Analyzing CFCs by Employing Analogies and CB: Based on

section 8.1.31, the treatments along the various directions appear to utilize humans’

cognitive abilities of:

1. conceptualizing hypothetical domains (as alternatives to reality) that contain the

necessary background knowledge,

2. intelligently drawing analogies between parts of the domains (and associating

some of their constituting elements with each other), and

3. constructing a variety of possible consistent conceptualizations, in which the given

CFC can be verified.

Therefore, the ideas of CB may be used, side by side with analogy-making, to analyze

the reasonability of CFCs by blending two input mental spaces and constructing a space,

in which the analysis of CFCs can take place, referred to as “counterfactual blend spaces”

(cf. section 8.3.2). In section 8.3, the main idea is explained. The basic argument is that

the combination of (i) a powerful analogy engine and (ii) the ideas of CB, potentially

endows cognitive systems with the ability to reasonably analyze (some) CFCs in an

intuitive way. From an implementation-oriented perspective, this implies that artificial

1See also Byrne [2005], where many cognition experiments are given that further supports the pro-

posed view.
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models can analyze the reasonability of CFCs as long as computational versions of the

aforementioned cognitive mechanisms, in particular, can be utilized.

8.3 Towards a Treatment Formalization: Constructing

Counterfactual Blends

A Summarized Description of the Treatment: This section explains that (at least

some) CFCs can be analyzed by constructing appropriate blend spaces, using analogy

between input domains that correspond to the antecedent and the consequent of a given

CFC (the form of sentence 8.4). The given procedure is based on a structural mapping

of two input domains that correspond to the antecedent and the consequent of a given

CFC. The structural mapping gives rise, in turn, to several blend candidates, which im-

port major elements (i.e. knowledge or conceptual entities; cf. section 1.3) from one or

the other input domain. The importation may render some blend candidates (logically)

inconsistent, which reflects a non-reasonability of the given CFC. But those blend can-

didates that satisfy specific criteria (beside being consistent) will reflect a given CFC’s

reasonability. In this way, a heuristics is formulated to choose the most plausible candi-

dates, guided by the (logical) structure of the given CFC based on some fixed principles

(cf. section 8.3.2).

In the given treatment1, the analysis of a given CFC (in the general form of sen-

tence 8.4) requires the creation of two mental domains for each of the involved parts

(i.e. the antecedent and the consequent). In order to find similarities and suggest com-

mon background between the two parts, analogical mapping is used to compare the

structural aspects in both domains. Associations between the two mentally constructed

domains can thus be found. Finally, a logically consistent combination of the two do-

mains can be suggested, as a newly created blend of them, in which the reasoning

process can hold. This cross-domain reasoning process will take place in a blend space

that forms the setting to verify the CFC. Constraints could be imposed to give prefer-

ence to one blend over another. Additionally, each conceptualization may be given a

rank reflecting its relative plausibility.

To put these (and section 8.2’s) ideas into a formal framework, the process will be

split into two steps:

1The approach may seem to have common characteristics with Lee and Barnden’s or Fauconnier’s,

because all of them are more or less inspired by analogy and blending. However, the treatment in this
chapter adopts a more general blending procedure and use a different method and heuristics to suggest

the construction of blends.
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1. the generalization of the given domains of a CFC (via analogical mapping), and

2. the construction of a counterfactual space (via conceptual blending).

Each one is explained in more details in the following.

8.3.1 Generalization and Structural Mapping

The mapping is based on a representational structure used to describe the two domains.

In a computational system these descriptions may be given in a formal language, like

first-order logic. The strategy applied here is based on the HDTP framework (cf. Schw-

ering et al. [2009a] and section 3.1), but this chapter uses a schematic form of natural

language for the given examples, in order to improve readability.

The basic idea is to detect structural commonalities in both domain descriptions by a

generalization process. Then, based on this generalization, objects from both domains

that have corresponding major roles can be identified. As an example consider the

following parts of the real and hypothetical worlds according to sentence 8.3:

Nashwa cooked the dinner (REL)

Ahmed cooked the dinner (HYP)

X cooked the dinner (GEN)

Sentences such as (REL) and (HYP) can be generalized by keeping their common struc-

ture and replacing differing elements by variables in a generalization (GEN). This gen-

eralization gives rise to associations, in particular:

X ∶ Nashwa ≜ Ahmed.

In Figure 8.1, common parts of representations of (REL) and (HYP) (particularly, Nashwa

and Ahmed) are assumed to be identified by an analogy between their enclosing, struc-

tured, input domains (REAL and HYPO, respectively), which represent the antecedent

and the consequent, respectively, of this example’s CFC (cf. sentences 8.5 and 8.3).

It is clear that the richer the conceptualizations of the domains, the more correspon-

dences may arise. However, an essential point in constructing the generalization is the

principle of “coherence”, which states that if a term occurs in multiple statements of a

domain description, it should always be mapped to the same corresponding term of the

other domain (i.e. consistent reusability of mapped terms). Such a reusable mapping of

terms is a good indicator for structural correspondence.
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identification

REAL HYPO

GENERIC

Nashwa Ahmed

X

Figure 8.1: In the GENERIC space, the element/term X generalizes/anti-unifies two

elements/terms that play similar roles in their corresponding domains. This illustration

is based on sentence 8.3, where SPACE1 and SPACE2 of Figure 4.3 (cf. page 86) are

replaced by REAL and HYPO, respectively (also cf. section 8.3.1).

8.3.2 Reasonability Principles for Counterfactual Blend Construc-

tion

The established mapping is used as a basis for constructing counterfactual blend can-

didates. (A “counterfactual blend” will henceforth be denoted CFB.) Statements from

both input domains can be imported, and the mapping is applied for merging them. But

one should note that the objects, which are covered by the mapping, must play the same

role in both input domains. Therefore, their simultaneous existence in a CFB is consid-

ered incompatible, although normal CB explicitly allows simultaneous occurrence of

corresponding entities from both domains in the blend space (cf. Coulson [2006]; Fau-

connier and Turner [2002] and the explanations given in section 4.3.1). Thus, for each

such object, the proposed treatment must have a way to reasonably choose one of the

alternatives in a systematic way. The following “reasonability principles” are proposed

to guide the construction of CFBs:

(P1) “Counterfactuality”: A CFB candidate should satisfy the antecedent of the given

CFC.

(P2) “Choice”: For every matching pair, one alternative is allowed to be imported into

a CFB candidate.

(P3) “Consistency”: A CFB candidate should sustain (logical) consistency.

(P4) “Maximality”: A CFB candidate should contain as many imported instances of the

original axioms as possible.

As it rules out many meaningless and unneeded possibilities from the beginning,

(P1), the principle of counterfactuality, will be the starting point of departure to achieve

a reasonable CFB. It forces the antecedent of the CFC to hold in a CFB candidate and
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thereby provides the first reasonability criterion for selecting alternatives from the map-

ping pairs. In a next step, an initial description of a CFB candidate can be enriched

by importing additional statements from any of the two input domains, keeping all the

principles satisfied. During importation, all terms covered by the mapping have to be

replaced coherently by the chosen alternative.1 If no alternative for a term has been

chosen yet, a choice has to be made and marked for all subsequent occurrences of that

term. In general, the process should try to maximize the number of imported statements

to allow for inferences of concern. One however has to assure that the constructed CFB

stays (logically) consistent.

These reasonability principles do not always lead to a unique CFB by allowing for

multiple variants. This should not be considered as a downside, but rather an essentially

desirable feature in implementations of artificial systems. Indeed, this feature may not

be easily achieved in classical AI or cognitive systems without emphasizing the role that

CB plays. Thanks to the ideas of CB, this feature allows for alternative verifications of

a given CFC (cf. section 8.4), where the existence of multiple (reasonable) CFB spaces

simulates the indecisiveness of humans in judging a given CFC. Remember that the

judgement of a given CFC may always be disputed (cf. Goodman [1947]; Quine [1960],

sentence 8.9 and sentence 8.10), which means that a modeling system may need to

allow the possibility of having several (reasonable) CFB candidates for arguing about

the same given CFC in several ways. A more concrete explanation is given at the end

of section 8.4. A simple example is first presented in the following to demonstrate

the discussed ideas, leaving the thorough discussion to the more detailed, worked out

example in section 8.4.

A Simple Example

The following is a simplified explanation of how a CFC can be formalized. The CFC

used in the explanation is a metaphor discussed in Turner and Fauconnier [2003]:

If Clinton were the Titanic, the iceberg would sink. (CLT)

1This discussion implies that (P1), in particular, has a remarkable effect, not only on ruling out the

importation of many meaningless and unneeded possibilities (e.g. inconsistent statements), but also on
keeping a CFB candidate reasonable by enforcing modifications on some of the statements that may

be imported: in this way, an inconsistent statement may have the potential to be modified to another
version that can be imported. The imported version of the modified statement reasonably cohere with all

the imported statements in the CFB candidate in hand (also cf. footnote 1 on page 167).
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The metaphor introduces two input domains. The first domain is that of political af-

fairs in Washington, which contains among other things knowledge entities given in

sentences (CL1) and (CL2), whereas the second domain comprises the events around

the Titanic in some facts, including (TI1) and (TI2) in particular:

Clinton hits the scandal, (CL1)

Clinton does not sink, (CL2)

The Titanic hits the iceberg, and (TI1)

The Titanic sinks. (TI2)

From this data alone, a generalization can be constructed, consisting of generalized facts

that can be instantiated in both input domains. In the current case, the generalization

would contain only one proposition:

X hits Y . (Gen1)

The generalization in (Gen1) gives rise to an analogical mapping:

X ∶ Clinton ≜ The Titanic Y ∶ the scandal ≜ the iceberg.

Based on this analogy, a CFB can now be constructed using the four principles stated ear-

lier. According to the principle of counterfactuality (P1), the antecedent of the current

CFC (i.e. statement (CLT) ) has to be introduced into the blend:

Clinton hits the iceberg. (B1)

This instantiation allows already to choose alternatives according to the principle of

choice (P2):

X ↦ Clinton Y ↦ The Titanic.

The principle of maximality (P4) invites the importation of additional facts from the

input domains into the CFB (substituting terms as necessary) such as:

Clinton does not sink, or (B2)

Clinton sinks. (B3)
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Here (B2) is imported from (CL2), and (B3) is imported from (TI2), by applying the

substitution. However, the resulting blend candidate can be rendered inconsistent in

case it contains both (contradictory) facts (B2) and (B3). The principle of consistency

(P3) forces the removal of (at least) one of the conflicting facts, (B2) or (B3), from the

blend candidate. For the intended interpretation, one would remove (B3). Assuming

suitable background knowledge, like “if A hits B, then A or B sinks”, one can logically

derive the the conclusion of the original CFC in statement (CLT). Note that if (B2)

were selected to be removed from the (inconsistent) blend candidate instead of (B3),

keeping (B3) itself in the constructed blend candidate, one could still derive another

conclusion of the original CFC in statement (CLT). For example, it would then be the

case that “Clinton hits the iceberg but sinks”, which could be argued as a less-acceptable

conclusion.

Digression: Some Remarks

Based on Abdel-Fattah et al. [2013a,b], the approach is presented here in a very general

way that avoids discussing issues of deeper (mostly philosophical) nature. For instance,

no explicit constraints are mentioned here on what counts as an admissible set of in-

puts. Absence of such constraints can allow the anchoring of input domains to be in

metaphorical, impossible, or phantasy worlds, such as “Star Wars”. Still, in such cases

it would also be unclear whether to consider the conditionals as counterfactuals (with

“factuality” being described by “impossible” worlds) or counterpossibles (with impossible

antecedents). The latter notion of “counterpossibles” is defined by Lewis to refer to con-

ditionals with impossible antecedents, and are always vacuously true regardless of the

consequent. Some approaches would, in addition, argue in favor of a representation

language for CFCs that is different from the one the HDTP framework considers. One

natural proposal would then be to express axioms in the domain theory as weighted

constraints capable of being broken at a cost, such as the case in Bello [2012].

This type of questions is not particular to the work presented here, and is commonly

encountered, yet known in the history of CFCs to be rigorous and painstaking. In the

current chapter, thus, no distinction is made between kinds of CFCs nor between pos-

sible categorizations of concepts representing their antecedents and consequents. To

recall, the presentation only focusses on considering the three facets of the problem

stated in section 8.1, namely: (i) emphasizing that the problem is crucial for considera-

tion by systems aiming to imitate aspects of humans GI, (ii) investigating the cognitive

mechanisms responsible for reasonable analyses of counterfactuals, and (iii) proposing
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how to computationally contribute to solving the problem by utilizing these mechanisms

in such systems.

8.4 An HDTP-Based Explication

A worked out example is given in this section to provide a more detailed explanation

of the procedure and constraints described briefly in the previous section. The example

also provides different lines of argumentation for verifying one given CFC.

The Caesar-Korean CFC Example: Recall the following conditional from section 8.1.1,

which is already listed in Table 8.1 and based on [Quine, 1960, p. 222] and Goodman

[1947]:

If Julius Caesar was in command during the Korean war,

then he would have used the atomic bomb. (8.9)

This conditional is to be interpreted in a “hypothetical world”, as it combines elements

(Caesar and the Korean War) that do not belong together in the real world. Such

hypothetical world can be constructed by blending two domains, the Gallic Wars (RE)

(for Roman Empire), on the one hand and the Korean War (KW), on the other. To

formalize the example, the background knowledge in the two domains that are believed

to be relevant to this discussion are stated first (N.B. temporal and tense aspects are

disregarded in the given statements and representations). For the (RE) domain, this

background knowledge can include the axioms:

Caesar is in command of the Roman army in the Gallic Wars, (RE1)

The catapult is the most devastating weapon, and (RE2)

Caesar uses the most devastating weapon. (RE3)

On the other hand, the (KW) domain can include the axioms:

McArthur is in command of the American army in the Korean War, (KW1)

The atomic bomb is the most devastating weapon, and (KW2)

McArthur does not use the atomic bomb. (KW3)
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Based on these axiomatizations, and according to the ideas discussed in section 8.3,

a generalization can be computed. The statements that will enter the generalization

by applying HDTP are only those, for which instances are present in both domains.

According to the given representation, this includes:

X is in command of the Y army in Z, and (G1)

W is the most devastating weapon. (G2)

From the generalization, a mapping of corresponding terms in both domains can be

derived:

X ∶ Ceasar ≜ McArthur Y ∶ Roman ≜ American

Z ∶ Gallic Wars ≜ Korean War W ∶ catapult ≜ atomic bomb.

Recall from section 5.4, in particular Figure 5.3 (cf. page 108), the way in which

the blending process is proposed to function based on the HDTP framework. Accord-

ingly, CFB candidates can now be constructed by merging the (RE) and (KW) domains,

identifying axioms and entities matched by the generalization, and keeping the four

reasonability principles for CFB satisfied (cf. section 8.3.2). For the current example,

this implies that the antecedent of the CFC under consideration (sentence 8.9) must

be satisfied in each reasonable CFB candidate (according to (P1), the principle of coun-

terfactuality). It also implies that the CFB is enriched by “injecting” non-contradicting

knowledge entities from the (RE) and (KW) domains. The generalized part that will

appear in any CFB must therefore replace each occurrence of X by Caesar, each occur-

rence of Y by American, and each occurrence of Z by Korean War. So, one may start by

insisting that a CFB candidate contains:

Caesar is in command of the American army in the Korean War, (B1)

then continue enriching the CFB candidate by importing further statements from the

input domains, such as:

The atomic bomb is the most devastating weapon, (B2)

Caesar uses the most devastating weapon, (B3)

Caesar does not use the atomic bomb, (B4)

and so on. However, the unconstrained enrichment of a CFB by the mere injection of
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knowledge entities from both domains may render it inconsistent or unreasonable. For

example, a CFB that injects all of (B1), (B2), (B3), and (B4) violates the consistency

principle (P3) because (B4) contradicts what could be inferred from (B2) and (B3),

namely (B5):

Caesar uses the atomic bomb. (B5)

In Figure 8.2, depictions are given to illustrate: (i) the Korean War domain (KW),

(ii) the Gallic Wars domain (RE), (iii) the given generalization, and (iv) two (reason-

able) CFB candidates (their construction is discussed below). For simplicity, Figure 8.2

does not identify the terms but only the statements that are composed of those terms.

The principle of counterfactuality (P1) can single-handedly prevent the importation

of many (implausible) sentences that can be injected into a CFB candidate.1 In the

current example, (P1) already enforces the choice for three of the mapped terms:

X ↦ Caesar, Y ↦ American, Z ↦ Korean War.

Therefore, one can no longer import (implausible) statements such as:

McArthur does not use the atomic bomb, nor (KW3)

McArthur is in command of the Roman army in the Gallic Wars, (NoWay)

into any CFB candidate (otherwise the candidate is clearly unreasonable). Nevertheless,

many CFB candidates can, in principle, still be constructed. A CFB candidate may import

as many (plausible) statements as possible from any (or both) of the input domains

(but perhaps not, simultaneously, all of them); sustaining its reasonability by making

use of the guiding principles. However, the importation of one (plausible) statement

or another may be found to cause reasonability problems. That is, a statement can

have the potential to be imported into a CFB candidate, but may not be imported into

such a candidate because this is practically prevented by the reasonability principles

(otherwise the importation will render the CFB candidate unreasonable). For instance,

consider (RE2) and (RE3) which infer (by classical deduction in the (RE) domain):

Caesar uses the catapult. (RE4)

1In fact, the principle of counterfacuality does more than that. One may have noticed that (B2) is

an imported version of (KW2), and (B3) is an imported version of (RE3), whereas (B4) is not a directly
imported version of (RE4), nor of any other statement. (B4) is a rather restrictedly imported version of

(KW3), in which the term Caesar replaces McArthur (according to (P1) ).
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An unmodified version of (RE4) can, in principle, be imported into a CFB candidate (un-

like (KW3), which cannot be imported into any CFB candidate unless it is modified by

(P1)). But it is possible that one of the reasonability principles disallow the importation

of (RE4) into a specific CFB candidate, especially when contradicting statements have

already been imported into the same CFB candidate1.

One could in general get several, reasonable CFB candidates for the same CFC, but

some of them may eventually be (logically) equivalent, according to our principles and

heuristics. Two (non-equivalent) blend spaces for the CFC in hand are given in Fig-

ure 8.2, and described in the next paragraphs.

G1

G2

KW1 KW2

KW3

RE1RE2
RE3

RE4

B1

B2
B3

B2′

B4

B4′ B5

Korean war

Gallic Wars
Generic

Blend(s)

CFB1CFB2

Figure 8.2: An illustration of two possible blend spaces for the CFC of sentence 8.9.

For the sake of simplicity, the illustration does not show the mapped terms but rather

depicts some of the representing sentences given in section 8.4.

(CFB1): The main representational sentences of this blend candidate include (B1),

(B2), (B3), and (B5) (cf. Figure 8.2). This blend reasonably verifies the CFC because

it implies that: “Caesar is in command of the American army in the Korean War and

uses the most devastating weapon, which is the atomic bomb ”. This CFB could be

equivalent to another one that only contains (B1), (B2), and (B3) as axioms, since (B5)

is (consistently) deducible from (B2) and (B3).

Note that (B1) is supported by (P1) and (P2). (B2) is imported using (P2); similarly

(B3). Finally, (B5) is a direct inference of (B2) and (B3). Note that (P3) prohibits

the injection of (B4) into (CFB1): (B4) is an instantiation of (KW3) in which Caesar

instantiates X, but (B4) has a potential clash with (B5).

1The candidate (CFB1) described below, for instance, prevents (RE4) to be directly imported as it
is, because the directly imported versions of (RE2) and (RE3), namely (B2) and (B3), respectively, infer

the statement (B5) that contradicts the imported version of (RE4) (namely, (B4′)). Whilst, (RE4) can
be directly imported, as it is, into another candidate, (CFB2), which does not include “both” imported

versions of (RE2) and (RE3).
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(CFB2): This is an alternative blend space, which reflects the possibility that Caesar

would use the catapult and not the atomic bomb. Its axioms include (B1), (B3), (B4),

and the following sentence:

The catapult is the most devastating weapon, (B2′)

which is a directly imported version of (RE2). Also, in (CFB2):

Caesar uses the catapult, (B4′)

results either as an inference from (B2′) and (B3), or as a directly imported version of

(RE4) (which, itself, can already be inferred from (RE2) and (RE3) in the (RE) domain).

In this (CFB2) blend (cf. Figure 8.2):

1. Caesar is in command of the American army according to (B1),

2. the catapult is considered the most devastating weapon according to (B2′),

3. Caesar does not use the atomic bomb according to (B4), but rather

4. Caesar uses the catapult according to (B4′).

In addition, according to the proposed maximality principle1, (CFB2) is more ‘maximal’

than (CFB1). According to the illustrations in Figure 8.2, (B4′) does not belong to

(CFB1), which means that Caesar cannot use the catapult as an alternative in (CFB1).

8.5 Conclusive Remarks and Related Ideas

The problem of analyzing CFCs has a long history in many disciplines, yet very few com-

putational solution frameworks exist (especially as part of an AGI system). This chap-

ter emphasizes the importance and argues for the feasibility of considering cognitive

mechanisms in attacking this challenging problem. It focusses on the two cross-domain,

multifaceted, cognitive mechanisms, with which the other chapters of the thesis are

also concerned with and proposes a computational strategy to contribute to solving the

problem by cognitive systems. As a proof of concept, and to give a concrete explica-

tion example of applying the main ideas of the suggested strategy, the presentation

was based on the HDTP framework, using a schematic form of natural language to im-

prove readability. But a desirable characteristic of the suggested strategy is its generality,

which allows for applying the presented ideas in other frameworks as well.

1As well as according to the currently given representations, of course.
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The chapter expounds the opinion that the general problem of analyzing CFCs de-

serves to be a benchmark problem for comparing modeling approaches of aspects of

general intelligence and cognition, by considering the evaluation of how they propose

to analyze different types of the CFCs. Not only are certain CFCs clearly quite harder to

imagine or to reason about than others, but the relationships of the entities appearing

in these CFCs (among themselves and between their counterparts in the factual world)

can be hard to handle as well. Nevertheless, a distinction in treating different CFCs

needs to be reflected by such modeling approaches in verifying such CFCs. This would

require considering, among many, many other profound issues, a precise schematization

of CFCs (cf. Lewis [2001]), combined with a cognitive architecture capable of handling

natural language processing and dynamic outlooks on semantics (cf. Veltman [2005]),

in addition to a precise formalization of several characterizing facets of the conceptual

integration paradigm itself (cf. Fauconnier and Turner [2002] and section 4.4).

In future work, the focus should be on answering some of these and other related

questions. For example, in the process of analyzing a CFC, the aspects in which the

real and the hypothetical worlds differ may not be very obvious to identify. Even in his

possible-world semantics treatment of CFCs, Lewis did not give a precise definition of

what a “miracle” is (cf. Lewis [2001]). In any case, the setting of an adequate alterna-

tive CFB space calls for the construction of a (temporary) knowledge domain that may

contain counterfactual knowledge entities. A construction–analysis process, like the out-

lined one, could be what one might expect from an artificial cognitive system. Also, the

presentations in this chapter tried to restrict the form of the CFC to that of sentence 8.4,

though it is still important to identify characteristics of the CFCs, to which the pro-

posed approach can (or cannot) always be applied. No doubt that this is a completely

non-trivial issue, in particular because a unified representational scheme may also be

required. Moreover, actual computational models still need to be deeper investigated in

order to get more practical insights into implementing the presented ideas.
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Conclusions

A summary of the essential issues discussed in the preceding chapters, and some final

elaborations and comments, are given in the following to conclude the text in hand.

Utilization Pervasiveness of Multifaceted, Cross-Domain Mechanisms: The text

has focused primarily on analogical reasoning and concept blending as multifaceted

cognitive mechanisms, providing an overview on how they can be utilized for modeling

an abundance of general intelligence aspects. This was aiming to show that the uti-

lization can model solutions to baffling cognition problems in a wide range of domains,

including reasoning, concept representation and concept manipulation. Both mecha-

nisms (i.e. analogy and blending) can be seen from an abstract perspective as types of

cross-domain reasoning, where the former discussions help in appreciating why estab-

lishing cross-domain connections between seemingly unconnected domains is thought

to be a highly important part of modeling aspects of human-level intelligence. The

discussions also emphasize the importance of assuming why knowledge ought to be or-

ganized in some form of domains, and that an underlying KB has to provide conceptual

entities in groups that serve as input to cross-domain processes. The HDTP framework

supplied a robust and flexible setting for achieving such emphasis.

The concrete set of problems and their suggested solution ideas are expected to

encourage the utilization of organized fusion of conceptual entities, abstraction of con-

cepts, and analogy-based reasoning, in building computational models of cognitive sys-

tems that are able to demonstrate several GI aspects. Employing cognitively motivated

techniques in overcoming challenges related to solving such cognition and general in-

telligence problems is to a large extent still in its very early infancy —no doubt, this

affected the level of presentation throughout the thesis. But the presented application

directions show a notable pervasiveness. In order to continue the overall argument,
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spread over the preceding chapters, this conclusion also argues why accounting for an

integration of these pervasively utilized capacities (when designing a general intelligent

system) might be a good and quite rewarding idea. The following overview of different

domains and scenarios puts into further perspective the significant difference to state-

of-the-art artificial, cognitive systems that the pervasiveness of multifaceted cognitive

mechanisms, predominantly analogy and concept blending, are expected to realize.

Offering Novel Problem-Solving Routes: It is undeniable that AI has made signifi-

cant progress in the field of problem solving over the last decades (cf. section 1.2). In

most cases, however, the power of the current “approaches” is limited. There is, for ex-

ample, the ubiquitous danger of facing the often feared “combinatorial explosion” and

the abyss of underspecification of problems. Applying ideas via utilizing cognitive mech-

anisms might offer an alternative approach to a solution for certain problems, avoiding

thus some classical pitfalls that most AI researchers used to struggle with:1

1. Conceptual blending, or CB (cf. Chapter 4), offers elegant solution ways to look

at puzzles like Smullyan’s “Rate-Time Puzzle” (cf. [Smullyan, 1978, pp. 12]) and

Koestler’s “Riddle of the Buddhist Monk” (cf. Fauconnier and Turner [1998, 2002]).

Particularly, note in solving the “Riddle of the Buddhist Monk” (cf. section 4.3.1)

that, instead of treating two days as separate time spans, they are blended into one,

resulting in a scenario in which there seem to be two monks, moving towards each

other, and meeting exactly in the place the riddle asks for an answer to. Following

this approach, the CB technique does not only give an answer in terms of existence

of the place, but also features a “constructive way” to provide implicit information

on its location.

2. A particularly great benefit is expected from integrating and developing cognitive

mechanisms into general intelligent systems in the branch of (artificial) produc-

tive creativity (cf. Chapter 5 and the model of concept construction, proposed in

Abdel-Fattah and Schneider [2013]; Schneider et al. [2013]). Blending, in partic-

ular, has already been identified as a key element in the concept generation stage

in creative design processes (cf. Nagai [2009]). It is undeniable that a form of

blending is pervasive in most occurrences of human (productive) creativity over

all time (cf. Mart́ınez et al. [2012]): This ranged from old mythology (e.g. “Pe-

gasus” and “Centaurs”) to old and modern storytelling (e.g. , “Alice’s Adventures

1Needless to say, some ubiquitous challenges would remain, such as the time complexity needed for

obtaining satisfying solutions.
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In Wonderland”; cf. Carroll [1869], and “The Hunger Games”; cf. Collins [2010])

to modern product design, lifestyle , and even gaming devices (e.g. the famous

company’s name came to be “LEGO” from the Danish phrase “leg godt”, which

means “play well”; tablet computers can also be seen as blends of journals and

computers).

3. The mechanisms under concern can be of a novel use in the area of rationality

and rational behavior (cf. Abdel-Fattah et al. [2012a]; Besold et al. [2011] and

Chapter 6). For many years, researchers from different areas (e.g. game theory,

psychology, logic, and probability theory) have tried to find feasible theories and

models for human reasoning and human-style rationality. The results of these ef-

forts, though being highly elaborate and theoretically well-founded, mostly fall

short when actually predicting human behavior. Analogical reasoning and CB can

offer a way out (cf. Chapter 6 for a more detailed treatment). Thus, the consider-

ation of the mechanisms gives an intuitive and comparatively simple explanation

to some classical challenges to existing theories of rationality, making it also an

interesting candidate for inclusion in future general intelligent systems (which

undoubtedly will have to deal with issues related to rationality and human behav-

ior).

4. Chapter 7 discusses that CB in particular can provide additional functionality in

language understanding and production within (concept-based) AI systems. The

capabilities of humans that are exhibited in making sense of neologisms and previ-

ously unknown word combinations are impressive. In many cases, actual natural

language interface systems are stretched to their limits to capture interpretations

of noun compounds, although the individual meanings of the combined terms

might already be known to the system (in particular if a concept-based represen-

tation approach is used as KR; cf. sections 1.3, 4.2, and 7.2). Again, CB here

offers a guideline for combining concepts into blends, thus making accessible also

the resulting blended concept, as e.g. in Goguen’s by now established, classical

example concerning the combined words BOATHOUSE and HOUSEBOAT (cf. sec-

tion 4.3.2). From a natural language interface point of view, integrating the fac-

ulties of concept representation and blending into a general intelligent system is

expected to be advantageous in both aspects of language production and language

understanding: Whilst the output of the system might seem more human-like due

to the occasional use of combined words based on blends, also the language in-

put understanding part might profit from these capabilities, making use of blend-
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ing techniques when trying to find the meaning of unknown, possibly combined

words. (For some further considerations concerning CB and noun–noun combina-

tions cf. Abdel-Fattah [2012]; Abdel-Fattah and Krumnack [2013]; Mart́ınez et al.

[2011] and Chapter 7). Humans cannot only induce appropriate meanings of

unknown words, both within and without a given context, but can also produce

words that reflect particular meanings or descriptively summarize specific situa-

tions (e.g. giving the name “Facebook” to the online social networking service, yet

a “face book” is, physically, a directory that helps people get to know each other).

5. As a further application, consider the analysis of counterfactual conditionals (cf. Ch-

apter 8), where humans can flexibly restrict the judgement of whether or not a

given counterfactual conditional is verifiable, although the conditional might in-

dicate many, or possibly infinite, possibilities (cf. Abdel-Fattah et al. [2013a,b]).

A cross-domain reasoning ability possibly allows for unfamiliar results by blend-

ing two (or more) familiar concepts, opening thus the door to non-deductively

achieve thinking outside the box through cross-domain reasoning. Counterfac-

tual reasoning is yet another example that emphasizes the importance of utilizing

mechanisms other than deductive reasoning in (creative) concept construction.

(In fact, deduction may not be preferred in the first place when computationally

analyzing counterfactual conditionals.)

Not surprisingly, many ideas, of what currently is regarded standard in narrow-AI

(cf. section 1.2.2), have already been laid out in Newell and Simon’s article (cf. Newell

and Simon [1976]). They very early anticipated improvements that seem inevitable

from today’s perspective, and aimed at implementing a system that has “the same scope

of intelligence as we see in human action” [Newell and Simon, 1976, pp. 116]. On

the one hand, works such as Newell and Simon’s inspired the scientific society to begin

studying human-like intelligence, but, on the other hand, it was “search” that has mainly

been proposed as a cornerstone of computing since the beginning of AI (cf. Newell

and Simon [1976]). Although ideas for “intelligence without much search” have been

proposed in Newell and Simon [1976], which later flowed into the cognitive architec-

ture SOAR (cf. Laird [2008] and section 1.2.3), much less interest has been dedicated

since then to computationally plausible cognitive mechanisms, which may rather uti-

lize cross-domain reasoning (cf. Abdel-Fattah and Schneider [2013]). Still, even re-

cent projects that focus on simulating human intelligence are clearly lacking generality.

Despite their undeniable, impressive success, IBM’s chess-playing computer DeepBlue

(cf. Hsu [2002b]) and question-answering system Watson (cf. Ferrucci et al. [2010]), for

example, lack any aspect of creativity with regards to the tasks they can solve. Achieving
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aspects of general intelligence calls for a plethora of complex capacities that are closely

connected with the utilization of various multifaceted cognitive mechanisms. Creative

concept construction, as an example of a fundamental GI aspect, may definitely need

searching in performing specific sub-processes, such as finding analogies to newly avail-

able concepts before modifying (or adapting) them. But, anyway, it certainly differs

from mere search in several sides.

An Incomplete List of Promising Mechanisms: In the context of cross-domain rea-

soning, several cognitive mechanisms are summarized in Table 9.1. Blending, analogy-

based, as well as additional mechanisms (like re-representation, frequency effects, and

abduction; cf. Mart́ınez et al. [2012]) already cover many interesting aspects of higher

cognitive abilities (cf. Table 9.1). There is however no claim that the list is in any sense

complete. This list further supports the claim in this thesis that it is necessary to en-

dow cognitive systems with the mentioned mechanisms, in order to cover varieties of

higher-order cognitive abilities. Additional several low-level abilities are, of course, still

needed for a cognitive system to model general intelligence in a holistic and complete

sense. The presented approaches do not cover aspects like reactive behaviors, sensori-

motor loops, or certain attention mechanisms. These aspects are challenges, addressed

by other mechanisms that are neither directly related to analogy making nor concept

blending. The integration of higher and lower cognitive mechanisms could be achieved

by a hybrid architecture, presently a rather standard approach for integrating heteroge-

neous methodologies.1

The Final Crowning and the Prospective Research: Investigating, testing, and imple-

menting cognitive mechanisms need to attract more attention, in particular when one is

interested in modeling as perplexing aspects of GI as those discussed in this thesis. We

may agree that good science always requires good observations, but their cross-linking

can be far more advantageous. Furthermore, I expect that AGI should basically work

on delivering unconventional ways to achieve a level of human-comparable intelligence,

which should not be bounded by normal limits that (biologically) constrain human intel-

ligence. Taking all previous evidence together, multifaceted, cross-domain mechanisms

seem to form a cornerstone in modeling architectures for general intelligent systems.

1An argument is also given in [Hofstadter and the Fluid Analogies Research Group, 1996, Chapter 4]
on the inability of models to lead to satisfactory understanding of the human mind if they separate

conceptual processes from perceptual processes. Recall also Chalmers et al.’s argument, mentioned briefly
in section 7.2.1, that perceptual processes cannot be separated from other cognitive processes even in

principle.
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Cross-Domain
Mechanism:

Sample GI Aspect:

Analogical Mapping
Understanding new domains; creation and comprehension

of metaphorical expressions and analogies in general

Analogical Transfer
Problem solving; introduction of new concepts into a

domain; creative invention of new concepts

Generalization Learning of abstract concepts; compression of knowledge

Specialization
Applying abstract knowledge in concrete situations; problem

solving by realizing a general strategy

Re-representation
Adaptation of the input domains in order to compute

appropriate analogies and blend spaces

Blending

Creation of new concepts and theories; problem solving;

human style rationality; understanding of compound nouns;

analysis of CFCs

Abduction Finding explanations of certain facts

Table 9.1: Many desirable functions of intelligent systems can be explained by cross-

domain reasoning mechanisms. The left column lists mechanisms, most of them are

introduced in this thesis, and associates them with GI aspects that can be based on

them. (Adapted from [Mart́ınez et al., 2012, pp. 237].)

Therefore, the thesis stresses that next generation computational systems (that aim at

achieving human-comparable intelligence) need to focus more on the utilization of as

many cognitive mechanisms as possible. A wide range of theoretical, practical, formal,

representational, and computational characterizations of such systems is still ahead,

though.

Of course, there are still related issues that need to be more investigated or build

upon the work presented in this thesis. The following adds to the conclusive remarks

and perspective ideas spread over the preceding chapters:

1. It is crucial to focus more on aspects concerning knowledge representation of

conceptual entities and their categorization into interrelated concepts. I assume

that a computational manifestation of any aspect of human-comparable, intelli-

gent thinking cannot be achieved without such focus. The focus should, moreover,

facilitate the computational implementation of AGI systems that endow its under-
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lying agents with a variety of GI aspects. KR is already a big research direction,

but what AGI systems may suffer from is the lack of integrated, generalized KR

frameworks and methodologies dedicated to overcoming the type of challenges

encountered when utilizing higher-level cognitive mechanisms (e.g. in dealing

with concept blending and representing nouns as concepts).

2. It should indisputably be clear how much weak CB is, with respect to its charac-

terization and formalization aspects. As already highlighted in section 4.4, this

weakness has at least two negative consequences: less appreciation of CB by the

scientific community, and blocking further advancements. Therefore, future work

necessarily has to provide more comprehensive characterization and formalization

aspects of CB.

3. Integrating the previous two points would also be of a substantially great benefit.

In particular, the ideas presented (on a conceptual level) in Chapters 7 and 8

still lack a glimpse of realization by recording and analyzing actual computations

in cognitive models. This realization does seem feasible, but it necessitates a

careful interaction between the issue of concept representation for cognition and

formalization of CB aspects.
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