
Robust solutions to
storage loading problems

under uncertainty

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

des Fachbereichs Mathematik und Informatik

der Universität Osnabrück

vorgelegt von

Xuan Thanh Le

October 2016

ii

Acknowledgements

By the occasion of presenting this dissertation, I would like to express my sincere gratitude
to everybody who were helping, supporting, and encouraging me during my pleasant time
of Ph.D. study.

My utmost gratitude and admiration are to my great doctor-mother: Professor Sigrid
Knust. Thanks to her conscientious guidance, my research skills have been growing up.
She introduced me to many workshops and short-term schools, as well as connected me
with many collaborators who helped me a lot in enlarging my knowledge. She gave me the
freedom to pursue my research interests and also many chances for presenting my findings
in seminars and conferences, from that my presentation skills have been sharpened. Her
clear and careful characteristics have a significant influence on me in conducting research
and writing papers for publication. She is not only a master in advising students but also
a very warm person in daily life. I truly enjoyed the concerts of the orchestra where she
played in, and the joyful hiking trips to the wonderful hills of Osnabrück, from that I
discovered my new passions beside mathematics.

I am also deeply grateful to my co-supervisor, Professor Matthias Reitzner, for his guid-
ance and support. He is an expert not only in his profession but also in teaching skills.
What I can always learn from his impressive lectures are the art of analyzing a mathe-
matical problem, making it easy to understand, and having clear solution approaches.

I would like to express many thanks to my collaborators: Marc Goerigk and Christina
Büsing, for their helpful cooperation, useful advices, and valuable experiences.

I wish to acknowledge the financial support provided by the Graduate School Combina-
torial Structures in geometry, which in turn is financed by the German Science Foundation
according to Deutsche Forschungsgemeinschaft GRK 1916/1.

I am particularly grateful for the assistance given by Institute of Mathematics (Hanoi,
Vietnam). My great thank goes to Professor Ngo Viet Trung for introducing me to the
Graduate School and for his continuous encouragement.

I further like to address my thanks to all my colleagues at Department of Mathematics
and Informatics, Osnabrück University for creating a friendly and collaborative working
environment. I specially thank my kindhearted officemate, Ulrich von der Ohe, for all of
his unconditional helps and for sharing lots of joyful moments.

I should not forget to thank all of my friends, those are not only in Osnabrück but
also scattered around the world, for joining with me in my off-work time and helping me
balance between work and pleasure.

My dissertation would not be possible without the endless love and spiritual support
from my parents and my wife. My absence from home during my time of doing Ph.D.
abroad means a lot of personal sacrifices of them. I would like to say my heartfelt gratitude
to my family for their understanding and patience.

iii

iv

Contents

1 Introduction 1
1.1 Storage loading problems . 1

1.1.1 Configuration of storage areas . 2
1.1.2 Storage precedence of incoming items 4
1.1.3 Stacking constraints . 5
1.1.4 Data uncertainty . 6
1.1.5 Storage objectives . 7
1.1.6 A three-field notation . 8

1.2 Robust optimization . 9
1.2.1 Strict robustness . 10
1.2.2 Adjustable robustness . 11
1.2.3 Literature review on robust optimization 12

1.3 Literature review on storage loading problems 13
1.4 Thesis outline . 14

2 Complexity 17
2.1 Some deterministic storage loading problems 17

2.1.1 A polynomially solvable case . 18
2.1.2 NP-complete cases . 27

2.2 Some robust storage loading problems . 31
2.2.1 Strictly robust counterparts . 32
2.2.2 Adjustable robust counterparts . 33

2.3 Conclusions . 38

3 Storage loading with stacking constraints 41
3.1 MIP formulations for the deterministic problem 42

3.1.1 Three-index formulation . 42
3.1.2 Network flow formulation . 42
3.1.3 Bin packing formulation . 45

3.2 MIP formulations for the strictly robust problems 47
3.3 MIP formulations for the adjustable robust problems 48

3.3.1 Discrete uncertainty . 48
3.3.2 Interval uncertainty . 53

3.4 Computational experiments . 53
3.4.1 Setup . 54
3.4.2 Reduction of solution space . 55
3.4.3 Computational results . 57

3.5 Conclusions . 64

v

vi CONTENTS

4 Security level of robust stacking solutions 65
4.1 Security level of stacking solutions . 65
4.2 Deriving interval uncertainty sets . 67

4.2.1 Weight distributions . 67
4.2.2 Rules for deriving interval uncertainty sets 69

4.3 Computational experiments . 70
4.3.1 Computational setup . 70
4.3.2 Numerical results . 73

4.4 Conclusions . 79

5 Storage loading with payload constraints 81
5.1 Motivation of payload constraints . 81
5.2 Problem formulation . 86

5.2.1 Nominal problem . 86
5.2.2 A MIP formulation . 87
5.2.3 Uncertainties . 88

5.3 Strict robustness . 89
5.3.1 Finite uncertainty . 89
5.3.2 Interval uncertainty . 90

5.4 Adjustable robustness . 97
5.4.1 Finite uncertainty . 98
5.4.2 Interval uncertainty . 99
5.4.3 Heuristic solution approaches . 103

5.5 Computational experiments . 105
5.5.1 Small instances . 105
5.5.2 Large instances . 111

5.6 Conclusions . 113

6 Conclusions 115

References 117

Chapter 1

Introduction

For the last several decades, the rapid growth of international trade and the ongoing
globalization of supply chains have been witnessed via a huge amount of goods stored in
and transited through commercial storage areas all over the world. Within the context of
container terminals, the annual worldwide container throughput has increased around 6.7
times from 88.150 million TEUs in 1990 to 588.905 million TEUs in 2011 (see [63] Chapter
1), and reached 651.1 million TEUs in 2013 (see [80]). Here the term TEU abbreviates a
twenty-feet-equivalent unit, which is used to refer to one container of twenty-feet length.
There has been also a steady increase in capacity of storage areas. As reported in [37],
the average carrying capacity of container ships grew from 2259 TEUs in January 2004 to
4449 TEUs in January 2014, and the maximum capacity of container ships over the world
today is as many as 19224 TEUs. Such numbers strengthen the essentiality of having
efficient storage operations in management of commercial storage areas.

As classified in [64], different types of optimization problems arise due to the interim
storage operations of items in a storage area. Storage loading problems appear when
incoming items arrive at a storage area and one has to temporarily assign them to positions
in a convenient way for handling afterwards. In contrast, unloading problems arise when
outgoing items need to be retrieved from the storage area, and the goal is to decide which
items will leave the storage in which order and which relocations should be performed.
Premarshalling problems are refered to the cases when items have to be relocated within
the storage area such that later on all items can be retrieved without any further relocation.
Combined loading/unloading problems occur when incoming items need to be stored while
outgoing items need to be retrieved.

This thesis focuses on storage loading problems in which the input data are subjected
to uncertainty. In the following section we will present the basic setup of the storage
loading problems in the scope of this thesis. We also introduce some related concepts and
useful notations to formally describe the problems. Then in Section 1.2 we present the
principles of some robustness concepts that can be applied to solve the storage loading
problems in a robust approach. We give a short review on literature of storage loading
problems in Section 1.3 before sketching the outline of this thesis in Section 1.4.

1.1 Storage loading problems

The setup of storage loading problems concerns several aspects including configuration of
storage areas, how the incoming items are specified, constraints on stacking the items, and

1

2 CHAPTER 1. INTRODUCTION

objectives of the storage loading process.

1.1.1 Configuration of storage areas

The storage areas in their natural and professional configuration are organized in parallel
stacks, where items are stockpiled on top of each other within each stack. Such stack-based
storage areas can be found in the following logistics applications.

• In container terminals (see e.g. [33, 82]), items are inbound and outbound containers
stored in stacking yards. As illustrated in Figure 1.1a, stacking yards are usually
divided into blocks, each block consists of several bays having the same number of
stacks aligned side by side. The stacks have the same number of levels (also called
tiers), i.e., they can store the same number of containers. Containers are exchanged
between transfer vehicles and stacking yards at input/output (I/O) points located
either at both ends of each block (in European layout) or along the blocks (in Asian
layout). Such stacking yard layouts are designed for the use of yard cranes (also called
gantry cranes), that are the most popular container handling equipments in stacking
yards. The yard cranes can simultaneously move along the bays and between both
ends of each block. In loading processes, incoming containers are picked up at I/O
points by the yard cranes and stored at their destinations in the block. Conversely,
when a container needs to be retrieved, a single yard crane picks the container up
from its location and puts it at an I/O point of the corresponding block. Due to
the technical design of yard cranes, within each stack the containers are stored in
last-in-first-out order, i.e., only the topmost container of any stack can be directly
accessed by the yard cranes.

• In container ships (see e.g. [70, 71]), items are seaworthy containers stored in stacking
yards of means of marine transportation (such as ships, barges, or vessels) to trans-
port between seaports. The stacking yards are also organized in blocks of parallel
stacks. Typically, for the container ships of type Lift-on Lift-off (cf. [5]), containers
are loaded onto or unloaded from the top of stacks by using quay cranes located at
the seasides of the ports (see Figure 1.1b). Furthermore, for safety reasons while
traveling, each container ship is associated with a safe field of vision from its navi-
gating, manoeuvring, and monitoring work stations to the sea surface. The technical
restrictions from the quay cranes and the ship’s field of vision impose a limit on the
stacks’ height, i.e., each stack can store up to a limited number of containers.

• In tram or bus depots (see e.g. [22, 28, 83]), one often encounters a yard consisting of
dead-end tracks, where the trams or buses are parked in the last-in-first-out manner
for purposes of maintaining or waiting for their next scheduled trips (see Figure
1.1c). Such depots can be viewed as stack-based storage areas if we think of the
tracks as stacks, and the trams or buses to be parked play the role of items to be
stored. The number of such vehicles that can be parked at the same time on each
track is limited by the track’s capacity.

• In warehouses (see e.g. [9, 69, 72]), items are companies’ products stored before
being picked according to customer orders. The products are often packaged and
moved in unit loads of the same size, such as carton boxes, plastic boxes, or crates.
The most simple storage method in warehouses is block stacking, in which the unit
loads are stored on top of each other in stacks. The stacks are supported from

1.1. STORAGE LOADING PROBLEMS 3

bottom by pallets, that are put either on the floor (for large products) or on the
selves of racks (for small products). Due to the cover boxes’ strength and the racks’
structure, each stack can store a limited number of the unit loads.

I - O points

(a) Container terminal.

SHIP SEASIDE

Quay crane

Truck

(b) Container ship.

Rail tracks

Trams

(c) Tram depot.

Figure 1.1: Stack-based storage areas in practice.

Although the storage loading problems motivated from the above practical applications
are described in different terms, they share several common features, in which the following
ones characterize the storage loading problems in the focus of this thesis.

• The storage area is arranged in stacks and each stack has its own fixed position in
a two-dimensional area. This means that deciding where to position a stack in the
area is not a matter, the importance is to decide which stack to use for putting each
item.

• The number of levels in each stack is limited, and each level in each stack can be
occupied by at most one item. It is a natural assumption that each item is either
located on the bottom level of some stack (i.e. the item is the first one stored in
its stack) or stacked directly on top of another item. Direct access is only allowed
to the topmost item of each stack, i.e., the items in each stack are arranged in
last-in-first-out order.

We restrict our consideration to the case that the stacks have the same number of levels.
We furthermore focus on pure loading problems, in which we deal with the storage of
incoming items and assume that no outgoing item is retrieved during the loading process.
For modeling the configuration of storage areas, if not stated differently, throughout this
thesis we will use the following notations. The set of stacks in a storage area is denoted by
Q := {1, . . . ,m}, where m is the number of stacks in the storage area. The set of all items
is denoted by I := {1, . . . , n}, where n is the number of items concerned to the loading
process. Each stack contains b levels (i.e., at most b items can be stored in each stack),
and the set of levels in one stack is denoted by L := {1, . . . , b}.

4 CHAPTER 1. INTRODUCTION

1.1.2 Storage precedence of incoming items

An important feature of storage loading problems is storage precedence of incoming items,
indicating in which order the items are stored. In practice this is typically done in one of
the following ways (cf. [64]).

• Store a set of incoming items: all items of a set have to be loaded into the storage
area, no matter what the sequence of storage operations is. An example is the case
that all containers on an incoming train have to be stored into a stacking yard in a
container terminal.

• Store a sequence of incoming sets of items: several sets of items have to be stored
into the storage area in the set-by-set manner, i.e. all items belonging to the same
set have to be stored before any item of another set can be stored (the sequence of
storage operations for each set does not matter). For instance, several trains arrive
consecutively at a container terminal and have to be unloaded in the order of their
arrival.

• Store a sequence of incoming items: several items have to be stored into the storage
area in the item-by-item manner, i.e. one item after another. For example, this
happens when an inbound stream of trams has to be parked in rail tracks of a depot.

• Store a set of sequences of incoming items: several sets of items, where each set
has an associated sequence of storage operations, have to be stored into the storage
area so that the sequences themselves have to be regarded but can be mixed in
delivery. This applies for instance in tram depots where some inbound streams of
trams arrive at the same time and have to be parked in rail tracks of the depots.
There, the parking precedence of trams of different streams is not important, but
the sequence of parking trams in each stream has to be respected.

If not indicated differently, throughout this thesis we will use the following notations
(introduced in [64]) to shortly specify the storage precedence of incoming items.

• Iin: store a set of incoming items.

• (Iin)K : store a sequence of K incoming sets of items.

• πin: store a sequence of incoming items.

• {πin}K : store a set of K sequences of incoming items.

Note that Iin is a special case of (Iin)K with K = 1. Similarly, πin is the particular case
of {πin}K when K = 1. Obviously, πin is a special case of (Iin)K where each set contains
exactly one item.

Especially, in some case studies where the storage precedence is of type (Iin)K , if the
numbering of the sets of items is given in accordance with their precedence, say I1, . . . , IK ,
then we also denote the sequence by I1 → . . . → IK . Apart from the incoming sets of
items, there may be a set Ifix of items that are already stored in the storage area. In
that case, we do not include Ifix in the notation (Iin)K , but we denote the sequence by
Ifix → I1 → . . .→ IK to emphasize the appearance of Ifix.

1.1. STORAGE LOADING PROBLEMS 5

1.1.3 Stacking constraints

Normally some items have to be stacked on others. Not every item may be stacked on
top of each other (for instance, the stacking process must always regard the given storage
precedence of incoming items). Therefore, how the items can be put on top of each other
is also an important feature of storage loading problems. Depending on the context of
the loading process as well as the future plans for the items, different stacking constraints
might have to be respected.

It is common that the stacking constraints are described by a binary relation on some
associated parameters of items. More precisely, the following stacking constraints are most
popular in practice.

• Stacking constraints on weight in the most stable sense: items of lighter weight may
only be stacked on top of heavier items, i.e., item i may only be stacked on top of item
j if wi ≤ wj , where wi (resp., wj) is the weight of item i (resp., j). For convenience,
this type of stacking constraints is denoted by sij(w,↘). We prove in Lemma 5.1 a
physical fact that, among possible configurations of storing a set of items into a stack,
the one generated by applying sij(w,↘) has the lowest gravity center of the whole
stack, and consequently it is the most stable configuration. Therefore sij(w,↘) is
often applied to storage loading problems in which stability of the stacking solution
is an important issue, especially in the context of container ships.

• Stacking constraints on weight in the reverse-stable sense: in constrast to sij(w,↘),
this type of stacking constraints, denoted sij(w,↗), requires that items of heavier
weight may only be stacked on top of lighter items. This is often applied in the
context of storing containers in an intermodal terminal for loading onto a vessel
later on. In the terminal, the heavier containers should be stored in higher levels of
the stacks, since they have to be retrieved earlier to put in the lower levels of the
vessel (so the loaded vessel will have the best stability according to the principle of
sij(w,↘) mentioned above).

• Stacking constraints on length (denoted sij(`)): shorter items may only be stacked on
top of longer items, i.e., item i may only be stacked on top of item j if `i ≤ `j , where
`i (resp., `j) is the length of item i (resp., j). For example, this is the case of stacking
containers in container terminals or container ships (see e.g. [34]), where containers
are standardized in length (20-foot, 40-foot, and 45-foot) and longer containers are
not allowed to stacked directly on top of shorter ones.

• Stacking constraints on departure time: items of higher priority to retrieve may only
be stacked on top of the ones with lower priority. This means that item i may only
be stacked on top of item j if di ≤ dj , where di (resp., dj) is the departure time of
item i (resp., j). We shall denote this type of stacking constraints by sij(d).

Normally, in practice the loading process of items has to satisfy a combination of several
types of stacking constraints, i.e., these types of stacking constraints have to be respected
simultaneously. For example, in container terminals, containers are often stored in such a
way that satisfies a combination of stacking constraints on length and on departure time.

Stacking constraints on n items can also be described explicitly by a stacking matrix
S = (sij) ∈ {0, 1}n×n, in which sij = 1 if and only if item i can be stacked directly on
top of item j. For convenience we always set sii = 0 for every item i (i.e., an item cannot

6 CHAPTER 1. INTRODUCTION

be stacked on itself). We can also represent the stacking constraints by a directed graph
with n vertices and arcs i→ j if sij = 1. If the stacking constraints are given in form of a
stacking matrix (sij) without any specified remarks, then we simply denote them by sij .

The strictness of satisfying stacking constraints during the loading phase is also an
important aspect. More precisely, stacking constraints may be hard or soft: hard stacking
constraints must be regarded during the loading process, while soft stacking constraints
can be violated (but the violation should be avoided as much as possible). Violating
soft stacking constraints leads to a number of unordered stackings, so-called misordered
stackings or mis-overlays (cf. [31, 64]). In some references (see e.g. [27, 79]) unordered
stackings are also called blockages or overstowages. Formally, given sij as soft stacking
constraints and two items u, v such that suv = 0, putting item u on top of item v would
make an unordered stacking with respect to sij . For example, it is often the case in practice
that stacking constraints on departure time are considered to be soft. In that context,
an item is called a blocking item if it has later departure time than some items (so-called
blocked items) stacked below it. Due to the last-in-first-out order of accessing items in
each stack, in order to retrieve a blocked item we need to move all blocking items above
it to other stacks until the blocked item is the topmost one in its stack. Each movement
of an item from its stack to another is called a reshuffle or relocation.

Different types of stacking constraints may have mutual properties. A common point
of the four types of stacking constraints mentioned above (sij(w,↘), sij(w,↗), sij(`),
sij(d)) is that they all define a total order on the set of all items. This means these
stacking constraints are transitive (i.e., if item i is stackable on top of item j and item
j is stackable on top of item k, then item i is also stackable on top of item k) and total
(in the sense that for any pair of items i, j we can stack i on top of j or stack j on top
of i). Therefore, for total order stacking constraints we refer to the ones that are both
transitive and total, as this term is already used in [31]. Note that stacking constraints
may be non-transitive, for example the ones induced by stacking restrictions on materials
of items (cf. also [31]).

Apart from the stacking constraints, in Chapter 5 we consider storage loading problems
with payload constraints that make special restrictions on stacking items. More precisely,
payload constraints require that the total payload put on top of each item should not
exceed a proportion of the item’s weight. Stating more formally, the total weight that can
be put on top of an item i having weight wi must be limited by awi, where a is a given
positive parameter so-called payload parameter. Payload constraints are motivated from
stability issues of container ships. As discussed in Section 5.1, via an appropriate payload
parameter, one can adjust the gravity center of the loaded ship to a desired area, and
therefore control the stability of the ship.

1.1.4 Data uncertainty

To satisfy the stacking constraints, one might need to know associated data of items. These
data therefore must be sent to managers of storage areas before their arrival. However,
due to different reasons, in practice the data information sent in advance are not quite
accurate, especially the weight of items. The exact data can only be informed when the
items actually arrive, or just a short time before the scheduled loading time. Therefore
one may need to take into account the uncertainty of items’ data when setting up storage
loading plans. In this thesis we are interested in the cases in which uncertain data of items
are given in the following ways.

1.1. STORAGE LOADING PROBLEMS 7

• Interval uncertainty: Each item i ∈ {1, . . . , n} may have some associated parameter
ai (e.g., corresponding to the weight or departure time of the item), in which the
value of ai may vary in an interval [amini , amaxi] (without assuming any knowledge
of a probability distribution). Lower and upper bounds amini , amaxi may be derived
from empirical observations or expert knowledge. We denote by SI the set of all
possible values of vector a = (a1, . . . , an), i.e. the Cartesian product of the intervals.
Each value a ∈ SI is called a scenario.

• Discrete uncertainty: Uncertain data of items lead to uncertainty on the values of
entries of the stacking matrix. For a set consisting of n items, there are finitely many
possibilities of stacking matrices (note that the diagonal entries of the stacking ma-
trices are always assumed to be 0, and the non-diagonal entries are binary, therefore
at most 2n

2−n values of stacking matrices are possible). Hence, uncertain data of
items can be represented via a discrete (and finite) set SD := {(s1

ij), . . . , (s
N
ij)} of

possible scenarios of stacking matrices, where N is the number of these scenarios.

• Finite uncertainty: Uncertain data of items may also be given by a (finite) list of
M possible scenarios SF := {a1, . . . , aM}, where each scenario ai(i = 1, . . . ,M)
corresponds to an outcome of the vector a = (a1, . . . , an) of the items’ associated
data such as their weights or lengths. The outcomes of vector a may either be based
on the expertise of practitioners or stem from a probabilistic analysis.

• Stochastic uncertainty: Items’ data may be distributed to some distribution function
on an underlying set. For instance, the weight wi of an item i can be uniformly
distributed on an interval [wmini , wmaxi], or belongs to some weight class (e.g. heavy,
medium, light) with some probability.

1.1.5 Storage objectives

Depending on the context of the storage loading problems, various storage objectives may
be involved in the loading process. A comprehensive list of objective functions in storage
problems is given in [64]. In the scope of this thesis, we are interested in storage loading
problems with the following objectives.

• In case that some hard stacking constraints are given, the first objective is to decide
whether all items can be feasibly stored into the storage area regarding all these
stacking constraints as well as the capacity of the storage area and the storage
precedence of the items. If this is possible, the next step would be to assign each
item to a feasible location minimizing the total number of used stacks (to have more
flexibility for storing items arriving later on), or minimizing the total number of
items stacked at levels above the ground level (to reduce the risk of reshuffling).

• In case that some soft stacking constraints are given, the objective is to store all
items minimizing the number of unordered stackings, or minimizing the violation
with respect to the soft stacking constraints. A particular case study is when stack-
ing constraints on departure time are given as soft constraints. In that situation,
as discussed in Section 1.1.3, unordered stackings lead to a number of relocations
of items when retrieving the items according to the desired retrieval order, and
minimizing the number of these induced relocations is also an interesting storage
objective.

8 CHAPTER 1. INTRODUCTION

We use the following notations (as proposed in [64]) to denote the mentioned storage
objectives:

• ‘−’: Decide whether all items can be feasibly stored into the storage area regarding
all given hard stacking constraints.

• #St: Store all items regarding all given hard stacking constraints, minimizing the
number of used stacks.

• #SI>1: Store all items regarding all given hard stacking constraints, minimizing the
number of items stacked above the ground level.

• #US: Store all items minimizing the number of unordered stackings with respect
to given soft stacking constraints.

1.1.6 A three-field notation

In [64] the authors propose a three-field notation α | β | γ for a classification scheme of
storage loading, unloading, and premarshalling problems. We apply and extend that three-
field notation to briefly represent the storage loading problems under our consideration.
More precisely, the content and meaning of the fields in the notation are as follows.

• The first field α contains the problem type (L for loading) and information about
the parameters of the storage area (e.g. the number of stacks m or the number of
levels per stack b). We denote b = b′ if the number of levels per stack is given by a
fixed number b′ ∈ N. If b is given as part of the input, then we omit this subfield.

• The first part of the second field β contains the information about storage precedence
of the items (as described in Section 1.1.2).

• The second subfield of β gives information about stacking constraints. We add an
underline symbol under the character s in the notation of stacking constraints to
indicate that the stacking constraints are soft. For hard stacking constraints the
underline symbol is omitted. For representing combined stacking constraints we
use the symbol ‘&’ between the notation of its single components. If no stacking
constraint is given, then we omit the second sub-field of β.

• In cases of storage loading problems with uncertain data, the third part of β spec-
ifies the type of data uncertainty by using notations introduced in Section 1.1.4.
Furthermore, to indicate which parameter is uncertain, we add a tilde symbol above
the character corresponding to that parameter in the first and second subfields of β.
We use the notation s̃ij to mean that the encoded matrix of the stacking constraints
sij contains ‘uncertain’ entries. To emphasize that the items in a set have uncertain
data, we add the tilde symbol above the name of that set. For deterministic storage
loading problems, the third part of β is omitted.

• The third field γ specifies the storage objective as listed in Section 1.1.5.

For example, consider the storage loading problem represented by

L, b = 2 | Ifix → I1 → Ĩ2, sij(w̃,↘)&s(`),SI | –.

1.2. ROBUST OPTIMIZATION 9

In this problem, each stack in the storage area can contain at most b = 2 items. The
storage precedence of items is given by the sequence Ifix → I1 → I2, and the appearance
of Ifix in this sequence means that there are some items already stored in the storage area.
The loading process must satisfy the hard stacking constraints on weight in the most stable
sense and should satisfy the soft stacking constraints on length (cf. Section 1.1.3). Here
the tilde symbols mean that the weight of items in I2 are uncertain. Furthermore, the
notation SI in the description of the problem tells us that the weights of I2-items vary in
some intervals. According to the notation ‘–’ in the γ field, the storage objective of this
problem is to find a feasible stacking solution in every scenario of weights of I2-items.

As another example, consider the storage loading problem represented by

L | Ĩ , s̃ij ,SD | #St.

In this case, the maximum number of items per stack b is given as a part of the input. A
set of items I with uncertain data needs to be stored into the storage area. The loading
process must satisfy the hard stacking constraints encoded by stacking matrix (sij). Due to
the uncertain data of the items, the stacking matrix contains entries with uncertain values
(therefore the tilde symbols take part in the description of the problem). Furthermore,
the notation SD in β field here means that the uncertainty on data of items is given in
form of a list of possible stacking matrices (cf. Section 1.1.4). As denoted by ‘#St’ in the
γ field, the storage objective of this problem is to find a stacking solution for each stacking
matrix scenario minimizing the number of used stacks.

1.2 Robust optimization

As we have mentioned in Section 1.1.4, storage managers may have to face up with the
uncertainty of items’ data when making optimal loading decisions. Optimization under
uncertainty can therefore find its application in the context of storage loading problems.
A major trend of dealing with data uncertainty in the optimization process is robust
optimization. In this section we recall the principles and formal descriptions of some
robust optimization concepts to be used in this thesis.

The main research objects of robust optimization are uncertain optimization problems
(see e.g. [10, 19]). More precisely, such an uncertain optimization problem is a parame-
terized family (Pξ)ξ∈U of optimization problems corresponding to ξ ∈ U ⊂ Rp (for some
p ∈ N):

(Pξ) min f(x)

s.t. F (x, ξ) ≤ 0,

x ∈ X ,

where

• ξ is the parameter vector representing data elements of the problem (Pξ),

• U is the set consisting of considered values of parameter ξ,

• x is the decision vector,

• X ⊂ Rn is the variable space (here n is the dimension of the space),

10 CHAPTER 1. INTRODUCTION

• f : Rn → R is the objective function,

• F (·, ξ) : Rn → Rm (for some m ∈ N) is the function describing the constraints of
(Pξ) for any fixed ξ ∈ U .

To be precise, the vector inequality F (x, ξ) ≤ 0 in the description of constraints of (Pξ)
means that Fi(x, ξ) ≤ 0 for i = 1, . . . ,m, in which the functions Fi’s are the components
of the vector function F . Note that in the statement of (Pξ) the objective function is
independent of data vector ξ. This is only a technical assumption. Indeed, if the objective
function of (Pξ) is represented by a data-dependent function f(x, ξ), we can make the
objective data-independent by adding a new variable t to be minimized and adding the
constraint f(x, ξ)− t ≤ 0 to the list of original constraints.

The set U is called uncertainty set and its elements are called scenarios. The uncer-
tainty set can be given by disturbing a so-called nominal scenario. The nominal scenario
can also refer to the most likely value of data vector ξ. The optimization problem (Pξ̄)
corresponding to the nominal scenario ξ̄ ∈ U is called the nominal problem of the uncertain
optimization problem (Pξ)ξ∈U . An optimal solution to the nominal problem (Pξ̄) is called
a nominal solution to (Pξ)ξ∈U .

Roughly speaking, the spirit of robust optimization is to find a robust solution to the
uncertain optimization problem, i.e., a solution that is immunized against uncertainty. Dif-
ferent robustness concepts are introduced in the literature, all of them share the following
common assumptions on the decision-making environment:

• No probability distribution on the uncertainty set U is given.

• Constraint violation is forbidden for any realization of the data vector ξ in the
uncertainty set U , i.e., the constraints of (Pξ) are hard for every ξ ∈ U .

• The decisions are made when and only when the actual data is within the prespecified
uncertainty set U .

In the following we describe the basic ideas of some robustness concepts that are of
our interest in this thesis. For convenience of the description, we denote

F(ξ) := {x ∈ X | F (x, ξ) ≤ 0},

i.e., F(ξ) is the feasible set of (Pξ).

1.2.1 Strict robustness

This concept was originally introduced in [13]. The key feature of the strict robustness
concept is that all decision variables represent here-and-now decisions, i.e., the solution
to the uncertain optimization problem must be decided before the actual data becomes
known. Once the solution is decided, we are sticked with the solution, i.e., nothing changes
in the solution when the actual data is realized.

To be precise, a solution x ∈ X to the uncertain optimization problem (Pξ)ξ∈U is
called strictly robust feasible if it is feasible for all scenarios in the uncertainty set, i.e.,
if x ∈ F(ξ) for all ξ ∈ U . The strictly robust counterpart of the uncertain optimization
problem is given as

(SR) min f(x) s.t. x ∈ SR(U),

1.2. ROBUST OPTIMIZATION 11

in which SR(U) is the set consisting of all strictly robust feasible solutions with respect
to the uncertainty set U , i.e.,

SR(U) =
⋂
ξ∈U
F(ξ).

An optimal solution to (SR) is called a strictly robust optimal solution to the uncertain
optimization problem (Pξ)ξ∈U .

By definition, the concept of strict robustness tends to be over-conservative. To over-
come the conservatism of strict robustness, other robustness concepts have been introduced
in the literature including adjustable robustness.

1.2.2 Adjustable robustness

This concept was originally introduced in [11]. It applies to the context in which some
decision variables must be set before knowing the actual data (here-and-now variables),
while the other decision variables can be adjusted when the actual data is realized (wait-
and-see variables). This means that adjustable robustness is a two-stage concept of robust
optimization: in the first stage the here-and-now decision is determined, then the wait-
and-see decision is made in the second stage.

More precisely, the decision vector x can be split as x = (y, z) with y ∈ Y ⊂ Rn1 and
z ∈ Z ⊂ Rn−n1 for some n1 ∈ {1, . . . , n− 1}, where the variables y need to be determined
before knowing the actual value of ξ ∈ U , while the variables z may be determined after
the actual realization of ξ. We can rewrite the problem (Pξ) as follows.

(Pξ) min f(y, z)

s.t. F (y, z, ξ) ≤ 0,

(y, z) ∈ Y × Z.

Naturally, when making a decision on here-and-now variables y, one has to make sure that
the optimization problem (Pξ) is feasible once the actual data ξ ∈ U is realized. Such a
value of a here-and-now decision vector y is called an adjustable robust feasible solution
to the uncertain optimization problem (Pξ)ξ∈U . The set of the adjustable robust feasible
solutions therefore can be given by

AR(U) = {y ∈ Y | ∀ξ ∈ U ∃z ∈ Z : (y, z) ∈ F(ξ)}
=
⋂
ξ∈U

PrY(F(ξ)),

where PrY(F(ξ)) denotes the projection of F(ξ) on Y, i.e.,

PrY(F(ξ)) := {y ∈ Y | ∃z ∈ Z : (y, z) ∈ F(ξ)}.

The strategy when using the adjustable robustness concept is: when in doubt, assume the
worst. Mathematically speaking, given an adjustable robust feasible solution y ∈ AR(U),
the worst-case objective value of the uncertain optimization problem over all considered
data scenarios is

far(y) := sup
ξ∈U

inf
z∈F(ξ)

f(y, z).

12 CHAPTER 1. INTRODUCTION

The adjustable robust counterpart of (Pξ)ξ∈U is then defined by

(AR) min far(y)

s.t. y ∈ AR(U).

An optimal solution to (AR) is called an adjustable robust optimal solution to the uncer-
tain optimization problem (Pξ)ξ∈U .

1.2.3 Literature review on robust optimization

The beginning of robust optimization traces back to the work of Soyster [74]. In this work
the author investigates the strictly robust approach for linear programming problems
under column-wise uncertainty. More formally, he considers the following generalized
linear program

min cTx

s.t. Ax ≤ b ∀A ∈ A,
x ≥ 0,

where c ∈ Rn, b ∈ Rm (here n and m are dimensions of the corresponding vectors), and A
is the set of all matrices A whose column vectors ai belong to a given compact and convex
set Ki (for i = 1, . . . , n). The inequalities in the description of the contraints of the
program are componentwise vector inequalities. The author proves that a robust optimal
solution to this uncertain problem can be obtained by solving the following deterministic
linear program

min cTx

s.t. Āx ≤ b,
x ≥ 0,

where Ā = (āij) with āij = maxaj∈Kj aij for i = 1, . . . , n and j = 1, . . . ,m. Subsequent
works on the topic of generalized linear programs are done in [41, 75, 78].

Since the late 1990s, a strong theoretic framework for robust optimization has been
built, in which the central theoretical issue is tractability of robust optimization models
with different robustness concepts. As defined in [10], tractable optimization problems are
the ones that can be reformulated into equivalent problems for which there are known solu-
tion algorithms with worst-case running time polynomial in a properly defined input size.
For instance, it is proven in [14] that the strictly robust counterpart of an uncertain linear
programming problem with ellipsoidal uncertainty set (defined also in [14]) is equivalent
to a conic quadratic program (cf. [16]), which can be solved in polynomial time by interior
point methods. Tractability of the robust counterpart of an uncertain optimization prob-
lem depends on the structure of the nominal problem as well as the class of uncertainty
set. Beside considering ellipsoidal uncertainty sets as we have mentioned, tractability of
the strictly robust counterparts of linear programs under some other types of uncertainty
is also discussed in [14, 15, 20]. For the strict robustness concept, tractability and in-
tractability of robust counterparts of different classes of convex programs under different
types of uncertainty set are proven in [13, 17, 24, 44, 45]. A systematic way to convert
the strictly robust counterpart of a nonlinear uncertain inequality that is concave in the

1.3. LITERATURE REVIEW ON STORAGE LOADING PROBLEMS 13

uncertain parameters into an explicit and computationally tractable set of constraints is
provided in [12]. For adjustable robustness concepts, tractability of robust counterparts
of some uncertain optimization problems is the topic of study in e.g. [11, 23, 77].

Robust optimization is a fruitful area not only from theoretical but also from practical
point of view. Even when restricted on the robustness concepts introduced in Section 1.2,
there are plenty of papers on applications of robust optimization in daily decision-making
problems. In [29] one can find how strictly and adjustable robust solutions improve the
load planning of trains in intermodal transportation. Real-life applications of adjustable
robustness can furthermore be found in e.g. network flow and design problems (see [8]),
circuit design (see [66]). We refer to [10, 19, 61, 42] for comprehensive surveys on a wide
spectrum of applications of robustness concepts.

1.3 Literature review on storage loading problems

As shown in the survey [64], storage loading problems in the context of stack-based stor-
age areas are attractive and active topics of interest. Storage loading problems under
deterministic setting are studied in quite a few papers. Complexity results of several de-
terministic storage loading problems with stacking constraints are presented in [31]. Also
in this paper, polynomial time algorithms for some of these problems are provided, and
the boundary to NP-hardness is established. In [27] the authors consider a case study
of deterministic storage loading problems, where a sequence of incoming items has to be
stored into a stack-based storage area. There, the stacks have the same number of levels,
and each item has an associated value representing its priority of retrieval. The objective
is to minimize the number of unordered stackings with respect to retrieval order of the
items. The authors prove strong NP-hardness of this problem, and propose different exact
and heuristic solution procedures.

In the literature, storage loading problems under uncertainty are often studied in the
context of container terminals and container ships. There, the weights of items (containers)
are often assumed to be uncertain. Most academic papers on these problems handle the
uncertainty on the weight of items by categorizing the items in weight groups.

The first paper on storage loading problems having uncertain data is [59]. In this paper,
the authors study the problem of storing a sequence of export containers into a stack-based
stacking yard, where each container belongs to one of three weight groups: heavy, medium,
light. These containers arrive one after one from arriving trucks and will be loaded onto a
vessel afterwards. Therefore, the stacking constraints on weight in the reverse-stable sense
sij(w,↗) are applied (cf. Section 1.1.3). The weight group of each item is not known at
the time of its arrival, and the distribution of the weight groups is estimated from past
empirical data. The objective is to determine the storage location for an incoming item
minimizing the expected number of relocations needed in the vessel-loading phase. As
a solution approach, a dynamic programming model is formulated, in which the number
of expected relocations is computed by taking into account two values: the probability
of the weight group of the next arriving item, and the marginal expected number of
relocations that become necessary when an item of a specific weight group is assigned to
a specific stack. To support real-time decisions, a decision tree is developed from the set
of the optimal solutions to the dynamic program and a classification procedure including
selection criteria of the key attributes for branching, a pruning rule, and a simplification
method. An error in the derivation of the objective function in the dynamic program is
shown in [86], and a correction is also provided in this paper.

14 CHAPTER 1. INTRODUCTION

A similar problem is studied in [57] under the following assumptions. First, in the
loading phase of containers into the stacking yard, we only know the estimated weight
group of each container. Second, the accurate information about the weight group of
all containers is only known in the vessel-loading phase later on. Third, the conditional
probability of the actual weight groups given the estimated weight groups is known from
the past statistics of managers. The authors propose a simulated annealing algorithm
and develop a decision tree learning algorithm to find a good stacking strategy for the
sequence of incoming containers, in which the conditional probability is used to compute
the expected number of relocations during the vessel-loading phase.

Storage loading of containers in a stacking yard with the objective of minimizing the
expected number of reshuffles is the topic of interest in [46]. In this paper the authors
consider a storage loading problem in which a sequence of containers has to be stored
completely into a stacking yard, in order to load onto several ships later on according to
a sequence of |C| sets, where C is the set of all container types. The type of a container
is defined by its weight group, the ship it will be loaded onto, and its port of destination.
The probability that an incoming container having type c ∈ C is proportioned to the size
of the corresponding ship, and uniformly distributed over all the types. Based on the
dynamic programming model proposed in [59], the authors develop a heuristic algorithm
to quickly find near-optimal solutions for large-scale problems with a realistic size of the
stacking yard. The algorithm maps all states of the dynamic program onto decision trees,
recognizes the correlation between the decisions made by the program for different states,
then simplifies and generalizes the decision trees into generalized but simpler ones. The
generalized trees can quickly locate incoming containers into the stacking yard, and can
be extended to include new information provided by the dynamic program.

A case study of storage loading problems, in which a set of containers needs to be loaded
onto a container ship, is considered in [35]. Due to stability reasons of the ship, weight and
height restrictions are given for each stack. Location restrictions for some reefer containers,
that need power plugs, are given as well. The objective function to be minimized is a
weighted sum of four components: penalizing unordered stackings, penalizing the storage
of non-reefer containers in a power plug location, storing different kinds of containers in
the same stack, and opening a stack. By a reduction from the bin packing problem, the
authors prove that the sub-problem of minimizing the number of opened stacks is NP-
hard. They also provide an integer programming and a constraint programming model
as solution methods to the problem. It is shown by their experimental results on real-life
instances that the constraint programming model has better performance.

1.4 Thesis outline

The goal of this thesis is to study some storage loading problems motivated from several
practical contexts, in which the data of some items are subjected to different types of
uncertainty. We focus mainly on finding and analyzing strictly and adjustable robust
stacking solutions to the problems under our consideration. The main contribution of
this thesis is contained in Chapters 2-5. It is a compilation of results from two published
papers (coauthored with Sigrid Knust [62], and with Marc Goerigk and Sigrid Knust [49])
and a working paper (coauthored with Christina Büsing and Sigrid Knust [32]).

Chapters 2-4 concern different versions of a storage loading problem with stacking
constraints. In this problem, incoming items arriving at a partly filled storage area have
to be assigned to stacks under the restriction that not every item may be stacked on

1.4. THESIS OUTLINE 15

top of every other item and taking into account that some items will arrive later. We
consider some robust versions of this problem where the actual data of the items arriving
later may differ according to some uncertainty set, while the actual data of the other
items are known exactly. We focus on minimizing the number of used stacks, which
is a common objective in practice to have more flexibility to store items arriving later
into the remaining stacks. The approach of strict robustness requires that the stacking
configuration of all items has to be fixed in advance, while the approach of adjustable
robustness allows that the stacking configuration of the items arriving later can be adjusted
depending on their realization. In Chapter 2 we give complexity results for some particular
cases of the deterministic and robust problems under discrete or interval uncertainty.
Chapter 3 presents different mixed integer programming formulations for the deterministic
version and the robust counterparts of the uncertain problems. Based on our numerical
experiments, we give guidelines which formulation performs best under which setting,
and compare the adjustable robust stacking solutions with the strictly robust ones in
terms of the optimal objective values. In Chapter 4 we study a version of the storage
loading problem, in which the items coming later are subjected to stochastic uncertainty.
We discuss some rule-based scenario generations to derive different uncertainty sets from
stochastic data of the items, and analyze the impact of building different scenario sets on
the trade-off between robustness and cost of the robust stacking solutions.

Chapter 5 is devoted to studying a storage loading problem appearing in the context
of container ships. Items with uncertain weights have to be loaded onto a ship regarding
some stacking constraints. In addition, payload constraints are taken into account to
ensure the stability of the ship. The objective is to minimize the total payload violation
over all stacks in order to reduce the shipping cost. The approach of strict robustness
requires that a complete stacking solution has to be fixed in advance before the actually
realized scenario becomes known. The approach of adjustable robustness determines in
advance which item is assigned to which stack, but allows to choose the level of the item
within the stack depending on the weight scenario of all items later. We develop exact
decomposition and heuristic solution algorithms to solve the robust counterparts of the
problem with finite and interval-based uncertainty.

Chapter 6 closes this thesis by some conclusions, reciting the main results, and stating
some open questions.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Complexity

In this chapter we discuss complexity of some deterministic and robust storage loading
problems. We refer the reader to [43] for a thorough introduction into complexity theory.

In Section 2.1 we consider some particular cases of the deterministic problem

(P) L | Ifix → I1 → I2, sij | #St.

This problem is motivated from practical contexts where practitioners have to deal with
a sequence of sets of incoming items. For instance, several trains or vessels consecutively
arrive at a container terminal, each one containing a set of containers that have to be
loaded into the storage yard. According to the order of arrival, all items of one set have
to be completely stored before storing any item of the next set. This corresponds to the
situation that one has to store a set of items into a partly filled storage area, taking into
account that some items will arrive later. Here Ifix denotes the set of items that are
already stored in the storage area, I1 stands for the set of items to be stored now, and
I2 refers to the set of items coming later. The loading process must satisfy hard stacking
constraints (sij) minimizing the number of used stacks to have more flexibility for the
remaining stacks to store items arriving later on.

In Section 2.2 we consider some robust versions of (P) where data uncertainty is taken
into account. More precisely, we follow the idea that the practitioner knows exactly the
actual data of items that are already stored in the storage area or going to be loaded
now (i.e. items in Ifix ∪ I1), while the actual data of items arriving later (i.e. I2-items)
may differ according to some possible scenarios. We will show that complexity results for
solving strictly and adjustable robust counterparts of some particular cases can be derived
from the ones for their corresponding deterministic versions.

2.1 Some deterministic storage loading problems

In Table 2.1 we summarize known complexity results for some particular cases of the
deterministic storage loading problem (P).

No. Problem Complexity Reference

1 L, b = 2 | Ifix → I1 → I2, sij | #St O(n2.5) Corollary 3 [31]
2 L, b = 3 | I1, sij transitive | – strongly NP-complete Theorem 4 [31]
3 L | Ifix → I1, sij total order | #St O(n log n) Theorem 7 [31]
4 L | I1 → I2, sij total order | #St O(n log n) Theorem 8 [31]

Table 2.1: Known complexity results for some deterministic storage loading problems.

17

18 CHAPTER 2. COMPLEXITY

In this section we discuss new complexity results for some other particular cases of
(P). More precisely, in Section 2.1.1 we consider the following problem

(P1) L, b = 2 | Ifix → I1 → I2, sij total order | #St.

This problem arises as a subsequent problem when solving the adjustable robust counter-
part of the uncertain storage loading problem with interval uncertainty (PI) in case b = 2
(as we will show in Corollary 2.19). Note that (P1) is nothing but the first problem in
Table 2.1 with an additional assumption that the stacking constraints sij are total order.
We show that (P1) can be solved more efficiently than the one without this additional
assumption by an algorithm of complexity O(n log n). In Section 2.1.2 we show that the
problem

(Pk) L, b = k | I1, sij transitive | –

is strongly NP-complete for each fixed k ≥ 3, even for transitive stacking constraints sij .
This problem is a generalization of the second problem in Table 2.1, which considers only
the case k = 3.

Note that if m∗ is the optimal number of used stacks in (P), then the problem is
feasible if and only if m ≥ m∗, where m is the given number of stacks in the storage area.
This means that the answer to the feasibility version of (P), i.e.

L | Ifix → I1 → I2, sij | –,

is straightforward from an optimal solution to (P). Furthermore, if we start with a feasible
solution to (P) and re-allocate as many items as possible to the ground level until all stacks
contain at least one item, then we obtain an optimal solution to

L | Ifix → I1 → I2, sij | #SI>1.

Relocating items to the ground levels of empty stacks requires O(n) time. Therefore,
if a particular case of (P) is polynomially solvable, then the same result holds for its
corresponding versions where the storage objective #St is replaced by ‘–’ or #SI>1.

2.1.1 A polynomially solvable case

As shortly mentioned above, in this subsection we present an algorithm of complexity
O(n log n) to solve the problem

(P1) L, b = 2 | Ifix → I1 → I2, sij total order | #St.

For conveniently describing our algorithm, we define a comparator $ for each pair of items
(i, j) based on the total order stacking constraints (sij) as follows:

i $ j :=


i ≈ j if sij = 1 and sji = 1,

i ≺ j if sij = 1 and sji = 0,

i � j if sij = 0 and sji = 1.

Note that the case “sij = 0 and sji = 0” cannot happen since all items can be compared
because of the total order stacking constraints (sij). Additionally, we use notation i 4 j
to indicate the case in which sij = 1 (i.e., either i ≈ j or i ≺ j). Similarly, notation i < j
is used to indicate the case sji = 1 (i.e., either i ≈ j or i � j).

2.1. SOME DETERMINISTIC STORAGE LOADING PROBLEMS 19

We shall use the following terminologies (with respect to the comparator $):

i is equal to j if i ≈ j,
i is strictly smaller than j if i ≺ j,
i is strictly larger than j if i � j,
i is smaller than j if i 4 j,

i is larger than j if i < j.

We say that an item i is the largest (resp., smallest) item in a given set J if i ∈ J and i
is larger (resp., smaller) than all other items in J .

An important procedure in our algorithm to solve (P1) is the process of greedily storing
a set of items J into a storage area that already has some items stored before. We shall
denote this procedure by G(c → J), where c denotes the set of non-empty stacks in the
current stacking configuration of the storage area. The stacks in c that are fully filled
cannot store any items from J , therefore without loss of generality we can ignore them
and assume that all stacks in c are only partly filled. Note that each stack in c can store
at most one item in J due to the restriction b = 2. We take all items contained in stacks
of c, together with the ones in J , and sort them non-decreasingly with respect to the
comparator $. This can be done thanks to the total order stacking constraints sij .

The key idea in G(c → J) is to adapt the algorithms presented in the proofs of
Theorems 7 and 8 from [31], that are applied to solve Problems 3 and 4 in Table 2.1.
Precisely, G(c→ J) is executed as follows. We start with a stack in c that contains one of
the smallest items i∗ (in the order after sorting), fill up this stack with one of the smallest
feasible items in J (i.e. an item i ∈ J with i 4 i∗ and i 4 j for all j ∈ J). If there is no
such J-item, then there is no change in the stack. We continue with the remaining items
in J and a stack containing one of the smallest items among the remaining items in c, and
so on. When all stacks in c have been processed, let r be the number of remaining items in
J . If r = 0, then all J-items are already stored into stacks in c. Otherwise, r > 0, and let
i1 4 i2 4 . . . 4 ir be the remaining J-items sorted in non-decreasing order with respect to
the comparator $. We store these remaining J-items into empty stacks as follows. Each
pair of items i2k−1 and i2k (for k = 1, . . . , b r2c) is stored into an empty stack, where the
larger item i2k is located at the ground level with the smaller item i2k−1 on top. If r is
odd, then the largest item ir is stored at the ground level of some empty stack.

According to the above strategy, whenever an item i is stacked on another item j, we
have i 4 j which means sij = 1. Therefore the stacking constraints are always regarded.
Following the proofs of Theorems 7 and 8 from [31], it is obvious that this stacking strategy
minimizes the number of used stacks when stacking c → J . Furthermore, this stacking
strategy ensures that as many stacks in c as possible are fully filled by J-items. We denote
by g(c→ J) the stacking result after executing G(c→ J), and by #St(c→ J) the number
of used stacks in g(c→ J).

Our strategy to solve (P1) to optimality can be sketched in the following steps.

Step 1: Sort all items in Ifix ∪ I1 ∪ I2 non-decreasingly according to $.
Step 2: Store I1-items keeping the largest flexibility for storing I2-items.
Step 3: Greedily store I2-items.

The first step can be done in O(n log n). We first discuss how Step 3 is executed.
Let c∗ be the stacking configuration of Ifix → I1 after executing Step 2. According

20 CHAPTER 2. COMPLEXITY

to the above discussion, whatever the stacking configuration c∗ is, the best strategy to
store I2-items is G(c∗ → I2). This greedy stacking strategy always satisfies the stacking
constraints (sij) and requires minimum number of stacks to store I2-items. Therefore, in
Step 3 we store I2 according to G(c∗ → I2). Since the sorting of all items has been done
in Step 1, the storage operations of I2-items in Step 3 can be implemented in O(n) time.

We now discuss Step 2 in detail. At first we note that greedily storing I1 into the
storage area with the appearance of Ifix may not lead to an optimal stacking solution to
(P1), as shown in the following example.

Example 2.1. Consider the case of stacking Ifix → I1 → I2 in a storage area with b = 2,
in which Ifix = {i1}, I1 = {i2, i3}, I2 = {i4}, and i3 ≺ i2 ≺ i4 ≺ i1. Since b = 2 and
there are 4 items, we need at least 2 stacks to store these items. Figure 2.1 (a) illustrates
an optimal stacking solution to this case, which requires 2 stacks. If we greedily store I1-
items according to G(Ifix → I1), then the best stacking configuration for I2 is illustrated
in Figure 2.1 (b). It needs 3 stacks and therefore is not an optimal stacking solution.

i1 i2 i1 i2

i3

(a) (b)

i3i4

i4

Figure 2.1: The greedy algorithm does not give an optimal solution to (P1).

Consider the stacking configurations of Ifix → I1 in the two stacking solutions illus-
trated in Example 2.1. Denote by ca (resp., cb) the stacking configuration of Ifix → I1 in
the former (resp., latter) stacking solution. Each of ca and cb has one empty location: for
ca that is the one above item i1, while for cb that is the one above item i2. The empty
location in ca can store an I2-item that is strictly larger than i2 but at most as large as i1,
while the empty location in cb cannot (since i2 ≺ i1). This means that the empty location
in ca gives more possibilities for storing I2 than the one of cb. Therefore, in any case of
I2-item i4, using ca will not lead to a worse optimal objective value than using cb, i.e.,

#St(ca → {i4}) ≤ #St(cb → {i4}),

as precisely shown in the following.

• If i4 � i1, then #St(ca → {i4}) = #St(cb → {i4}) = 3.

• If i4 � i2 and i4 4 i1, then #St(ca → {i4}) = 2 < #St(cb → {i4}) = 3.

• If i4 4 i2, then #St(ca → {i4}) = #St(cb → {i4}) = 2.

Motivated by the above observation, we come up with the following general definition, in
which we consider the context of stacking two sets of items J1 → J2 with the total order
stacking constraints sij .

Definition 2.2. Let c1 and c2 be two stacking configurations of J1. We say that c1 is
more flexible than c2 (or c2 is less flexible than c1) if for all possibilities of J2 we have

#St(c1 → J2) ≤ #St(c2 → J2).

2.1. SOME DETERMINISTIC STORAGE LOADING PROBLEMS 21

We say that these two stacking configurations have the same flexibility (or c1 is as flexible
as c2) if for all possibilities of J2 we have

#St(c1 → J2) = #St(c2 → J2).

By this definition, the goal of Step 2 mentioned above is to find the most flexible
stacking configuration of Ifix → I1. To do that, the observations in the following lemma
are helpful. All cases mentioned in this lemma are considered in the context where b = 2,
and they are obvious by following the idea of the discussion after Example 2.1.

Lemma 2.3. (i) Consider two partly filled stacks, each containing one item. If these two
items are equal, then the two stacks have the same flexibility.

(ii) Consider two partly filled stacks, each containing one item. Then the stack con-
taining the larger item is more flexible than the one containing the smaller item.

(iii) An empty stack, together with a fully filled stack, is more flexible than two partly
filled stacks.

We now discuss our strategy to construct a stacking configuration of Ifix → I1 that
is most flexible for stacking I2-items, which is also the goal of Step 2. The key ideas are
as follows. We start with an initial stacking configuration of Ifix → I1, and step-by-step
construct new stacking configurations with better flexibility. The construction terminates
when we obtain a stacking configuration that could be proven to have the best flexibility
for stacking I2-items.

To describe precisely our strategy in Step 2, for convenience we introduce some con-
cepts and notations. For a ground item (resp., second-level item) we refer to an item stored
at the ground level (resp., the second level) of some stack. Since all items are comparable
with respect to the defined comparator $, so are the items stored at the ground levels
of the stacks. Therefore, given an arbitrary stacking configuration, we can sort the filled
stacks non-decreasingly with respect to the comparator $ based on their ground items.
We say that a non-empty stack q1 is before (resp., after) another non-empty stack q2 if
the ground item of q1 is smaller (resp., larger) than the one of q2. If q1 is before (resp.,
after) all of the other non-empty stacks, then we say that q1 is the first (resp., the last)
stack in the stacking configuration. We use the terminology Ifix-stack to indicate a stack
containing an Ifix-item (by default this item is stored at the ground level of the stack).
Similarly, for an I1-stack we refer to a stack containing an I1-item at the ground level.
Since b = 2, a partly filled Ifix-stack (resp., a partly filled I1-stack) contains only one
Ifix-item (resp., one I1-item) at its ground level, while a fully filled I1-stack stores two
I1-items. Note that there is no stack containing two Ifix-items, therefore in an arbitrary
stacking configuration of Ifix → I1 all second-level items must belong to I1.

As briefly mentioned above, an important operation in our strategy for Step 2 is to
modify a stacking configuration of Ifix → I1 to get a new one with better flexibility. There
are four types of action to do so.

• Action 1: relocate the second-level I1-item in some stack q to the second level of a
partly filled stack before q (as illustrated in Example 2.4).

• Action 2: relocate the ground I1-item in some partly filled stack q to the second
level of a partly filled stack after q (as illustrated in Example 2.5).

• Action 3: relocate the ground I1-item in some partly filled stack q and the second-
level I1-item in some stack after q to one stack (as illustrated in Example 2.6).

22 CHAPTER 2. COMPLEXITY

• Action 4: relocate two I1-items in some fully filled I1-stack q to the second levels of
two partly filled stacks after q (as illustrated in Example 2.7).

Note that in these actions only I1-items are relocated (since we are not allowed to relocate
any Ifix-item by assumption). The following examples respectively illustrate these actions.

Example 2.4. (Action 1) Consider a stacking configuration c of Ifix → I1 having three
items stored in two stacks (as illustrated in the left side of Figure 2.2). The fully filled
stack consists of item i1 ∈ I1 stored at the second level and item i3 ∈ Ifix∪I1 stored at the
ground level. The partly filled stack consists of an item i2 stored at its ground level. Assume
that i1 ≺ i2 ≺ i3. In this case the stack q containing i1 and i3 is after the one containing
i2, and we can relocate i1 to the top of i2 without violating the stacking constraints sij.
The new stacking configuration and c have the same number of fully filled stacks and also
the same number of partly filled stacks. However, since i2 ≺ i3 and according to Lemma
2.3 (ii), the new stacking configuration, which is illustrated in the right side of Figure 2.2,
has better flexibility than c.

i1 i1

i3i2 i3i2

Figure 2.2: Relocate a second-level I1-item.

Example 2.5. (Action 2) Consider a stacking configuration c of Ifix → I1 having three
partly filled stacks (as illustrated in the left side of Figure 2.3), each of them consists of an
item in {i1, i2, i3}, where i1 ∈ I1, i2, i3 ∈ Ifix ∪ I1, and i1 ≺ i2 ≺ i3. In this case the stack
containing i2 is before the one containing i3 and after the one containing i1. The stack q
corresponding to i1 is the first partly filled I1-stack. By relocating i1 to the top of either i2
or i3, two partly filled stacks in c are replaced by one fully filled stack and one empty stack.
Furthermore, the new stacking configuration satisfies the stacking constraints sij due to
i1 ≺ i2 ≺ i3. By Lemma 2.3 (iii), the new stacking configuration has better flexibility than
c. Since i2 ≺ i3, by Lemma 2.3 (ii) the new stacking configuration that is most flexible is
obtained by moving item i1 to the top of i2, i.e., to the top of the first partly filled stack
after q, as illustrated in the right side of Figure 2.3.

i1 i2

i1

i2i3 i3

Figure 2.3: Relocate the item in the first partly filled I1-stack.

Example 2.6. (Action 3) Consider a stacking configuration c of Ifix → I1 having one
partly filled I1-stack and two fully filled stacks. These stacks contain 5 items i1 4 i2 4
i3 4 i4 4 i5 as illustrated in the left side of Figure 2.4, where i1, i2, i4 ∈ I1. The stack
q corresponding to i1 is a partly filled I1-stack. By relocating i1 and either i2 or i4 to a
stack, the new stacking configurations and c have the same number of partly filled stacks
and also the same number of fully filled stacks. However, since i1 4 i3 4 i5, the empty
locations above i3 or i5 in the new stacking configurations are more flexible than the one
above i1. Therefore the new stacking configurations are more flexible than c. Furthermore,

2.1. SOME DETERMINISTIC STORAGE LOADING PROBLEMS 23

according to Lemma 2.3 (ii), the new stacking configuration that is most flexible is obtained
by relocating items i1 and i4 (i.e. the second-level item in the last fully filled stack after
q) into one stack. We illustrate this stacking configuration in the right side of Figure 2.4.

i1

i2

i3

i4

i5

i2

i3

i1

i4 i5

Figure 2.4: Relocate two I1-items in a partly filled I1-stack and a fully filled stack.

Example 2.7. (Action 4) Consider a stacking configuration c of Ifix → I1 having a fully
filled stack and three partly filled ones. The fully filled stack consists of item i2 ∈ I1 stored
at the ground level and item i1 ∈ I1 stored at the second level. Each of the three partly
filled stacks consists of an item in {i3, i4, i5}, where these three items are in Ifix ∪ I1, and
i1 4 i2 ≺ i3 ≺ i4 ≺ i5. In this case the stack q containing i1 and i2 is the first fully filled
I1-stack. The order of the stacks in c is illustrated in the left side of Figure 2.5, where
for any two stacks, the one on the left is before the one on the right. If we relocate i1
and i2 to the second level of two stacks after q, then the stacking constraints sij are still
satisfied. However, one fully filled stack and two partly filled stacks in c are replaced by one
empty stack and two fully filled stacks. Therefore, by Lemma 2.3 (iii), the new stacking
configuration obtained in that way is more flexible than c. Since i3 ≺ i4 ≺ i5, following
Lemma 2.3 (ii), the new stacking configuration that is most flexible is obtained by moving
items i1 and i2 to the top of i3 and i4, i.e., to the second level of the first two partly filled
stacks after q.

i1

i2

i1 i2

i3 i4 i3 i4i5 i5

Figure 2.5: Relocate the items in the first fully filled I1-stack.

It is also important to have a structural initial stacking configuration for Step 2.
We construct such a stacking configuration as follows. For an Ifix-item if , we denote
by [if] the set of Ifix-items that are equal to if (with respect to the comparator $).

The set Ifix can be partitioned into disjoint subsets [if1], . . . , [ifk] (for some k ∈ N) where

if1 ≺ if2 ≺ . . . ≺ ifk . For convenience, we shall denote [if0] := ∅. We partition the set I1 into
subsets A0, A1, . . . , Ak as follows:

A0 = {i ∈ I1 | i ≺ if1}, (2.1)

Au = {i ∈ I1 | ifu 4 i ≺ ifu+1} (u = 1, . . . , k − 1), (2.2)

Ak = {i ∈ I1 | ifk 4 i}. (2.3)

In other words, the set A0 consists of I1-items that are strictly smaller than the smallest
Ifix-item, the set Ak contains I1-items that are larger than the largest Ifix-item, while
Au includes all I1-items that are larger than the u-th smallest Ifix-items but strictly
smaller than the (u + 1)-th smallest Ifix-items. Let c̄ be the stacking configuration that

is the union over all u = 0, . . . , k of g([ifu] → Au). The advantage of using c̄ as initial
stacking configuration is twofold. Firstly, it can be constructed in O(n) time once all

24 CHAPTER 2. COMPLEXITY

items are sorted non-decreasingly with respect to $. Secondly, by the construction, c̄ has
the following property:

(∗) each I1-item i cannot be relocated to any empty second-level location in any stack

before the one containing i.

This property is useful for constructing new stacking configurations with better flexibility
in Step 2.

Following the above discussion, we come up with Algorithm 1 to construct a stacking
configuration of Ifix → I1 that is most flexible for stacking I2-items. Starting with the
initial stacking configuration c̄ constructed as above, the algorithm applies Actions 1-4
in an appropriate way to step-by-step construct new stacking configurations with better
flexibility, and ends up with a desired stacking configuration.

Algorithm 1 Store I1-items keeping the largest flexibility for storing I2-items.

1: Partition Ifix into subsets [if1], . . . , [ifk], where [if] is the set of Ifix-items that are equal

to if and if1 ≺ if2 ≺ . . . ≺ ifk . Let [if0] := ∅.
2: Partition I1 into subsets A0, . . . , Ak according to (2.1)-(2.3).

3: Execute greedy procedures G([ifu]→ Au) for u = 0, . . . , k.
4: while there exists a partly filled I1-stack do
5: Let q be the first partly filled I1-stack.
6: Let Q�q1 be the set of partly filled stacks after q.
7: if Q�q1 6= ∅ then
8: Relocate the item in stack q to the second level of the first stack in Q�q1 .
9: else

10: Let Q�q2 be the set of fully filled stacks after q.
11: if Q�q2 6= ∅ then
12: Let i be the item in the second level of the last stack in Q�q2 .
13: Relocate i and the item in stack q into one stack.
14: else
15: Break.
16: end if
17: end if
18: end while
19: while there exists a fully filled I1-stack do
20: Let q1 be the first fully filled I1-stack.
21: Let Q�q1 be the set of partly filled stacks after q1.
22: if |Q�q1 | ≥ 2 then
23: Relocate the items in q1 to the second levels of the first two stacks in Q�q1 .
24: else
25: Break.
26: end if
27: end while
28: return most flexible stacking configuration of Ifix → I1.

Theorem 2.8. Algorithm 1 gives a stacking configuration of Ifix → I1 with the largest
flexibility in O(n) time.

2.1. SOME DETERMINISTIC STORAGE LOADING PROBLEMS 25

Proof. At first we note that the initial stacking configuration c̄ is constructed by Steps
1-3 of Algorithm 1, and Steps 8, 13, 23 of the algorithm respectively correspond to Actions
2, 3, 4 mentioned above. By the choices of I1-items to be relocated and new locations for
these items in each execution of Steps 8, 13, 23, property (∗) still holds for the stacking
result obtained after each iteration. It follows from the discussion about Actions 2-4 that
if a new stacking configuration is generated in some iteration, then it has better flexibility
than the previous one.

Starting with the initial stacking configuration c̄, each time Step 8 is executed, instead
of having two partly filled stacks, we have one more fully filled stack and one more empty
stack in the new stacking configuration. Step 8 is repeatly executed until one of the
following two cases occurs.

• Case 1: no partly filled I1-stack exists. In this case, the while loop 4-18 ends.

• Case 2: there is only one partly filled I1-stack q but Q�q1 = ∅. In this case, q
is not only the unique partly filled I1-stack but also the last partly filled stack in
the current stacking configuration. Therefore, if Q�q2 = ∅, then q is also the last
stack which consists of the largest I1-item. Otherwise, Q�q2 6= ∅, and there are two
following possibilities.

– If the last stack in Q�q2 is a fully filled I1-stack, then after executing Step 13,
this stack becomes the unique partly filled I1-stack, which consists of the largest
item in Ifix ∪ I1. This item cannot be relocated to any stack to have a more
flexible stacking configuration.

– If the last stack in Q�q2 is an Ifix-stack, then after executing Step 13, this stack
consists of only one item which is the largest Ifix-item, and there is no partly
filled I1-stack in the stacking result.

Therefore, Step 13 can be executed at most once. Note that the action in Step 13
does not change the number of fully filled stacks and also the number of partly filled
stacks, but results in a stacking configuration that is more flexible than the previous
one.

In any case, after the while loop 4-18, the stacking result, say ĉ, has at most one partly
filled I1-stack. If this stack exists, then it must be the last stack in ĉ. We denote this
property of ĉ by (∗∗).

The while loop 19-27 is not executed if the stacking configuration ĉ has no fully filled
I1-stack. In this situation, except for the largest I1-item stored in the last partly filled
I1-stack in ĉ (if this stack exists due to property (∗∗)), all I1-items are stored at the second
levels of some Ifix-stacks. This means that ĉ already has as many fully filled stacks of
storing Ifix → I1 as possible. Keeping this fact in mind, we distinguish two following
cases of ĉ.

• If ĉ has no partly filled Ifix-stack, then all non-empty stacks in ĉ are fully filled,
except for the last stack that might be partly filled by the largest item in Ifix∪I1. In
this case, it is obvious that ĉ is the most flexible stacking configuration of Ifix → I1.

• Otherwise, ĉ has p partly filled Ifix-stacks (for some p ∈ N). Let i1, . . . , ip be the
Ifix-items stored in these stacks. Due to property (∗), no I1-item in any stack after
the one containing ik can be relocated to the position on top of ik (for k = 1, . . . , p).

26 CHAPTER 2. COMPLEXITY

Furthermore, from the construction of ĉ, any relocation of I1-items stored in any
stack before the one containing ik (for any k = 1, . . . , p) does not result in a stacking
configuration with better flexibility than ĉ. Thus, the stacking configuration ĉ has
the largest flexibility of storing Ifix → I1.

If ĉ has some fully filled I1-stacks, then the while loop 19-27 starts with ĉ. After each
execution of Step 23, two partly filled stacks are replaced by one fully filled stack and one
empty stack, while no new partly filled I1-stack arises, i.e., property (∗∗) still holds true
for the new stacking configuration. Let c∗ be the stacking configuration obtained after all
possible executions of Step 23. There are two following cases of c∗.

• In the first case, c∗ has no fully filled I1-stack. By property (∗∗), c∗ has at most one
partly filled I1-stack, which (if exists) is the last stack in this stacking configuration.
Therefore, except for the largest I1-item stored in that stack, all I1-items are now
located at the second level of some Ifix-stacks. This case of c∗ is similar to the
situation of ĉ discussed above, where ĉ has no fully filled I1-stack. By the same
arguments, c∗ is the most flexible stacking configuration of Ifix → I1.

• In the second case, c∗ has at most one partly filled stack after its first fully filled
I1-stack q1. This stacking configuration can be partitioned into two parts. The first
part consists of stacks before q1. The second part consists of stack q1 and the ones
after q1. By property (∗∗), there is no partly filled I1-stack before q1, i.e., all I1-
items in the first part of c∗ are stored at second levels. Taking into account property
(∗), all I1-items in the first part of c∗ are optimally stored. In the second part of
c∗, there is at most one partly filled stack. If this stack is an I1-stack, then it must
be the last stack in c∗ due to property (∗∗), and therefore the I1-item in this stack
cannot be relocated to have better flexibility. If this stack is an Ifix-stack, then by
property (∗) no relocation of I1-items is possible to have better flexibility. Since
all other stacks in the second part of c∗ are fully filled, all I1-items in the second
part of c∗ are optimally stored. Therefore, c∗ is an optimal stacking configuration of
Ifix → I1 with the largest flexibility.

We have shown that the stacking result obtained after the last while loop is one of
the most flexible stacking configurations of storing Ifix → I1. Constructing the initial
stacking configuration c̄ by Steps 1-3 can be done in O(n) time (once all items are sorted
non-increasingly with respect to the comparator $). Each of while loops 4-18 and 19-27
requires O(m) time. Therefore, the algorithm can be implemented in O(n) time.

Algorithm 1 describes precisely how Step 2 is processed, and it can be executed in
O(n). Recall that Step 1 can be done in O(n log n) and Step 3 can be implemented in
O(n) time. To the end, the problem (P1) can be solved in O(n log n) using our method
consisting of Steps 1-3.

We illustrate our method of solving (P1) in the following example.

Example 2.9. Consider an instance of (P1) where

Ifix = {if1 , if2 , if3 , if4},
I1 = {i11, i12, i13, i14, i15, i16, i17},
I2 = {i21, i22, i23}.

2.1. SOME DETERMINISTIC STORAGE LOADING PROBLEMS 27

The items are sorted as follows:

i11 ≺ if1 ≈ i12 ≺ i13 ≺ if2 ≺ i14 ≺ i15 ≈ i21 ≺ if3 ≺ i16 ≺ i17 ≈ if4 ≺ i22 ≺ i23.

Figure 2.6 illustrates the result obtained after executing Steps 1-3 of Algorithm 1. After
executing the while loop 4-18 of the algorithm, we obtain the stacking result illustrated
in Figure 2.7. Afterwards the while loop 19-27 of the algorithm results in the stacking
configuration illustrated in Figure 2.8. Then, an optimal stacking configuration of Ifix →
I1 → I2 is obtained by greedily storing I2-items, as illustrated in Figure 2.9. In the figures,
the arrows show the relocations of the items in the next steps.

i11

i12

i13

i14

i15 i16

i17

if1 if2 if3 if4

Figure 2.6: The stacking result after executing Steps 1-3 of Algorithm 1.

i11i12

i13

i14

i15

i16

i17if1 if2 if3 if4

Figure 2.7: The stacking result after executing Steps 4-18 of Algorithm 1.

i11i12 i13i14

i15

i16

i17if1 if2 if3 if4

Figure 2.8: The stacking result after executing Steps 19-27 of Algorithm 1.

i11i12 i13i14

i15

i16

i17if1 if2 if3 if4

i21 i22

i23

Figure 2.9: An optimal stacking configuration.

2.1.2 NP-complete cases

In this subsection we prove that the deterministic feasibility storage loading problem

(Pk) L, b = k | I1, sij transitive | –,

28 CHAPTER 2. COMPLEXITY

is (strongly) NP-complete for each fixed k ≥ 3, even for transitive stacking constraints sij .
This is a generalization of a result in [31] which considered only the case k = 3. To prove
this generalized result, we need to prove the (strong) NP-completeness of the following
auxiliary problem:

EXACT COVER BY k-SETS (XkC), k ≥ 3:
Instance: A finite set X with |X| = kd for some positive integer d, together with a

collection C of k-element subsets of X.
Question: Does C contain an exact cover for X, i.e., a subcollection C ′ ⊂ C such that

every element of X occurs in exactly one member of C ′?

Proposition 2.10. The problem XkC is strongly NP-complete for each fixed k ≥ 3.

Proof. It is well-known that the problem X3C is strongly NP-complete (see [43]). Thus,
the proposition can be proven by induction on k, that is, given the fact that XkC is
strongly NP-complete, we need to show that X(k + 1)C is also strongly NP-complete.

Indeed, consider an arbitrary instance of XkC, in which X is a set with |X| = kd and
C = {c1, . . . , cp} is a collection of k-element subsets of X, i.e., ci = {xi1, . . . , xik} ∈ Xk for
each i = 1, . . . , p. We construct the following instance of X(k + 1)C: let A = {a1, . . . , ad}
be a set consisting of d elements such that X ∩A = ∅, and let

X̃ = X ∪A,
C̃ = {ci ∪ {aj} | i = 1, . . . , p, j = 1, . . . , d}.

If C ′ is an exact cover by k-element subsets for X, say C ′ = {c1, . . . , cd}, then the corre-
sponding collection C̃ ′ = {c1 ∪ {a1}, . . . , cd ∪ {ad}} is an exact cover by (k + 1)-element
subsets for X̃. Conversely, if there exists an exact cover by (k + 1)-element subsets for
X̃, say C̃ ′ = {c̃1, . . . , c̃d}, then each member c̃i of C̃ ′ must contain exactly one element,
say aji , of A, and {j1, . . . , jd} is some permutation of {1, . . . , d}. Clearly, the collection
C = {c1, . . . , cd}, in which ci = c̃i\{aji} for i = 1, . . . , d, is an exact cover by k-element
subsets for X.

We have shown that C contains an exact cover by k-element subsets for X if and only
if C̃ contains an exact cover by (k+1)-element subsets for X̃. Moreover, it is obvious that
the instance (X̃, C̃) of X(k+1)C can be constructed in polynomial time from the instance
(X,C) of XkC. Therefore the (strong) NP-completeness of X(k+ 1)C follows immediately
from the (strong) NP-completeness of XkC.

Theorem 2.11. The feasibility problem L, b = k | I1, sij | – is strongly NP-complete for
each fixed k ≥ 3, even for transitive stacking constraints sij.

Proof. We transform XkC to this feasibility problem. Let the set X with |X| = kd and the
collection C = {c1, . . . , cp} of k-element subsets of X, in which ci = {xi1, . . . , xik} ∈ Xk for
each i = 1, . . . , p, be an arbitrary instance of XkC. Corresponding to this instance of XkC,
we introduce an instance of the feasibility problem with m = d+ kp stacks, the common
height limit of these stacks is b = k, the number of items in I1 is n = km = k(d + kp),
and the stacking constraints sij are represented by the directed graph G = (V,A) which
is constructed as follows.

• The nodes V = V1 ∪ V2 correspond to the items in I1. The set V1 consists of the
main nodes in which each one represents one element of X. The set V2 consists of
pk2 auxiliary nodes {aij,l | j = 1, . . . , k, l = 1, . . . , k, i = 1, . . . , p}.

2.1. SOME DETERMINISTIC STORAGE LOADING PROBLEMS 29

• Each member ci = {xi1, . . . , xik} of C defines a substitution graph which is a sub-
graph of G consisting of k main nodes {xi1, . . . , xik}, k2 auxiliary nodes {aij,l | j, l ∈
{1, . . . , k}}, and collection Ai of k2 + k − 1 directed arcs

{(aij,l, aij,l+1) | l ∈ {1, . . . , k − 1}, j ∈ {1, . . . , k}}
∪ {(aij,k−1, x

i
j) | j ∈ {1, . . . , k}}

∪ {(aij,k, aij+1,k) | j ∈ {1, . . . , k − 1}}.
The set of arcs A is the union of the collections Ai of arcs in all substitution graphs,
that is

A =

p⋃
i=1

Ai.

Figure 2.10 illustrates a substitution graph in the case k = 4. Note that there might
be some substitution graphs having some mutual main nodes, but there is no arc between
auxiliary nodes of different substitution graphs.

xi1 xi2 xi3 xi4

ai1,1

ai1,2ai1,3

ai1,4

ai2,1

ai2,2ai2,3

ai2,4

ai3,1

ai3,2ai3,3

ai3,4

ai4,1

ai4,2ai4,3

ai4,4

Figure 2.10: Substitution graph in the case k = 4.

Obviously, this instance of the feasibility problem can be constructed in polynomial
time from the instance of XkC. We will show that C contains an exact cover by k-element
subsets for X if and only if the stacking problem has a feasible solution. The strong NP-
completeness of the feasibility problem then follows from the strong NP-completeness of
the XkC problem, which is proved in Proposition 2.10.

We first show the necessity. Assume that the instance of XkC has an exact cover
C ′ ⊂ C. The corresponding stacking problem has a feasible solution constructed as follows.
Whenever ci = {xi1, . . . , xik} is in the exact cover, we stack the items represented by the
nodes of the corresponding substitution graph into k + 1 stacks:

(aij,1, . . . , a
i
j,k−1, x

i
j), j = 1, . . . , k, and (ai1,k, . . . , a

i
k,k). (2.4)

Note that the items corresponding to the main nodes of ci are stacked in these stacks and
cannot be used in any other stacks. Figure 2.11 illustrates these stacks in the case k = 4,
in which each red path represents the way of stacking items in each stack. On the other
hand, if ci = {xi1, . . . , xik} is not in the exact cover, we stack the items in the corresponding
substitution graph into k stacks:

(aij,1, . . . , a
i
j,k), j = 1, . . . , k. (2.5)

30 CHAPTER 2. COMPLEXITY

xi1 xi2 xi3 xi4

ai1,1

ai1,2ai1,3

ai1,4

ai2,1

ai2,2ai2,3

ai2,4

ai3,1

ai3,2ai3,3

ai3,4

ai4,1

ai4,2ai4,3

ai4,4

Figure 2.11: Stacks if ci is a member of the exact cover in the case k = 4.

In this case the items corresponding to the main nodes of ci are not in these stacks while
the items corresponding to all auxiliary nodes are stacked. These stacks are illustrated by
the red paths in Figure 2.12 for the case k = 4.

xi1 xi2 xi3 xi4

ai1,1

ai1,2ai1,3

ai1,4

ai2,1

ai2,2ai2,3

ai2,4

ai3,1

ai3,2ai3,3

ai3,4

ai4,1

ai4,2ai4,3

ai4,4

Figure 2.12: Stacks if ci is not a member of the exact cover in the case k = 4.

We now show the sufficiency. Assume that there exists a feasible solution to the
stacking problem. Note that by the construction of the substitution graphs, in such a
feasible solution to the stacking problem, the items corresponding to the main nodes can
only be stacked at the ground level. If the item xi1 is stacked at the ground level of
some stack, say qi1 , and the item ai1,k−1 is stacked on top of xi1, then it follows from

the construction of the substitution graph containing ai1,k−1, say Gi, that the stack qi1
must be (ai1, . . . , a

i
k−1, x

i
1). Then the only way to stack ai1,k is to put it into the stack

(ai1,k, . . . , a
i
k,k), and the other items corresponding to the nodes of Gi must be stacked into

the stacks as described in (2.4). On the other hand, if the item ai1,k−1 is not stacked on

top of xi1, then it must be stacked into the stack (ai1,1, . . . , a
i
1,k−1, a

i
1,k), and it is not hard

to see that the items corresponding to the other auxiliary nodes of Gi must be stacked
into the stacks as described in (2.5). Therefore we can construct the corresponding exact
cover by k-element subsets for X by collecting ci ∈ C into the exact cover C ′ whenever
the items represented by the nodes in the corresponding substitution graph are stacked

2.2. SOME ROBUST STORAGE LOADING PROBLEMS 31

into the stacks of form (2.4).

xi1 xi2 xi3 xi4

ai1,1

ai1,2ai1,3

ai1,4

ai2,1

ai2,2ai2,3

ai2,4

ai3,1

ai3,2ai3,3

ai3,4

ai4,1

ai4,2ai4,3

ai4,4

Figure 2.13: Transitive substitution graph in the case k = 4.

The strong NP-completeness of the feasibility problem in the case of transitive stacking
constraints sij can be proven by similar arguments as above but on transitive substitution
graphs instead of the substitution ones. A transitive substitution graph is constructed
by adding to the substitution graph defined above the arcs (u, v) whenever there exists a
directed path from the node u to the node v (here u, v are the nodes in the substitution
graph.) Figure 2.13 illustrates a transitive substitution graph in the case k = 4.

2.2 Some robust storage loading problems

As introduced in the beginning of this chapter, in this section we follow the idea that
actual data of items in Ifix ∪ I1 are already known, while there is some uncertainty on
data of items in I2. More precisely, we consider the following two uncertain storage loading
problems. The first one, denoted by

(PD) L | Ifix → I1 → Ĩ2, s̃ij ,SD | #St,

corresponds to the case of discrete uncertainty set SD := {(s1
ij), . . . , (s

N
ij)} of possible

outcomes of stacking matrix. Adapting the fact that here-and-now items Ifix ∪ I1 have
certain actual data, these realizations of stacking matrices must have a common determin-
istic part, i.e., s1

ij = . . . = sNij for i, j ∈ Ifix ∪ I1. The second uncertain storage loading
problem, denoted by

(PI) L | Ifix → I1 → Ĩ2, sij(ã),SI | #St,

corresponds to the case of interval uncertainty. That is, in this problem, each item i has an
associated parameter ai, in which each here-and-now item i ∈ Ifix ∪ I1 has deterministic
value ai, while for each wait-and-see item i ∈ I2 its ai-value may vary in an interval
[amini , amaxi]. Here SI denotes the set of all possible values of vector a = (a1, . . . , an).

32 CHAPTER 2. COMPLEXITY

Furthermore, stacking constraints sij(a) defines a total order based on values ai’s by
imposing that item i is stackable on top of item j if and only if ai ≤ aj .

We study the complexity of (strictly and adjustable) robust counterparts of the un-
certain storage loading problems (PD) and (PI). The approach of strict robustness (cf.
Section 1.2.1) requires that a complete stacking solution for all items I1 ∪ I2 has to be
determined before the actually realized scenario of I2 becomes known. Such an approach
is required if the storage plan has to be announced before the actual data of the items
in I2 are known and the plan cannot be changed later on. In the approach of adjustable
robustness (cf. Section 1.2.2), however, not all decisions have to be fixed in advance, but
some can be made after the realized scenario becomes known. In the context of the stack-
ing problems we are considering, this means that only all items in I1 have to be assigned
to locations in the storage area and that the items in I2 can be assigned later when their
actual data are known. Therefore, the locations of items in Ifix ∪ I1 are “here-and-now”
variables, while the positions of items in I2 are “wait-and-see” variables. An adjustable
robust stacking solution is a stacking configuration of Ifix∪I1 such that for every scenario
of the I2-items we can find a feasible assignment of all I2-items to locations in the storage
area. The adjustable robust counterparts of (PD) and (PI) aim to find an adjustable
robust stacking solution that minimizes the number of used stacks in the worst case over
all scenarios.

2.2.1 Strictly robust counterparts

In this part we aim to find strictly robust solutions to uncertain storage loading problems
(PD) and (PI) with b = 2. The key idea to solve these problems is representing the robust
ability of stacking an item on other ones as an undirected graph and then solving a match-
ing problem on the constructed graph. This is a generalization of the solution method
proposed in [31] which is applied to solve the deterministic version of these problems.

Theorem 2.12. The problem of finding a strictly robust solution to (PD) or (PI) in case
b = 2 can be solved in polynomial time.

Proof. We introduce a “strict stacking matrix” (s∗ij) where s∗ij = 1 if and only if item i
can be stacked on top of item j in any scenario. For the uncertain problem (PD) where
the data uncertainty is given in form of a finite set SD = {(s1

ij), . . . , (s
N
ij)} of N stacking

matrices, we can easily compute s∗ij by

s∗ij =

{
1 if skij = 1 for all k = 1, . . . , N ,

0 otherwise.
(2.6)

For the uncertain problem (PI) with stacking constraints sij(a) defining a total order based
on values ai, interval uncertainties [amini , amaxi] for all i ∈ I2 and deterministic values ai
for all i ∈ Ifix ∪ I1, we can compute the strict stacking matrix by

s∗ij =



1 if i, j ∈ Ifix and i is stacked on top of j,

1 if i ∈ I1, j ∈ Ifix ∪ I1, and ai ≤ aj ,
1 if i ∈ I2, j ∈ Ifix ∪ I1, and amaxi ≤ aj ,
1 if i, j ∈ I2 and amaxi ≤ aminj ,

0 otherwise.

(2.7)

2.2. SOME ROBUST STORAGE LOADING PROBLEMS 33

We now construct the undirected graph G = (V,E) where the nodes V = {1, . . . , n}
correspond to the items in the set I, and the edges E correspond to the pairs of items in
which one item is certainly stackable on top of the other, i.e. the unordered pairs {i, j}
satisfying at least one of the following two conditions:

(i, j) ∈ (I1 × (Ifix ∪ I1)) ∪ (I2 × I) and s∗ij = 1,

or

(j, i) ∈ (I1 × (Ifix ∪ I1)) ∪ (I2 × I) and s∗ji = 1.

A matching in the graph G corresponds to a strictly robust stacking solution in the fol-
lowing sense. Each pair of matched items {i, j} corresponding to a chosen edge in the
matching is stored in a stack in a way that regards the sequence Ifix → I1 → Ĩ2 and
i is stacked on top of j if s∗ij = 1. Additionally, the items that are not matched in the
matching have to be stored at the ground level. Thus, a matching of maximum cardinality
in the graph G corresponds to a strictly robust stacking solution with the largest number
of stacks containing two items, and consequently, the total number of used stacks is min-
imized. The set of edges E can be determined in O(Nn2) in case of (PD) and O(n2) in
case of (PI). The maximum cardinality matching can be computed in O(n2.5) time (cf.
[39]). Thus, a strictly robust solution to (PD) can be found in O(Nn2) + O(n2.5), and a
strictly robust solution to (PI) can be found in O(n2.5).

2.2.2 Adjustable robust counterparts

In this subsection, we consider the adjustable robust counterpart of (PI) where the stack-
ing constraints define a total order based on values ai and we have interval uncertainties
[amini , amaxi] for all i ∈ I2. For convenience we denote by (arPI) the adjustable robust
counterpart of (PI). We will show that an optimal solution to (arPI) can be found in the
context of a so-called dominant scenario, where each item i ∈ I2 has its maximum asso-
ciated value amaxi . Therefore we can derive complexity results for solving some particular
cases of (arPI) from the ones for their corresponding deterministic versions.

Recall from the beginning of this section that we denote by a = (a1, . . . , an) the vector
of ai-values for all items i ∈ I, and SI the set of all possible scenarios of a. Given a
stacking configuration x of here-and-now items Ifix ∪ I1 and a scenario a of values for
all items, we denote by F(x, a) all feasible solutions y of stacking wait-and-see items I2

into the storage area, and by fSt(x, y) the number of used stacks in the combination of
stacking configurations x and y. Let Ffea be the set of all stacking configurations x of
here-and-now items Ifix ∪ I1 such that for each scenario a there exists a feasible solution
y of stacking wait-and-see items I2. Then (arPI) can be stated as follows.

(arPI) min farSt (x) := max
a∈SI

min
y∈F(x,a)

fSt(x, y)

subject to x ∈ Ffea.

We call a scenario a∗ ∈ SI a dominant scenario for (arPI) if for any stacking con-
figuration x of here-and-now items Ifix ∪ I1 with F(x, a∗) 6= ∅ we have F(x, a) 6= ∅ for
all a ∈ SI . Roughly speaking, the existence of a feasible solution in the setting of the
dominant scenario a∗ guarantees the existence of a feasible solution in the setting of an
arbitrary scenario a ∈ SI .

34 CHAPTER 2. COMPLEXITY

In [50] a related concept of so-called worst-case scenarios was introduced as follows. A
scenario awc ∈ SI is called a worst-case scenario if

F(x, awc) ⊆ F(x, a) ∀a ∈ SI , x ∈ Ffea.

In other words, a solution for the wait-and-see variables in the worst-case scenario is also
a solution for the wait-and-see variables in an arbitrary scenario a ∈ SI . It follows from
the definition that a worst-case scenario is a dominant scenario, but generally the reverse
does not hold.

Proposition 2.13. Let amax ∈ SI be the scenario in which each item i ∈ I2 has the value
amaxi . Then amax is a dominant scenario for (arPI).

Proof. Let x be a feasible solution of here-and-now items Ifix∪I1 such that F(x, amax) 6= ∅,
i.e., in scenario amax there exists a feasible solution y(amax) ∈ F(x, amax) of stacking wait-
and-see items I2 later on. Let Qmax be the set of stacks in (x, y(amax)) containing at least
one I2-item. For each stack q ∈ Qmax, let I2

q be the set of I2-items and iq the topmost
here-and-now item (if it exists) stored in this stack. Since (x, y(amax)) is a feasible solution
of all items, the largest a-value of I2-items in stack q is not larger than aiq .

Now we consider an arbitrary scenario a ∈ SI . We construct a solution (x, y(a)) for
Ifix → I1 → I2 in the context of scenario a as follows.

• (x, y(a)) has the same stacking configuration x of here-and-now items Ifix ∪ I1 as in
(x, y(amax)).

• For each stack q ∈ Qmax, re-arrange the items in I2
q in non-increasing order of their

ai-values in the setting of scenario a, and store these items consecutively onto this
stack (from bottom to top) ordered by non-increasing ai-values.

By definition of amax, within stack q ∈ Qmax, the largest ai-value of an item i ∈ I2 in sce-
nario a is not larger than the value in scenario amax. Therefore, the stacking configuration
(x, y(a)) takes into account the stacking constraints based on the ai-values. Moreover, by
the above construction, (x, y(a)) has the same number of used stacks as (x, y(amax)), which
does not exceed the given number m of stacks in the storage area. Therefore, (x, y(a)) is a
feasible solution for stacking all items in the context of scenario a, i.e., y(a) ∈ F(x, a). In
other words, we have proven that F(x, a) 6= ∅ given the assumption that F(x, amax) 6= ∅.
Thus, amax is a dominant scenario for (arPI).

The following example illustrates the construction of (x, y(a)) based on (x, y(amax)).

Example 2.14. Consider a storage area with m = 2 stacks of height b = 3, and n = 6
items Ifix = {1, 2}, I1 = {3}, I2 = {4, 5, 6}. We assume a1 = 110, a2 = 90, a3 =
100, the ai-intervals for items i = 4, 5, 6 are [80, 100], [80, 90], [75, 85]. In the dominant
scenario amax, the ai-values of the I2-items are amax4 = 100, amax5 = 90, amax6 = 85.
For this scenario, a feasible stacking solution is given in Figure 2.14 (a). Figure 2.14
(b) presents a stacking solution for scenario a where the ai-values of the I2-items are
a4 = 90, a5 = 81, a6 = 84. The locations of the items in Ifix ∪ I1 are the same in both
solutions. Furthermore, both solutions have item 4 in the first stack and items 5, 6 in the
second stack. However, in the second solution, the positions of the I2-items are changed
in comparison with the former solution to adapt the order of these items in the setting of
scenario a.

2.2. SOME ROBUST STORAGE LOADING PROBLEMS 35

1 1 2

(a) (b)

2

3

4

5

6

3

4

6

5

110 90

100

100

90

85

110 90

100

90

84

81

Figure 2.14: Two stacking solutions for Example 2.14.

Now we consider the optimization problem (arPI).

Theorem 2.15. Let x∗ be the stacking configuration of here-and-now items Ifix ∪ I1 in
an optimal solution (x∗, y∗) in the context of the dominant scenario amax. Then x∗ is
also an optimal solution to (arPI). Moreover, the optimal value of (PI) for the dominant
scenario amax equals the optimal value of (arPI).

Proof. Since (x∗, y∗) is an optimal solution to (PI) in the context of the dominant scenario
amax and thanks to Proposition 2.13, for any scenario a ∈ SI we can construct a feasible
stacking configuration y(a) of all wait-and-see items I2 such that (x∗, y(a)) is a feasible
stacking solution of all items. Thus, x∗ ∈ Ffea, or in other words, x∗ is an adjustable
robust solution to (arPI).

Furthermore, for an arbitrary x ∈ Ffea, it follows from the construction of (x, y(a)) in
the proof of Proposition 2.13 that

min
y∈F(x,a)

fSt(x, y) ≤ min
y∈F(x,amax)

fSt(x, y) ∀a ∈ SI .

Since amax ∈ SI , we have

max
a∈SI

min
y∈F(x,a)

fSt(x, y) = min
y∈F(x,amax)

fSt(x, y).

This equality holds for arbitrary x ∈ Ffea, therefore we obtain

max
a∈SI

min
y∈F(x∗,a)

fSt(x
∗, y) = min

y∈F(x∗,amax)
fSt(x

∗, y), (2.8)

and

min
x∈Ffea

max
a∈SI

min
y∈F(x,a)

fSt(x, y) = min
x∈Ffea

min
y∈F(x,amax)

fSt(x, y). (2.9)

On one hand, the left hand side of equality (2.9) is the optimal value of (arPI). On the
other hand, since (x∗, y∗) is an optimal solution to (PI) in the context of the dominant
scenario amax, the right hand sides of equalities (2.8) and (2.9) are both equal to fSt(x

∗, y∗),
which is the optimal value of (PI) for the dominant scenario amax. Hence, equality (2.9)
implies that the optimal value of (PI) for the dominant scenario amax equals the optimal
value of (arPI). Moreover, we have shown that

min
x∈Ffea

max
a∈SI

min
y∈F(x,a)

fSt(x, y) = max
a∈SI

min
y∈F(x∗,a)

fSt(x
∗, y),

i.e., x∗ is indeed an optimal solution to (arPI).

36 CHAPTER 2. COMPLEXITY

In the following, we show that it is important for the uncertainties of the I2-items to be
given by intervals. In the case of an arbitrary total order and a finite number of stacking
matrix scenarios, it may happen that no dominant scenario exists, which is shown by the
following example.

Example 2.16. Consider a storage area with m = 4 stacks of height b = 2, and n = 8
items I1 = {1, 2, 3, 4, 5, 6}, I2 = {7, 8}. We assume that there are two possible scenarios
to stack the I2-items such that the stacking constraints define a total order on all items:

Scenario τ1: 6→ 5→ 4→ 8→ 3→ 7→ 2→ 1.

Scenario τ2: 6→ 5→ 8→ 4→ 3→ 2→ 7→ 1.

Note that both scenarios τ1 and τ2 have the same order on the I1-items. Let c1 be the
configuration of I1-items in which items 1, 2, 3, 4 are stored (separately) at the ground
level of the four stacks, item 5 is on top of item 1, and item 6 is on top of item 4 (see
Figure 2.15(a)). Let c2 be the configuration of I1-items in which items 1, 2, 3, 4 are stored
at the same locations as in c1, while item 5 is on top of item 2 and item 6 is on top of
item 3 (see Figure 2.15(b)).

1 2 3 4

5 6

1 2 3 4

5 6

(a) Configuration c1 (b) Configuration c2

Figure 2.15: Configurations for Example 2.16.

For configuration c1 there is a feasible solution for scenario τ1 (by putting item 7 on
top of item 2 and putting item 8 on top of item 3), but no feasible solution for scenario
τ2. Similarly, for configuration c2 there is a feasible solution for scenario τ2 (by putting
item 7 on top of item 1 and putting item 8 on top of item 4), but no feasible solution for
scenario τ1. Therefore, there is no dominant scenario in this case.

It is also important that the idea of pointing out dominant scenarios can only be
applied to the case in which each item has only one associated parameter. In the following
we show a counter-example when two parameters are associated with each item.

Example 2.17. Consider a storage area with m = 2 stacks of height b = 2, and n = 4
items Ifix = {1}, I1 = {2}, I2 = {3, 4}. Each item i has two associated parameters denoted
by ai and di. Item i is stackable on top of item j if ai ≤ aj and di ≤ dj. Consider the
case in which the values of the associated parameters of the items are given as follows.

a1 = 10, d1 = 4,

a2 = 9, d2 = 3,

a3 ∈ [7, 12], d3 ∈ [1, 6],

a4 ∈ [8, 11], d4 ∈ [2, 5].

Note that there are exactly two possible stacking configurations of here-and-now items
Ifix ∪ I1. In the first configuration, say c1, item 2 is stacked on top of item 1. In the
second configuration, say c2, items 1 and 2 are put separately on the ground level of the
two stacks.

2.2. SOME ROBUST STORAGE LOADING PROBLEMS 37

Let τ1 be the scenario in which (a3, a4, d3, d4) = (7, 8, 6, 5), and τ2 be the one with
(a3, a4, d3, d4) = (12, 11, 1, 2). Let τ∗ be an arbitrary scenario of data (a3, a4, d3, d4) of
wait-and-see items. Assume that F(c1, τ

∗) 6= ∅, i.e., there exists a feasible solution of
stacking items 3 and 4 into the storage area where items 1 and 2 are stored according
to configuration c1. Then in this case items 3 and 4 must be stored in the same stack
(since there are m = 2 stacks, and in configuration c1 two here-and-now items 1 and 2
occupy one full stack). However, in scenario τ1, the wait-and-see items cannot be stored
in the same stack due to the given stacking constraints (a3 < a4 but d3 > d4). Therefore,
F(c1, τ1) = ∅. Similarly, if F(c2, τ

∗) 6= ∅, then items 3 and 4 must be stored at the second
level of the two stacks (since there are m = 2 stacks, and in stacking configuration c2 each
here-and-now item is stored at the ground level of one stack). However, due to the given
stacking constraints, in scenario τ2 the wait-and-see items cannot be stored at the second
level of the two stacks, i.e., F(c2, τ2) = ∅.

We have shown that F(ci, τ
∗) 6= ∅ does not imply F(ci, τ) 6= ∅ for all possible scenarios

τ (i = 1, 2). Thus, τ∗ cannot be a dominant scenario. Since τ∗ is chosen arbitrarily, no
dominant scenario exists.

We derive from Theorem 2.15 and the discussion in Section 2.1 the complexity results
for the following particular cases of (arPI).

Corollary 2.18. The adjustable robust counterpart of

L | I1 → Ĩ2, sij(ã),SI | #St

can be solved in O(n log n).

Proof. This problem is the particular case of (arPI) where Ifix = ∅. Thanks to Theorem
2.15, the complexity of solving this problem is determined by the complexity of solving its
deterministic case where all items in I2 are assigned with their maximum associated value
amaxi . Note that in the context of this dominant scenario, the stacking constraints still
define a total order on the set of all items. This means the problem we are considering
has the same complexity as the deterministic problem

L | I1 → I2, sij total order | #St,

which is solvable in O(n log n) (cf. Theorem 8 [31]).

Corollary 2.19. The adjustable robust counterpart of

L, b = 2 | Ifix → I1 → Ĩ2, sij(ã),SI | #St

can be solved in O(n log n).

Proof. This problem is the particular case of (arPI) where b = 2. By similar arguments
as in the proof of Corollary 2.18, the problem we are considering has the same complexity
as the deterministic problem

L, b = 2 | Ifix → I1 → I2, sij total order | #St,

which is solvable in O(n log n), as shown in Theorem 2.8.

We have discussed some particular cases of strictly and adjustable robust counterparts
of the uncertain storage loading problems (PD) and (PI) that are polynomially solvable.
The following corollary, on the other hand, shows two NP-hard cases.

38 CHAPTER 2. COMPLEXITY

Corollary 2.20. For every fixed b = k ≥ 3, the strictly and adjustable robust counterparts
of (PD) are strongly NP-hard.

Proof. The problems of solving strictly and adjustable robust counterparts of (PD) for
fixed b = k ≥ 3 include the deterministic problem

L, b = k | I1, sij | #St

as a special case (N = 1, Ifix = I2 = ∅). As shown in Theorem 2.11, the feasibility
version of this deterministic problem is strongly NP-complete. Therefore, the result follows
straightforwardly from Theorem 2.11.

2.3 Conclusions

In this chapter we considered some variants of the storage loading problem

(P) L | Ifix → I1 → I2, sij | #St.

This problem is motivated by practical settings in which one has to store a set I1 of items
into a storage area partly filled by items in a set Ifix, taking into account that a set I2 of
items will arrive later. The objective is to minimize the number of used stacks regarding
hard stacking constraints (sij).

In Section 2.1 we studied the complexity of some particular cases of the deterministic
version of (P). We showed in Theorem 2.8 that the problem can be efficiently solved by an
algorithm of complexity O(n log n) if b = 2 and the stacking constraints sij define a total
order on the list of all items. On the other hand, Theorem 2.11 establishes the boundary
to NP-hardness by showing that for each fixed b ≥ 3 the problem is NP-hard even with
only one set of items I1 and transitive stacking constraints sij .

In Section 2.2 we considered some robust versions of (P), in which the actual data
of here-and-now items Ifix ∪ I1 are known exactly, while the actual data of wait-and-see
items I2 are uncertain. Discrete and interval-based uncertainty sets were concerned. We
studied complexity results for strictly and adjustable robust counterparts of the uncertain
problems, that are summarized in Table 2.2. The complexity results for the problems
reported in Table 2.2 are derived from the ones for their deterministic versions. Open
problems are marked by question marks.

Robustness
(PD) (PI)

b = 2 b ≥ 3 b = 2 b ≥ 3, Ifix = ∅ b ≥ 3, Ifix 6= ∅

Strict
O(Nn2) +O(n2.5)

strongly NP-hard O(n2.5)
? ?even with N = 1

(Theorem 2.12) (Corollary 2.20) (Theorem 2.12)

Adjustable ?
strongly NP-hard O(n log n) O(n log n)

?even with N = 1
(Corollary 2.20) (Corollary 2.19) (Corollary 2.18)

Table 2.2: Complexity results for some robust storage loading problems.

Solving the strictly robust counterparts of the uncertain problems is equivalent to
solving their deterministic versions with the “strict stacking constraints” defined by the
certainly stackable relations between the items. In contrast, for solving the adjustable ones,
we need to consider all scenarios of uncertain items to find out the worst-case scenario.

2.3. CONCLUSIONS 39

Therefore, at first glance, it seems that the adjustable robust counterparts are “harder”
to solve than the strict ones (with the same input setting of stacking height and data
uncertainty).

The above argument may be particularly true for the uncertain problem with discrete
uncertainty (PD) and stacking height b = 2. The strictly robust counterpart of this
uncertain problem can be solved in polynomial time. The key ideas are to transform the
robust counterpart to an undirected graph representing strictly stackable relations between
the items, then find a maximum cardinality matching of this graph. The complexity of
solving the adjustable robust counterpart of this uncertain problem, however, is still an
open problem. It is nothing but finding a matching of all items for each scenario of stacking
matrix (sij) ∈ SD with the following additional restrictions. First, restricted on the here-
and-now items Ifix ∪ I1, these matchings must be the same. Second, the worst-case
number of stacks corresponding to such a matching must be less than a given predicted
value. These additional restrictions make the adjustable case far from the simplicity of
the strict case.

It is very interesting that the obtained complexity results for the robust storage load-
ing problems with interval uncertainty (PI) disprove the argument mentioned above. In
general, the “strict stacking constraints” (for solving the strictly robust counterpart of
this uncertain problem) satisfy the transitivity property. Solving the adjustable robust
counterpart of this problem, however, has the same complexity as solving the problem for
the dominant scenario, in which all wait-and-see items have maximum associated values.
The dominant scenario provides a total order on the set of all items, that offers more pos-
sibilities to stack items onto each other than transitive stacking constraints. Because of
this reason, the adjustable robust counterpart of (PI) can be solved more efficiently than
the strict one. It is clearly true in the case b = 2, where the adjustable robust counterpart
can be solved in O(n log n) by a greedy algorithm, while the strict one can be solved in
O(n2.5) by using a matching method. Another counter-example may be the case of (PI)
with b ≥ 3 and no Ifix-item. In this case, the adjustable robust counterpart can be solved
very efficiently by a greedy algorithm of complexity O(n log n). Solving the strictly robust
counterpart, however, is more involved. This robust counterpart can be formulated as a
directed graph, in which the vertices correspond to the items, and a directed arc from i to
j means that item i is certainly stackable on top of item j (taking into account the stacking
sequence and the intervals constituting the uncertainty set SI). Solving the problem we
are considering is more or less partitioning the specific directed graph into vertex-disjoint
paths of length at most b. Its complexity is still an open problem.

40 CHAPTER 2. COMPLEXITY

Chapter 3

Storage loading with stacking
constraints

In Chapter 2 we considered the deterministic version and two non-deterministic versions
of the storage loading problem

(P) L | Ifix → I1 → I2, sij | #St,

which occurs in some practical contexts where one has to store a set of items into a partly
filled storage area, taking into account that some items will arrive later. Again, Ifix is the
set of items that are already stored in the storage area, I1 denotes the set of items to be
stored now, and I2 stands for the set of items coming later. The objective is to minimize
the number of used stacks to have more flexibility for the remaining stacks to store items
arriving later on, while taking into account hard stacking constraints sij during loading
process.

For non-deterministic versions of (P), we follow the idea that the practitioner knows
exactly the actual data of here-and-now items Ifix ∪ I1, while the actual data of wait-
and-see items I2 are uncertain. This leads to the uncertain storage loading problem with
discrete uncertainty

(PD) L | Ifix → I1 → Ĩ2, s̃ij ,SD | #St,

and the one with interval uncertainty

(PI) L | Ifix → I1 → Ĩ2, sij(ã),SI | #St,

as introduced in Section 2.2 of Chapter 2.

Complexity results for some particular cases of the deterministic problem (P), as well
as strictly and adjustable robust counterparts of uncertain problems (PD) and (PI), were
studied in Chapter 2. This chapter, which is mainly based on our work in [62], presents
different MIP formulations for the deterministic problem (Section 3.1) and for the robust
counterparts of the uncertain problems (Sections 3.2 and 3.3). In Section 3.4 we present
computational results for randomly generated instances with up to 480 items. The re-
sults show that instances of this size can be solved in reasonable time and that including
robustness improves solutions where uncertainty is not taken into account. Section 3.5
closes this chapter with some conclusions.

41

42 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

3.1 MIP formulations for the deterministic problem

In this section, we propose three different (mixed-) integer linear programming formula-
tions for the deterministic problem (P). While the first two formulations can deal with
arbitrary stacking constraints sij , the third one is only valid for transitive constraints.
Recall from Section 1.1.1 that we denote the set of all items by I = {1, . . . , n}, the set of
stacks by Q = {1, . . . ,m}, and the set of levels in one stack by L = {1, . . . , b}.

3.1.1 Three-index formulation

In this subsection, we describe the first IP formulation which is based on three-indexed
binary variables xi,q,l for i ∈ I, q ∈ Q, l ∈ L, where

xi,q,l =

{
1 if item i is stored in stack q at level l,

0 otherwise.

Let
F = {(i, q, l) ∈ Ifix ×Q× L | item i is stored in stack q at level l

in the given storage configuration}
be the set of triples corresponding to locations of fixed items.

Then problem (P) can be formulated as the following IP:

(Ind− P) min
∑

(i,q)∈I×Q

xi,q,1 (3.1)

s.t. xi,q,l = 1 ∀(i, q, l) ∈ F (3.2)∑
(q,l)∈Q×L

xi,q,l = 1 ∀i ∈ I1 ∪ I2 (3.3)

∑
i∈I

xi,q,l ≤ 1 ∀(q, l) ∈ Q× L (3.4)∑
j∈I\{i}

sijxj,q,l−1 ≥ xi,q,l ∀(i, q, l) ∈ I ×Q× (L\{1}) (3.5)

xi,q,l ∈ {0, 1} ∀(i, q, l) ∈ I ×Q× L (3.6)

The objective function (3.1) minimizes the number of items stored at level 1 (the ground
level), which equals the number of used stacks. Constraints (3.2) ensure that each item
in the set Ifix is fixed at its given location in the storage area, while constraints (3.3)
guarantee that all items in I1 ∪ I2 are stored. Constraints (3.4) ensure that at most
one item is stored at each level of each stack. Constraints (3.5) ensure that the stacking
constraints sij (including the sequence Ifix → I1 → I2) are taken into account and that
no item is put at a location where no item is stored below. Finally, the domains of the
variables are defined in (3.6). This formulation contains O(nmb) variables and O(nmb)
constraints.

3.1.2 Network flow formulation

In this subsection, we show that (P) can also be modeled as a network flow problem with
some additional constraints, and propose a MIP formulation for it.

3.1. MIP FORMULATIONS FOR THE DETERMINISTIC PROBLEM 43

Let Ifix be the set of items in Ifix stored at the ground level, and I
fix

the set of the
topmost Ifix-items in the stacks. We start with a directed graph G = (V,A) representing
the stacking constraints sij . The nodes in V correspond to the items in I, while an arc
(i, j) in A connects item i with item j if i is stackable on top of j (i.e., sij = 1). Since we
assume that the stacking sequence Ifix → I1 → I2 is integrated into the stacking matrix
(sij), the condition sij = 1 also implies that item j does not arrive later than i. More
precisely, A = A0 ∪A1 with

A0 = {(i, j) ∈ Ifix × Ifix | item i is stacked on top of item j},
A1 = {(i, j) ∈ (I1 × (Ifix ∪ I1)) ∪ (I2 × I) | sij = 1}.

By the construction of G, each feasible solution to (P) corresponds to a partition of G
into at most m pairwise node-disjoint paths such that each path contains at most b nodes.
The paths in such a partition of G can be viewed as pairwise node-disjoint flows, each flow
sending one unit through one path. This motivates embedding G = (V,A) in a network
G′ = (V ′, A′) which is constructed as follows.

• V ′ = V ∪ {u0, u1, . . . , um} ∪ {v0, v1, . . . , vm}, in which u0 is the source node, v0 is
the sink node, and uk, vk for k = 1, . . . ,m are auxiliary nodes corresponding to the
top and the bottom of the m stacks.

• A′ = A ∪A2 ∪A3 ∪A4, where

A2 = {(u0, uk) | k = 1, . . . ,m} ∪ {(vk, v0) | k = 1, . . . ,m} ∪ {(uk, vk) | k = 1, . . . ,m}

contains m directed arcs from the source node u0 to the auxiliary nodes u1, . . . , um
as well as m directed arcs from the auxiliary nodes v1, . . . , vm to the sink node v0,
and m directed arcs (u1, v1), . . . , (um, vm). Furthermore,

A3 = {(uk, i) | k = 1, . . . ,m, i ∈ Ifix ∪ I1 ∪ I2}

contains directed arcs from the auxiliary nodes u1, . . . , um to the nodes corresponding
to items in I1 ∪ I2 and the topmost Ifix-items in the stacks, and

A4 = {(i, vk) | k = 1, . . . ,m, i ∈ Ifix ∪ I1 ∪ I2}

contains directed arcs from the nodes corresponding to items in I1 ∪ I2 and the
Ifix-items stored at the ground level of the stacks to the auxiliary nodes v1, . . . , vm.

Example 3.1. Consider a small storage area with m = 2 stacks of height b = 3 and
n = 5 items in the sets Ifix = {1, 2}, I1 = {3, 4}, I2 = {5} where item 2 is stacked on
top of item 1 in the first stack. Furthermore, we assume that item 4 can be stacked on
top of items 1 and 3, and item 5 is stackable onto items 2 and 3, i.e., s41 = s43 = s52 =
s53 = 1. On the other hand, we assume that item 3 cannot be stacked on items 1, 2, 4,
item 4 cannot be stacked on item 2, and item 5 cannot be stacked on items 1 and 4, i.e.,
s31 = s32 = s34 = s42 = s51 = s54 = 0. Due to the stacking sequence Ifix → I1 → I2, we
also have s13 = s14 = s15 = s23 = s24 = s25 = s35 = s45 = 0. The corresponding graph
G is shown in Figure 3.1(a) and the network G′ constructed from G in (b). The arcs of
graph G are represented with thick lines, while the arcs in A2, A3, and A4 are represented
with dotted lines, dashed lines, and continuous thin lines, respectively. The path partition
{5→ 2→ 1, 4→ 3} of G leads to the solution where items 5, 1, 2 are stacked in this order

44 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

1

2

3

4

5

1

2

3

4

5

u0

u1 u2

v1 v2

v0

(a) Graph G (b) Network G′ (c) Reduced network

1

2

3

4

5

u0

u1 u2

v1 v2

v0

Figure 3.1: Networks G and G′ in Example 3.1.

in the first stack and item 4 is on top of item 3 in the second stack. This configuration
corresponds to the flows u0 → u1 → 5→ 2→ 1→ v1 → v0, u0 → u2 → 4→ 3→ v2 → v0

in G′.

Since each Ifix-item belongs to exactly one stack, we can remove some unnecessary
arcs in the construction of the network as follows. Let Q′ be the set of stacks containing
at least one Ifix-item. For each stack q ∈ Q′, let iq be the Ifix-item stored at the ground
level of the stack. Then we only introduce the directed arc (iq, vq) and remove all other
arcs going into vq and going out of iq. Similarly, let i

q
be the topmost Ifix-item in q ∈ Q′.

Then, we introduce the directed arc (uq, i
q
) and remove all other arcs of the form (uq, i

q′
)

or (uq′ , i
q
) with q′ ∈ Q\{q}. Furthermore, if i and j are two Ifix-items where i is stacked

on top of j, then we only keep the arc (i, j) and remove all other arcs going into j and
going out of i. Figure 3.1(c) shows the reduced network for Example 3.1.

To model the network flow problem as a MIP, we introduce binary variables xij cor-
responding to arcs (i, j) ∈ A′, where xij = 1 if the arc (i, j) carries some flow (i.e., i is
stacked on top of j), otherwise xij = 0. Note that if an arc (uk, vk) carries flow, then
the corresponding stack remains empty. To ensure that each stack contains at most b
items and to avoid cycles in the flow, we introduce auxiliary variables ci for all nodes
i ∈ V ′\{u0, v0}, where ci represents the number of arcs on the path from u0 to node i
carrying the flow through i. Then, the problem can be formulated as follows.

(Flow − P) min
∑

(i,j)∈A4

xij (3.7)

s.t. xij = 1 ∀ (i, j) ∈ A0 (3.8)∑
j:(i,j)∈A′

xij = 1 ∀i ∈ V ′\{u0, v0} (3.9)

∑
j:(j,i)∈A′

xji = 1 ∀i ∈ V ′\{u0, v0} (3.10)

ci = 1 ∀i ∈ {u1, . . . , um} (3.11)

3.1. MIP FORMULATIONS FOR THE DETERMINISTIC PROBLEM 45

cj − ci + b(1− xij) ≥ 1 ∀(i, j) ∈ A′, j 6= v0 (3.12)

ci ≤ b+ 2 ∀i ∈ {v1, . . . , vm} (3.13)

ci ≥ 0 ∀i ∈ V ′\{u0, v0} (3.14)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (3.15)

According to (3.7) the total flow on the arcs from A4, which corresponds to the number of
used stacks is minimized. Constraints (3.8) ensure that the given stacking configuration
of the Ifix-items is respected by stating that the arcs in A0 must always carry some flow.
Constraints (3.9) and (3.10) model that each node (except the source node u0 and the
sink node v0) transfers exactly one unit of flow (i.e., each item belongs to exactly one
stack). Due to constraints (3.11) the values of ci for the top elements u1, . . . , um are set
to one. In order to compute the ci-values, we have to ensure that cj ≥ ci + 1 if xij = 1,
which is modeled by (3.12). These constraints also forbid cycles in the flow. Note that
due to constraints (3.12) ci may be chosen larger than necessary, i.e., these values are only
upper bounds for the actual number of arcs on the path from u0 to i carrying the flow
through i. However, as long as (3.13) (guaranteeing that each stack contains at most b
items) is satisfied, this does not lead to any problems. Note that no integrality constraints
are required for the variables ci, i.e., they may be introduced as continuous variables in
(3.14). This formulation contains O(n2) variables and O(n2) constraints.

3.1.3 Bin packing formulation

In this subsection, we consider an IP formulation for problem (P) where contrary to the
two previous formulations it is necessary that the stacking constraints sij are transitive.
As discussed in Section 1.1.3, the stacking constraints are often transitive in practice,
especially, if they are based on several ≤-relations. We use a formulation similar to bin
packing where each item is only assigned to a stack (similar to a bin) but not to a specific
level in this stack. With some appropriate constraints and due to the transitivity of the
stacking constraints, we can ensure that if the IP has a feasible solution, then a feasible
assignment of all items is also always possible.

We call a subset J ⊆ I a S-total set if the stacking matrix S defines a total relation
on the items in J (i.e., for all i, j ∈ J we have sij = 1 or sji = 1). If J is a S-total set
and the stacking constraints sij are transitive, then the stacking matrix S defines a total
order on the items of J . Consequently, if |J | ≤ b, we can feasibly store all items from J
in a stack where the position (level) of each item can be easily determined by sorting the
items according to the total order on J . This implies that if there is a partition of I into
at most m disjoint S-total subsets of cardinality at most b, then this partition corresponds
to a feasible solution of the storage problem (each subset corresponds to a set of items
placed into the same stack). Conversely, it is obvious that each feasible solution of the
storage problem corresponds to a partition of I into at most m disjoint S-total subsets of
cardinality at most b. Therefore, finding a feasible solution of the storage loading problem
is equivalent to finding such a partition of I.

Based on this idea, we introduce binary variables xiq for i ∈ I, q ∈ Q with

xiq =

{
1 if item i is stored in stack q,

0 otherwise.

To calculate the number of used stacks, we introduce additional binary variables zq for

46 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

q ∈ Q with

zq =

{
1 if at least one item is stored in stack q,

0 otherwise.

Let
Fbin = {(i, q) ∈ Ifix ×Q | item i ∈ Ifix is stored in stack q

in the given storage configuration}
and

F topbin = {(i, q) ∈ Ifix ×Q | item i is the topmost Ifix-item stored in stack q}.

Furthermore, we again denote by

Q′ = {q ∈ Q | ∃ i ∈ Ifix : (i, q) ∈ Fbin}

the set of stacks that contain at least one Ifix-item. For each q ∈ Q′ let bq be the number
of Ifix-items in stack q. As discussed above, the set of items in each stack of a feasible
stacking solution must be S-total, i.e., for any two items i, j ∈ I we must have sij = 1
or sji = 1. This is equivalent to the condition that two items i, j ∈ I cannot be stored
together in the same stack if and only if sij = 0 and sji = 0. Since the stacking sequence
Ifix → I1 → I2 is already taken into account in the sij-matrix, and due to the transitivity
of the stacking constraints sij , if an item i ∈ I1 ∪ I2 is stackable on top of the topmost
Ifix-item of a stack, then i is also stackable on top of the other Ifix-items in the same
stack. However, if an item i ∈ I1∪I2 cannot be stored together with the topmost Ifix-item
of a stack, then i cannot be stored in that stack. Therefore, any feasible solution x must
satisfy the inequalities∑

j∈I1∪I2\{i}
sij=sji=0

xjq ≤ b(1− xiq) ∀(i, q) ∈ (I1 ∪ I2)× (Q\Q′),

∑
j∈I1∪I2\{i}
sij=sji=0

xjq ≤ (b− bq)(1− xiq) ∀(i, q) ∈ F topbin ∪ (I1 ∪ I2)×Q′.

Based on the above considerations we obtain the following IP formulation:

(Bin− P) min
∑
q∈Q

zq (3.16)

s.t. xiq = 1 ∀(i, q) ∈ Fbin (3.17)∑
i∈I

xiq ≤ bzq ∀q ∈ Q (3.18)∑
q∈Q

xiq = 1 ∀i ∈ I (3.19)

∑
j∈I1∪I2\{i}
sij=sji=0

xjq ≤ b(1− xiq) ∀(i, q) ∈ (I1 ∪ I2)× (Q\Q′) (3.20)

∑
j∈I1∪I2\{i}
sij=sji=0

xjq ≤ (b− bq)(1− xiq) ∀(i, q) ∈ F topbin ∪ (I1 ∪ I2)×Q′ (3.21)

3.2. MIP FORMULATIONS FOR THE STRICTLY ROBUST PROBLEMS 47

xiq ∈ {0, 1} ∀i ∈ I, q ∈ Q (3.22)

zq ∈ {0, 1} ∀q ∈ Q (3.23)

According to (3.16) the number of used stacks is minimized. Constraints (3.17) ensure
that the items of Ifix are stored in the correct stacks according to the given configuration.
Constraints (3.18) guarantee that at most b items are assigned to each stack. Additionally,
they enforce that the variable zq is set to one if at least one item is assigned to stack q.
Due to equalities (3.19) each item is stored in exactly one stack. As discussed above,
constraints (3.20) and (3.21) take into account that only compatible items are assigned to
the same stack. This formulation contains O(nm) variables and O(nm) constraints.

Furthermore, we can add the following nm redundant constraints to (Bin− P)

xiq ≤ zq ∀ i ∈ I, q ∈ Q (3.24)

to represent the requirement that the variable zq is set to one if some item is assigned to
stack q. Then we obtain the extended variant

(BinE − P)

min
∑
q∈Q

zq : (3.17)− (3.24)

 .

The IP formulation (BinE−P) uses the same number of variables as (Bin−P) and also
uses O(nm) constraints. However, it is well known that (BinE−P) in general has a better
LP relaxation than (Bin− P), since the feasible set of the LP relaxation of (BinE − P)
is a subset of the one corresponding to (Bin− P).

3.2 MIP formulations for the strictly robust problems

In this section, we consider the strictly robust counterparts of the non-deterministic prob-
lems (PD) and (PI). In the setting of these problems, a complete stacking solution for
all items I1 ∪ I2 has to be determined before the actually realized scenario of I2 becomes
known. Such an approach is required if the storage plan has to be announced before the
actual data of the items in I2 are known and the plan cannot be changed later on. Fol-
lowing the approach of strict robustness introduced in Section 1.2.1, we focus on strictly
robust solutions where the worst case over all scenarios is optimized.

In this context, a strictly robust stacking solution is a stacking configuration of all
items which satisfies the stacking constraints in all realizations of the uncertain data. The
strictly robust counterparts of (PD) and (PI) aim to find a strictly robust solution that
minimizes the number of used stacks in the worst case over all scenarios.

The main idea when dealing with the strictly robust counterparts of these uncertain
problems is to introduce a “strict stacking matrix” (s∗ij) where s∗ij = 1 if and only if item
i can be stacked on top of item j in any scenario.

For the uncertain problem (PD) where the data uncertainty is given in the form of
a finite set SD = {(s1

ij), . . . , (s
N
ij)} of N stacking matrices, we can easily compute s∗ij by

(2.6), i.e.,

s∗ij =

{
1 if skij = 1 for all k = 1, . . . , N ,

0 otherwise.

We will denote by (srPD) the strictly robust counterpart of (PD). Note that if all scenarios
s1
ij , . . . , s

N
ij are transitive, then s∗ij also is, and we can apply the bin packing formulation

48 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

in this case. Replacing the stacking matrix (sij) in formulations (Ind − P), (Flow −
P), (Bin − P), (BinE − P) by the strict stacking matrix (s∗ij) from (2.6), we obtain
MIP formulations for (srPD) denoted by (Ind − srPD), (Flow − srPD), (Bin − srPD),
(BinE−srPD), respectively. In all these formulations no additional variables or constraints
are needed.

For the uncertain problem (PI) with stacking constraints sij which define a total order
based on values ai, interval uncertainties [amini , amaxi] for all i ∈ I2 and deterministic values
ai for all i ∈ Ifix ∪ I1, we can compute the strict stacking matrix by (2.7), i.e.,

s∗ij =



1 if i, j ∈ Ifix and i is stacked on top of j,

1 if i ∈ I1, j ∈ Ifix ∪ I1, and ai ≤ aj ,
1 if i ∈ I2, j ∈ Ifix ∪ I1, and amaxi ≤ aj ,
1 if i, j ∈ I2 and amaxi ≤ aminj ,

0 otherwise.

We will denote the strictly robust counterpart of the problem for interval uncertainties by
(srPI). Replacing the stacking matrix (sij) in formulations (Ind−P), (Flow−P), (Bin−
P), (BinE − P) by the strict stacking matrix (s∗ij) from (2.7), we obtain MIP formula-
tions for (srPI) denoted by (Ind − srPI), (Flow − srPI), (Bin − srPI), (BinE − srPI),
respectively.

3.3 MIP formulations for the adjustable robust problems

In this section, we consider the adjustable robust counterparts of the non-deterministic
problems (PD) and (PI). Following the ideas for adjustable robustness introduced in
Section 1.2.2, not all decisions have to be fixed in advance, but some can be made after
the realized scenario becomes known. In the context of our stacking problems, this means
that only the items in I1 have to be assigned to locations in the storage area and that the
items in I2 can be assigned later when their actual data are known. Therefore, the locations
of items in Ifix ∪ I1 are “here-and-now” variables, while the positions of items in I2 are
“wait-and-see” variables. An adjustable robust stacking solution is a stacking configuration
of Ifix∪I1 such that for every scenario of the I2-items we can find a feasible assignment of
all I2-items to locations in the storage area. The adjustable robust counterparts of (PD)
and (PI) aim to find an adjustable robust stacking solution that minimizes the number of
used stacks in the worst case over all scenarios.

3.3.1 Discrete uncertainty

In this subsection, we assume that we have a finite set of scenarios described by a set
SD = {(s1

ij), . . . , (s
N
ij)} of possible outcomes of stacking matrix. Let N = {1, . . . , N} and

(arPD) be the adjustable robust counterpart of (PD).

Three-index formulation

The IP formulation (Ind − P) proposed in Section 3.1.1 uses binary variables xi,q,l (i ∈
I, q ∈ Q, l ∈ L) to represent an assignment of all items in I to feasible locations in the
storage area. For adjustable robustness, we have to distinguish between here-and-now
decisions for items from Ifix ∪ I1 and wait-and-see decisions for items from I2 in all

3.3. MIP FORMULATIONS FOR THE ADJUSTABLE ROBUST PROBLEMS 49

scenarios. Hence, we split the variables into two sets. The first set consists of binary
here-and-now variables xi,q,l with (i, q, l) ∈ (Ifix ∪ I1)×Q×L. These variables determine
the assignments of items in Ifix ∪ I1 to locations where

xi,q,l =

{
1 if item i ∈ Ifix ∪ I1 is stored in stack q at level l,

0 otherwise.

The second set consists of binary wait-and-see variables yki,q,l for (i, q, l) ∈ I2 ×Q×L and

all k ∈ N . These variables determine the positions of I2-items in a solution for scenario k
where

yki,q,l =

{
1 if item i ∈ I2 is stored in stack q at level l in the solution for scenario k,

0 otherwise.

In order to calculate the worst-case number of used stacks over all scenarios we introduce
an additional auxiliary variable v ≥ 0. Let X = (Ifix∪I1)×Q×L, X ′ = I1×Q×(L\{1}),
Y = I2 × Q × L, Y ′ = I2 × Q × (L\{1}). From (Ind − P) we then derive the following
MIP formulation for (arPD).

(Ind− arPD) min v (3.25)

s.t.
∑

(i,q,1)∈X

xi,q,1 +
∑

(j,q,1)∈Y

ykj,q,1 ≤ v ∀k ∈ N (3.26)

xi,q,l = 1 ∀(i, q, l) ∈ F (3.27)∑
(q,l)∈Q×L

xi,q,l = 1 ∀i ∈ I1 (3.28)

∑
(q,l)∈Q×L

yki,q,l = 1 ∀i ∈ I2, k ∈ N (3.29)

∑
i∈Ifix∪I1

xi,q,l +
∑
j∈I2

ykj,q,l ≤ 1 ∀(q, l) ∈ Q× L, k ∈ N (3.30)

∑
j∈Ifix∪I1

sijxj,q,l−1 ≥ xi,q,l ∀(i, q, l) ∈ X ′ (3.31)

∑
j∈Ifix∪I1

skijxj,q,l−1 +
∑
j∈I2

skijy
k
j,q,l−1 ≥ yki,q,l ∀(i, q, l) ∈ Y ′, k ∈ N (3.32)

xi,q,l ∈ {0, 1} ∀(i, q, l) ∈ X (3.33)

yki,q,l ∈ {0, 1} ∀(i, q, l) ∈ Y, k ∈ N (3.34)

v ≥ 0 (3.35)

The left hand side of (3.26) is equal to the number of used stacks in the solution for
scenario k ∈ N , therefore by (3.25) the worst-case number of used stacks over all scenarios
in N is minimized. Constraints (3.27) ensure that each item in the set Ifix is stored at
its given position in the storage area. Constraints (3.28) guarantee that all items from I1

are stored, while constraints (3.29) make sure that in each scenario k ∈ N all items from
I2 are stored. Constraints (3.30) mean that for each scenario k ∈ N at most one item
can be stored at each level of each stack. Constraints (3.31) and (3.32) together guarantee
that in each scenario k ∈ N the corresponding stacking constraints skij (including the

50 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

stacking sequence Ifix → I1 → I2) are taken into account and that no item is put at
a location where no item is stored below. This formulation contains O(nmbN) variables
and O(nmbN) constraints.

Network flow formulation

In the following, we adapt the network flow formulation proposed in Section 3.1.2 to model
the adjustable robust counterpart (arPD). Based on the idea of constructing the reduced
network G′ = (V ′, A′), we construct a network G′(s) = (V ′(s), A′(s)) corresponding to
scenario s ∈ SD by setting

• V ′(s) = V ′;

• A′(s) = A0 ∪Ah1 ∪Aw1 (s) ∪Ah2 ∪Aw2 ∪A3 ∪Ah4 ∪Aw4 , where

Ah1 = {(i, j) ∈ I1 × (Ifix ∪ I1) | sij = 1},
Aw1 (s) = {(i, j) ∈ I2 × I | sij = 1},

Ah2 = {(u0, uk) | k = 1, . . . ,m} ∪ {(vk, v0) | k = 1, . . . ,m},
Aw2 = {(uk, vk) ∈ A2 | k = 1, . . . ,m},
Ah4 = {(i, vk) ∈ A4 | i ∈ Ifix ∪ I1, k = 1, . . . ,m},
Aw4 = {(i, vk) ∈ A4 | i ∈ I2, k = 1, . . . ,m},

and A0, A2, A3, A4 are defined as in the construction of G′ in Section 3.1.2.

Note that

A1 = Ah1 ∪Aw1 (s), A2 = Ah2 ∪Aw2 , A4 = Ah4 ∪Aw4 .
The sets A0, Ah1 , Ah2 , Ah4 correspond to the here-and-now decisions, while the sets Aw1 (s),
Aw2 , Aw4 correspond to the wait-and-see decisions. By construction of the network in
Section 3.1.2, if an arc (uk, i) ∈ A3 has a positive flow, then i is the topmost item of
stack k. However, in the stacking solutions corresponding to different data scenarios,
the topmost items may change. Therefore, all elements in A3 correspond to wait-and-see
decisions.

For modeling (arPD) we use the following sets of variables. Let Ah = A0∪Ah1∪Ah2∪Ah4
and define binary here-and-now variables xij for (i, j) ∈ Ah with

xij =

{
1 if arc (i, j) carries to some flow,

0 otherwise.

Let Aw(sk) = Aw1 (sk) ∪ Aw2 ∪ A3 ∪ Aw4 and define binary wait-and-see variables ykij for

(i, j) ∈ Aw(sk), k ∈ N with

ykij =

{
1 if arc (i, j) carries to some flow in the solution for scenario k ∈ N ,

0 otherwise.

In addition, we use wait-and-see variables cki ≥ 0 for all i ∈ V ′\{u0, v0}, k ∈ N . These
variables determine the number of arcs on the path from u0 to i carrying the flow through
i in the solution for scenario k. Again, we use an auxiliary variable v ≥ 0 to calculate

3.3. MIP FORMULATIONS FOR THE ADJUSTABLE ROBUST PROBLEMS 51

the worst-case number of used stacks over all scenarios. We obtain the following MIP
formulation for (arPD):

(Flow − arPD) min v (3.36)

s.t.
∑

(i,j)∈Ah4

xij +
∑

(i,j)∈Aw4

ykij ≤ v ∀k ∈ N (3.37)

xij = 1 ∀ (i, j) ∈ A0 (3.38)∑
j:(i,j)∈Ah

xij +
∑

j:(i,j)∈Aw(sk)

ykij = 1 ∀i ∈ V ′\{u0, v0}, k ∈ N (3.39)

∑
j:(j,i)∈Ah

xji +
∑

j:(j,i)∈Aw(sk)

ykji = 1 ∀i ∈ V ′\{u0, v0}, k ∈ N (3.40)

cki = 1 ∀i ∈ {u1, . . . , um}, k ∈ N (3.41)

ckj − cki + b(1− xij) ≥ 1 ∀(i, j) ∈ Ah, j 6= v0, k ∈ N (3.42)

ckj − cki + b(1− ykij) ≥ 1 ∀(i, j) ∈ Aw(sk), k ∈ N (3.43)

cki ≤ b+ 2 ∀i ∈ {v1, . . . , vm}, k ∈ N (3.44)

cki ≥ 0 ∀i ∈ V ′\{u0, v0}, k ∈ N (3.45)

xij ∈ {0, 1} ∀(i, j) ∈ Ah (3.46)

ykij ∈ {0, 1} ∀(i, j) ∈ Aw(sk), k ∈ N (3.47)

v ≥ 0 (3.48)

The number of used stacks in the solution for scenario k ∈ N is computed by the left hand
side of (3.37), hence the objective function in (3.36) minimizes the worst-case number of
used stacks over all scenarios in N . Through constraints (3.38), the arcs in A0 must always
carry some flow, so the given stacking configuration of Ifix-items is respected. Constraints
(3.39) and (3.40) ensure that each node (except the source u0 and the sink v0) belongs
to exactly one path in each scenario k ∈ N . Similar to (3.11)-(3.13), constraints (3.41)-
(3.44) guarantee that no cycles occur in the flow and that each stack contains at most b
items in each scenario k ∈ N . This formulation contains O(n2N) variables and O(n2N)
constraints.

Bin packing formulation

In the following we adapt the two bin packing formulations proposed in Section 3.1.3 to
model the adjustable robust counterpart (arPD) in the situation of transitive stacking
constraints.

Motivated by the IP formulation (Bin−P), we distinguish two sets of binary variables:
here-and-now variables xiq for (i, q) ∈ (Ifix ∪ I1) × Q and wait-and-see variables ykiq for

(i, q) ∈ I2 ×Q, k ∈ N where

xiq =

{
1 if item i ∈ Ifix ∪ I1 is stored in stack q,

0 otherwise,

ykiq =

{
1 if item i ∈ I2 is stored in stack q in the solution for scenario k ∈ N ,

0 otherwise.

52 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

To compute the number of used stacks in the solution for scenario k ∈ N , we introduce
binary variables zkq for q ∈ Q, k ∈ N with

zkq =

{
1 if stack q contains at least one item in the solution for scenario k ∈ N ,

0 otherwise.

Again, we use an auxiliary variable v ≥ 0 to calculate the worst-case number of used stacks
over all scenarios. We obtain the following MIP formulation for (arPD):

(Bin− arPD) min v (3.49)

s.t.
∑
q∈Q

zkq ≤ v ∀k ∈ N (3.50)

xiq = 1 ∀(i, q) ∈ Fbin (3.51)∑
i∈Ifix∪I1

xiq +
∑
j∈I2

ykjq ≤ bzkq ∀q ∈ Q, k ∈ N (3.52)

∑
q∈Q

xiq = 1 ∀i ∈ I1 (3.53)

∑
q∈Q

ykiq = 1 ∀i ∈ I2, k ∈ N (3.54)

∑
j∈I1\{i}
sij=sji=0

xjq +
∑
j∈I2
skji=0

ykjq ≤ (b− bq)(1− xiq) ∀(i, q) ∈ F topbin ∪ I1 ×Q′, k ∈ N (3.55)

∑
j∈I1
skij=0

xjq +
∑

j∈I2\{i}
skij=s

k
ji=0

ykjq ≤ (b− bq)(1− ykiq) ∀(i, q) ∈ I2 ×Q′, k ∈ N (3.56)

∑
j∈I1\{i}
sij=sji=0

xjq +
∑
j∈I2
skji=0

ykjq ≤ b(1− xiq) ∀(i, q) ∈ I1 × (Q\Q′), k ∈ N (3.57)

∑
j∈I1
skij=0

xjq +
∑

j∈I2\{i}
skij=s

k
ji=0

ykjq ≤ b(1− ykiq) ∀(i, q) ∈ I2 × (Q\Q′), k ∈ N , (3.58)

xiq ∈ {0, 1} ∀i ∈ Ifix ∪ I1, q ∈ Q (3.59)

ykjq ∈ {0, 1} ∀j ∈ I2, q ∈ Q, k ∈ N (3.60)

zkq ∈ {0, 1} ∀q ∈ Q, k ∈ N (3.61)

v ≥ 0 (3.62)

The left hand side of (3.50) is equal to the number of used stacks in the solution for
scenario k ∈ N , hence the objective function in (3.49) minimizes the worst-case number
of used stacks over all scenarios in N . Constraints (3.51) ensure that all Ifix-items are
stored in their corresponding stacks. Constraints (3.52) guarantee that at most b items
are assigned to each stack in each scenario and enforce variable zkq to one if at least one
item is assigned to stack q in scenario k ∈ N . Equalities (3.53)-(3.54) guarantee that
each item is stored in exactly one stack in each scenario. Finally, (3.55)-(3.58) ensure that
only compatible items are assigned to the same stack in each scenario. This formulation
contains O(nmN) variables and O(nmN) constraints.

3.4. COMPUTATIONAL EXPERIMENTS 53

In the same way that the redundant constraints (3.24) were added to (Bin − P) (cf.
Section 3.1.3), we can add the following constraints to (Bin− arPD):

xiq ≤ zkq ∀i ∈ Ifix ∪ I1, q ∈ Q, k ∈ N , (3.63)

ykjq ≤ zkq ∀j ∈ I2, q ∈ Q, k ∈ N . (3.64)

Then we obtain the extended MIP formulation

(BinE − arPD) {min v : (3.50)− (3.64)} .

In comparison with (Bin−arPD), this MIP formulation uses the same number of variables,
also contains O(nmN) constraints, but may have a better LP relaxation.

3.3.2 Interval uncertainty

In this subsection, we consider the adjustable robust counterpart of (PI) where the stacking
constraints define a total order based on associated values ai of items and we have interval
uncertainties [amini , amaxi] for all i ∈ I2.

We have shown in Theorem 2.15 that for finding an adjustable robust solution to (PI)
it is sufficient to only consider the dominant scenario amax in which all wait-and-see items
have maximum values of their associated parameters. Let (smaxij) be the stacking matrix
for the dominant scenario amax. Thanks to Theorem 2.15, replacing the stacking matrix
(sij) in formulations (Ind−P), (Flow−P), (Bin−P), (BinE−P) from Section 3.1 by the
stacking matrix (smaxij), we obtain MIP formulations for (arPI) denoted by (Ind− arPI),
(Flow − arPI), (Bin− arPI), (BinE − arPI), respectively. In all these formulations no
additional variables or constraints are needed. Note that the matrix (smaxij) differs from
the strict stacking matrix (s∗ij) only with respect to the fourth line in (2.7). More precisely,

for i, j ∈ I2 we have smaxij = 1 if amaxi ≤ amaxj , while s∗ij = 1 if amaxi ≤ aminj . It means
that, in comparison with (s∗ij), some more 1-entries may exist in (smaxij), which allows more
flexibility in the adjustable case than requiring strict robustness.

3.4 Computational experiments

In this section, we compare the different MIP formulations from Sections 3.2 and 3.3, as
summarized in Table 3.1. Recall that the bin packing formulations can only be applied to
instances with transitive stacking constraints.

Uncertainty Robustness
Type of formulation

Three-index Network flow Bin packing

Finite
Strict (Ind− srPD) (Flow − srPD) (Bin− srPD) (BinE − srPD)

Adjustable (Ind− arPD) (Flow − arPD) (Bin− arPD) (BinE − arPD)

Interval
Strict (Ind− srPI) (Flow − srPI) (Bin− srPI) (BinE − srPI)

Adjustable (Ind− arPI) (Flow − arPI) (Bin− arPI) (BinE − arPI)

Table 3.1: Summary of the MIP formulations from Sections 3.2 and 3.3.

Our main goal is to determine the best formulations for different problem instances,
different types of data uncertainty and different structures of stacking constraints. We
also compute the gain of using solutions that include adjustable decisions on items that
arrive later in comparison with strictly robust solutions.

54 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

3.4.1 Setup

For evaluating the performance of the MIP formulations summarized in Table 3.1, we
implemented them using ZIMPL 3.3.2 (cf. [60]) and GUROBI 6.5.1 as MIP solver. All
experiments were conducted on a computer with a Core 2 Duo 2 * 2.1 GHz processor and
2 GB of RAM. For each run, a time limit of 30 minutes was imposed to the MIP solver.

In practice, the storage area in a rail-road container terminal contains up to 60 stacks
with at most b = 3 containers in each stack. When considering maritime container termi-
nals, the yard contains up to 180 stacks with at most b = 6 containers in each stack. In
our experiments, we generated instances with up to n = 480 items and b = 6 levels.

A problem instance is specified by the cardinalities of the item sets (i.e., the triple
(|Ifix|, |I1|, |I2|)), together with the common height b of stacks, and the stacking con-
figuration of the Ifix-items. The set SD of stacking matrix scenarios (in case of finite
uncertainty) and the a-values for the items (in case of interval uncertainty) have to to be
given as well.

To generate problem instances, we first specified the common height b of the stacks and
the number n = |I| of all items. For each combination of (b, n) we randomly generated
the triple (|Ifix|, |I1|, |I2|), in which |Ifix| and |I1| range from bn4 c to bn2 c, and |I2| =
n − |Ifix| − |I1|. To generate a stacking configuration of the Ifix-items, we let the first
mf = dn6 e stacks of the corresponding storage area be the Ifix-area for each setting of
T = (b, n, |Ifix|, |I1|, |I2|). The average number of Ifix-items stored in each stack in the

Ifix-area is therefore bf = |Ifix|
mf

. According to the assumption that no stack is fully

filled by Ifix-items, the number of Ifix-items stored in each stack must be smaller than
b. Therefore if dbfe = b we reset mf to dn3 e. Then, within the Ifix-area we randomly
generated two instances for the stacking configuration of the Ifix-items: one instance is
generated in spread style, the other in non-spread style. With “spread style”, we mean
that the Ifix-items are distributed “uniformly” in the Ifix-area, or more precisely, each
stack in the Ifix-area contains at most dbfe items from Ifix. In the “non-spread style”,
some stacks in the Ifix-area can contain more than dbfe (but less than b) items from Ifix.

We organized our experiments as follows.

• Experiment 1: test the two MIPs based on the three-index and network flow formula-
tions on instances of (PD) with finite uncertainty and arbitrary stacking constraints.

• Experiment 2: test the MIPs based on the three-index, network flow, and bin packing
formulations on instances of (PD) with finite uncertainty and transitive stacking
constraints.

• Experiment 3: test the MIPs based on the three-index, network flow, and bin packing
formulations on instances of (PI) with interval uncertainty and total order stacking
constraints.

We describe the detailed setup for the experiments in Section 3.4.3. In each experiment, we
first compared the performance of all MIP formulations on problem instances of moderate
size (up to n = 90 and b = 5). Then we performed experiments with the best formulations
to know the largest instance size which can be solved to optimality within the given time
limit.

The number m of available stacks in the storage area was chosen in such a way that
the feasibility of storing all items into the storage area is guaranteed. Note that by
definition, the concept of strictly robust stacking solutions is more conservative than that

3.4. COMPUTATIONAL EXPERIMENTS 55

of adjustable ones. Thus, strictly robust stacking solutions in general use more stacks than
the corresponding adjustable ones. Therefore, in the strict models we use a larger value
for m than in the adjustable models. When setting m, we additionally took into account
that total order stacking constraints usually offer more possibilities to stack items onto
each other than partial orders, and transitive stacking constraints offer more possibilities
in comparison with arbitrary ones. Table 3.2 shows the precise setup for the values of m in
our experiments. We first solved the generated instances with these settings. Then for any
infeasible instance we reset m = n (so that all items are always feasibly stored) and solved
again these instances. This situation occured rarely and did not have any significant impact
on the computational times since the presolver of the MIP solver eliminates superfluous
variables very fast.

Experiment Strict robustness Adjustable robustness

Experiment 1 m = d0.8ne m = d0.75ne
Experiment 2 m = d0.75ne m = d0.6ne
Experiment 3 m = d0.6ne m = d0.5ne

Table 3.2: Number of stacks m in the generated instances.

3.4.2 Reduction of solution space

Since the stacks that do not contain any Ifix-item are interchangeable, a lot of symmetric
solutions exist (e.g., any permutation of empty and used stacks leads to an equivalent
solution using the same number of stacks). For this reason, we tried to restrict the solution
space by imposing some symmetry breaking restrictions. To do this, at first we numbered
the stacks in the storage area from 1 to m. Each stacking configuration of the Ifix-
items was generated in such a way that the stacks containing these items have consecutive
numbers (counting from stack 1). Then we added some symmetry breaking constraints to
the MIP formulations based on one of the following ideas.

• Used stacks have consecutive indices, i.e., stack q−1 must be used if stack q is used.

• Each non-Ifix stack has at least as many items as the next one, i.e., in the set of
stacks containing no Ifix-item, stack q has at most as many items as stack q − 1.

Let q∗ be the largest-indexed stack containing Ifix-items, and Q∗ = Q\{1, . . . , q∗+ 1}.
We first describe more precisely how the former idea can be implemented. For (Ind −
srPD), (Ind− srPI), and (Ind− arPI) we add the following constraints:∑

i∈I
xi,q,1 ≤

∑
i∈I

xi,q−1,1 ∀ q ∈ Q∗, (3.65)

while for (Ind− arPD) the following constraints are added:∑
i∈Ifix∪I1

xi,q,1 +
∑
j∈I2

ykj,q,1 ≤
∑

i∈Ifix∪I1
xi,q−1,1 +

∑
j∈I2

ykj,q−1,1 ∀ q ∈ Q∗, k ∈ N . (3.66)

With the same purpose, we add the following constraints to (Flow−srPD), (Flow−srPI),
and (Flow − arPI): ∑

i∈I:(i,vq)∈A4

xivq ≤
∑

i∈I:(i,vq−1)∈A4

xivq−1 ∀ q ∈ Q∗, (3.67)

56 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

and integrate the following constraints into (Flow − arPD):∑
i∈Ifix∪I1
(i,vq)∈Ah4

xivq +
∑
j∈I2

(j,vq)∈Aw4

ykjvq ≤
∑

i∈Ifix∪I1
(i,vq−1)∈Ah4

xivq−1 +
∑
j∈I2

(j,vq−1)∈Aw4

ykjvq−1
∀ q ∈ Q∗, k ∈ N .

(3.68)
For the bin packing formulations of the adjustable models with finite uncertainty (i.e.,
(Bin− arPD), (BinE − arPD)), we add the constraints

zkq ≤ zkq−1 ∀ q ∈ Q∗, k ∈ N , (3.69)

while for the other bin packing formulations we add

zq ≤ zq−1 ∀ q ∈ Q∗. (3.70)

The symmetry breaking constraints in the spirit of the latter idea are as follows. We
add the following constraints to (Ind− srPD), (Ind− srPI), and (Ind− arPI):∑

(i,l)∈(I1∪I2)×L

xi,q,l ≤
∑

(i,l)∈(I1∪I2)×L

xi,q−1,l ∀ q ∈ Q∗, (3.71)

while for (Ind− arPD) we add∑
i∈I1
l∈L

xi,q,l +
∑
j∈I2
l∈L

ykj,q,l ≤
∑
i∈I1
l∈L

xi,q−1,l +
∑
j∈I2
l∈L

ykj,q−1,l ∀ q ∈ Q∗, k ∈ N . (3.72)

For (Flow−srPD), (Flow−srPI), and (Flow−arPI), the symmetry breaking constraints
are

cvq ≤ cvq−1 ∀ q ∈ Q∗, (3.73)

while for (Flow − arPD) the symmetry breaking constraints are

ckvq ≤ ckvq−1
∀ q ∈ Q∗, k ∈ N . (3.74)

For the bin packing formulations of the adjustable models with discrete uncertainty (i.e.,
(Bin− arPD), (BinE − arPD)), we add the constraints∑

i∈I1
xiq +

∑
j∈I2

ykjq ≤
∑
i∈I1

xi,q−1 +
∑
j∈I2

ykj,q−1 ∀ q ∈ Q∗, k ∈ N , (3.75)

while for the other bin packing formulations we integrate the following constraints:∑
i∈I1∪I2

xiq ≤
∑

i∈I1∪I2
xi,q−1 ∀ q ∈ Q∗. (3.76)

The optimal values of the LP relaxations of the original MIP formulations do not
change when the corresponding symmetry breaking constraints are added. Indeed, given
any solution to such an original MIP formulation, we can rearrange the non-Ifix stacks in
the solution to satisfy the corresponding additional symmetry breaking constraints and still
obtain the same number of used stacks. However, different symmetry breaking constraints
may have different impacts on performance of the proposed MIP formulations. A similar

3.4. COMPUTATIONAL EXPERIMENTS 57

phenomenon has been reported for some symmetry breaking constraints in other applica-
tions such as scheduling of a doubles tennis training tournament [47], set partitioning [48],
lot-sizing problems on parallel identical machines [55], job grouping problem [56]. In our
case study of modeling the storage loading problems, we did some preliminary computa-
tional experiments and compared the original versions of the proposed MIP formulations
to the versions equipped with the symmetry breaking constraints. We found out that the
bin packing MIP formulations perform better when being combined with (3.69)-(3.70),
while the network flow formulations have better performance when being equipped by
(3.73)-(3.74). The three-index formulations equipped by symmetry breaking constraints,
however, have worse performance than their original version. A possible explanation for
this phenomenon is that some symmetry breaking constraints are compatible with branch-
and-bound algorithms implemented in the black-box of the MIP solver GUROBI, while
some are not (cf. the concept of symmetry compatible formulations introduced in [47]).
Therefore, in the following subsections we report numerical results related to the orig-
inal MIPs for the three-index formulations, the network flow formulations equipped by
(3.73)-(3.74), and the bin packing formulations equipped by (3.69)-(3.70).

3.4.3 Computational results

First, we note that in all our experiments, for all instances and all MIP formulations,
feasible solutions could be found by the MIP solver within the given time limit of 30
minutes. We call an instance “verified” if the obtained solution could be proven to be
optimal within the time limit (i.e., the MIP solver terminated the search using the standard
setting of 0.01 % as optimality gap).

In order to have a baseline for comparing the performance of the proposed MIP formu-
lations, we apply the concept of a performance profile introduced in [38]. More precisely,
let P be the set of tested instances and M the subset of the MIP formulations applied to
solve the instances in P. For each instance p ∈ P and each MIP formulation f ∈ M, we
report tp,f as the computation time (in minutes) to solve p using formulation f . We reset
tp,f to 1 if the solver terminates in less than one minute and to 30 if the solver reaches the
time limit of 30 minutes. We then compute the performance ratio

rp,f =
tp,f

min{tp,f : f ∈M}

which compares the performance of formulation f with the best formulation. It follows
from our setting that rp,f ≤ 30, and rp,f = 30 if and only if the solver does not prove
optimality for instance p by using formulation f within the time limit. As shown in [38],
this way of setting an upper bound for rp,f does not affect the performance evaluation.
To have an overall evaluation of the performance of formulation f , for τ ≥ 1 we compute

ρf (τ) =
|{p ∈ P : rp,f ≤ τ}|

|P| .

In other words, ρf (τ) is the probability that formulation f ∈M is not worse than a factor
τ when compared with the best performance formulation. The function ρf is called per-
formance profile of the formulation f , which encodes all major performance characteristics
of f (cf. [38]). In particular, the value of ρf (1) is the probability that the formulation f
has the best performance (in terms of computation time) among all formulations in M.

58 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

Experiment 1: discrete uncertainty with arbitrary stacking constraints

As detailed setup for Experiment 1, for each combination of T = (b, n, |Ifix|, |I1|, |I2|) and
stacking configurations of Ifix-items, we generated five instances with different lists SD
of stacking matrix scenarios. Each instance of SD contains up to ten different, randomly
generated stacking matrices. The density of each matrix (before integrating the stacking
sequence Ifix → I1 → I2) was randomly chosen in the interval [0.25, 0.75] in advance and
the first scenario in each instance of SD had a density of approximately 0.5. Here the
density of an n × n-matrix with binary entries is defined by the ratio α = p

n(n−1) , where

p is the number of 1-entries in the matrix (the diagonal entries are always assumed to be
equal to 0). Given the fact that items in Ifix ∪ I1 are here-and-now, while items in I2

are wait-and-see, all stacking matrices in each instance of SD have the same deterministic
part (sij)i,j∈Ifix∪I1 .

Since the generated stacking matrices have an arbitrary structure, we can only apply
the three-index and network flow MIP formulations. We tested the formulations on 120
problem instances with b ∈ {3, 4} and n ∈ {30, 60}. It turned out that the optimality
of only very small instances was verified within the time limit for the adjustable robust
problem. More precisely, when using the network flow formulation, the time limit was
reached for 41 instances out of 60 with only n = 30 items, while for n = 60 items, the
optimality of only 10 instances out of 60 was verified. Using the three-index formulation,
the optimality of 70 instances out of 120 was verified.

(srPD) (arPD)
(Ind) (Flow) (Ind) (Flow)

Number of verified instances 116 95 70 29
Average running time (seconds) 30.3 42.7 272.6 766.7
Average algorithm gap (%) 20.4 23.7 31.4 43.4

Table 3.3: Summarized results for Experiment 1 (120 instances).

A summary of the numerical results is reported in Table 3.3, where the average running
time is taken over all verified instances, and the average algorithm gap is computed for
the instances where both approaches resulted in no verified solutions. In solving both the
strictly and the adjustable robust problems, the three-index formulation performs better
than the network flow approach (more solutions can be proven to be optimal). For the
tested instances where both approaches resulted in no verified solutions, the three-index
approach also performs better than the network flow approach (having a smaller average
algorithm gap).

Figure 3.2 shows the performance profiles of the three-index and network flow formu-
lations on the strictly and adjustable robust problems. From this figure it can be seen
that the three-index formulation has the highest probability of being the best formulation
in solving both the strictly and adjustable robust problems. In particular, the probability
that the three-index formulation is the best in solving the adjustable robust problems is
0.94, while the corresponding value for the network flow formulation is just 0.59. The
three-index formulation also has a better performance than the network flow formulation
for every value of factor τ .

3.4. COMPUTATIONAL EXPERIMENTS 59

1 10 20 30
0.5

0.6

0.7

0.8

0.9

1

1.1
Strictly robust problem

τ

ρ
f
(τ
)

3−index Flow

1 10 20 30
0.5

0.6

0.7

0.8

0.9

1

1.1
Adjustable robust problem

τ

ρ
f
(τ
)

Figure 3.2: Performance profile of formulations on tested instances in Experiment 1.

Experiment 2: discrete uncertainty with transitive stacking constraints

The detailed setup for Experiment 2 is as follows. For each choice of the tuple T =
(b, n, |Ifix|, |I1|, |I2|) and each stacking configuration of Ifix, we generated five instances
with different lists SD of stacking matrix scenarios. Motivated by practical constraints,
the instances of SD were generated in the following way. We assigned to each item i ∈ I
integral values wi for its weight (in tons) and di for its departure time (in hours, counting
from the loading start time of I1 to the time that item i is retrieved). The stacking
constraints in this context were then defined by setting

sij =

{
1 if wi ≤ wj and di ≤ dj ,
0 otherwise,

(3.77)

which means that only an item of lighter weight and earlier departure time is allowed
to be put on top of an item of heavier weight and later departure time. Clearly, the
stacking constraints defined by (3.77) are transitive. We randomly generated a scenario
for {(wi, di)|i ∈ Ifix ∪ I1} and different scenarios for {(wi, di)|i ∈ I2} in such a way
that firstly, (wi, di) ∈ [5, 50] × [10, 100] for all i ∈ I, and secondly, the generated values
for {(wi, di)|i ∈ Ifix} satisfy the given stacking configuration of Ifix-items as well as
the stacking constraints defined by (3.77). With the generated scenario for {(wi, di)|i ∈
Ifix ∪ I1}, each scenario for {(wi, di)|i ∈ I2} corresponds to a stacking matrix which is
computed according to (3.77). We generated up to 10 different stacking matrices for each
instance of SD.

We tested the corresponding formulations on 90 instances with b ∈ {3, 4, 5} and n ∈
{30, 60, 90}. Table 3.4 summarizes some results from this experiment. Again, for each
formulation, the average running time is taken over all verified instances, and the average
algorithm gap is computed for the instances that resulted in no verified solutions. When
solving both the strictly and the adjustable robust problems, the network flow formulation
performs better than the others over all mentioned criteria: more solutions are proved to
be optimal, while smaller average running times and smaller algorithm gaps are observed.

Figure 3.3 illustrates the performance profiles of these formulations on the strictly
and adjustable robust counterparts. It is easy to see that the network flow approach

60 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

(srPD) (arPD)
(Ind) (Flow) (Bin) (BinE) (Ind) (Flow) (Bin) (BinE)

Number of verified instances 42 90 79 88 15 82 53 63
Average running time (seconds) 107.7 0.9 99.9 63.8 454.3 20.7 492.8 540.2
Average algorithm gap (%) 9.7 0.0 2.3 2.1 26.0 11.1 11.2 22.8

Table 3.4: Summarized results for Experiment 2 (90 instances).

performs best for both (srPD) and (arPD). It has the highest probability to be the best
formulation (100% for the former and 93% for the latter), and it is the best formulation
for every value of factor τ . Therefore, the network flow approach is definitely the “winner”
in this experiment.

1 10 20 30
0

0.2

0.4

0.6

0.8

1

Strictly robust problem

τ

ρ
f
(τ
)

3−index Flow Bin BinE

1 10 20 30
0

0.2

0.4

0.6

0.8

1

Adjustable robust problem

τ

ρ
f
(τ
)

Figure 3.3: Performance profile of formulations on tested instances in Experiment 2.

Additionally, it can be seen from Figure 3.3 that (BinE − srPD) has a better perfor-
mance profile than (Bin−srPD). Moreover, when τ ≥ 10, formulation (BinE−srPD) is a
very good choice for solving (srPD). For the adjustable robust problem, (Bin−arPD) has
a slightly higher probability to be the best formulation than (BinE − arPD). However, if
we increase the factor τ , the latter formulation performs slightly better than the former.
The (Ind)-approach has the worst performance in solving both (srPD) and (arPD).

The efficiency of the network flow approach in this experiment can be explained by
the fact that the densities of the stacking matrices in the generated instances are quite
small (in the tested instances they range from 0.2 to 0.35). This results in less choices for
stacking items together into stacks. Consequently, it has a positive impact on the network
flow models, since in these models one needs to determine not only which item is stored
in which stack but also the location of each item in its stack.

To see the limits of the best performing network flow approach, we tested (Flow−arPD)
on six problem instances of larger size. Table 3.5 reports the running times of the tests,
and gives an idea of the size of the largest instances that can be proven to be optimal
within the time limit of 30 minutes. For |SD| = 5, (Flow−arPD) can prove the optimality
of instances with up to n = 270 and b = 6. For |SD| = 10 the limit is about n = 180 and
b = 6, while for |SD| = 20 at most 150 items can be handled.

We also evaluated the quality (feasibility) of the strictly robust solutions when more

3.4. COMPUTATIONAL EXPERIMENTS 61

n b |SD| Time Algorithm gap

120 5 20 295 seconds 0
150 5 20 Time limit reached 9.3%
180 6 10 166 seconds 0
270 6 5 334 seconds 0
300 6 5 Time limit reached 4.41%

Table 3.5: Additional tests of (Flow − arPD) on larger instances in Experiment 2.

stacking matrix scenarios are taken into account. Our evaluation framework is as follows.
At first we compute a strictly robust solution to each problem instance with |SD| = 5
stacking matrix scenarios. Then we generate 5 more stacking matrix scenarios. For each
additional scenario, we count how many pairs of stacked items in the strictly robust
solution that do not satisfy the stacking constraints defined by the stacking matrix. For
the tested instances, in the best case the strictly robust solution is still feasible in all
additional scenarios. On average, 10.55% pairs of stacked items in the computed strictly
robust solutions do not satisfy the new scenarios of stacking constraints, while the value
in the worst case is 13.89%. Thus, the obtained strictly robust solutions still have a high
possibility to be feasible if we consider more stacking matrix scenarios. However, in terms
of the optimal objective value, strictly robust solutions may use at least 35.7% and at
most 110.7% more stacks than the optimal solutions to the additional scenarios.

Experiment 3: interval uncertainty with total order stacking constraints

In Experiment 3, for each choice of T = (b, n, |Ifix|, |I1|, |I2|) and each stacking con-
figuration of Ifix-items, we generated randomly five instances for {ai | i ∈ Ifix ∪ I1} ∪
{aminj , amaxj | j ∈ I2}, in which the former set contains parameters ai of here-and-now items

i ∈ Ifix ∪ I1 and the latter set contains the endpoints of the intervals [aminj , amaxj] for the

parameters aj of wait-and-see items j ∈ I2. The generated values satisfy ai ∈ [5, 100]
for all i ∈ Ifix ∪ I1 and 5 ≤ aminj ≤ amaxj ≤ 100 for all j ∈ I2. The generated values

{ai|i ∈ Ifix} respect the stacking constraints defined by sij = 1 ⇔ ai ≤ aj and the given
stacking configuration of the Ifix-items.

We performed tests on 90 problem instances with b ∈ {3, 4, 5} and n ∈ {30, 60, 90}.
An overview of the computational results for this experiment is given in Table 3.6, where
again for each formulation the average running time is taken over all verified instances
and the average algorithm gap is computed for the instances that resulted in no verified
solutions. When solving both the strictly and the adjustable robust problems, the bin
packing formulations perform better than the three-index and network flow formulations
(with more verified instances, shorter average solver running time, and smaller average
algorithm gap). In particular, the bin packing models (Bin) and (BinE) are both very
efficient for solving adjustable robust problem (arPI). That is, all tested instances are
quickly solved to optimality.

In Figure 3.4 we show the performance profiles of the formulations in Experiment 3.
The left part of this figure shows that both bin packing formulations have high probability
of being the best formulation in solving strictly robust problem (srPI), where (BinE −
srPI) has a slightly better performance profile than (Bin− srPI). With a probability of
more than 80% to be the best, the network flow formulation (Flow− srPI) is also a good
choice. The right part of Figure 3.4 shows that, for solving (arPI) with b ≤ 5 and n ≤ 90,

62 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

(srPI) (arPI)
(Ind) (Flow) (Bin) (BinE) (Ind) (Flow) (Bin) (BinE)

Number of verified instances 37 73 84 85 70 20 90 90
Average running time (seconds) 129.9 3.3 15.1 51.2 248.6 107.9 0.4 0.9
Average algorithm gap (%) 26.9 7.9 3.8 2.9 26.6 14.5 0.0 0.0

Table 3.6: Summarized results for Experiment 3 (90 instances).

all bin packing formulations have the same performance and they are the best choices with
100% of being the best performance formulations. However, unlike the case of solving the
strictly robust counterparts (srPI), for solving the adjustable robust counterparts (arPI),
the network flow approach (Flow − arPI) has the worst performance.

1 10 20 30
0

0.2

0.4

0.6

0.8

1

Strictly robust problem

τ

ρ
f
(τ
)

3−index Flow Bin BinE

1 10 20 30
0

0.2

0.4

0.6

0.8

1

Adjustable robust problem

τ

ρ
f
(τ
)

Figure 3.4: Performance profile of formulations on tested instances in Experiment 3.

A reason for the efficiency of the bin packing formulations to solve instances of (arPI)
may be that the stacking matrices have a higher density in the tested instances, when
compared to the previous experiment (ranging from 0.4 to 0.6), which offers more choices
for stacking items together into the same stack. Since the bin packing models only need
to decide about the combinations of items that are stored together in one stack, this can
be done in a small amount of time.

Having a look at the detailed computational results, we see that for the same problem
instance, the bin packing approaches solve (arPI) faster than (srPI), while it is the
opposite for the network flow approach. This is due to the strict stacking matrix (s∗)
which has a smaller density than the one in the dominant scenario (smax). Note that,
unlike in Experiment 2, the network flow approach is no longer efficient in Experiment 3
due to the larger densities of the stacking matrices.

To see the limit and clarify the performance of the best performing bin packing for-
mulations, we tested them on problem instances of (arPI) of larger size (n ≥ 300). Com-
putational results show that instances of (arPI) with up to b = 6 and n = 480 can be
optimally solved within 10 minutes. On the other hand, on our computer with 2 GB of
RAM, instances with n = 510 are already out of memory. For 80% of the larger instances,
the extended formulation (BinE − arPI) has better running time than the others, while
the original formulation (Bin− arPI) wins on the remaining instances.

3.4. COMPUTATIONAL EXPERIMENTS 63

Comparing strictly and adjustable robust solutions

To compare the strict and adjustable robustness approaches, we calculated for each in-
stance how much we gain when we allow “wait-and-see” stacking decisions for I2-items
(i.e., items arriving later) in comparison with using strictly robust decisions. This gain is
measured by

gain =
fsr − far
fsr

× 100%,

where fsr (resp., far) is the best objective value computed by the MIP formulations for
strictly (resp., adjustable) robustness. Note that if at least one of the corresponding
solutions to the strictly (resp., adjustable) robust problem in the test is proved to be
optimal, then the computed value of fsr (resp., far) is actually optimal.

Experiment Ifix-configuration Maximum gain Average gain

Experiment 1
Non-spread 53.12% 34.94%

Spread 54.54% 34.16%

Experiment 2
Non-spread 53.33% 41.78%

Spread 52.54% 40.45%

Experiment 3
Non-spread 38.23% 19.33%

Spread 33.33% 17.33%

Table 3.7: Gain of using adjustable robustness in comparison with strict robustness.

Table 3.7 reports the gain of using adjustable robustness in comparison with strict
robustness (in terms of the optimal objective value) on our test instances. It shows that
the use of adjustable robust stacking solutions achieves a considerable gain in comparison
with strictly robust ones. In other words, later decisions on the “wait-and-see” items
enable a much smaller number of used stacks when compared with strict robustness. This
is because the strictly robust stacking solutions are conservative (in the sense that they
have to satisfy the stacking constraints for all possible realizations of uncertain data).
Thus, the number of possibilities for stacking an item on top of another is reduced quite
a lot in comparison with adjustable robustness (where the practitioner can react for each
realization of the uncertain data).

It can be also seen from Table 3.7 that in each experiment there is only a small difference
between the gains (maximum and average) corresponding to the non-spread and spread
stacking configurations of Ifix-items. Thus, the stacking configuration of the already
stored items does not affect the gain much. However, the gain computed from Experiment
3 (with interval uncertaity and total order stacking constraints) is much smaller than
the one from Experiments 1-2 (with finite uncertainty and arbitrary/transitive stacking
constraints). This is because total order stacking constraints provide more possibilities
for stacking items together in a stack than arbitrary/transitive stacking constraints. We
therefore conclude that the type of uncertainty and the structure of the stacking constraints
have a large impact on the gain.

We were also interested in evaluating the influence of the stacking height b on the
gain. To this end, the problem instances with b = 3 were reassigned to b = 5. For
the tests with finite uncertainty and transitive stacking constraints (Experiment 2), the
average gain increases from 34.39% to 38.24% when stacking height b increases from 3
to 5. For the instances with interval uncertainty and total order stacking constraints

64 CHAPTER 3. STORAGE LOADING WITH STACKING CONSTRAINTS

(Experiment 3), the average gain increases from 15.85% to 32.38%. Thus, increasing the
stacking height b offers more possibilities for stacking wait-and-see items together with
the other items in the stacks, which results in an increased gain for adjustable robust
stacking solutions. Moreover, the average gain with total order stacking constraints is
larger than with transitive stacking constraints because the former constraints provide
more possibilities for stacking items together in stacks than the latter.

3.5 Conclusions

In this chapter we studied storage loading problems where a set of items must be loaded
into a partly filled storage area, taking into account stacking constraints and the fact that
another set of items arrives later (with uncertain data). To deal with data uncertainty,
we applied two types of robustness: strict robustness, in which the stacking solution must
be fixed in advance, and adjustable robustness, that allows the practitioner to react when
the data of later arriving items become known.

The existence of adjustable robust stacking solutions to our considered problem re-
quires feasibility over all scenarios for the uncertain items. This implies that in the case of
interval data uncertainty, the adjustable robust counterpart involves an infinite number of
scenarios. However, we proved that it is sufficient to focus on a single scenario of uncertain
items, provided that the stacking constraints define a total order on all items. Thanks
to this result, the effort to find adjustable robust stacking solutions can be significantly
reduced.

We proposed different approaches to model the deterministic version of the storage
loading problem as MIP formulations: one is based on three-index variables, one is based
on network flows, while the last views each stack as a bin and the actual location of each
item inside the bin is decided by exploiting transitivity of the stacking constraints. Then
we derived different MIP formulations for the strictly and the adjustable robust problems
under discrete and interval uncertainties with arbitrary, transitive, or total order stacking
constraints.

Our experiments on randomly generated instances show that the performance of each
formulation depends on the type of data uncertainty and the structure of the stacking
constraints. On instances with discrete uncertainty and arbitrary stacking constraints the
three-index approach has the best performance. On instances with discrete uncertainty
and transitive stacking constraints (where the densities of the stacking matrices are small),
the network flow approach performs best. The bin packing approach is the best choice
for instances with interval uncertainty and total order stacking constraints (where the
stacking matrices have a large density).

Furthermore, the experimental results show that relatively large gains can be achieved
by adjustable robust stacking solutions in comparison with strictly robust ones.

Chapter 4

Security level of robust stacking
solutions

In Section 2.2 we introduced the storage loading problem with interval uncertainty

(PI) L | Ifix → I1 → Ĩ2, sij(ã),SI | #St.

This section also showed complexity results for some particular cases of the strictly and
adjustable robust counterparts of (PI). Different MIP formulations for finding strictly
and adjustable robust solutions to (PI) were proposed in Chapter 3. In the detailed
computational study in the chapter, we compared the run-time of the formulations on
randomly generated instances and provided guidelines which formulation to use in which
setting. However, the influence of building different uncertainty sets SI on the outcomes
of the robust stacking solutions to (PI) had not been investigated. This chapter, which is
mainly based on our work in [32], tries to close this gap.

We propose a concept, so-called security level, as a key tool for our investigation. In
Section 4.1 we explain how this concept is motivated from computing robust stacking so-
lutions to (PI). In Section 4.2 we discuss different ways of deriving an interval uncertainty
set SI from stochastic data of uncertain items. Through some numerical experiments in
Section 4.3, we study the impact of different scenario sets SI on the trade-off between the
optimal objective values and the security levels of the robust stacking solutions. Section
4.4 closes this chapter with some conclusions.

4.1 Security level of stacking solutions

To have a complete view about the motivation for the concept security level, we first recall
from Section 2.2 the detail setup of (PI). For this problem, we are given a storage area
arranged in m stacks Q := {1, . . . ,m} with fixed positions in a two-dimensional area,
each stack contains b levels L := {1, . . . , b} (i.e., at most b items can be stored in each
stack). There are n items I := {1, . . . , n} partitioned into three disjoint subsets: the
set Ifix contains items that are already stored in the stacks, the set I1 contains items
that have to be stored in the storage area now, and the set I2 contains items that will
arrive later. We assume that relocations of Ifix-items are not allowed, and hence exclude
from consideration all stacks which are already completely filled with such items (i.e., the
corresponding items are removed from the sets Ifix and I). Due to the stacking sequence
Ifix → I1 → I2, the loading of all I1-items must be finished before storing any I2-item.

65

66 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

That is, no item from I1 ∪ I2 can be stored below an Ifix-item, and no I2-item can be
stacked below an I1-item. Each item i has an associated value ai which may refer to
its weight, length, departure time, etc. Without loss of generality, we assume that ai
represents the weight (for example, in tons) of item i. The loading process of the items
regards hard stacking constraints on weights sij(a), i.e., item i is stackable directly on
top of item j iff ai ≤ aj . The uncertainty set SI consists of all possible values of vector
a = (a1, . . . , an), in which the actual weights ai of here-and-now items i ∈ Ifix ∪ I1 are
known exactly, while the actual weight aj of each wait-and-see item j ∈ I2 is uncertain
but varies in an interval [aminj , amaxj]. It is assumed that the actual weights of Ifix-items
adapt the given stacking configuration of these items.

An important issue is how to specify the interval uncertainty set SI . A natural way to
define the intervals forming the uncertainty set is to derive them from stochastic data of the
uncertain items. More precisely, throughout this chapter we assume that the weights ai of
wait-and-see items i ∈ I2 are of statistical nature and mutually independent. Furthermore,
for each item i ∈ I2 the value ai of its weight is assumed to follow some distribution
function Fi. Having known the distribution of ai, the decision maker can derive an interval
[amini , amaxi] so that the realization of ai will belong to the interval with high probability.
The intervals corresponding to the uncertain items i ∈ I2 then constitute an instance of
the uncertainty set SI .
Example 4.1. Let X be a random variable having normal distribution with mean µ and
standard deviation σ > 0. According to the 68− 95− 99.7 rule in statistics (cf. [52]), we
have

P (X ∈ [µ− σ, µ+ σ]) ≈ 0.6827,

P (X ∈ [µ− 2σ, µ+ 2σ]) ≈ 0.9545,

P (X ∈ [µ− 3σ, µ+ 3σ]) ≈ 0.9973.

In other words, 68.27% observations of X lie within a band around the mean µ with a
width of the standard deviation σ. If we extend the width of the band to two (three, resp.)
times the standard deviation, then the obsevation of X will be in the band with a probability
of 95.45% (99.73%, resp.).

Figure 4.1: The 68− 95− 99.7 rule for a normal distribution.
Source: https://en.wikipedia.org/wiki/68-95-99.7 rule.

4.2. DERIVING INTERVAL UNCERTAINTY SETS 67

Assuming that µ > 3σ, we have P (X ≤ 0) < 0.135%. We now assume that the weight
ai of an item i ∈ I2 is the truncated version of the random variable X on [0,+∞), i.e.,

ai = max{0, X}.

Then the interval [µ−σ, µ+σ] accounts for about 68% realizations of ai, while the intervals
[µ− 2σ, µ+ 2σ] and [µ− 3σ, µ+ 3σ] account for about 95% and 99%, respectively.

Once SI is specified, we can compute a robust stacking solution to (PI) with respect
to the indicated uncertainty set. However, since we exclude from our consideration some
unlikely realizations of the uncertain items (i.e., the values of ai(i ∈ I2) that are not in the
specified intervals [amini , amaxi]), the obtained robust stacking solution may be infeasible
in some realizations of the items’ weights. Therefore, the stacking result has a certain
probability to be feasible when the wait-and-see items are realized. We call the probability
value security level of the stacking solution (with respect to the specified uncertainty set
SI).

To be precise, the security level sl(x) of a stacking solution x to (PI) is defined as
follows. Let ai(i ∈ Ifix∪I1) be the actual weights of here-and-now items. For convenience,
we denote n0 := |Ifix|, n1 := |I1|, and n2 := |I2|. Let w ∈ Rn0+n1 be the vector whose
components are actual weights of here-and-now items, i.e., wi = ai for all i ∈ Ifix ∪ I1.
Let v ∈ Rn2 be the weight vector of wait-and-see items, and A2 the set of all possible
realizations of v. Then A := {w} × A2 is the set of all possible values of weight vector a
of all items in I. For the given stacking configuration x, let A(x) be the set of realizations
a ∈ A such that x is a feasible solution (with respect to the stacking constraints on weights
sij(a)). The security level sl(x) is defined by

sl(x) = P (a ∈ A(x) | a ∈ A), (4.1)

where P (A | B) is the conditional probability of event A given the fact that event B
already occurs (cf. [54], Chapter 3). In other words, sl(x) is the probability that a weight
realization a is part of A(x), or equivalently, the probability that x is a feasible stacking
configuration (regarding the hard stacking constraints on weight sij(a)) when the uncertain
items are realized. Note that by definition we always have 0 ≤ sl(x) ≤ 1.

4.2 Deriving interval uncertainty sets

As discussed in the previous section, before calculating a robust solution to (PI), there
are two key factors needed being determined. The first factor is the weight distribution of
each wait-and-see item. The other is how to derive an appropriate uncertainty set SI once
we know how the items’ weights are distributed. In this section we discuss these factors
in detail.

4.2.1 Weight distributions

We first briefly review some probability distribution functions that are most suitable to
represent a real-valued random variable as the weight of an item. The (truncated) normal,
continuous uniform, and lognormal distributions are the most well-known and widely used
statistical distributions. We refer the reader to [54] for a comprehensive study about
distribution functions.

68 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

Normal and truncated normal distributions

The normal distribution has two parameters: the mean µ and the standard deviation
σ > 0. If a random variable X has normal distribution, we write X ∼ N (µ, σ2). Its
probability density function is

f(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2 .

Its mean and variance respectively are

E{X} = µ, (4.2)

σ2
X = σ2. (4.3)

Let [α, β] ⊆ R+ be an interval. Then X conditional on α ≤ X ≤ β has a truncated normal
distribution where the probability density function is given by

f[α,β](t) =

{ 1
σ
φ(ξ)

Φ(B)−Φ(A) if α ≤ t ≤ β,
0 otherwise,

with

ξ :=
t− µ
σ

, A :=
α− µ
σ

, B :=
β − µ
σ

,

φ(ξ) =
1√
2π
e−

1
2
ξ2 ,

Φ(ξ) =

∫ ξ

−∞
φ(u)du.

The mean and the variance of the truncated normal distribution are computed by

E{X | α ≤ X ≤ β} = µ+ σ
φ(A)− φ(B)

Φ(B)− Φ(A)
,

σ2
α≤X≤β = σ2

[
1 +

Aφ(A)−Bφ(B)

Φ(B)− Φ(A)
−
(
φ(A)− φ(B)

Φ(B)− Φ(A)

)2
]
.

To model the weight of an item, the truncated distribution is more appropriate than
the original normal distribution (since it excludes negative weight values). However, as
shown in the above formulas, it is complicated to compute exactly the mean and variance of
the truncated distribution. Therefore, when applying the truncated normal distribution
to model the weight of an uncertain item, we impose µ > 3σ and take [0,+∞) as the
truncated interval. By this setting, the truncated interval contains realizations of the
item’s weight with a probability of more than 99.7% (due to the 68 − 95 − 99.7 rule, cf.
Example 4.1). Then, for the sake of simplicity, we use (4.2)-(4.3) to estimate the mean
and variance of the truncated distribution.

Continuous uniform distribution

This distribution has two parameters: the minimum value α and the maximum value
β > α. If X is a random variable with continuous uniform distribution, then we write
X ∼ U(α, β). The probability density function of X is

f(t) =

{
1

β−α for t ∈ [α, β],

0 for t 6∈ [α, β].

4.2. DERIVING INTERVAL UNCERTAINTY SETS 69

The mean and variance of X respectively are

E{X} =
α+ β

2
,

σ2
X =

1

12
(β − α)2.

Lognormal distribution

The lognormal distribution is closely related to the normal distribution. The logarithm
of a random variable with a lognormal distribution has a normal distribution. In the rest
of this chapter, we will refer to this transformed distribution as the associated normal
distribution.

The lognormal distribution has two parameters, that are the mean µ and the stan-
dard deviation σ > 0 of the associated normal distribution. If a random variable X has
lognormal distribution, then we write X ∼ logN (µ, σ). Its probability density function is

f(t) =
1

tσ
√

2π
e−

(log t−µ)2

2σ2 for t > 0.

We can also write X = eµ+σZ , where Z is a standard normal random variable (i.e.,
Z ∼ N (0, 1)). The mean and variance of X respectively are

E{X} = eµ+ 1
2
σ2
,

σ2
X = e2µ+σ2

(eσ
2 − 1).

4.2.2 Rules for deriving interval uncertainty sets

We now discuss some ways to derive an interval uncertainty set SI from a weight dis-
tribution of the uncertain items. By assumption, we already know the actual weights of
the here-and-now items Ifix ∪ I1. For each wait-and-see item i ∈ I2, the distribution
of its weight ai may be given by a probability density function fi, or equivalently, the
corresponding cumulative distribution function Fi defined by

Fi(t) = P (ai ≤ t) =

∫ t

−∞
fi(u)du.

We take into account this information in order to define the input parameters amini and
amaxi for the interval uncertainty set SI . Moreover, we construct different instances of SI
to see how they affect the outcomes of robust stacking solutions to (PI). For the purpose of
building different interval scenarios, we introduce the so-called interval-control parameter
δ > 0, and consider the following rules.

• Rule 1: for each item i ∈ I2 we set amini = ai − δ and amaxi = ai + δ, where ai is the
expected value of the weight of item i.

• Rule 2: for each item i ∈ I2 we set amini = ai − δσi and amaxi = ai + δσi, where ai is
the expected value and σi is the standard deviation of the weight of item i.

• Rule 3: for each item i ∈ I2 we set amini and amaxi such that

P (ai ≤ amini) = Fi(a
min
i) = δ,

70 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

P (ai ≥ amaxi) = 1− Fi(amaxi) = δ,

where Fi(t) is the cumulative distribution function of the weight of item i.

Each rule, together with a value of δ, determines an uncertainty set SI . Note that for Rule
3, the interval-control parameter δ must be in]0, 0.5[in order to have amini < amaxi . In all
above rules, if amini ≤ 0 for some item i, then we reset amini to 10−3. This is because in
reality the weight of an item must be always positive. Then, for some item i the interval
[amini , amaxi] may be not symmetric with respect to the expected weight ai.

4.3 Computational experiments

A stacking solution to (PI) can be evaluated by its cost (i.e., the number of used stacks)
and its security level. In this section, we will figure out the impact of the parameters
determining interval uncertainty set SI on the two outcome measures of strictly robust
stacking solutions to (PI).

4.3.1 Computational setup

To set up problem instances for a computational study, we first specified values for the
common height of stacks b and the cardinality of each set Ifix, I1, and I2. Then we
randomly generated stacking configurations for Ifix-items by using the same method as
proposed in Section 3.4.1. Afterward, we set values for actual weights of here-and-now
items Ifix ∪ I1, and for parameters determining the weight distribution of wait-and-see
items I2. All uncertain items are assumed to have the same type of weight distribution.
As discussed in Section 4.2.1, we consider three types of distributions.

Case of truncated normal distribution: We randomly generated values ai > 0 for actual
weights of here-and-now items i ∈ Ifix ∪ I1 and expected weights ai > 0 of wait-and-see
items i ∈ I2. Then we randomly generated the standard deviations σi > 0 of the uncertain
items i ∈ I2. The actual weight ai of each wait-and-see item i ∈ I2 follows the truncated
normal distribution N (ai, σi) on [0,+∞).

Case of continuous uniform distribution: Similar to the previous case, we randomly
generated values ai > 0 for actual weights of here-and-now items and expected weights
ai > 0 of wait-and-see items. For each uncertain item i ∈ I2, its actual weight ai is
uniformly distributed on [ai −∆i, ai + ∆i], where ∆i was randomly generated satisfying
0 < ∆i ≤ ai.

Case of lognormal distribution: For each item i ∈ I2 we randomly generated values
âi > 0 for the mean and σ̂i > 0 for the standard deviation of the associated normal
distribution. Its actual weight ai follows the lognormal distribution logN (âi, σ̂i). Note

that by this construction, each item i ∈ I2 has the expected weight ai = eâi+
1
2
σ̂2
i . Af-

terward, we randomly generated the actual weights ai for here-and-now items i ∈ Ifix∪I1.

In all cases, the generated actual weights of Ifix-items adapt the generated stacking
configuration of these items and the stacking constraints sij(a). Moreover, we distinguish
different setups for input parameters of the items. To do this, we apply the concept

4.3. COMPUTATIONAL EXPERIMENTS 71

coefficient of variation. We recall from [40] the precise definition of this concept. Let X
be a random variable whose mean value and standard deviation are respectively µ > 0 and
σ > 0. The coefficient of variation of X is defined as the ratio of the standard deviation
to the mean:

cv(X) =
σ

µ
.

We differentiate two types of generated values for actual weights of here-and-now items
and expected weights of wait-and-see items. All these values are integers either in [10, 100]
(sparse type) or in [20, 40] (dense type). We also distinguish two types of generated values
for the standard deviations of wait-and-see items. For the first type, the standard devia-
tions of uncertain items were generated in such a way that cv(ai) ∈

[
1
10 ,

1
3

]
for all i ∈ I2.

The second type is with smaller coefficients of variation: cv(ai) ∈
[

1
20 ,

1
6

]
for all i ∈ I2.

To complete setting up problem instances for our computational study, we set values
for the interval-control parameter δ. This parameter is used to implement the rules of
building interval uncertainty set SI (cf. Section 4.2.2). In order to apply Rule 3 we must
have δ ∈]0, 0.5[. Therefore, for Rule 3 we varied δ from 0.01 to 0.49 with step size 0.01.
For Rules 1 and 2, we first estimated some value δmax for δ at which the stacking result
has 100% of security level. The idea for the estimation is as follows. We start with an
arbitrary positive value of δ and compute a robust stacking solution to (PI) corresponding
to that δ-value. If the stacking solution has 100% of security level, then we reduce the
current value of the interval-control parameter to its half, and repeat this process until
obtaining a stacking solution with security level less than 100%. Otherwise, we double
the current value of δ and continue the process until the corresponding stacking solution
is 100% secured. Our strategy for finding δmax is given precisely in Algorithm 2.

Algorithm 2 Estimating δmax.

Require: Apply to Rule 1 or Rule 2.
1: δ1 := 1.
2: Compute a robust stacking solution x1 to (PI) corresponding to δ1.
3: Compute the security level sl(x1).
4: repeat
5: if sl(x1) = 1 then
6: δ2 = 1

2δ1

7: else
8: δ2 = 2δ1

9: end if
10: Compute a robust stacking solution x2 to (PI) corresponding to δ2.
11: Compute the security level sl(x2).
12: if sl(x1) = 1 and sl(x2) = 1 then
13: δ1 := δ2

14: end if
15: until (sl(x1) < 1 and sl(x2) = 1) or (sl(x1) = 1 and sl(x2) < 1).
16: if sl(x1) = 1 then
17: δmax := δ1

18: else
19: δmax := δ2

20: end if
21: return δmax.

72 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

Depending on the value of δmax, we chose an appropriate step size for varying δ as
follows.

• If δmax ≤ 1, then we vary δ from 0.01 to δmax with stepsize 0.01.

• If 1 < δmax ≤ 10, then we vary δ from 0.1 to δmax with stepsize 0.1.

• If δmax > 10, then we vary δ from 0.5 to δmax with stepsize 0.5.

Each value of δ, together with a rule proposed in Section 4.2.2, determines an instance
of the uncertainty set SI . We computed a strictly robust stacking solution x to (PI) given
the generated interval uncertainty set SI by using the bin packing formulation (Bin−srPI)
(cf. Section 3.2).

In general, it is difficult to compute exactly the security level of a stacking solution x.
We therefore estimated it by sampling a set Ã of potential weight realizations according
to the probability density functions fi (or the cumulative distribution functions Fi), and
compute the cardinality of set Ã(x) of realizations a ∈ Ã for which x is a feasible solution.
Then the exact value of sl(x) can be estimated by

s̃l(x) =
|Ã(x)|
|Ã|

.

Once the weight distributions of uncertain items were specified, we generated an instance
of the sample set Ã with cardinality |Ã| = 106. Each vector a ∈ Ã was generated by
independently sampling a value for each of its components ai(i ∈ I2). Then we used that
sample set for computing the estimated security levels of the robust stacking solutions
corresponding to different choices of rules (Rules 1-3) and different values of the interval-
control parameter δ.

We used Visual Basic .NET for implementing our algorithm. To sample Ã according
to given distribution functions, we used Extreme Optimization (cf. [1]) which contains
Math and Statistic Libraries for .NET. We implemented MIP formulations using ZIMPL
3.3.2 (cf. [60]). As a MIP solver we used GUROBI 6.5.1 and set 30 minutes as time limit
for the solver. All experiments were conducted on a computer with a Core 2 Duo 2 * 2.1
GHz processor and 2 GB of RAM.

For the discussion in the next subsection, we use the following terminologies to shortly
describe main characteristics of our tested instances.

• A test instance is said to have a sparse (dense, resp.) range of weights if the actual
weights of here-and-now items and the expected weights of wait-and-see items are
of sparse (dense, resp.) type.

• A test instance has a wide range of coefficients of variation (or wide Cv for short)
if cv(ai) ∈

[
1
10 ,

1
3

]
for all i ∈ I2. It is said to have a thin range of coefficients of

variation (or thin Cv for short) if cv(ai) ∈
[

1
20 ,

1
6

]
for all i ∈ I2.

• A test instance is said to have lognormal type of weight distribution if the actual
weights of wait-and-see items I2 are lognormally distributed. Similar to the cases of
truncated normal and uniform distributions.

• We say that a test instance has Rule i (i = 1, 2, 3) if we followed Rule i in order to
generate intervals constituting uncertainty set SI .

4.3. COMPUTATIONAL EXPERIMENTS 73

4.3.2 Numerical results

In this subsection, by stacking solutions we refer to the strictly robust solutions to (PI).
We organized our experiments to figure out the following points.

• How does the interval-control parameter δ influence the quality of the stacking so-
lutions, once we know the weight distributions of the uncertain items and fix a rule
for constructing the uncertainty set SI?

• Does the range of expected weights of the uncertain items have any impact on the
quality of the stacking solutions? Is the quality of the stacking solutions affected by
the range of variation coefficients of the uncertain items?

• How robust are the stacking solutions with respect to the type of weight distributions
of the uncertain items? That is, has guesing a wrong type of weight distribution
influence on the security levels of the solutions or not?

In the following, we discuss the stated points respectively.

Influence of interval-control parameter δ

Firstly, we would like to have an impression about how the quality of the stacking solutions
is affected by the interval-control parameter δ. For that purpose, we visualize results from
a selected test instance with |Ifix| = |I1| = |I2| = 20, b = 5, dense range of weights, and
wide Cv.

As the first representative, we tested the selected instance with an uniform weight
distribution and different rules 1-3. For this test instance, Figure 4.2 shows the quality
of different stacking solutions obtained by varying δ according to the ways specified in
Section 4.3.1. The quality of a stacking solution x is measured by its cost #St(x) (i.e., the
number of used stacks) and its estimated security level s̃l(x). For two stacking solutions
that are computed by the same rule and have the same number of used stacks, the one
having higher estimated security level is said to be better than the other. Fixing a rule, if
different stacking solutions corresponding to different values of δ have the same number of
used stacks, then only the best one (i.e. the one having highest security level) is recorded.
We represent each recorded stacking solution by a small circle in the figure. The number
besides each circle is the value of the interval-control parameter δ corresponding to the
stacking solution. Each line color corresponds to a rule of deriving interval uncertainty
sets. The dotted lines give us an impression about how much the estimated security level
changes from a recorded stacking solution to the next one when fixing a rule and varying
the interval-control paramter δ.

For the second and the third representatives, we did the same procedure as the first
representative but with a lognormal distribution and a truncated normal distribution,
respectively. The recorded stacking solutions from testing the second and the third repre-
sentatives are respectively presented in Figures 4.3 and 4.4. In the legends of the figures,
‘LN’ (‘N’, ‘U’, resp.) is an abbreviation for lognormal (truncated normal, uniform, resp.)
type of weight distribution, while ‘R1’ (‘R2’, ‘R3’, resp.) abbreviates Rule 1 (2, 3, resp.).

74 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

16 17 18 19 20 21 22 23 24 25 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.5
4.5

5 6

6.5

7

7.5
8.5

9.5

10

0.5
0.7 0.9

1

1.1

1.2

1.3

1.4

1.7

0.34
0.32

0.28 0.24

0.2

0.19

0.13

0.12

0.11

0.01

#St(x)

s̃l
(x
)

U−R1

U−R2

U−R3

Figure 4.2: Visualization of the results from the first representative
with uniform distribution and Rules 1-3.

14 16 18 20 22 24 26 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

3

3.5

4.5

5
6

6.5 7 7.5
8.5 9.5 10

0.2

0.5

0.7

0.9
1

1.1 1.2 1.3
1.4 1.7 2

2.1

0.35

0.15

0.07

0.05
0.03

0.02

0.01

#St(x)

s̃l
(x
)

LN−R1

LN−R2

LN−R3

Figure 4.3: Visualization of the results from the second representative
with lognormal distribution and Rules 1-3.

In the above tests, all MIP formulations corresponding to the specified values of δ were
solved to optimality within the time limit. The following phenomenon can be seen from
the tests. Using Rule 1 or Rule 2, when increasing the interval-control parameter δ, the
obtained stacking solutions are more expensive (in the sense that they use more stacks)
but higher secured. The same phenomenon occurs when decreasing δ in the cases that
apply Rule 3. This phenomenon is due to the construction of scenario set SI in the rules.
More precisely, when increasing δ in cases of Rules 1-2 and decreasing δ in case of Rule 3,
we obtain larger specified intervals for scenarios of wait-and-see items. This reduces the
possibility of certainly stacking a wait-and-see item on another item. Consequently, more
stacks must be used to store the items, therefore the obtained stacking solutions become
more costly. However, the more stacks that are used, the higher security level the solutions

4.3. COMPUTATIONAL EXPERIMENTS 75

have. This kind of trade-off between the two quality measures of stacking solutions is
because of the following reason. When more stacks are used, the average number per
stack of wait-and-see items is reduced. As a consequence, the stacking configuration in
each stack has more chances to be feasible in different data scenarios of the items.

16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.5
4.5

5
6

6.5

7

7.5

8.5

9.5

10 11.5 14.5

0.5

0.7
0.9

1

1.1

1.2

1.3 1.4

1.9 2

2.9

0.29

0.27

0.24

0.19

0.15

0.12 0.11

0.09

0.03
0.01

#St(x)

s̃l
(x
)

N−R1

N−R2

N−R3

Figure 4.4: Visualization of the results from the third representative
with truncated normal distribution and Rules 1-3.

It can be seen from the figures that there are few cases in which a stacking solution
has slightly smaller security level than another one with less number of used stacks. This
may due to the fact that in the construction of the interval uncertainty set SI we reset
amin = 10−3 if amin ≤ 0 for some item i.

In term of the objective function #St, the recorded stacking solutions corresponding
to different rules have a similar range of cost values (for uniform and truncated normal
types of weight distribution). It is different for the case of lognormal weight distribution
(see Figure 4.3), in which the recorded stacking solutions cost from 14 to 20 stacks if Rule
3 is used, but they might cost up to 27 stacks if the other rules are used.

It is shown in the figures that, in most of the cases, the recorded stacking solutions of
the same cost have a similar value of security level for different rules. A closer look at the
numerical results shows that, if we change the rule of deriving interval uncertainty sets,
we can find another stacking solution of the same cost with at most 20% in difference of
security level for about 87% of the recorded stacking solutions. In the worst case, we may
have to accept another stacking solution with 33% less secured if the rule is changed.

Knowing the impact of the interval-control parameter δ and fixing a rule in advance,
one can find out appropriate values of this parameter to obtain a stacking solution with
desired quality. Let us take the test with a truncated normal weight distribution and Rule
2 as an example (see Figure 4.4). If we would like to have a stacking solution with at least
90% of security level, then δ should be larger than 1.9 and the stacking solution should use
at least 25 stacks. On the opposite direction, if we would like to have a stacking solution
using at most 20 stacks, then δ should be smaller than 1.0 and such stacking solution can
only be feasible in less than 20% possible realizations of wait-and-see items.

76 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

Impact of expected weights and coefficients of variation of uncertain items

For each uncertain item, the expected weight and coefficient of variation are important
parameters determining the item’s weight distribution. We now analyze the effect of these
parameters on the quality of the stacking solutions. To do this analysis, we generated and
tested different instances with |Ifix| = |I1| = |I2| = 20 and b = 5. We did two types of
tests. The first type is to see how the range of weights influences the estimated security
levels of stacking solutions. The second type is to understand the effect of different ranges
of variation coefficients.

The detail setup for the first type is as follows. For each combination of a weight distri-
bution with a rule, we first fixed a range of coefficients of variation. Then we generated 10
instances having sparse range of weights. Over these instances, we computed the average
value slsparse(q) of estimated security levels of the recorded stacking solutions having the
same number q of used stacks. We did the same procedure with 10 other instances having
dense range of weights, and obtained the average values sldense(q) with similar spirit to
slsparse(q). The left part of Table 4.1 reports the maximum, minimum, and average values
of the difference slsparse(q) − sldense(q) over possible solution costs q. We excluded the
cases of solution cost q in which both slsparse(q) and sldense(q) equal 0 or 1.

Similarly, for the second type of tests, with each combination of a weight distribution
and a rule, we fixed a range of weights and generated 10 thin-Cv instances as well as
10 wide-Cv instances. By the same way of computing slsparse(q), we obtained average
(estimated) security levels slthin(q) for the thin-Cv instances and slwide(q) for the wide-
Cv instances. After excluding the values of q where both slthin(q) and slwide(q) equal 0
or 1, we computed the differences slthin(q)− slwide(q) for the remaining values of q. The
maximum, minimum, and average of these differences are reported in the right part of
Table 4.1.

Distribution Sparse - Dense Thin - Wide
and Rule Max Min Ave Max Min Ave

Lognormal & Rule 1 0.672 -0.029 0.063 0.329 0.001 0.058
Lognormal & Rule 2 0.651 -0.005 0.122 0.389 0.001 0.086
Lognormal & Rule 3 0.687 -0.002 0.138 0.356 0.005 0.106

Truncated normal & Rule 1 0.222 -0.137 0.036 0.558 0.001 0.286
Truncated normal & Rule 2 0.250 -0.022 0.077 0.625 0.001 0.266
Truncated normal & Rule 3 0.267 -0.001 0.085 0.594 0.001 0.312

Uniform & Rule 1 0.256 -0.180 0.038 0.662 0.001 0.359
Uniform & Rule 2 0.288 -0.086 0.089 0.815 0.001 0.364
Uniform & Rule 3 0.320 -0.068 0.098 0.811 0.001 0.362

Table 4.1: Compare security levels of stacking solutions from tests
with different ranges of weights and coefficients of variation.

The ‘Min’ columns of Table 4.1 show that different settings of the ranges of weights
and variation coefficients may only have a small influence on the security levels of some
stacking solutions. That should be the cases when stacking solutions with small cost are
used (and therefore they have very small value of security level), or when we use stacking
solutions with high cost and highly secured.

The ‘Max’ columns of Table 4.1 say that the ranges of weights and variation coefficients
heavily affect the security level of the stacking solutions in the worst case, where the

4.3. COMPUTATIONAL EXPERIMENTS 77

solutions have medium number of used stacks. In this case, if the uncertain items have
a setting of sparse range of weights and thin Cv, the stacking solutions are more secured
than in other settings.

In relation with the ‘Max’ columns, the ‘Ave’ columns of Table 4.1 give us an impression
about the number of stacking solutions that are ‘robustly secured’ with respect to different
settings of the ranges of weights and variation coefficients. The small values in the left
‘Ave’ column in the table mean a large number of stacking solutions robustly secured when
changing the range of weights. The large values in the right ‘Ave’ column in the table
mean that there are not so many stacking solutions robustly secured when changing the
range of coefficients of variation.

Robustness of security level with respect to weight distribution

Does guesing a wrong type of weight distribution have any influence on the security levels of
the stacking solutions? To answer this question, we organized our experiments as follows.
We generated a set of different test instances with |Ifix| = |I1| = |I2| = 20 and b = 5.
The input data for each test instance include a weight vector ā (whose components are
actual weights of here-and-now items and expected weights of wait-and-see items) and a
standard deviation vector σa (whose components are standard deviations of actual weights
of I2-items). For each choice of rule, we first generated 20 such instances with the same
weight vector ā and the same standard deviation vector σa. Then we tested these instances
for different types of weight distribution. Afterward, we computed the average over the 20
generated instances of estimated security levels of the recorded stacking solutions having
the same number of used stacks.

12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#St(x)

s̃l
(x
)

LN−R1

N−R1

U−R1

Figure 4.5: Average quality of stacking solutions
over 20 test instances with Rule 1.

Figures 4.5-4.7 visualize the average quality of recorded stacking solutions over the test
instances using Rules 1-3, respectively. In the legends of the figures, ‘LN’ (‘N’, ‘U’, resp.)
abbreviates lognormal (truncated normal, uniform, resp.) type of weight distribution,
while ‘R1’ (‘R2’, ‘R3’, resp.) abbreviates Rule 1 (2, 3, resp.). It is clear from the figures
that the stacking solutions with lognormal type of distribution differ much from the ones
with the other types. That is, if lognormal is a wrong type of weight distribution, then we

78 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

may have to change the obtained stacking solution to another one with much less security
level.

12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#St(x)

s̃l
(x
)

LN−R2

N−R2

U−R2

Figure 4.6: Average quality of stacking solutions
over 20 test instances with Rule 2.

12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#St(x)

s̃l
(x
)

LN−R3

N−R3

U−R3

Figure 4.7: Average quality of stacking solutions
over 20 test instances with Rule 3.

On the positive side, Figures 4.5-4.7 show that the stacking solutions with truncated
normal distribution have similar quality to the ones with uniform distribution. In other
words, if we predicted that uncertain items follow an uniform weight distribution but their
realizations are truncated normally distributed (or vice versa), then we can change the
computed stacking solution to another one with similar security level. In fact, in this
circumstance, a closer look at the numerical results shows that the maximum change in
value of security level is just 8.04 %.

4.4. CONCLUSIONS 79

4.4 Conclusions

In this chapter we considered a storage loading problem in which a set of items has to be
loaded into a partly filled storage area, regarding stacking constraints on an associated
parameter of each item, and taking into account stochastic data uncertainty of items
arriving later. To obtain a solution to this problem in a robust sense, we derive from
the items’ stochastic data an interval uncertainty set. The idea behind is that the data
realization of uncertain items will belong to the specified set with a certain probability.
Given the derived uncertainty set, we can compute a robust stacking solution in the strict
sense.

To evaluate the obtained robust stacking solution, apart from its cost (i.e. the number
of used stacks), we proposed a concept so-called security level. Given a stacking solution,
its security level is defined by the probability that the stacking solution is feasible when
the uncertain items are realized.

To better understand the impact of the specified uncertainty sets on the quality of
the robust stacking results, we considered different types of data distribution as well as
various rules for deriving interval scenario sets. In a computational study on randomly
generated instances, we analyzed the trade-off between security level and cost of the robust
stacking solutions. Furthermore, we studied the influence of the interval-control paramter,
the impact of parameters determining the data distribution, and robustness of the security
level with respect to the type of data distribution.

Further research could focus on analyzing the impact of cardinality of each set |Ifix|,
|I1|, |I2|. It would be interesting to apply the concept of adjustable robustness and
compare the quality (i.e. security level and cost) of adjustable robust stacking solutions
with strict ones.

80 CHAPTER 4. SECURITY LEVEL OF ROBUST STACKING SOLUTIONS

Chapter 5

Storage loading with payload
constraints

In this chapter we consider storage loading problems where items with uncertain weights
have to be loaded into a storage area, taking into account stacking and payload constraints.
Following the robust optimization paradigm, we propose strict and adjustable optimiza-
tion models for finite and interval-based uncertainties. To solve these problems, exact
decomposition and heuristic solution algorithms are developed. For strict robustness, we
also propose a compact formulation based on a characterization of worst-case scenarios.
Computational results for randomly generated data with up to 300 items are presented
showing that the robustness concepts have different potential depending on the type of
data being used.

This chapter is mainly based on our work in [49], and it is organized as follows. Section
5.1 is devoted to the motivation of introducing payload constraints. In Section 5.2, we
describe the storage loading problem (with stacking and payload constraints) in the deter-
ministic setting, and formally introduce the uncertainty sets. The strictly robust counter-
part of this uncertain problem is considered for both finite and interval uncertainty sets
in Section 5.3, while adjustable counterparts are discussed in Section 5.4. Computational
experiments are presented in Section 5.5. We close this chapter with some conclusions in
Section 5.6.

5.1 Motivation of payload constraints

In many practical loading problems, apart from stacking constraints, additional stability
issues are crucial. In load planning of trains (cf. [29, 30]) containers have to be loaded onto
wagons so that the stability of each wagon is guaranteed. In one-dimensional balanced
loading problems (cf. [7, 67]), one has to pack a set of homogeneous blocks of given
length and weight in an one-dimensional container so that the center of gravity of the
packed blocks is as close to a target point as possible. An extension of this problem
to two dimensions can be found in air cargo load planning (cf. [81]), where a set of
cargo has to be loaded on an aircraft minimizing the deviation between the aircraft’s
center of gravity and a given point (in both the longitudinal and lateral directions) to
improve stability of the aircraft and reduce fuel consumption. In many studies on three-
dimensional container loading problems (see [25] and references therein), the aim is to find
a best three-dimensional packing pattern for loading a subset of rectangular boxes into a

81

82 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

container maximizing the total value. Here, stability issues arise due to the strength of
the boxes’ faces or the maximum number of boxes that can be stacked one above each
other.

When loading containers onto a container ship, the stability of the ship is also an
important issue that needs to be taken into account. It follows from a physical principle
(see [53], Chapter 12) that the position of the gravity center of the loaded ship affects
the ship’s stability in the following sense: the lower the gravity center is, the more stable
the ship is. Naturally, it is desirable to store the items onto the ship in such a way that
achieves the lowest possible position of the gravity center of the loaded ship. The following
lemma gives an impression how such a stacking configuration should be, in which by “hard
stacking constraints on weights” we mean that heavier items must be put below lighter
ones.

Lemma 5.1. Given a number of items of possitive weights. Assume that the items have
a common height and the weight of each item is uniformly distributed over the item’s
volume. Among all configurations of stacking all these items into a single stack, any
stacking configuration satisfying the hard stacking constraints on weights has the lowest
position of the gravity center of the loaded stack.

Proof. Assume that we have n items of common height h > 0 and store them from level
1 to level n of the stack. Since the weight of each item is uniformly distributed over the
item’s volume, the gravity center of each item is exactly in the middle of the item. More
precisely, if we start measuring the height from the ground (height 0) where all items are
put on, then the height of the gravity center of the item stored at level i is hi :=

(
i− 1

2

)
h

(see Figure 5.1). Let G be the gravity center of the whole stack, and wi the weight of the
item stored at level i. According to [53] Chapter 12, the height of G is computed by

hG =

∑n
i=1wihi∑n
i=1wi

. (5.1)

0
h

h

2h

3h

4h

5h

h1

h2

h3

h4

h5

Figure 5.1: Stack with 5 items.

Let c be an arbitrary stacking configuration of the items in the stack. If in the configu-
ration c there exist two items i1 and i2 with wi1 ≥ wi2 and hi1 > hi2 (i.e., item i1 is heavier
and at a higher level than item i2), then we swap these two items and keep the positions of
all other items. Denote the new stacking configuration by c′, and let hG(c) (resp., hG(c′))
be the height of gravity center of the stack in configuration c (resp., configuration c′). By

5.1. MOTIVATION OF PAYLOAD CONSTRAINTS 83

applying (5.1) we get

hG(c)− hG(c′) =
1∑n
i=1wi

(wi1hi1 + wi2hi2 − wi1hi2 − wi2hi1)

=
1∑n
i=1wi

(wi1 − wi2) (hi1 − hi2)

≥ 0.

Thus, hG(c′) ≤ hG(c), i.e., by swapping a heavier item in a higher level with a lighter item
in a lower level we obtain a new configuration with lower position of G. By repeating this
procedure, the lowest position of G is attained in stacking configurations where heavier
items are put below lighter ones.

It follows from Lemma 5.1 that to obtain the best stability of the loaded ship, the items
should be stored in such a way that heavier items are assigned to lower levels. Therefore,
in the existing literature about storage loading problems in containerships, stability issues
of the ships are mostly handled by imposing hard stacking constraints on the weights of
the containers. For example, such stacking constraints appear in the context of the master
bay plan problem (MBPP) (cf. [5, 6, 73]). Formally, this problem is to determine a plan
of minimum operating time for stowing a set of containers of different types into available
locations of a containership, with respect to some structural and operative constraints
(e.g., a restriction on the maximum weight of the containership, containers retrieved later
may not be stored on top of containers that are retrieved earlier). For the equilibrium
of ships, the weights of containers are classified into three groups (light, medium, heavy),
and the following restrictions are considered. First, the total weight of three consecutive
containers in a stack cannot be greater than a priori established value. Second, the weight
on the right side of the ship should not differ much from the weight on the left side (for
cross equilibrium). Finally, the stacking constraints on weights are applied to guarantee
horizontal equilibrium.

In real-world containership loading problems, the hard stacking constraints on the
containers’ weights might be too conservative due to their interaction with other practical
constraints. Moreover, the lowest gravity center of the loaded ship caused by imposing the
hard stacking constraints on weights might make the ship become too rigid, which may
be bad for the ship when hit by waves. To get rid of these issues, instead of imposing
the hard stacking constraints on weights, a simple approach is to require that the total
weight of the containers allocated in a stack is limited by a given bound. For example, this
approach is applied in [35, 36] to generate optimal stowage plans for container vessel bays
by using constraint programming techniques. Another approach is to impose a limited
area for the gravity center of the ship. One may find the use of this approach in literature
dealing with the multi-port master bay plan problem (MP-MBPP), which is an extended
version of the (one-port) MBPP mentioned above. In the MP-MBPP, the whole route of a
ship is considered, and different sets of containers are loaded at each port of the route for
shipping to successive ports. Various objective functions are considered, as well as different
solution methods are proposed (see e.g. [2, 3, 4, 58, 70, 71]). There, the containers are
sorted according to their departure ports. In turn, the containers of the same departure
port are classified into different weight groups, where the average weight of each group
is assigned to every container belonging to the group. The ship is divided into different
sub-sections, then the containers are stored into these sub-sections in such a way that the
gravity center of the ship is within a limited area.

84 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

In this chapter, we propose another approach to tackle the mentioned drawbacks of
hard stacking constraints on weights and to control the stability of a ship. Our approach
is to impose additional constraints on the payload of the items. More precisely, we assume
that the total weight that can be put on top of an item i with weight wi is limited by awi,
where a is a given positive parameter which may also depend on the stacks. The following
lemma shows how the gravity center of a stack depends on the payload parameter a, in
which we again assume that the items have a common height h > 0 and the weight of each
item is uniformly distributed over the item’s volume.

Lemma 5.2. Consider a configuration of stacking n items into a single stack. Assume that
the weights of the items can vary but always satisfy the payload constraints with payload
parameter a > 0. Let h̄G be the height of the highest possible position of gravity center G
of the stack. Then h̄G(a) is a monotonically increasing function.

Proof. Let wi (resp., hi) be the weight (resp., the height of the gravity center) of the item
stored at level i of the stack. As shown in proof of Lemma 5.1 we have hi =

(
i− 1

2

)
h.

Due to the payload constraints we always have

k−1∑
i=0

wn−i ≤ awn−k (k = 1, . . . , n− 1). (5.2)

Regarding (5.2), it follows from (5.1) that the highest possible gravity center of the set
consisting of the two topmost items is attained when wn = awn−1. Similarly, the highest
possible gravity center of the set consisting of the three topmost items is attained when

wn = awn−1,

wn + wn−1 = awn−2.

By induction on n we can deduce that the highest possible position of G is attained when

wn = awn−1,

wn + wn−1 + . . .+ wn−k+1 = awn−k ∀ k = 2, . . . , n− 1,

or equivalently,

wn−1 =
1

a
wn,

wn−k =
(a+ 1)k−1

ak
wn (k = 2, . . . , n− 1).

Therefore, we get
n∑
i=1

wi = Awn,

where

A :=
(a+ 1)n−2

an−1
+ . . .+

a+ 1

a2
+

1

a
+ 1.

As we have
a+ 1

a
A−A =

(a+ 1)n−1

an
,

5.1. MOTIVATION OF PAYLOAD CONSTRAINTS 85

it holds that

A =

(
a+ 1

a

)n−1

.

By applying formula (5.1) we have

h̄G =

n∑
i=1

wihi

n∑
i=1

wi

=

n∑
i=1

(i− 1

2
)hwi

n∑
i=1

wi

=

n∑
i=1

ihwi

n∑
i=1

wi

− 1

2
h

=

n−1∑
i=1

ih
(a+ 1)n−i−1

an−i
wn + nhwn(

a+1
a

)n−1
wn

− 1

2
h

=

n−1∑
i=1

i
1

a

(
a

a+ 1

)i
h+ n

(
a

a+ 1

)n−1

h− 1

2
h. (5.3)

If we set u := a
a+1 , then 0 < u < 1 and a = u

1−u . Moreover, we can rewrite (5.3) as follows:

h̄G =

n−1∑
i=1

i
1− u
u

uih+ nun−1h− 1

2
h

=
n−1∑
i=1

i(1− u)ui−1h+ nun−1h− 1

2
h

=
n−1∑
i=1

i(ui−1 − ui)h+ nun−1h− 1

2
h

=

(
1

2
+
n−1∑
i=1

ui

)
h. (5.4)

It is an immediate consequence of (5.4) that h̄G is monotonically increasing with respect
to u. Obviously, u = a

a+1 = 1 − 1
a+1 is monotonically increasing with respect to a. It

follows that h̄G(a) is a monotonically increasing function.

As a consequence of Lemma 5.2, the smaller the value of a is, the lower h̄G is, i.e., the
more stable the stack is. Moreover, given a desired position for the gravity center of the
stack, we can compute the payload parameter a corresponding to that position, and then
use that value of a for controlling the stability of the stack during the loading process.
Our approach using payload constraints takes advantage of using knowledge of the actual
weights of the items, rather than binning the items into groups and assigning to each item
the average weight of its group.

In practice, it might also be possible that payload violations are allowed and the gravity
center of the ship may be shifted to a higher position. To achieve the desired stability
of the ship, an amount of ballast corresponding to the total payload violation is put at
the bilge of the ship so that the gravity center of the whole ship is adjusted to a safe
position (cf. [85]). By minimizing the total payload violation over all stacks, the amount

86 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

of ballast needed is minimized, and consequently, the shipping cost is reduced while the
ship’s stability is guaranteed.

In this chapter we consider storage loading problems where a set of incoming items has
to be assigned to stacks in a way that satisfies hard stacking constraints and soft payload
constraints, and minimizes the total payload violation. As we have already introduced,
stacking constraints are often given in form of a stacking matrix to describe binary re-
lations on items (i.e., which items can be stacked onto each other according to practical
requirements such as departure times or incompatible dimensions of items), while payload
constraints limit the payload that can be put on each item for stability reason. Since in
real-world applications, often not all data are known exactly during the planning stage, we
consider the storage loading problems under data uncertainty. More precisely, we assume
that the weight of each item is uncertain and may come either from a finite set of possible
scenarios or from an interval of potential outcomes. We consider two approaches to in-
clude robustness in this setting: strict robustness (where the location of each item needs to
be fixed before its actual weight becomes known), and adjustable robustness (where each
item must only be assigned to a stack, but its position within the stack can be decided
once the weight is known).

5.2 Problem formulation

In this section, we give a formal definition of the studied storage problem, formulate its de-
terministic version as a mixed-integer linear program (MIP), and introduce the considered
uncertainties.

5.2.1 Nominal problem

In the following, we describe the nominal (deterministic) problem in more detail. We are
given a storage area consisting of m stacks, where each stack can hold at most b items and
the position of each stack in the storage area is fixed. The set of all items to be stored is
denoted by I = {1, 2, . . . , n} where normally the inequality m < n holds, i.e., some items
have to be stacked on others. Since all items have to be stacked, we assume that n ≤ bm
(otherwise the problem is infeasible).

As a hard constraint we assume that not every item may be stacked on every other
item (for example, due to stacking constraints on departure times or lengths of items).
Such stacking constraints may be encoded by a 2-dimensional binary matrix S = (sij)n×n,
where sij = 1 if i can be stacked onto j and sij = 0 otherwise. Stacking constraints may be
transitive or may have an arbitrary structure. For the storage loading problems considered
in this chapter, we develop models which are capable to deal with stacking constraints of
an arbitrary structure.

Items stored in a stack are defined by a tuple (ik, . . . , i1), where il denotes the item
stacked at level l and l = 1 corresponds to the ground level. Such a tuple is feasible with
respect to stacking matrix (sij) if k ≤ b and sil+1,il = 1 for all l = 1, . . . , k − 1.

Additionally, we assume that each item i ∈ I has a weight wi and that the total weight
of items put on top of item i should not be larger than awi with a given payload factor
a ∈ R+. If the total weight W of all items above i exceeds awi, a payload violation of
W − awi occurs. The total payload violation of a stacking configuration is defined as
the sum of the payload violations over all items in all stacks of the configuration. Note
that all our models are also valid for the more general situation where the payload factor

5.2. PROBLEM FORMULATION 87

may depend on the assigned stack. In this chapter, the payload constraints are assumed
to be soft, i.e., payload violations are allowed, but the total payload violation has to be
minimized. Our discussion also includes the situation of hard payload constraints, since
in this case a feasible solution exists if and only if the minimal total payload violation is
equal to zero.

The simplest version of a storage loading problem is the feasibility problem (cf. Section
1.1.5) which asks whether all items can be feasibly allocated to the storage area respecting
all hard constraints, i.e., the stack capacity b and the stacking constraints sij . If this
is possible, the objective is to assign each item to a feasible location (specified by a
stack number and a level in the stack). It was shown in Theorem 2.11 that deciding
whether a feasible solution exists is strongly NP-complete for b ≥ 3 and transitive stacking
constraints. In an optimization version of the problem additionally some objective function
(e.g., the total number of used stacks or the number of items stacked above the ground
level) may be minimized. In this chapter we concentrate on minimizing the total payload
violation as the objective function. This problem is strongly NP-hard for b ≥ 3, since it
generalizes the feasibility problem.

5.2.2 A MIP formulation

In the following, we present a MIP formulation for the nominal problem where w ∈ Rn+
is the vector of the nominal weights of all items. We denote by Q := {1, . . . ,m} the
set of stacks and L := {1, . . . , b} the set of levels. We use the notation [α]+ to indicate
max{α, 0}. Let xiql for i ∈ I, q ∈ Q, l ∈ L be binary variables with

xiql =

{
1, if item i is stored in stack q at level l,

0, otherwise.

For a stacking configuration encoded by x, the payload violation of an item in stack q ∈ Q
at level l ∈ L \ {b} is ∑

j∈I

b∑
h=l+1

wjxjqh − a
∑
i∈I

wixiql


+

and hence the total payload violation of the configuration is given by

f(x,w) :=
∑
q∈Q

∑
l∈L\{b}

∑
j∈I

b∑
h=l+1

wjxjqh − a
∑
i∈I

wixiql


+

.

To linearly represent the objective function f(x,w), we use additional non-negative vari-
ables vql for q ∈ Q, l ∈ L to compute the payload violation of the item stored in stack q
at level l. Then the problem can be formulated as follows.

min
∑
q∈Q

∑
l∈L\{b}

vql (5.5)

s.t.
∑
q∈Q

∑
l∈L

xiql = 1 ∀i ∈ I (5.6)

∑
i∈I

xiql ≤ 1 ∀q ∈ Q, l ∈ L (5.7)

88 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

∑
j∈I\{i}

sijxjq,l−1 ≥ xiql ∀i ∈ I, q ∈ Q, l ∈ L \ {1} (5.8)

∑
j∈I

b∑
h=l+1

wjxjqh − a
∑
i∈I

wixiql ≤ vql ∀q ∈ Q, l ∈ L \ {b} (5.9)

xiql ∈ {0, 1} ∀i ∈ I, q ∈ Q, l ∈ L (5.10)

vql ≥ 0 ∀q ∈ Q, l ∈ L \ {b} (5.11)

According to (5.5) the sum of all payload violations is minimized. Constraints (5.6)
guarantee that all items are stored. Constraints (5.7) ensure that at most one item is
stored at each level of each stack. Due to (5.8) the stacking constraints sij are satisfied
and no item is placed to a location where no item is stacked below. Inequalities (5.9)
ensure that the payload violations vql are computed correctly.

We refer to this problem as (Pa). Note that (Pa) usesO(nmb) variables and constraints.
In the following we denote by

X :=
{
x ∈ {0, 1}|I|×|Q|×|L| | x satisfies (5.6)-(5.8)

}
the set of feasible solutions respecting all hard constraints of the stacking problem.

5.2.3 Uncertainties

We consider two kinds of uncertainties for the item weights that affect the payload con-
straints:

• Interval uncertainty: We assume that for every item i, we are provided with lower
and upper bounds wi, wi on the possible outcome of item weights. We write

SI = [w1, w1]× . . .× [wn, wn]

to denote an interval-based uncertainty set. An element w ∈ SI is called a scenario.
The lower and upper bounds stem from empirical observations or expert knowledge.
We do not assume knowledge of any probability distribution over SI .

• Finite uncertainty: We assume that we are given a list of N possible scenarios, where
as before a scenario consists of a weight for each item. We write

SF = {w1, . . . , wN}

for the uncertainty set containing all possible outcomes. Such a description of scenar-
ios may either be based on the expertise of practitioners (e.g., an experienced storage
loading manager is able to enumerate typical outcomes of uncertain weights), or may
stem from a probabilistic analysis and represents the most likely outcomes. We write
N = {1, . . . , N}.

In case that we do not need to distinguish these two kinds of uncertainty sets, we simply
write S to denote the uncertainty set. Note that SF is a finite set, while SI contains
infinitely many possible outcomes. This leads to different solution approaches for the
robust models we consider in this paper.

5.3. STRICT ROBUSTNESS 89

5.3 Strict robustness

In this section, we consider the problem setting where a complete stacking solution has
to be fixed in advance before the actually realized scenario becomes known. Such an
approach is required if the storage plan has to be announced before the actual weights
of the items are known and the plan cannot be changed later on. This means that the
planner has to find a complete stacking solution, i.e., to decide for each item to which stack
and level it is assigned, based on incomplete knowledge. Following the strict robustness
approach (cf. Section 1.2.1), we focus on strictly robust solutions where the worst-case
payload violation over all scenarios is minimized. The strictly robust counterpart (SR,S)
of the optimization storage loading problem (Pa) under affection of uncertainty set S is

(SR,S) min
x∈X

max
w∈S

f(x,w).

We first consider the case of finite uncertainty in Section 5.3.1, afterwards the more elab-
orate case of interval-based uncertainty is discussed in Section 5.3.2.

5.3.1 Finite uncertainty

In the following, we modify the problem formulation (Pa) to include a finite uncertainty
set. First, we introduce new variables vkql ≥ 0 for q ∈ Q, l ∈ L \ {b}, k ∈ N measuring
the payload violation of the item stored in stack q at level l in the solution for scenario
k. Additionally, an auxiliary variable v ≥ 0 is introduced to measure the total payload
violation in the worst-case over all scenarios. We denote this problem as (SRF), though
we may also write (SR,SF) when the usage of uncertainty set SF should be emphasized,
and obtain the following MIP formulation:

(SRF) min v (5.12)∑
q∈Q

∑
l∈L

xiql = 1 ∀i ∈ I (5.13)

∑
i∈I

xiql ≤ 1 ∀q ∈ Q, l ∈ L (5.14)∑
j∈I\{i}

sijxjq,l−1 ≥ xiql ∀i ∈ I, q ∈ Q, l ∈ L \ {1} (5.15)

∑
j∈I

b∑
h=l+1

wkj xjqh − a
∑
i∈I

wki xiql ≤ vkql ∀q ∈ Q, l ∈ L \ {b}, k ∈ N (5.16)

∑
q∈Q

∑
l∈L\{b}

vkql ≤ v ∀k ∈ N (5.17)

xiql ∈ {0, 1} ∀i ∈ I, q ∈ Q, l ∈ L (5.18)

vkql ≥ 0 ∀q ∈ Q, l ∈ L \ {b}, k ∈ N (5.19)

v ≥ 0 (5.20)

The objective (5.12) is to minimize the largest total payload violation over all scenar-
ios. As in the nominal problem, constraints (5.13) ensure that every item is stored,
constraints (5.14) model that at most one item is assigned to every location, and con-
straints (5.15) take care of the stacking constraints sij . Furthermore, according to con-
straints (5.16) the payload violations vkql are correctly computed for every scenario k.

90 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

Finally, constraints (5.17) (together with the minimization in (5.12)) ensure that the vari-
able v equals the maximum of these values. Compared to the nominal model (which uses
O(nmb) variables and constraints), this formulation requires O((n+N)mb) variables and
constraints.

5.3.2 Interval uncertainty

We now consider (SR,SI), i.e., the strictly robust model with interval-based uncertainty
sets SI . We denote this problem as (SRI) for short. Due to the continuous nature
of the uncertainty set SI , there are infinitely many scenarios and we cannot include all
these scenarios into a MIP formulation as we have done with (SRF). We propose two
approaches to tackle this issue. The first approach iteratively choose scenarios from SI to
include them in a finite uncertainty set, until the optimal stacking solution corresponding
to that finite uncertainty set is also the optimal solution to (SRI). The second approach
points out a characterization of worst-case scenarios in SI , that can be used to formulate
a compact model (MIP formulation) for (SRI).

An iterative algorithm

We now discuss the first approach in detail. Similar ideas to this approach have been
also successfully applied in [26, 68, 84]. The general procedure is shown in Algorithm
3. We start with an arbitrary scenario w1 ∈ SI . In each iteration k, we find a best
stacking configuration xk with respect to the current (finite) set of scenarios Sk, i.e., xk is
a solution to (SR,Sk). Then we determine a worst-case scenario wk+1 ∈ SI corresponding
to this stacking configuration (i.e., a scenario of item weights maximizing the total payload
violation f(xk, w) for configuration xk). The worst-case scenario found in each step is
added to the current set of scenarios. This is repeated until the objective value of the
robust problem and the objective value of the worst-case problem coincide.

Algorithm 3 Exact algorithm for (SRI).

Require: An instance of (SRI).
1: k ← 0.
2: Take an arbitrary scenario w1 ∈ SI and let S1 ← {w1}.
3: repeat
4: k ← k + 1.
5: Solve (SR,Sk). Let xk be the resulting stacking solution and LBk its objective

value.
6: Find a scenario wk+1 ∈ SI that maximizes the total payload violation for xk.
7: Let UBk be the corresponding (worst-case) total payload violation.
8: Sk+1 ← Sk ∪ {wk+1}.
9: until UBk = LBk.

10: return optimal stacking solution xk.

Theorem 5.3. Algorithm 3 terminates after a finite number of iterations and yields an
optimal solution x to (SRI).

Proof. Let f∗ be the optimal objective value of (SRI), i.e.,

f∗ = min
x∈X

max
w∈SI

f(x,w). (5.21)

5.3. STRICT ROBUSTNESS 91

Since Sk ⊆ Sk+1 ⊂ SI , we have

LBk = min
x∈X

max
w∈Sk

f(x,w)

≤ min
x∈X

max
w∈Sk+1

f(x,w) = LBk+1

≤ min
x∈X

max
w∈SI

f(x,w) = f∗.

On the other hand, by definition of UBk in Step 7 of the algorithm, we have

UBk = f(xk, wk+1) = max
w∈SI

f(xk, w) ≥ min
x∈X

max
w∈SI

f(x,w) = f∗.

This means that LBk is a lower bound on f∗ and UBk is an upper bound on f∗. Therefore,
if LBk = UBk, then (xk, wk+1) is an optimal solution to (SRI) and LBk = f∗ is the
optimal objective value of (SRI).

We now show that if LBk 6= UBk, then wk+1 /∈ Sk, so that the algorithm never enters
a cyclic loop. Indeed, assume to the contrary that wk+1 ∈ Sk. As defined in Step 6 of the
algorithm, we have

wk+1 = argmax
w∈SI

f(xk, w)

⇔ UBk = f(xk, wk+1) ≥ f(xk, w) ∀w ∈ SI
⇒ UBk = f(xk, wk+1) ≥ f(xk, w) ∀w ∈ Sk (since Sk ⊂ SI)
⇔ UBk = f(xk, wk+1) = max

w∈Sk
f(xk, w) (since wk+1 ∈ Sk).

Moreover, as defined in Step 5 of the algorithm, we have LBk = maxw∈Sk f(xk, w). There-
fore, we again obtain LBk = UBk under the assumption that wk+1 ∈ Sk. This means
that if LBk 6= UBk, then we must have wk+1 /∈ Sk.

The termination of the algorithm after a finite number of iterations follows immediately
from the two following claims: (a) the number of possible stacking configurations xk

generated by the algorithm is finite, (b) the number of possible worst-case scenarios wk

generated by the algorithm is also finite. Indeed, since there is a finite number of items,
also the number of possible stacking configurations for these items is finite, and claim
(a) follows. By Step 6 of the algorithm, we generate only one worst-case scenario wk+1

corresponding to stacking configuration xk, so claim (b) follows from claim (a).

How to solve Step 5 of the algorithm was shown in Section 5.3.1. We now discuss
how Step 6 can be realized. Given a stacking configuration x ∈ X , we need to find a
vector w ∈ SI of item weights maximizing the total payload violation (i.e., the sum of
payload violations over all levels of all stacks). Since there is no payload violation in stacks
containing only one item, we have to compute the maximum total payload violation in all
stacks containing at least two items, i.e., we need to find

max
w∈SI

f(x,w) = max
w∈SI

∑
q∈Q

vq(x,w) = max
w∈SI

∑
q∈Q(x)

vq(x,w), (5.22)

where Q(x) is the set of stacks (in the given stacking configuration x) containing at least
two items, and vq(x,w) is the total payload violation of stack q in scenario w ∈ SI . Note
that the stacking configuration x is fixed, therefore we have

max
w∈SI

∑
q∈Q(x)

vq(x,w) =
∑

q∈Q(x)

max
w∈SI

vq(x,w). (5.23)

92 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

In turn, we consider an arbitrary stack q ∈ Q(x) in the given configuration x and focus on
the problem of finding item weights w that maximize the total payload violation in stack
q, i.e.

(Vq) max
w∈SI

vq(x,w).

Let I(q) be the set of items contained in stack q and L(q) := {1, . . . , |I(q)|}. Since
q ∈ Q(x), we have |I(q)| ≥ 2. For the sake of simplicity, we denote the weight of the item
at level l ∈ L(q) by w[l].

Lemma 5.4. The total payload violation of stack q in the stacking configuration x ∈ X ,
given by

vq(x,w) =
∑
l∈L(q)

[∑
h>l

w[h] − aw[l]

]
+

,

is a convex function with respect to w.

Proof. We have that
∑

h>l w[h] − aw[l] is linear in w, and taking the maximum of two
convex functions is again a convex function. Since the sum of convex functions is also
convex, the claim follows.

Due to the convexity of vq(x, ·), there is always an optimal solution to (Vq) where
each item weight is at its lower or upper bound. We can make use of this fact to for-
mulate a binary linear programming formulation for (Vq). To do this, for all l ∈ L(q),
we introduce continuous variables w[l] determining the weight of the item at level l in
stack q. Furthermore, we use binary variables βl with βl = 0 if w[l] = w[l] and βl = 1
if w[l] = w[l]. Finally, variables αl are used to correctly compute the payload violation
[
∑

h>l w[h]−aw[l]]+ in the objective function. We have αl = 1 if
∑

h>l w[h]−aw[l] ≥ 0 and
αl = 0 if

∑
h>l w[h] − aw[l] < 0. Then, (Vq) can be formulated as follows.

(Vq) max
∑
l∈L(q)

(∑
h>l

w[h] − aw[l]

)
αl (5.24)

s.t. w[l] = w[l] + (w[l] − w[l])βl ∀l ∈ L(q) (5.25)

αl, βl ∈ {0, 1} ∀l ∈ L(q) (5.26)

w[l] ≥ 0 ∀l ∈ L(q) (5.27)

Note that this formulation is non-linear, due to the product of α and w in the objective
function. We can remove variables w[l] by inserting equations (5.25) in the objective
function, and get the equivalent model

max
∑
l∈L(q)

∑
h>l

(
w[h] +

(
w[h] − w[h]

)
βh

)
αl −

∑
l∈L(q)

a
(
w[l] +

(
w[l] − w[l]

)
βl

)
αl (5.28)

s.t. αl, βl ∈ {0, 1} ∀l ∈ L(q) (5.29)

By introducing new variables γlh = αl · βh for all l, h ∈ L(q), we obtain the binary linear
program

max
∑
l∈L(q)

(∑
h>l

w[h] − aw[l]

)
αl

5.3. STRICT ROBUSTNESS 93

+
∑
l∈L(q)

(∑
h>l

(w[h] − w[h])γlh − a(w[l] − w[l])γll

)
(5.30)

s.t. αl + βh − 1 ≤ γlh ≤
1

2
(αl + βh) ∀l, h ∈ L(q) (5.31)

αl, βl ∈ {0, 1} ∀l ∈ L(q) (5.32)

γlh ∈ {0, 1} ∀l, h ∈ L(q) (5.33)

The objective function (5.30) is the same as in (5.28) after substituting and reordering
terms. The additional constraints (5.31) are used to ensure that γlh is 1 if and only if both
αl and βh are 1. Solving problem (5.30)-(5.33) independently for each stack q ∈ Q(x)
hence gives the desired solution to Step 6 of Algorithm 3.

A compact MIP formulation

For the second approach to solve (SRI), we start by revising the problem (Vq), i.e. the
problem of finding item weights w ∈ SI that maximize the total payload violation in
stack q ∈ Q(x). Recall from Lemma 5.4 that the objective function of (Vq) is convex with
respect to w. Note that maximizing a convex function over a convex domain in general is
an NP-hard problem (cf. [18]). However, we can show that for the case we are considering
an efficient solution algorithm exists.

Theorem 5.5. For any value of the payload parameter a, the problem (Vq) can be solved

by evaluating O(|I(q)|2δ−1) scenarios of w ∈ SI , where δ := min{dae, b |I(q)|2 c}.

Proof. As mentioned above, due to the convexity of vq(x, ·), to find an optimal solution to
(Vq) it is sufficient to consider only scenarios where the weights of all items in I(q) are at
their lower or upper bounds. For a choice of item weights w, we say that at level l < |I(q)|
a solution has a break if w[l] = w[l] and w[l+1] = w[l+1], and an anti-break if w[l] = w[l] and
w[l+1] = w[l+1]. An example with six items, two breaks and one anti-break is depicted in
the left part of Figure 5.2. Items having their upper-bound weights are painted in gray,
while items having their lower-bound weights are painted in white. There are breaks at
levels two and five, and an anti-break at level three.

Figure 5.2: Illustration of the proof for Theorem 5.5.

Note that there is alway an optimal solution where the bottom item is as light as
possible, and the top item is as heavy as possible. Therefore, there is always an optimal
solution with at least one break. Whenever there is a break at some level l of an optimal

94 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

solution to (Vq), without loss of generality we can assume that
∑

h>l w[h] − aw[l] ≥ 0.
Indeed, if this was not the case, then we have

∑
h>l w[h] < aw[l], i.e., there is no payload

violation at level l of stack q. Therefore, there is still no payload violation at this location
if we increase w[l] by a positive amount. In other words, we could increase the weight of
the item at level l without decreasing vq(x,w).

We now show that there is an optimal solution to (Vq) with at most δ breaks. Firstly,
we note that each break occupies two consecutive levels in the stack, and different breaks
occupy different levels. Therefore, there are no more than b |I(q)|2 c breaks in stack q.
Secondly, there exists an optimal solution to (Vq) with at most dae breaks. Indeed, let w∗

be an optimal solution to (Vq) with β∗ > dae breaks and let l∗ be the level of the topmost
break. If we increase the weight of the item at level l∗ by ∆ = w[l∗]−w[l∗], then the item at
level l∗ has the weight w[l∗] and the break at level l∗ therefore disappears. Moreover, the
payload violation at level l∗ decreases by at most a∆. However, there are at least β∗ − 1
breaks beneath level l∗. As discussed above, these β∗ − 1 breaks correspond to β∗ − 1
more payload violations, which result in an increase of vq(x,w) by at least (β∗ − 1)∆
(see the right part of Figure 5.2). Due to β∗ > dae, the total payload violation could be
increased. Therefore, we can remove the break at level l∗ without decreasing the violation
vq(x,w). Repeating this argument until the next break level, we find that there is an
optimal solution with at most dae breaks.

We now count the number of possible weight scenarios of items in stack q with β ∈
{1, . . . , δ} breaks. In such a scenario, between any two consecutive breaks there must be
exactly one anti-break. Therefore, each of such scenarios corresponds to a choice of 2β−1
levels for β breaks together with β−1 anti-breaks in between. Since stack q contains |I(q)|
items, there are |I(q)|−1 levels that can have breaks or anti-breaks. This leads to

(|I(q)|−1
2β−1

)
possible scenarios having β breaks. Enumerating all these possibilities for β = 1, 2, . . . , δ
gives O(|I(q)|2δ−1) possible scenarios that have to be tested.

Note that if the payload parameter a is a fixed value, the complexity O(|I(q)|2δ−1) is
polynomially bounded in the input length of the problem and hence (Vq) can be solved in
polynomial time.

Thanks to Theorem 5.5, Step 6 of Algorithm 3 can alternatively be realized by enumer-
ating all relevant item weights per level. However, the result can also be used to avoid the
iterative algorithm and to formulate a compact model that includes all relevant scenarios
directly. Note that these are not scenarios in the sense that a specific item gets some
weight; instead, we assign to a specific level either the lower or upper weight of an item.
The result is a formulation similar to the one used in Section 5.3.1.

We present this compact formulation of (SRI) for the case a ≤ 1. Firstly, following the
above discussion, for solving (Vq) it is sufficient to consider |I(q)|−1 scenarios of weights of
items in stack q, where in scenario k only one break occurs at level k (k = 1, . . . , |I(q)|−1)
and the weights of all items in I(q) are at their lower or upper bounds. Secondly, it
is known from the proof of Theorem 5.5 that there is always an optimal solution to (Vq)
where the bottom item is as light as possible and the top item is as heavy as possible. Note
that the objective of (Vq) is to maximize the total payload violation in stack q. Therefore
for finding an optimal solution to (Vq) we can restrict our consideration to scenarios in
which all items up to a level k ≤ |I(q)| − 1 of stack q have their lightest possible weights,
and all items at higher levels have their heaviest possible weights. Furthermore, it follows

5.3. STRICT ROBUSTNESS 95

from (5.21)-(5.23) that the optimal objective value of (SRI) can be computed as follows.

f∗ = min
x∈X

max
w∈SI

f(x,w)

= min
x∈X

max
w∈SI

∑
q∈Q

vq(x,w)

= min
x∈X

∑
q∈Q

max
w∈SI

vq(x,w)

 .

To the end, for the compact formulation of (SRI) in case a ≤ 1, we introduce auxiliary
variables wkql ≥ 0 denoting the weight of the item in stack q at level l in the stacking
solution to the scenario in which stack q has a unique break at level k. Modifying the
formulation (SRF), we get the following MIP formulation for (SRI):

min
∑
q∈Q

vq (5.34)

s.t. (5.6)− (5.8)

wkql =
∑
i∈I

wixiql ∀q ∈ Q, k, l ∈ L, l ≤ k (5.35)

wkql =
∑
i∈I

wixiql ∀q ∈ Q, k, l ∈ L, l > k (5.36)∑
h>l

wkqh − awkql ≤ vkql ∀q ∈ Q, k, l ∈ L \ {b} (5.37)∑
l∈L\{b}

vkql ≤ vq ∀q ∈ Q, k ∈ L\{b} (5.38)

xiql ∈ {0, 1} ∀i ∈ I, q ∈ Q, l ∈ L (5.39)

vkql ≥ 0 ∀q ∈ Q, k, l ∈ L \ {b} (5.40)

wkql ≥ 0 ∀q ∈ Q, k, l ∈ L (5.41)

vq ≥ 0 ∀q ∈ Q (5.42)

Constraints (5.6)-(5.8) determine a feasible stacking solution x with respect to stacking
constraints (sij). In scenario k of weights of items in stack q of such a stacking solution x,
all items up to level k are assumed to be as light as possible (constraints (5.35)), while all
items at higher levels are as heavy as possible (constraints (5.36)). The payload violation
in the solution for scenario k for stack q and level l is measured by the variable vkql in
constraints (5.37). The worst-case over all scenarios is computed with the help of the
variables vq and constraints (5.38).

For a > 1 a similar formulation can be used by enumerating all possible scenarios via
the number of breakpoints, using O(b2δ−1) relevant scenarios per stack. In the following
we present a compact formulation for (SRI) when 1 < a ≤ 2. For this formulation,
new variables wk1k2k3ql represent the weight of the item in stack q at level l when there
are two breaks at levels k1 and k3, as well as an anti-break at level k2. Additionally,
variables vk1k2k3ql are used to measure the payload violation in this scenario. We denote
L∗ := {(k1, k2, k3) ∈ (L \ {b})× (L \ {b})× (L \ {b}) : k1 < k2 < k3}.

min
∑
q∈Q

vq (5.43)

96 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

s.t. (5.6)− (5.8)

wkql =

{∑
i∈I wixiql if l ≤ k∑
i∈I wixiql if k < l

∀q ∈ Q, l ∈ L, k ∈ L \ {b} (5.44)

vkql ≥
∑
h>l

wkqh − awkql ∀q ∈ Q, k, l ∈ L \ {b} (5.45)

vq ≥
∑

l∈L\{b}

vkql ∀q ∈ Q, k ∈ L \ {b} (5.46)

wk1k2k3ql =



∑
i∈I wixiql if l ≤ k1∑
i∈I wixiql if k1 < l ≤ k2∑
i∈I wixiql if k2 < l ≤ k3∑
i∈I wixiql if k3 < l

∀q ∈ Q, l ∈ L, (k1, k2, k3) ∈ L∗

(5.47)

vk1k2k3ql ≥
∑
h>l

wk1k2k3qh − awk1k2k3ql ∀q ∈ Q, l ∈ L, (k1, k2, k3) ∈ L∗

(5.48)

vq ≥
∑

l∈L\{b}

vk1k2k3ql ∀q ∈ Q, (k1, k2, k3) ∈ L∗ (5.49)

xiql ∈ {0, 1} ∀i ∈ I, q ∈ Q, l ∈ L (5.50)

vkql ≥ 0 ∀q ∈ Q, l, k ∈ L \ {b} (5.51)

vk1k2k3ql ≥ 0 ∀q ∈ Q, l, (k1, k2, k3) ∈ L∗ (5.52)

wkql ≥ 0 ∀q ∈ Q, l ∈ L, k ∈ L \ {b} (5.53)

wk1k2k3ql ≥ 0 ∀q ∈ Q, l ∈ L, (k1, k2, k3) ∈ L∗
(5.54)

v ≥ 0 (5.55)

Similar to the previous MIP formulation, constraints (5.6)-(5.8) determine a feasible stack-
ing solution x with respect to stacking constraints (sij). Constraints (5.44)-(5.46) compute
the worst-case total payload violation for stack q over all scenarios in which this stack has
exactly one break. Constraints (5.47)-(5.49) compute the worst-case total payload vio-
lation for stack q over all scenarios in which this stack has exactly two breaks with one
anti-break in between.

Note that in the case of hard payload constraints (i.e., no payload violations are allowed
which implies that the total payload violation must be equal to zero), a more compact
formulation can be given. For this, we consider the single robust payload constraint

∑
j∈I

b∑
h=l+1

wjxjqh − a
∑
i∈I

wixiql ≤ 0 ∀q ∈ Q, l ∈ L \ {b}, w ∈ SI

For a fixed location (q, l) ∈ Q × (L \ {b}), the first term of the left hand side in this
inequality is equal to the total weight of all items stored above this location, while the
sum in the second term equals the weight of the item stored at the location. The maximum
difference over all w ∈ SI between the former and the latter term is therefore attained
when the item stored at the location has minimum weight, while the items stored above

5.4. ADJUSTABLE ROBUSTNESS 97

have maximum weights. As we have pointed out, there exists a worst-case scenario w ∈ SI
which dominates all other scenarios from SI with respect to this constraint. Hence, this
robust payload constraint can be equivalently written as

∑
j∈I

b∑
h=l+1

wjxjqh − a
∑
i∈I

wixiql ≤ 0 ∀q ∈ Q, l ∈ L \ {b} (5.56)

Now, any stacking solution has zero payload violation if and only if all these worst-case
inequalities are fulfilled, i.e., the robust counterpart of the problem is given by (5.5)-
(5.8),(5.56),(5.10).

5.4 Adjustable robustness

Following the adjustable robustness approach (cf. Section 1.2.1), we now consider a robust
model where not all stacking decisions need to be fixed in advance, but some can be made
after the realized scenario becomes known. In our setting, we follow the idea that a
planner needs to determine in advance to which stack an item is assigned (“here-and-
now” decision); however, he is allowed to choose the level of the item within the stack
depending on the weight scenario of all items later (“wait-and-see” decision). This gives
the planner more flexibility in his decision making and potentially better results with less
payload violations.

Such a setting occurs in practice if special subareas (stacks) must be reserved for the
items in advance (for example, according to the different destinations of the items). As
another example we refer to the following setting from [79]: in the hatch overstow problem,
containers need to be loaded onto a ship with several hatches, where different areas of the
ship have to be filled separately. In our setting, in the first stage we assign containers
to subsets of stacks in the terminal (corresponding to the subareas on the ship). In the
second stage, these subsets are then loaded onto the ship, and the precise locations of the
items in the stacks of the corresponding subarea are determined using the weights that
are now known. For the sake of simplicity, we restrict our presentation to the setting
that items are assigned to single stacks in the first stage (and not to subsets of stacks).
However, models and solution algorithms can be extended to this setting.

Let Z be the set of here-and-now decisions, i.e., each element z ∈ Z is a partition of
the set of items I into stacks. For each stack in such a partition z one has to make sure
that there exists at least one ordering of the stack’s items (i.e., an assignment of the items
to levels) satisfying stacking constraints sij . Let Pz be the set of such orderings from all
stacks in z ∈ Z. Then each pair (z, π) with π ∈ Z defines a complete stacking solution of
all items in I. Let g(z, π, w) be the total payload violation of the stacking solution (z, π)
given the weight vector w of all items. Then the adjustable robust counterpart of (AR,S)
of the optimization storage loading problem (Pa) under affection of uncertainty set S is

(AR,S) min
z∈Z

max
w∈S

min
π∈Pz

g(z, π, w).

In Section 5.4.1, we present a MIP formulation for the adjustable robust counterpart
in case of finite uncertainty sets. For the case of interval uncertainty sets we give an exact
algorithm in Section 5.4.2 and propose some heuristic algorithms in Section 5.4.3.

98 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

5.4.1 Finite uncertainty

In this subsection we consider the adjustable robust problem with finite uncertainty
(AR,SF), shortly denoted as (ARF). As in Section 5.3, we would like to optimize the
worst-case performance of a stacking solution over all possible weight realizations. There
are two kinds of decisions that need to be made: here-and-now decisions independent
of realized item weights, which determine for every item the stack it is assigned to; and
wait-and-see decisions depending on the scenario, which decide the level of each item at
which it should be stored.

We introduce binary here-and-now variables ziq for i ∈ I, q ∈ Q where ziq = 1 if item
i is assigned to stack q. Furthermore, wait-and-see variables xkiql depend on the realized
scenario k and determine if item i is stored in stack q at level l in the solution corresponding
to scenario k. Then the problem can be formulated as follows.

(ARF) min v (5.57)

s.t.
∑
q∈Q

ziq = 1 ∀ i ∈ I (5.58)

∑
i∈I

ziq ≤ b ∀ q ∈ Q (5.59)∑
i∈I

xkiql ≤ 1 ∀ q ∈ Q, l ∈ L, k ∈ N (5.60)∑
l∈L

xkiql = ziq ∀ q ∈ Q, i ∈ I, k ∈ N (5.61)∑
j∈I\{i}

sijx
k
jq,l−1 ≥ xkiql ∀ i ∈ I, q ∈ Q, l ∈ L \ {1}, k ∈ N (5.62)

∑
j∈I

b∑
h=l+1

wkj x
k
jqh − a

∑
i∈I

wki x
k
iql ≤ vkql ∀ q ∈ Q, l ∈ L \ {b}, k ∈ N (5.63)

∑
q∈Q

∑
l∈L\{b}

vkql ≤ v ∀ k ∈ N (5.64)

ziq ∈ {0, 1} ∀ i ∈ I, q ∈ Q (5.65)

xkiql ∈ {0, 1} ∀ i ∈ I, q ∈ Q, l ∈ L, k ∈ N (5.66)

vkql ≥ 0 ∀ q ∈ Q, l ∈ L \ {b}, k ∈ N (5.67)

v ≥ 0 (5.68)

Constraints (5.58) model that every item has to be assigned to some stack, while every
stack contains at most b items (constraints (5.59)). Constraints (5.60) restrict the number
of items at any location to be at most one. We couple the here-and-now variables ziq with
the wait-and-see variables xkiql in constraints (5.61): if the here-and-now decisions assign
item i to stack q, then also in every scenario k item i has to be assigned to some level l
in stack q. Note that constraints (5.58) and (5.61) together ensure that for each scenario
every item has to be assigned to exactly one stack and level in the corresponding solution.
Constraints (5.62)-(5.64) are used to model the stacking constraints and to compute the
payload violations. Note that this formulation is more sensitive to the number of scenarios
than the strictly robust model, with O(Nnmb) variables and O((N + n)mb) constraints.

5.4. ADJUSTABLE ROBUSTNESS 99

5.4.2 Interval uncertainty

We now consider the adjustable robust problem with interval uncertainty (AR,SI), shortly
denoted as (ARI). We follow the idea of the iterative algorithm proposed in Section 5.3.2.
More precisely, we iteratively choose scenarios from SI to include in a finite uncertainty
set. In each iteration, we solve the relaxed problem of (ARI) corresponding to the finite
uncertainty set, and determine a scenario of item weights maximizing the total payload
violation for the solution of the relaxed problem. This worst-case scenario is added to
the current finite uncertainty set. We terminate the process at the iteration in which
the optimal objective value of the relaxed problem equals the worst-case total payload
violation.

The subproblem of generating worst-case scenarios now becomes more complex, since
the worst-case scenario generation also needs to take the possible wait-and-see decisions
into account. Recall that the here-and-now decisions assign each item to some stack,
while the wait-and-see decisions determine the ordering of items in each stack (when the
weights of all items are known). We apply the iterative approach to solve the subproblem
of generating worst-case scenarios. Roughly speaking, this approach concerns solving the
following subproblems for a single stack.

1. Given a subset of possible item orderings, we search for a worst-case weight scenario
that maximizes the smallest total payload violation over all orderings.

2. Given a weight scenario, we search for an item ordering that minimizes the total
payload violation.

More precisely, we consider a fixed stack q ∈ Q and let I(q) be the set containing all items
which are assigned to q according to the here-and-now decisions ziq. Furthermore, let
L(q) := {1, . . . , |I(q)|} and L′(q) := L(q)\{|I(q)|}. Let P(Iq) be the set of all permutations
for the items in the set I(q), each permutation describing an assignment of all items to
levels in the stack satisfying stacking constraints sij . We denote by vq(π,w) the total
payload violation for stack q with respect to the weights w if the items in I(q) are ordered
according to the permutation π. In the first subproblem, for a given subset P ′ ⊆ P(Iq) of
permutations for the items in stack q we search for a worst-case weight scenario w ∈ SI
that is a solution to

(AV 1, I(q),P ′) max
w∈SI

min
π∈P ′

vq(π,w).

The second subproblem consists of finding a (possibly new) permutation for the items in
stack q minimizing the total payload violation with respect to the current weights w, i.e.,
a solution to

(AV 2, I(q), w) min
π∈P(Iq)

vq(π,w).

The weight vector computed from the first subproblem (AV 1, I(q),P ′) is used as input
for the second subproblem (AV 2, I(q), w). The ordering of items in I(q) resulting from
the latter subproblem is then added to the set P ′. These two subproblems are itera-
tively solved until their objective values coincide and the worst possible total payload of a
fixed stack assignment is determined, which also yields a new worst-case weight scenario.
This scenario is added to the main adjustable problem, and the process is repeated. We
summarize this approach in Algorithm 4.

Theorem 5.6. Algorithm 4 terminates after a finite number of iterations and yields an
optimal solution x to (ARI).

100 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

Algorithm 4 Exact algorithm for (ARI).

Require: An instance of (ARI).
1: k ← 0.
2: Take an arbitrary scenario w1 ∈ SI and let S1 ← {w1}.
3: repeat
4: k ← k + 1.
5: Solve (ARF) with uncertainty set Sk. Let xk be the resulting stacking solution

and LBk its objective value.
6: UBk ← 0.
7: for all q ∈ Q do
8: `← 0.
9: Let I(q) be the set of items assigned to stack q in xk.

10: P1 ← {π1} for some permutation π1 of all items in I(q) which is feasible with
respect to sij .

11: repeat
12: `← `+ 1.
13: Solve (AV 1, I(q),P`).
14: Let w` be the resulting item weights and vq(P`) the resulting objective

value.
15: Solve (AV 2, I(q), w`).
16: Let π` be the resulting item permutation and v`q(w

`) the resulting objective
value.

17: P`+1 ← P` ∪ {π`} .
18: until vq(P`) = v`q(w

`).

19: UBk ← UBk + v`q(w
`).

20: wki ← w`i for all items i ∈ I(q).
21: end for
22: Sk+1 ← Sk ∪ {wk}.
23: until UBk = LBk.
24: return optimal stacking solution xk.

Proof. We first prove that the inner loop from Step 11 to Step 18 indeed yields one of the
worst-case scenarios w (corresponding to stack q) that is used for the outer loop (from
Step 3 to Step 23). More precisely, we need to show that after executing the inner loop
we will have

v`q(w
`) = v∗q := max

w∈SI
min

π∈P(I(q))
vq(π,w).

Indeed, on one hand, since P` ⊆ P(I(q)) for all ` we have

vq(P`) = max
w∈SI

min
π∈P`

vq(π,w) ≥ max
w∈SI

min
π∈P(I(q))

vq(π,w) = v∗q .

On the other hand, it is obvious that for all ` we have

v`q(w
`) = min

π∈P(I(q))
vq(π,w

`) ≤ max
w∈SI

min
π∈P(I(q))

vq(π,w) = v∗q .

Therefore, once vq(P`) = v`q(w
`), it is straightforward that v`q(w

`) = v∗q . In turn, we need to
show that the inner loop terminates after a finite number of iterations ` ∈ N. Indeed, since

5.4. ADJUSTABLE ROBUSTNESS 101

|I(q)| is finite, so is |P(I(q))|. Note that by construction we have P` ⊆ P`+1 ⊆ P(I(q)),
so there must be some iteration `∗ at which we have P`∗ = P`∗+1, or in other words,
π`
∗ ∈ P`∗ . Then we have

v`
∗
q (w`

∗
) = vq(π

`∗ , w`
∗
)

= min
π∈P(I(q))

vq(π,w
`∗) (by definition of π`

∗
)

= min
π∈P`∗

vq(π,w
`∗) (since π`

∗ ∈ P`∗ ⊆ P(I(q)))

= max
w∈SI

min
π∈P`∗

vq(π,w) (by definition of w`
∗
)

= v̄q(P`
∗
).

We have shown that there exists `∗ such that v`
∗
q (w`

∗
) = v̄q(P`∗). That means the inner

loop terminates after iteration `∗, and w`
∗

is the worst-case weight scenario we need to
plug in the outer loop. In turn, by a similar proof to Theorem 5.3, it follows that the outer
loop terminates after a finite number of iterations and the stacking solution generated in
the last iteration is an optimal solution to (ARI).

How to solve Step 5 of the algorithm was shown in Section 5.4.1. We now discuss how
subproblems in Step 13 and Step 15 can be solved. We consider the first subproblem

(AV 1, I(q),P`) max
w∈SI

min
π∈P`

vq(π,w).

We assume that the set P` contains K permutations π1, . . . , πK which are described by
binary values pkil with pkil = 1 if and only if in permutation πk item i ∈ I(q) is assigned
to level l ∈ L(q). Let K := {1, . . . ,K}. We introduce continuous variables wi ∈ [wi, wi]
determining the weight of item i. Additionally, we have variables vkl ≥ 0 measuring the
payload violation for the item assigned to level l in the permutation πk and binary auxiliary
variables αkl to determine whether there is a payload violation at level l in the permutation
πk or not. Finally, the auxiliary variable v ≥ 0 denotes the total payload violation of the
stack. Then problem (AV 1, I(q),P`) can be formulated as follows.

max v (5.69)

s.t.
∑

l∈L′(q)

vkl ≥ v ∀k ∈ K (5.70)

∑
h>l

∑
i∈I(q)

pkihwi − a
∑
i∈I(q)

pkilwi

αkl = vkl ∀k ∈ K, l ∈ L′(q) (5.71)

wi ≤ wi ≤ wi ∀i ∈ I(q) (5.72)

αkl ∈ {0, 1} ∀k ∈ K, l ∈ L′(q) (5.73)

vkl ≥ 0 ∀k ∈ K, l ∈ L′(q) (5.74)

v ≥ 0. (5.75)

According to (5.69) the total payload violation of the stack is maximized. Constraints
(5.70) ensure that v equals the smallest payload violation over all item permutations. Due
to (5.71), the payload violations are correctly computed. Finally, (5.72) guarantees that
the weight variables wi are contained in the given intervals.

102 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

Note that constraints (5.71) are non-linear, due to the product of α with w. To remove
this non-linearity, we introduce new variables βkil = wiα

k
l and require 0 ≤ βkil ≤ Mαkl and

wi −M(1 − αkl) ≤ βkil ≤ wi for a suitable large constant M (note that M ≥ wi suffices).
This gives rise to the following new MIP formulation for (AV 1, I(q),P`).

max v

s.t.
∑

l∈L′(q)

∑
h>l

∑
i∈I(q)

pkihβ
k
il − a

∑
l∈L′(q)

∑
i∈I(q)

pkilβ
k
il ≥ v ∀k ∈ K

βkil ≤ wiαkl ∀k ∈ K, l ∈ L′(q), i ∈ I(q)

wi + wi(α
k
l − 1) ≤ βkil ≤ wi ∀k ∈ K, l ∈ L′(q), i ∈ I(q)

wi ≤ wi ≤ wi ∀i ∈ I(q)

αkl ∈ {0, 1} ∀k ∈ K, l ∈ L′(q)
βkil ≥ 0 ∀k ∈ K, i ∈ I(q), l ∈ L′(q)
v ≥ 0.

We now consider the second subproblem

(AV 2, I(q), w) min
π∈P(Iq)

vq(π,w),

which consists of finding a (possibly new) permutation for the items in stack q minimizing
the total payload violation with respect to the current weights w. For i ∈ I(q), l ∈ L(q)
we introduce binary variables pil determining the item permutation, i.e., pil = 1 if and
only if item i is assigned to level l. Variables vl ≥ 0 for l ∈ L′(q) are used to determine
the payload violation at level l. Then (AV 2, I(q), w) can be formulated by the following
MIP.

min
∑

l∈L′(q)

vl (5.76)

s.t.
∑
h∈L(q)
h>l

∑
j∈I(q)

wjpjh −
∑
i∈I(q)

awipil ≤ vl ∀l ∈ L′(q) (5.77)

∑
i∈I(q)

pil = 1 ∀l ∈ L(q) (5.78)

∑
l∈L(q)

pil = 1 ∀i ∈ I(q) (5.79)

pi,l+1 + pjl ≤ 1 ∀i, j ∈ I(q) with sij = 0, l ∈ L′(q) (5.80)

pil ∈ {0, 1} ∀i ∈ I(q), l ∈ L(q) (5.81)

vl ≥ 0 ∀l ∈ L′(q). (5.82)

Due to (5.76) the total payload violation is minimized. Constraints (5.77) are used to
determine the violations vl at the different levels. The assignment constraints (5.78) and
(5.79) ensure that at each level exactly one item is stored and that each item is assigned to
exactly one level, respectively. Due to constraints (5.80) the item permutation is feasible
with respect to the stacking constraints sij .

5.4. ADJUSTABLE ROBUSTNESS 103

5.4.3 Heuristic solution approaches

In the following, we present three heuristics to solve (ARI). Each is provided with a
feasible starting solution, whose generation is explained at the end of this section.

Pattern generation

For our first approach, we consider an extended problem formulation for (ARI). Let C be
the collection of all possible subsets C ⊆ I of items that are feasible with respect to the
stacking constraints and the stack capacity b (i.e., these items can be assigned together to
the same stack). Each set in the collection C is called a pattern. For each pattern C ∈ C
we introduce a binary variable yC to decide whether the pattern C is used in the optimal
stacking solution (yC = 1) or not (yC = 0), and let

v(C) = max
w∈SI

min
π∈P(C)

v(π,w)

be the worst-case payload violation of the pattern C. The value of v(C) can be determined
using (AV 1, C,P(C)) and (AV 2, C, w) iteratively (as discussed in the previous section).
We use binary variables χCj to indicate whether j ∈ I is contained in C with χCj = 1 if and

only if j ∈ C, and χCj = 0 otherwise. Then, we get the following equivalent formulation
(ARI − PG) for (ARI).

(ARI − PG) min
∑
C∈C

v(C)yC (5.83)

s.t.
∑
C∈C

χCj yC = 1 ∀j ∈ I (5.84)∑
C∈C

yC ≤ m (5.85)

yC ∈ {0, 1} ∀C ∈ C. (5.86)

Constraints (5.84) ensure that every item is contained in one pattern, and constraint (5.85)
bounds the number of available patterns by the number of available stacks in the storage
area.

As there are potentially exponentially many relevant patterns C ∈ C, we use the
following algorithm to solve (ARI−PG) heuristically. We keep a working collection C∗ of
patterns, which is initially filled with the patterns that are given by some feasible starting
solution. In every iteration, we generate a collection C̄ of subsets C ⊆ I at random, where
the cardinality of each such subset C is chosen between 1 and b in a way that the expected
cardinality equals n/m. The collection C′ of candidate patterns in the current iteration
consists of

• patterns in collection C̄,

• patterns from the current working collection C∗,

• patterns that are generated by randomly merging patterns from the current working
collection C∗.

Patterns that have once been part of the working collection are never removed. Hence, we
generate new patterns in the fashion of a genetic algorithm. Then, we solve (ARI − PG)

104 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

using the heuristic collection C′ instead of the full collection C. Patterns of the resulting
solution that are not part of the working collection yet are added to C∗. We then begin
with the next algorithm iteration by generating new patterns C̄.

Note that problems of type (ARI − PG) are easy to solve with current commercial
MIP solvers (constraints (5.84) are special ordered set constraints, and constraint (5.85)
is a single knapsack constraint), which means that a large number of sets C can be used
in the heuristic with still small computation times. Thus, one can expect this approach
to give better solutions than Algorithm 4 within the same amount of time. However, no
quality bounds (or even a proof of optimality) are produced.

Local search

In our second approach, we follow an iterative improvement local search heuristic. Given
a feasible assignment of items to stacks (with respect to stacking constraints sij), we
consider the following two moves: (i) an item is moved from one stack to another stack
with sufficient capacity, or (ii) two items from two stacks are swapped. A move is called
feasible if it results in a feasible assignment of items to stacks. We then iteratively use
the subproblems of types (AV 1) and (AV 2) to calculate the worst-case total payload
violation of the new item-stack assignment resulting by each feasible move. All feasible
moves are evaluated in random order until an improving move (i.e. a move that results
in an item-stack assignment having smaller worst-case total payload violation) is found.
The first found improving move is then performed. The process is repeated until either a
local optimum or some time limit is reached.

Destroy-and-repair heuristic

Finally, in our third heuristic, we follow a destroy-and-repair approach, which can also be
considered as a variable neighborhood heuristic. Given a feasible assignment of items to
stacks (with respect to stacking constraints sij), we randomly select one stack with a high
objective value (i.e. the total payload violation) and one stack with a low objective value.
We then solve a problem of type (ARI) restricted to only these two stacks, i.e., we find
a new, optimal assignment for these two stacks using the iterative procedure described in
Algorithm 4. This process is repeated until a time limit is reached.

To increase the number of iterations, we limit the time for a repair operation by
stopping Algorithm 4 once a gap of 3% is reached or 10 seconds have elapsed, whichever
comes first. We also provide the solver with the current stack order as a starting solution.

Note that the neighborhood this algorithm investigates is larger than for the local
search, i.e., every move the local search evaluates is contained in the set of possible moves
for this destroy-and-repair heuristic. However, every iteration is computationally more
costly, as we not only evaluate an assignment of items to two stacks, but also find a best
possible assignment.

Constructive heuristic

To provide the heuristics from above with a feasible starting solution, one could simply
solve the nominal problem. As this turns out to be too computationally difficult for large-
scale problems, we present a different model where the payload violation is not considered.

This model is inspired by network flows. Consider a directed graph, where there exists
one node i for every item i ∈ I, and an arc (i, j) connecting i, j ∈ I iff sij = 1. Every arc

5.5. COMPUTATIONAL EXPERIMENTS 105

can carry an integer amount of flow between 0 and b. The topmost item within a stack
receives b unit of flow, and in every subsequent node, loses one unit of flow. Every node
needs to be provided with at least one unit of flow.

We use variables xij ∈ {0, . . . , b} to denote the flow along arc (i, j), binary variables zij
to model if arc (i, j) carries any flow, and binary variables yi to determine whether item i
is the topmost item of a stack. The corresponding feasibility problem can be formulated
as follows: ∑

i∈I
yi ≤ m (5.87)∑

j∈I
sji=1

xji −
∑
j∈I
sij=1

xij + byi ≥ 1 ∀ i ∈ I (5.88)

xij ≤ bzij ∀i, j ∈ I (5.89)∑
j∈I
sij=1

zij ≤ 1 ∀i ∈ I (5.90)

∑
j∈I
sji=1

zji ≤ 1 ∀i ∈ I (5.91)

xij ∈ {0, . . . , b} ∀i, j ∈ I : sij = 1 (5.92)

zij ∈ {0, 1} ∀i, j ∈ I : sij = 1 (5.93)

yi ∈ {0, 1} ∀i ∈ I. (5.94)

Constraints (5.87) ensure that at most m stacks can be used, while constraints (5.88)
model the integer flow. Constraints (5.89) are used to determine whether an arc is used or
not, while constraints (5.90) and (5.91) ensure that every node has at most one predecessor
and at most one successor. Note that a solution found this way is feasible for (ARI), as
only the payload violation is ignored, which is part of the objective. We solve this problem
once using a MIP solver to provide any of the three heuristics from above with a feasible
starting solution.

5.5 Computational experiments

To test the performance of the models and algorithms introduced in this chapter, we
performed four experiments with different sets of instances. The first three experiments
use smaller instances with up to 30 items to compare exact and heuristic algorithms, and
to analyze the impact of different parameters. The fourth experiment considers heuristic
solutions for larger instances with up to 300 items.

5.5.1 Small instances

Recall that an uncertain stacking problem is parameterized by: The number of items
n, the number of available stacks m, the maximum height of stacks b, and the payload
violation parameter a. Additionally, a stacking matrix S is required as well as either an
interval-based uncertainty SI or a finite uncertainty set SF .

106 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

Setup

We randomly generated stacking matrices S by using a density parameter d ∈ [0, 1], which
is the relative number of ones within the non-diagonal elements of the matrix (i.e., for
d = 1, all items can be stacked onto each other, and for d = 0.5, there are n(n − 1)/2
randomly distributed allowed pairings).

For interval uncertainty sets, we generated lower and upper bounds wi and wi on item
weights in the following way. There are two types of items, which both occur with the
same probability. The first type of items has wi ∈ [9, 10] and wi ∈ [10, 11], the second
type of items has wi ∈ [0, 10] and wi ∈ [10, 20]. Thus, the expected average of lower and
upper bound is 10 in both cases, but the variance is different. This reflects the case that
items have on average a similar weight, but different variance.

For finite uncertainty sets, at first for each item i we generated a lower bound wi and an
upper bound wi on its weight in the same way as the construction of interval uncertainty
sets above. Then, for each item i, its weight wki in scenario k was generated uniformly in
its interval [wi, wi].

In the first experiment we consider problem instances with few high stacks. The second
experiment considers problem instances with many small stacks. The third experiment
analyzes the impact of the payload parameter a.

For each parameter choice, we generated 20 instances (all of them were noted to be
feasible). For each instance, we solve:

• The nominal model, where nominal weights are the midpoints of the respective
intervals. We refer to this solution as “Nom”.

• The strictly robust model with finite uncertainty, sampling 10 and 20 scenarios (we
denote these solutions as “S-10” and “S-20”, respectively).

• The strictly robust model with interval-based uncertainty using Algorithm 3. This
is denoted as “SI”.

• The strictly robust model with interval-based uncertainty using the compact model.
This is denoted as “SIC”.

• The adjustable model with finite uncertainty, sampling 5 and 10 scenarios (we denote
these solutions as “A-5” and “A-10”, respectively).

• The adjustable model with interval-based uncertainty using the exact Algorithm 4.
This is denoted as “AI”.

• The adjustable model with interval-based uncertainty, based on the formulation
(ARI − PG), using the pattern generation heuristic with 1000 candidate sets. We
denote this heuristic solution as “AIPG”.

• The adjustable model with interval-based uncertainty using local search, which is
denoted as “AILS”.

• The adjustable model with interval-based uncertainty using the destroy-and-repair
heuristic, which is denoted as “AIDR”.

We used CPLEX v.12.6 ([76]) to solve all MIP formulations. All experiments were
conducted on a computer with a 16-core Intel Xeon E5-2670 processor, running at 2.60
GHz with 20MB cache, and Ubuntu 12.04. Processes were pinned to one core. To restrict
computation times, a time limit of 15 minutes was imposed on every solution approach.

5.5. COMPUTATIONAL EXPERIMENTS 107

Experiment 1: few high stacks

In this experiment, we fix a = 1, d = 0.5 and m = 3, and vary the number of items n from
9 to 30 in steps of 3. The stack height b is equal to n/3, that is, this experiment considers
relatively few but high stacks.

n Nom S-10 S-20 SI SIC A-5 A-10 AI

9 0.0 0.1 0.2 4.3 0.0 0.4 1.4 24.5
12 0.0 0.9 1.4 229.0 0.1 2.3 8.4 900.0
15 0.1 4.1 14.0 900.0 0.2 4.9 29.0 900.0
18 0.1 14.0 36.7 900.0 0.3 12.0 253.3 900.0
21 0.2 27.7 58.5 900.0 0.5 47.1 551.4 900.0
24 0.3 73.3 167.4 900.0 0.7 99.1 889.4 900.0
27 0.4 62.7 391.5 900.0 1.6 405.5 900.0 900.0
30 0.6 147.5 900.0 900.0 1.9 583.9 900.0 900.0

Table 5.1: Experiment 1, median computation times in seconds.

We present the median computation times (in seconds) in Table 5.1. Nominal solution
times are very small, while the iterative approaches hit the time limit of 15 minutes
already for small n. In particular, comparing SI and SIC shows that the compact model
for strict robustness is considerably more efficient than the iterative approach, and needs
only slightly longer computation times than the nominal model. Comparing S-10 with
S-20 and A-5 with A-10, we note that already a small increase in scenarios results in a
large increase in computation times.

n Nom S-10 S-20 SI SIC

9 5.07 6.65 4.92 0.00 0.00
12 17.12 8.85 7.21 0.00 0.00
15 17.62 10.09 6.87 0.93 0.00
18 14.32 9.04 6.14 2.91 0.00
21 12.83 9.55 7.21 4.76 0.00
24 10.13 8.14 5.86 4.83 0.00
27 12.28 8.06 6.32 4.64 0.00
30 12.39 7.80 7.34 3.87 0.00

Table 5.2: Experiment 1, average gaps for strict objective values in percent.

We now consider strict objective values, i.e., the worst-case payload violation when
stacks cannot be adjusted. Note that strict objective values are not well-defined for ad-
justable solutions, as they do not specify a complete stacking in their first-stage. The
average gaps for strict objective values are presented in Table 5.2, which are computed as
(UB−LB)/UB using the best-known lower bound on every instance (which is the objec-
tive value of SIC, as it solves all instances to optimality). Values are given as percentages,
i.e., the nominal solution has an average gap of 12.39% on instances with size n = 30.
Note that the iterative approach SI still produces solutions that are close to optimality.
The increased number of scenarios for S-20 results in better solutions than for S-10, which
is in turn better than the nominal solution. Note that even though the nominal solution
takes comparatively little computational effort, it leads to large gaps in the worst-case,
underlining the value of using a robust approach here.

108 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

n Nom S-10 S-20 SI SIC A-5 A-10 AI AIPG AILS AIDR

9 16.69 15.84 13.29 15.66 13.60 6.40 4.55 0.00 0.00 0.16 0.16
12 8.58 8.34 7.81 4.76 4.75 6.36 5.45 1.95 1.86 2.46 2.09
15 4.70 5.37 4.71 3.76 3.58 4.24 3.82 2.09 1.78 2.16 2.07
18 5.44 4.33 3.82 3.48 2.72 4.63 4.78 2.24 1.82 2.09 1.90
21 3.73 3.64 3.01 3.07 1.73 3.68 3.00 1.30 1.32 1.16 1.20
24 2.25 2.75 2.73 1.87 1.21 2.26 2.19 1.01 1.12 0.87 0.86
27 2.35 2.13 2.32 1.70 0.92 2.52 2.01 0.86 1.03 0.73 0.75
30 2.27 2.55 2.33 2.02 1.10 2.37 2.30 1.28 1.42 0.95 1.04

Table 5.3: Experiment 1, average gaps for adjustable objective values in percent.

The average gaps for adjustable objective values are presented in Table 5.3. Adjustable
objective values are given as the worst-case payload violation when only the assignment of
items to stacks is fixed (i.e., it can also be computed for the nominal and strict solutions).
As a lower bound, we used the largest lower bound produced by AI. Overall gaps are
relatively small, and solutions tend to perform better with larger n. This is because m is
kept constant, meaning that more items are assigned to the same number of stacks, which
increases the chances to correct mistakes made in the assignment during the recovery
step. The heuristics and AI perform best, but also SIC performs well. As for strict
objective values, an increased number of scenarios for the sampling algorithms improves
their performance.

Experiment 2: many small stacks

In this second experiment, we fix a = 1, d = 0.5 and b = 3, and vary the number of
items n from 9 to 30 in steps of 3. The number of stacks m is equal to n/3, that is, this
experiment considers relatively many but small stacks.

We present the counterparts to Tables 5.1, 5.2, and 5.3 as Tables 5.4, 5.5, and 5.6.

n Nom S-10 S-20 SI SIC A-5 A-10 AI

9 0.0 0.1 0.2 4.9 0.0 0.4 1.4 24.4
12 0.0 0.7 2.0 182.1 0.1 1.6 9.1 900.0
15 0.0 3.2 11.1 900.0 0.1 2.7 15.2 900.0
18 0.1 50.7 272.2 900.0 0.1 5.0 34.9 900.0
21 0.1 619.0 900.0 900.0 0.2 11.2 60.1 900.0
24 0.1 900.0 900.0 900.0 0.3 22.3 150.8 900.0
27 0.2 900.0 900.0 900.0 0.4 39.9 225.8 900.0
30 0.2 900.0 900.0 900.0 0.5 61.9 435.2 900.0

Table 5.4: Experiment 2, median computation times in seconds.

Note that computation times for the strict models increased compared to Experiment 1.
This is also reflected in the solution gaps. For strict objective values, gaps are considerably
larger than before. In particular, the iterative approach SI is not competitive anymore,
while SIC still solves all instances to optimality in a short amount of time.

Also the adjustable objective gaps increase, and show larger differences between the
solution approaches than before. On these instances, the heuristic approaches tend to

5.5. COMPUTATIONAL EXPERIMENTS 109

n Nom S-10 S-20 SI SIC

9 5.07 6.65 4.92 0.00 0.00
12 8.91 6.50 5.64 0.00 0.00
15 9.31 8.10 7.28 0.97 0.00
18 8.63 8.38 5.82 6.65 0.00
21 7.15 8.19 5.62 10.24 0.00
24 7.33 6.75 6.03 9.05 0.00
27 7.81 8.17 5.03 17.69 0.00
30 8.78 8.24 7.21 21.00 0.00

Table 5.5: Experiment 2, average gaps for strict objective values in percent.

perform best; in particular AIPG outperforms all other algorithms. In this setting, SIC
is not competitive anymore. The nominal solution performs poorly in both strict and
adjustable objective values.

n Nom S-10 S-20 SI SIC A-5 A-10 AI AIPG AILS AIDR

9 16.69 15.84 13.29 15.66 13.60 6.40 4.55 0.00 0.00 0.01 0.15
12 20.84 19.76 20.87 15.68 17.46 13.55 10.72 4.42 4.04 5.76 5.73
15 30.23 21.95 27.77 26.23 23.40 20.56 14.99 10.70 9.41 10.68 10.57
18 35.91 33.00 32.93 36.87 33.86 28.76 26.12 21.06 17.86 19.55 19.32
21 35.56 32.06 30.90 33.59 31.45 26.50 21.55 18.54 15.40 16.71 16.57
24 31.54 29.76 28.03 27.09 26.50 22.33 19.08 15.61 12.65 13.61 13.45
27 32.69 33.55 33.02 34.32 31.44 26.39 23.60 19.43 15.74 16.63 16.67
30 37.29 39.76 36.24 41.63 34.22 30.69 28.81 25.31 20.19 20.77 20.86

Table 5.6: Experiment 2, average gaps for adjustable objective values in percent.

Summary for Experiments 1 and 2

We summarize the differences between the results of Experiments 1 and 2 from a more
general perspective. We note that for Experiment 1, where few but large stacks are used,
all solutions tend to perform relatively well for adjustable robustness. This is because
there are more possibilities to rearrange items once the scenario becomes known, and the
first-stage decision where to put items becomes less important. However, when many but
smaller stacks are used as in Experiment 2, adjustable objective values significantly differ
between solution approaches, which shows the increased potential of using an adjustable
approach. This is not the case for strict robustness, where we note that the nominal
solution performs worse when there are few but high stacks, and better when there are
many but low stacks.

Thus, from a practical perspective, it depends on the instance which approach to follow
makes most sense. For few and high stacks, the planner should be concerned about strict
objective values, but is fine using a nominal solution if adjustments are possible. On the
other hand, if there are many and low stacks, the nominal solution is fine if no recovery is
possible, but more effort needs to be taken if adjustments are possible.

110 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

a Nom S-10 S-20 SI SIC A-5 A-10 AI

0.5 0.2 9.3 20.1 900.0 0.4 80.4 412.2 900.0
0.6 0.2 9.8 27.4 900.0 0.4 62.9 630.1 900.0
0.7 0.2 15.8 27.0 900.0 0.5 109.4 897.1 900.0
0.8 1.1 32.8 62.9 900.0 1.7 519.4 897.8 900.0
0.9 2.0 44.5 168.9 900.0 2.4 898.0 899.3 900.0
1.0 0.2 80.0 400.1 900.0 0.6 128.9 897.6 900.0
1.1 0.2 29.7 112.7 900.0 0.7 58.4 655.0 900.0
1.2 0.2 12.5 24.7 900.0 0.8 95.6 604.6 900.0
1.3 0.2 15.9 31.3 900.0 0.8 62.2 548.7 900.0
1.4 0.2 12.5 38.7 900.0 1.0 57.3 643.3 900.0
1.5 0.2 20.1 42.9 900.0 0.9 79.0 703.3 900.0

Table 5.7: Experiment 3, median computation times in seconds.

Experiment 3: impact of payload parameter

We now consider the impact of different values for the payload violation parameter a. We
choose a = 0.5 to a = 1.5 with a stepsize of 0.1. Other parameters are fixed to n = 24,
m = 4, b = 6, d = 0.5. Results are presented in Tables 5.7 – 5.11.

Note that computation times, presented in Table 5.7, are not monotone in a. Instead,
solving problems with a being in the vicinity of 1 tends to take longer for algorithms using
a fixed number of sampled scenarios. Hence, it may be helpful to slightly change the value
of parameter a if computation times are too high for a practical instance.

Considering the strict objective values (Table 5.8), we note the gap to be roughly
monotonically increasing with a for Nom, S-10, and S-20. For SI, there is a disproportional
increase in the gap for a ≥ 1. Absolute objective values are smaller for increasing a, which
may also lead to an increased algorithm gap.

a Nom S-10 S-20 SI SIC

0.5 8.77 7.13 4.89 0.37 0.00
0.6 9.30 7.60 5.26 0.43 0.00
0.7 10.00 8.28 5.99 0.34 0.00
0.8 11.01 8.54 6.43 1.26 0.00
0.9 12.11 9.66 6.86 1.00 0.00
1.0 12.73 10.05 7.15 7.57 0.00
1.1 12.57 10.20 6.74 6.16 0.00
1.2 12.69 10.62 7.35 7.36 0.00
1.3 12.73 10.57 7.58 6.53 0.00
1.4 13.25 11.64 8.44 6.43 0.00
1.5 14.07 11.61 7.81 6.98 0.00

Table 5.8: Experiment 3, average gaps for strict objective values in percent.

We show the adjustable objective value gaps in Table 5.9. Note that overall gaps
tend to be smaller than for strict robustness, which is in agreement with the observations
made in the discussion of the results of Experiments 1 and 2. The heuristic algorithms
perform best, in particular AIDR is slightly outperforming AIPG and AILS. As with strict

5.5. COMPUTATIONAL EXPERIMENTS 111

objective values, gaps tend to increase with a.

a Nom S-10 S-20 SI SIC A-5 A-10 AI AIPG AILS AIDR

0.5 3.96 3.51 3.43 1.67 1.50 3.59 3.31 1.40 1.17 1.17 1.11
0.6 4.15 3.94 3.74 2.55 1.97 4.04 3.50 1.85 1.66 1.70 1.63
0.7 4.58 4.73 3.58 2.19 1.99 3.82 3.29 2.06 1.64 1.67 1.59
0.8 4.30 4.12 3.78 2.26 2.28 3.63 3.21 1.98 1.65 1.64 1.61
0.9 4.49 4.04 4.07 2.46 2.31 4.11 3.62 2.13 1.86 1.86 1.85
1.0 5.12 4.71 4.43 4.94 3.14 4.72 4.45 3.23 2.59 2.55 2.48
1.1 4.16 3.47 4.11 3.64 2.58 3.63 3.48 2.47 1.93 1.89 1.87
1.2 4.45 4.79 3.65 4.34 2.38 3.92 3.23 2.39 1.88 1.86 1.86
1.3 4.06 3.99 3.53 3.70 2.22 2.95 2.93 1.94 1.65 1.67 1.64
1.4 3.75 4.57 3.91 3.44 2.51 4.00 3.48 2.52 2.05 2.03 2.03
1.5 4.39 4.53 4.42 3.71 2.72 3.17 3.75 2.60 2.17 2.17 2.15

Table 5.9: Experiment 3, average gaps for adjustable objective values in percent.

a Nom S-10 S-20 SI SIC A-5 A-10 AI AIPG AILS AIDR

0.5 3.96 3.51 3.43 1.67 1.50 3.59 3.31 1.40 1.17 1.17 1.11
0.6 3.75 3.52 3.33 2.14 1.47 3.61 3.08 1.41 1.20 1.26 1.16
0.7 4.13 4.28 3.21 1.83 1.66 3.50 2.94 1.72 1.34 1.45 1.26
0.8 3.81 3.69 3.46 1.93 1.86 3.34 3.02 1.80 1.47 1.45 1.42
0.9 3.77 3.42 3.63 2.01 1.80 3.59 3.06 1.80 1.52 1.47 1.49
1.0 3.68 3.39 3.36 3.74 1.89 3.52 3.44 2.40 1.95 2.20 1.88
1.1 3.88 2.97 3.87 3.41 2.06 3.61 2.88 2.64 2.01 2.13 2.23
1.2 4.08 4.29 3.79 3.96 2.11 3.91 3.08 2.59 2.28 2.20 2.43
1.3 3.72 3.81 3.94 3.52 2.32 3.27 3.30 2.69 2.62 2.41 2.52
1.4 3.49 4.19 3.87 3.55 2.22 3.75 3.14 2.95 2.30 2.44 2.45
1.5 3.82 3.99 3.99 3.49 2.77 3.07 3.23 2.93 2.65 2.65 2.74

Table 5.10: Experiment 3, average gaps for adjustable objective values in percent,
when evaluating solutions to a = 0.5.

In Tables 5.10 and 5.11, we investigate the sensitivity of solutions regarding the pa-
rameter a. In Table 5.10, we evaluate solutions calculated for varying values of a as if
they were solutions to a = 0.5, and to a = 1.5 in Table 5.11. We find that those solutions
that have the smallest gap in Table 5.9 (i.e., AI, AIPG, AILS, and AIDR) tend to be most
sensitive to changes in a. However, they still outperform the other algorithms. Overall,
gaps remain small, which means that solutions are relatively robust to changes in or wrong
estimates of the parameter a. This also aligns well with the suggestion to slightly change
parameter a when computation times are too high.

5.5.2 Large instances

In this experiment, we tested the performance of our heuristic algorithms on larger datasets.
The considered instance sizes are given in Table 5.12, they were chosen such that m · b =
1.2n, i.e., there is always a spare capacity of 20% available. Other parameters were gen-
erated as described in Section 5.5.1, using d = 0.6 and a = 1.

112 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

a Nom S-10 S-20 SI SIC A-5 A-10 AI AIPG AILS AIDR

0.5 4.28 3.99 3.55 2.76 2.73 4.05 3.73 2.48 2.66 2.51 2.52
0.6 3.94 3.94 3.83 3.30 2.89 4.16 3.41 2.44 2.48 2.44 2.42
0.7 4.68 5.02 3.67 2.83 2.57 3.73 3.19 2.44 2.42 2.47 2.40
0.8 4.71 4.42 3.99 2.93 3.14 3.65 3.01 2.43 2.39 2.42 2.32
0.9 4.53 4.26 3.78 2.68 2.75 3.92 3.48 2.47 2.35 2.40 2.34
1.0 4.44 3.90 3.57 4.39 2.58 3.70 3.60 2.59 2.31 2.27 2.31
1.1 4.02 3.63 4.10 3.46 2.74 3.47 3.53 2.48 2.31 2.21 2.23
1.2 4.67 5.14 3.79 4.54 2.65 3.83 3.40 2.65 2.22 2.20 2.20
1.3 4.56 4.60 4.00 4.17 2.74 3.30 3.34 2.46 2.19 2.19 2.16
1.4 3.80 4.70 4.02 3.56 2.65 4.12 3.60 2.62 2.17 2.15 2.15
1.5 4.39 4.53 4.42 3.71 2.72 3.17 3.75 2.60 2.17 2.17 2.15

Table 5.11: Experiment 3, average gaps for adjustable objective values in percent,
when evaluating solutions to a = 1.5.

n m b

100 30 4
125 38 4

150 36 5
175 42 5
200 48 5
225 54 5

250 50 6
275 55 6
300 60 6

Table 5.12: Experiment 4, instance sizes.

We use the heuristic methods AIPG, AILS and AIDR with a time limit of 15 minutes,
and record their adjustable objective values. All heuristics are provided with a feasible
starting solution by solving model (5.87)-(5.94), which is denoted as “Start”. For the
large instances, it is not possible to compute the lower bounds, that are used in computing
algorithm gaps, by exact algorithms within time limit as for the small instances. Therefore,
to have a better evaluation on quality of the proposed heuristic methods, a lower bound
is computed for each instance by solving the nominal problem without stacking matrix
constraints.

Resulting average gaps for adjustable objective values are shown in Table 5.13, in the
left columns. While AIPG showed the most promising performance for smaller instances,
it tends to be outperformed by AILS and AIDR on larger instances. Note that the gap
is relatively unaffected by the number of items n, but depends more on the stack size
b. This is because all three heuristic methods need to evaluate stacks, and the required
computation time to evaluate a single stack scales with b. Hence, the improvements the
heuristics can make compared to the feasible starting solution are reduced with increased
b within the time limit.

Overall, gaps tend to decrease with larger b. This can be explained as in the comparison
between Experiments 1 and 2, where larger stacks indicate that the error made in the first
decision stage tends to be less important.

5.6. CONCLUSIONS 113

Gap To best

n Start AIPG AILS AIDR Start AIPG AILS AIDR

100 45.95 27.77 27.71 26.98 35.69 1.13 1.05 0.01
125 47.02 29.44 28.96 28.71 34.90 1.04 0.35 0.01

150 36.32 30.02 23.62 22.50 21.75 10.79 1.48 0.01
175 34.05 28.20 21.47 21.41 19.25 9.49 0.10 0.02
200 36.70 31.09 23.94 23.75 20.53 10.68 0.26 0.02
225 35.59 29.59 22.71 22.17 20.89 10.59 0.72 0.01

250 29.20 24.97 18.61 18.26 15.52 8.98 0.43 0.00
275 28.49 24.76 18.06 17.73 15.10 9.37 0.41 0.01
300 28.81 25.03 17.65 17.26 16.27 10.39 0.49 0.01

Table 5.13: Experiment 4, average gaps and comparison to best (in percent)
for adjustable objective values.

Note that the lower bound used for Table 5.13 is simple, and actual gaps can be assumed
to be considerably smaller. To give a more detailed view on algorithm performance, we
also present the average difference in percent to the best adjustable objective value found
on every instance in the right columns of Table 5.13.

5.6 Conclusions

In this chapter we considered stacking problems with two kinds of constraints. The first
is given by a general stacking matrix encoding which items can be stacked onto each
other. This can be used to model practical requirements such as item departure times, or
incompatible item dimensions. The second are payload constraints, which ensure that not
more weight is stacked on top of an item than the stability of this item allows. However,
as item weights are uncertain, we introduced robust stacking problems.

Two robust models were tackled: one where the complete item stacking needs to be
fixed in advance before item weights are known, one where adjustments in the item order
within each stack can be made afterwards. Finite and interval-based uncertainty sets were
considered and different solution approaches presented. In an extensive computational
study on randomly generated instances, the impact of the number of items, the payload
violation parameter, and the stacking matrix were analyzed.

We briefly review possible problem extensions in the following. Further uncertainty
sets, such as interval-based uncertainty sets with additional restrictions may be considered.
An example for such sets include the model of Bertsimas and Sim (see [21]), where the
total relative deviation of item weights from their nominal values is bounded by some
parameter Γ. Using such an uncertainty set, Algorithms 3 and 4 are still applicable, with
only slight differences in the computation of worst-case scenarios.

Finally, the adjustable approach presented in this chapter can be extended by consider-
ing restrictions on the rearrangements that are allowed once the scenario becomes known.
This is similar to the idea of recoverable robustness (see, e.g., [65]). We count the number
of operations which are necessary to rearrange a stack. As an example, for a single stack,
possible recovery cost measurements between two solutions x, x′ include: The Hamming
distance (i.e., the number of differently positioned items, given by

∑
i,l |xiql−x′iql|), or the

number of items from top which have to be removed to transform x to x′ or vice versa.

114 CHAPTER 5. STORAGE LOADING WITH PAYLOAD CONSTRAINTS

In both cases, the recoverable robust counterpart for a finite number of scenarios can be
modeled as a mixed-integer linear program similar to (ARF).

Chapter 6

Conclusions

This chapter summarizes the main results of this thesis. We also discuss some possibilities
for future work on the topic of storage loading problems under uncertainty.

Thesis summary

In this thesis we studied some storage loading problems motivated from several practical
contexts, under different types of uncertainty on the items’ data. To have robust stacking
solutions against the data uncertainty, we applied the concepts of strict and adjustable
robustness.

In Chapter 2, complexity of various storage loading problems with stacking constraints
was studied. Apart from the known results from [31], we showed some other polynomial
solvable as well as NP-hard cases of the deterministic problems. We proved that complexity
of some special cases of the robust problems can be derived from their corresponding
deterministic versions. We furthermore pointed out some interesting settings in which the
adjustable robust problems can be solved more efficiently than the strict ones.

In Chapter 3 we proposed different MIP formulations based on different modelling
approaches for some deterministic and robust storage loading problems. Furthermore, by
a comprehensive computational study, our contributions are to figure out the performance
profiles of the proposed formulations, as well as to point out which formulation efficiently
performs for which data setting.

In Chapter 4 we proposed a robust optimization approach dealing with a storage load-
ing problem under stochastic uncertainty. To evaluate the stacking solution, we introduced
a concept so-called security level, which is defined by the probability that the stacking so-
lution is feasible when the uncertain items are realized. We offered several rule-based
ways of scenario generation to derive different uncertainty sets, and analyzed the impact
of various factors on the trade-off between security level and cost of the robust stacking
solutions.

In Chapter 5 we introduced a novel approach in dealing with stability issues of stacking
configurations. Our key idea is to impose a limited payload on each item depending on
its weight. We then studied a storage loading problem with the interaction of stacking
and payload constraints, as well as uncertainty on the weights of items. We proposed ex-
act decomposition and heuristic solution algorithms as solution approaches for the robust
counterparts of the problem.

115

116 CHAPTER 6. CONCLUSIONS

Future work

There are several directions for future work. The first direction could be to complete
Table 2.2 about complexity results of solving the stated robust problems. For instance,
the adjustable robust counterpart of the uncertain problem with stacking height b = 2 and
discrete uncertainty is an interesting open problem. Another open problem is the strictly
robust counterpart of the uncertain problem with stacking height b ≥ 3 and interval un-
certainty. In relation with the first direction, future research could focus on designing
approximation algorithms for solving the known NP-hard storage loading problems as
well as the ones with open complexity.

The second direction could be to consider storage loading problems with other types
of uncertainty sets, such as in the model of Bertsimas and Sim [21], where the actual data
of only a limited number Γ of items may differ from their nominal values. Furthermore,
other objective functions could be considered. Such an objective would, for example, be to
minimize the number of unordered stackings with respect to given soft stacking constraints.
Another objective would be to find a stacking solution for here-and-now items maximizing
the expected number of wait-and-see items that can be stored into the storage area (given
the data distribution of the items).

Another possible direction of future work could be to apply other types of robustness,
such as recoverable robustness [65] or recovery-to-optimality [51], to the area of storage
loading problems. It would be also interesting to consider storage loading problems with
a view from stochastic programming.

Bibliography

[1] http://www.extremeoptimization.com/documentation/statistics/default.aspx.

[2] D. Ambrosino, M. Paolucci, and A. Sciomachen. Computational evaluation of a
MIP model for multi-port stowage planning problems. Soft Computing, 2015. DOI
10.1007/s00500-015-1879-y.

[3] D. Ambrosino, M. Paolucci, and A. Sciomachen. Experimental evaluation of mixed
integer programming models for the multi-port master bay plan problem. Flexible
Services and Manufacturing Journal, 27(2):263–284, 2015.

[4] D. Ambrosino, M. Paolucci, and A. Sciomachen. A MIP heuristic for multi port
stowage planning. Transportation Research Procedia, 10:725–734, 2015.

[5] D. Ambrosino, A. Sciomachen, and E. Tanfani. Stowing a containership: the master
bay plan problem. Transportation Research Part A, 38(2):81–99, 2004.

[6] D. Ambrosino, A. Sciomachen, and E. Tanfani. A decomposition heuristics for the
container ship stowage problem. Journal of Heuristics, 12(3):211–233, 2006.

[7] S. V. Amiouny, J. J. Bartholdi, J. H. V. Vate, and J. Zhang. Balance loading.
Operations Research, 40(2):238–246, 1992.

[8] A. Atamtürk and M. Zhang. Two-stage robust network flow and design under demand
uncertainty. Operations Research, 55(4):662–673, 2007.

[9] J. Behnamian and B. Eghtedari. Storage system layout. In R. Z. Farahani and
M. Hekmatfar, editors, Facility Location: Concepts, Models, Algorithms and Case
Studies, Contributions to Management Science, pages 419–450. Physica-Verlag Hei-
delberg, 2009.

[10] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, Princeton and Oxford, 2009.

[11] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solu-
tions of uncertain linear programs. Mathematical Programming Series A, 99(2):351–
376, 2004.

[12] A. Ben-Tal, D. Hertog, and J.-P. Vial. Deriving robust counterparts of nonlinear
uncertain inequalities. Mathematical Programming, 149(1):265–299, 2015.

[13] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Opera-
tions Research, 23(4):769–805, 1998.

117

118 BIBLIOGRAPHY

[14] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Op-
erations Research Letters, 25(1):1–13, 1999.

[15] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming contaminated
with uncertain data. Mathematical Programming, 88(3):411–424, 2000.

[16] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analy-
sis, Algorithms, and Engineering Applications. Society for Industrial and Applied
Mathematics, Philadelphia, 2001.

[17] A. Ben-Tal, A. Nemirovski, and C. Roos. Robust solutions of uncertain quadratic
and conic-quadratic problems. SIAM Journal on Optimization, 13(2):535–560, 2002.

[18] H. P. Benson. Concave minimization: Theory, applications and algorithms. In
R. Horst and P. M. Pardalos, editors, Handbook of Global Optimization, volume 2
of Nonconvex Optimization and Its Applications, pages 43–148. Springer US, 1995.

[19] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust
optimization. SIAM Review, 53(3):464–501, 2011.

[20] D. Bertsimas, D. Pachamanova, and M. Sim. Robust linear optimization under general
norms. Operations Research Letters, 32(6):510–516, 2004.

[21] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53,
2004.

[22] U. Blasum, M. R. Bussieck, W. Hochstättler, C. Moll, H.-H. Scheel, and T. Winter.
Scheduling trams in the morning. Mathematical Methods of Operations Research,
49(1):137–148, 1999.

[23] O. Boni and A. Ben-Tal. Adjustable robust counterpart of conic quadratic problems.
Mathematical Methods of Operations Research, 68(2):211–233, 2008.

[24] O. Boni, A. Ben-Tal, and A. Nemirovski. Robust solutions to conic quadratic problems
and their applications. Optimization and Engineering, 9(1):1–18, 2008.

[25] A. Bortfeldt and G. Wäscher. Constraints in container loading – A state-of-the-art
review. European Journal of Operational Research, 229(1):1–20, 2013.

[26] P. C. Bouman, J. M. Akker, and J. A. van den Hoogeveen. Recoverable robustness by
column generation. In European Symposium on Algorithms, volume 6942 of Lecture
Notes in Computer Science, pages 215–226. Springer, 2011.

[27] N. Boysen and S. Emde. The parallel stack loading problem to minimize blockages.
European Journal of Operational Research, 249(2):618–627, 2016.

[28] N. Boysen, M. Fliedner, F. Jaehn, and E. Pesch. Shunting yard operations: Theoreti-
cal aspects and applications. European Journal of Operational Research, 220(1):1–14,
2012.

[29] F. Bruns, M. Goerigk, S. Knust, and A. Schöbel. Robust load planning of trains in
intermodal transportation. OR Spectrum, 36(3):631–668, 2014.

BIBLIOGRAPHY 119

[30] F. Bruns and S. Knust. Optimized load planning of trains in intermodal transporta-
tion. OR Spectrum, 34(3):511–533, 2012.

[31] F. Bruns, S. Knust, and N. V. Shakhlevich. Complexity results for storage load-
ing problems with stacking constraints. European Journal of Operational Research,
249(3):1074–1081, 2016.

[32] C. Büsing, S. Knust, and X. T. Le. Trade-off between robustness and cost for a
storage loading problem: rule-based scenario generation. Working paper.

[33] H. J. Carlo, I. F. A. Vis, and K. J. Roodbergen. Storage yard operations in container
terminals: Literature overview, trends, and research directions. European Journal of
Operational Research, 235(2):412–430, 2014.

[34] R. Dekker, P. Voogd, and E. van Asperen. Advanced methods for container stacking.
OR Spectrum, 28(4):563–586, 2006.

[35] A. Delgado, R. M. Jensen, K. Janstrup, T. H. Rose, and K. H. Andersen. A constraint
programming model for fast optimal stowage of container vessel bays. European
Journal of Operational Research, 220(1):251–261, 2012.

[36] A. Delgado, R. M. Jensen, and C. Schulte. Generating optimal stowage plans for
container vessel bays. In Principles and Practice of Constraint Programming - CP09,
volume 5732 of Lecture Notes in Computer Science, pages 6–20. Springer, 2009.

[37] D. Ding and M. C. Chou. Stowage planning for container ships: A heuristic algorithm
to reduce the number of shifts. European Journal of Operational Research, 246(1):242–
249, 2015.

[38] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming Series A, 91(2):201–213, 2002.

[39] S. Even and O. Kariv. AnO(n2.5) algorithm for maximum matching in general graphs.
In Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer
Science, pages 100–112. IEEE, New York, 1975.

[40] B. S. Everitt and A. Skrondal. The Cambridge dictionary of statistics, Fourth edition.
Cambridge University Press, 2010.

[41] J. E. Falk. Exact solutions of inexact linear programs. Operations Research,
24(4):783–787, 1976.

[42] V. Gabrel, C. Murat, and A. Thiele. Recent advances in robust optimization: An
overview. European Journal of Operational Research, 235(3):471–483, 2014.

[43] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York, 1979.

[44] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with un-
certain data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064,
1997.

[45] L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite
programs. SIAM Journal on Optimization, 9(1):33–52, 1998.

120 BIBLIOGRAPHY

[46] A. H. Gharehgozli, Y. Yu, R. de Koster, and J. T. Udding. A decision-tree stack-
ing heuristic minimising the expected number of reshuffles at a container terminal.
International Journal of Production Research, 52(9):2592–2611, 2014.

[47] A. Ghoniem and H. D. Sherali. Models and algorithms for the scheduling of a doubles
tennis training tournament. Journal of the Operational Research Society, 61(5):723–
731, 2010.

[48] A. Ghoniem and H. D. Sherali. Set partitioning and packing versus assignment for-
mulations for subassembly matching problems. Journal of the Operational Research
Society, 62(11):2023–2033, 2011.

[49] M. Goerigk, S. Knust, and X. T. Le. Robust storage loading problems with stacking
and payload constraints. European Journal of Operational Research, 253(1):51–67,
2016.

[50] M. Goerigk and A. Schöbel. A note on the relation between strict robustness and
adjustable robustness. Technical report, Institute for Numerical and Applied Math-
ematics, University of Göttingen, 2012.

[51] M. Goerigk and A. Schöbel. Recovery-to-optimality: A new two-stage approach to
robustness with an application to aperiodic timetabling. Computer and Operations
Research, 52(A):1–15, 2014.

[52] R. Gould and C. Ryan. Introductory statistics: exploring the world through data, 2nd
edition. Pearson, 2016.

[53] D. Halliday, R. Resnick, and J. Walker. Principles of Physics, 10th Edition Interna-
tional Student Version. John Wiley & Sons, 2014.

[54] J. Jacod and P. Protter. Probability essentials. Springer, 2004.

[55] R. Jans. Solving lot-sizing problems on parallel identical machines using symmetry-
breaking constraints. INFORMS Journal on Computing, 21(1):123–136, 2009.

[56] R. Jans and J. Desrosiers. Efficient symmetry breaking formulations for the job
grouping problem. Computers and Operations Research, 40(4):1132–1142, 2013.

[57] J. Kang, K. R. Ryu, and K. H. Kim. Deriving stacking strategies for export containers
with uncertain weight information. Journal of Intelligent Manufacturing, 17(4):399–
410, 2006.

[58] J. G. Kang and Y. D. Kim. Stowage planning in maritime container transportation.
Journal of the Operational Research Society, 53(4):415–426, 2002.

[59] K. H. Kim, Y. M. Park, and K. R-. Ryu. Deriving decision rules to locate export
containers in container yards. European Journal of Operational Research, 124(1):89–
101, 2000.

[60] T. Koch. Rapid mathematical programming. PhD thesis, Technische Universität
Berlin, 2004.

[61] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, 1997.

BIBLIOGRAPHY 121

[62] X. T. Le and S. Knust. MIP-based approaches for robust storage loading problems
with stacking constraints. Computers and Operations Research, 78:138–153, 2017.

[63] C.-Y. Lee and Q. Meng. Handbook of ocean container transportation logistic: Making
global supply chains effective. Springer International Publishing Switzerland, 2015.

[64] J. Lehnfeld and S. Knust. Loading, unloading and premarshalling of stacks in stor-
age areas: Survey and classification. European Journal of Operational Research,
239(2):297–312, 2014.

[65] C. Liebchen, M. Lübbecke, R. H. Möhring, and S. Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. In R. K. Ahuja,
R. H. Möhring, and C. D. Zaroliagis, editors, Robust and online large-scale optimiza-
tion, volume 5868 of Lecture Notes in Computer Science, pages 1–27. Springer, 2012.

[66] M. Mani, A. K. Sing, and M. Orshansky. Joint design-time and post-silicon mini-
mization of parametric yield loss using adjustable robust optimization. In ICCAD
’06 Proceedings of the 2006 IEEE/ACM international conference on computer-aided
design, pages 19–26, New York, NY, USA, 2006. ACM.

[67] K. Mathur. An integer-programming-based heuristic for the balanced loading prob-
lem. Operations Research Letters, 22(1):19–25, 1998.

[68] R. Montemanni. A Benders decomposition approach for the robust spanning tree
problem with interval data. European Journal of Operational Research, 174(3):1479–
1490, 2006.

[69] T. Nishi and M. Konishi. An optimisation model and its effective beam search heuris-
tics for floor-storage warehousing systems. International Journal of Production Re-
search, 48(7):1947–1966, 2010.

[70] D. Pacino, A. Delgado, R. M. Jensen, and T. Bebbington. Fast generation of near-
optimal plans for eco-efficient stowage of large container vessels. In J. W. Böse, H. Hu,
C. Jahn, X. Shi, R. Stahlbock, and S. Voß, editors, Computational logistics, volume
6971 of Lecture Notes in Computer Science, pages 286–301. Springer-Verlag Berlin
Heidelberg, 2011.

[71] D. Pacino, A. Delgado, R. M. Jensen, and T. Bebbington. An accurate model for
seaworthy container vessel stowage planning with ballast tanks. In H. Hu, X. Shi,
R. Stahlbock, and S. Voß, editors, Computational logistics, volume 7555 of Lecture
Notes in Computer Science, pages 17–32. Springer-Verlag Berlin Heidelberg, 2012.

[72] B. Rouwenhorst, B. Reuter, V. Stockrahm, G. J. van Houtum, R. J. Mantel, and
W. H. M. Zijm. Warehouse design and control: Framework and literature review.
European Journal of Operational Research, 122(3):515–533, 2000.

[73] A. Sciomachen and E. Tanfani. The master bay plan problem: a solution method
based on its connection to the three-dimensional bin packing problem. IMA Journal
of Management Mathematics, 14(3):251–269, 2003.

[74] A. L. Soyster. Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations Research, 21(5):1154–1157, 1973.

122 BIBLIOGRAPHY

[75] A. L. Soyster. A duality theory for convex programming with set-inclusive constraints.
Operations Research, 22(4):892–898, 1974.

[76] IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual Version 12 Release
6, 2013.

[77] A. Takeda, S. Taguchi, and R. H. Tütüncü. Adjustable robust optimization models
for a nonlinear two-period system. Journal of Optimization Theory and Applications,
136(2):275–295, 2008.

[78] D. J. Thuente. Duality theory for generalized linear programs with computational
methods. Operations Research, 28(4):1005–1011, 1980.

[79] K. Tierney, D. Pacino, and R. M. Jensen. On the complexity of container stowage
planning problems. Discrete Applied Mathematics, 169:225–230, 2014.

[80] UNCTAD/RMT/2014. Review of maritime transport 2014. United Nations confer-
ence on Trade and Development, eISBN 978-92-1-056861-6.

[81] W. Vancroonenburg, J. Verstichel, K. Tavernier, and G. V. Berghe. Automatic air
cargo selection and weight balancing: A mixed integer programming approach. Trans-
portation Research Part E, 65:70–83, 2014.

[82] J. Wiese, L. Suhl, and N. Kliewer. Mathematical models and solutions methods for
optimal container terminal yard layouts. OR Spectrum, 32(3):427–452, 2010.

[83] T. Winter and U. T. Zimmermann. Real-time dispatch of trams in storage yards.
Annals of Operations Research, 96(1):287–315, 2000.

[84] B. Zeng and L. Zhao. Solving two-stage robust optimization problems using a column-
and-constraint generation method. Operations Research Letters, 41(5):457–461, 2013.

[85] M. Zeng, M. Y. H. Low, W. J. Hsu, S. Y. Huang, F. Liu, and C. A. Win. Automated
stowage planning for large containerships with improved safety and stability. In B. Jo-
hansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, editors, Proceedings
of the 2010 Winter Simulation Conference, pages 1976–1989. Institute of Electrical
and Electronics Engineers, Inc., Piscataway, NJ, 2010.

[86] C. Zhang, W. Chen, L. Shi, and L. Zheng. A note on deriving decision rules to locate
export containers in container yards. European Journal of Operational Research,
205(2):483–485, 2010.

