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ABSTRACT 

Complex models generated e.g. with a laser range scanner often consist of several thousand or million triangles. 

For efficient rendering this high number of primitives has to be reduced. An important property of mesh 

reduction – or simplification – algorithms used for rendering is the control over the introduced geometric error. 

In general, the better this control is, the slower the simplification algorithm becomes. This is especially a 

problem for out-of-core simplification, since the processing time quickly reaches several hours for high-quality 

simplification. 

In this paper we present a new efficient algorithm to measure the Hausdorff distance between two meshes by 

sampling the meshes only in regions of high distance. In addition to comparing two arbitrary meshes, this 

algorithm can also be applied to check the Hausdorff error between the simplified and original meshes during 

simplification. By using this information to accept or reject a simplification operation, this method allows fast 

simplification while guaranteeing a user-specified geometric error. 
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1. INTRODUCTION 
Today, polygonal meshes have become ubiquitous as 

three-dimensional geometric representation of 

objects in computer graphics and some engineering 

applications. They are used for rendering of objects 

in a broad range of disciplines like medical imaging, 

scientific visualization, computer aided design 

(CAD), movie industry, etc. New acquisition 

techniques allow the generation of highly detailed 

objects with a permanently increasing polygon count. 

The handling of huge scenes composed of these 

high-resolution models rapidly approaches the 

computational capabilities of any graphics hardware. 

Therefore, level-of-detail techniques become 

inevitable. In order to build such level-of-detail 

representations many simplification algorithms exist 

that produce high-quality approximations of complex 

models with a reasonable amount of polygons. 

However, for many applications it is very important 

to have precise control over the geometric error 

introduced by simplification. The common way to 

provide an accurate error control, which can be used 

to calculate image space errors during visualization, 

is to measure the Hausdorff distance between the 

simplified and original meshes. However, this 

distance can only be approximated by sampling, and 

therefore, the better the accuracy is, the slower the 

measurement algorithm becomes. When used to steer 

simplification, the performance of the simplification 

algorithm is reduced accordingly. 
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The main contribution of this work is an efficient 

algorithm to measure and update the Hausdorff 

distance between a simplified mesh and the original 

model. The superior speed of our approach is mainly 

due to its ability to quickly determine regions of high 

geometric distance (or during simplification, regions 

where the distance is above the desired value) and 

adapt sampling there. 
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2. PREVIOUS WORK 
Since mesh simplification is one of the fundamental 

techniques used for polygonal meshes, there is an 

extensive amount of different methods. Since there 

are detailed reviews of simplification algorithms (e.g. 

[Lue01]), we give only a short overview of the most 

related methods. 

Rossignac and Borrel [Ros93] introduced the family 

of vertex clustering methods. Although very fast, 

their algorithm and its derivative methods (e.g. 

[Low97]) allow almost no control over the error (it is 

bound by the cell size), and the reduction rate is quite 

low in flat parts of the model.  

Cohen et al. [Coh96] developed simplification 

envelopes to guarantee fidelity bounds while 

enforcing local and global topology. The 

simplification envelopes consist of two offset 

surfaces at some distance ε  from the original 

surface. Since these envelopes are not allowed to 

self-intersect, ε  is decreased at high curvature 

regions. By keeping the simplified surface inside 

these envelopes, the algorithm can guarantee a 

geometric deviation of at most ε , and additionally it 

checks that the surface does not self-intersect. While 

this algorithm has the advantage to guarantee a 

geometric error bound, it is quite slow and requires 

an orientable manifold for the construction of the 

offset surfaces. Zelinka and Garland [Zel02] 

modified this approach by using permission grids – 

spatial occupancy grids, where an operation is only 

performed if all cells that are intersected by the new 

triangles are allowed to be occupied. Although the 

algorithm is much faster than [Coh96] and doesn’t 

need an orientable manifold mesh, the simplified 

model often contains much more triangles due to the 

discrete grid and the fact that the Manhattan distance 

is used instead of the Euclidean. 

The vertex pair contraction operation introduced at 

the same time by Popović and Hoppe [Pop97] and 

Garland and Heckbert [Gar97] has become the most 

common operation and is used in many 

simplification methods. In conjunction with the 

quadric error metric introduced in that work, it offers 

flexible control over the quality, still at very high 

reduction speed. However, the quadric metric mostly 

overestimates the real geometric error which results 

in non-optimal reduction rates and the need to 

measure the exact error after simplification. 

Klein et al. [Kle96] first used the Hausdorff distance 

between the original and simplified mesh to control 

the simplification error, although with significant 

computational effort. In [Bor03a] Borodin et al. have 

produced high-quality results by combining 

generalized pair contractions – an extension of the 

vertex pair contraction – with the control of the 

distance between the original and simplified models 

during the whole simplification process. 

In the area of mesh comparison, Cignoni et al. 

[Cig98] introduced the first method dedicated 

exclusively to measurement of errors on simplified 

surfaces, which allows to compare quality of 

different simplification methods. Another method, 

presented by Aspert et al. [Asp02], is more efficient 

in terms of speed at the cost of higher memory use. 

Both algorithms are based on sampling of the 

geometry of the two models to be compared, where 

the sampling density depends on the desired 

accuracy. In order to double the accuracy the number 

of samples needs to be multiplied by four. Therefore, 

these algorithms quickly become slow for higher 

accuracy. 

3. TERMINOLOGY 

First we define the distance  between a 

point  on a surface  and another surface 

(d p,S ′)
p S S ′  as: 

 ( ) (
p S

d p,S min d p, p′ ′∈ )′ ′= , 

where ( )d p, p′  is the Euclidian distance between 

two points in . 3E

The geometric distance – also called one-sided  or 

single-sided Hausdorff distance – between two 

surfaces  and S S ′  is then defined as: 

( ) (
p S

d S ,S max d p,S∈ )′ ′=  

Note, that this distance is not symmetric in general, 

i.e. ( ) ( )d S ,S d S ,S′ ′≠ . The symmetrical Hausdorff 

distance is defined as: 

( ) ( ) ( )( )s
d S ,S max d S ,S ,d S ,S′ ′= ′  

This value gives more accurate measure of the 

distance between two surfaces by preventing the 

possible underestimation, which can appear if using 

only one-sided distances. 

4. MESH COMPARISON 
The main idea of our new mesh comparison 

algorithm is to adapt the sampling density used for 

distance calculation to the actual geometric deviation 

in the corresponding area. Hereby, the main goal is to 

draw samples only in those regions where the 

maximum distance between both objects is expected. 

To achieve this, we first make two observations: 

• Since the Hausdorff distance is defined as the 

maximum of the distances of all points on both 

meshes to the other mesh, we should avoid 

sampling in areas, where they are closer to each 
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other than the actual – yet unknown – Hausdorff 

distance. This can be achieved by comparing 

coarse voxelizations of the two objects, 

considering triangles within voxels of high 

distance first, and stopping comparison, when 

the already found distance is larger than the 

highest possible distance between remaining 

voxels. 

In order to consider cells containing triangles with 

larger distance first, the octree traversal is steered 

using a priority queue. This queue contains the 

already processed octree cells sorted by their 

maximum geometric distance. 

When a leaf cell is reached during traversal, we 

collect all contained triangles and insert them into the 

same priority queue as the cells, again according to 

their maximum possible geometric distance. 

Depending on their minimum distance we again 

update the Hausdorff distance. To prevent multiple 

insertions of the same triangle into the priority queue, 

we mark triangles and process only those yet 

unmarked. The traversal and therefore the whole 

algorithm stops if either the queue becomes empty 

(e.g. when both meshes are identical) or the 

maximum possible distance of all remaining cells and 

triangles is less than the already found Hausdorff 

distance. The main algorithm to calculate the 

Hausdorff distance is shown in Fig. 1. 

• When processing triangles inside a voxel cell, 

we only need to subsample a triangle, if its 

geometric distance can be larger than the already 

found maximum. This can only happen, if any of 

its vertices is farther away from the other mesh 

than one of its interior points, or if any of these 

distances exceeds the maximum. Therefore, a 

tight upper bound of a triangle-to-mesh distance 

is required. 

Data Structures 
To quickly determine the regions of high geometric 

distance we sort the triangles of both meshes into two 

voxel grids respectively. Note, that later on in our 

algorithms – similarly to [Cig98] and [Asp02] – this 

grid is also used to quickly find the closest point on 

one of the meshes for a given sample point. 

 MinError=0 

AddToQueue(RootCellA) 

AddToQueue(RootCellB) 

while(QueueNotEmpty) 

   GetCellWithHighestMaxDistance

   UpdateMinError 

   if(LeafNode) 

      InsertTrianglesIntoQueue 

   else 

      InsertChildrenIntoQueue 

return minError

Figure 1. Main algorithm to calculate the 

Hausdorff distance. 

The grid dimensions depend on the objects’ 

bounding boxes and the number of triangles. We aim 

to have 10 triangles per occupied cell in average. 

This can be achieved approximately by calculating 

the number of required cells for a cube tessellated 

with the same number of triangles as is in the larger 

mesh. This leads to a resolution 
10 6

# triangles
r ⋅= . To 

avoid memory problems we restrict ourselves to 

resolutions of . 3256

Cell-Based Distance To speed up finding voxels of high distances 

between both voxelizations we use an octree 

structure for each of them, build upon the entries 

within the grids. In order to get full octrees we allow 

only resolutions of . 2 2 2n n n× ×

To quickly find the closest cell, when traversing the 

octree from a node to its children, we store all indices 

of occupied cells, for which the minimum distance 

was less than the maximum distance to the closest 

cell. Then we need to check only the children of 

these cells when calculating the distances of the 

cells’ child nodes. Note, that for the root nodes 

calculating the closest cells and the distances is 

trivial. 

Main Algorithm 
Initially, we set the current Hausdorff distance to 

zero. We start traversing the octree structures of both 

meshes simultaneously, measuring the distance of 

each cell to all other cells on the same level in order 

to find the closest one in the other mesh. If for the 

current cell the closest other cell is found, we can 

calculate the minimum and maximum distances 

between two points inside these cells. If the 

minimum distance is larger than the current 

Hausdorff distance, we update the Hausdorff 

distance accordingly. If the maximum distance is less 

than or equal to the current Hausdorff distance, 

traversal of the subtree is skipped. 

To simplify the distance calculation, we use the 

bounding box of the union of both meshes to 

construct the grid. Furthermore, we restrict ourselves 

to cubic grid cells, which further simplifies the 

distance calculation to calculations based on the cell 

coordinates. 
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Distance of a Triangle 
To calculate lower and upper bounds for the 

geometric distance between a triangle and the other 

mesh, we first need to calculate the distances of its 

vertices. If a vertex is inside the currently processed 

grid cell, we can use its stored closest cells to find 

candidate triangles for the next surface point in the 

other mesh. If it is outside the current cell, we 

descend the hierarchy again to find the occupied cells 

closest to the current vertex. Then we calculate 

distances to all triangles starting with those contained 

in the closest cell. When the distance to the closest 

point found so far is closer than the distance to the 

remaining cells, the distance of the currently 

processed vertex is found. To prevent multiple 

distance calculations for the same triangle, we store 

the indices of triangles and collect only the 

unprocessed triangles from each cell. 

After the distances for the three vertices of the 

current triangle are calculated, we know that the 

minimum geometric distance of the triangle is the 

maximum of the vertex distances i iV P− , and the 

maximum geometric distance is at most the 

maximum of the vertex distances and the distances of 

the triangle barycentre  to the three vertex base 

points  (see Fig. 2). 

B

iP

 

1P

2P

3
P

1V

2V

3V

B

Figure 2. Minimum and maximum geometric 

distances of a triangle. 

Therefore, we can determine the possible interval of 

the geometric distance  as: d

( )
( )

3

1

3

1

i i min
i

min i
i

d max V P d

d max H ,max B P

=

=

≥ − =
≤ − .


 

Additionally, no point on the triangle can be farther 

away from the other mesh than its vertices from any 

of the base points, and thus  

 ( )3 3

1 1
i j

i j
d min max V P .= =

 ≤ −    

If the closest points of all three vertices lie on the 

same triangle (see Fig. 3), the maximum vertex 

distance is already the geometric distance of the 

current triangle. Otherwise, the triangle is inserted 

into the priority queue. Note, that we have to take 

care about the fact that the closest point may lie on 

several triangles (if it falls onto an edge or into a 

vertex). 

 

1P

2P

3P

1V

2V

3V

Figure 3. Exact geometric distance of a triangle. 

When a triangle from the queue is processed, it is 

subdivided and the distances for its children are 

calculated. To prevent repeated calculation of the 

closest point/triangle for the same vertex, we 

calculate them for the three new vertices during 

subdivision. Then we only need to calculate the 

minimum and maximum possible distances before 

eventually storing the child triangles in the priority 

queue. The subdivision algorithm is shown in Fig. 4. 

 CalculateSubdivisionBasePoints 
for(allChildTriangles) 

   minDistance=max(vertexDistances) 

   if(AllBasePointsOnSameTriangle) 

      maxDistance=minDistance 

   else 

      maxDistance=max(barycenterDistances)

  InsertIntoQueue

Figure 4. Subdivision sampling algorithm. 

Note, that calculating the base points and checking if 

they all lie on the same triangle is also necessary, 

when a leaf cell is processed in order to add all 

contained triangles to the queue. 

5. APPLICATION TO 

SIMPLIFICATION  
To control the Hausdorff error during simplification, 

only the part of the mesh affected by the current 

operation needs to be considered. Therefore, the 

affected triangles of the simplified mesh are directly 

inserted into the queue, and the error measurement 

for the original model is restricted to the region 

around these triangles using their common bounding 

box. Since the error of neighbouring triangles in the 

original model may also be affected, we need to 

extend this bounding box by the current Hausdorff 

error. 

Furthermore, it is not necessary to calculate the exact 

geometric error, but only to check if it is below a 

user-specified threshold. Therefore, we do not need 
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to insert cells or triangles, for which the maximum 

possible distance is below this threshold, into the 

queue, and thus refine sampling only in regions, 

where the error may be above this value. 

Analogously, if the minimum error found so far is 

above this threshold, we can immediately stop the 

calculation and reject the simplification operation. 

When calculating the geometric error of a triangle, 

we can also immediately stop searching for the base 

points  as soon as we found one that is closer than 

the desired error minus the maximum length of the 

two edges adjacent to the current vertex (according 

to the triangle inequation no vertex can be farther 

from a point than the distance of any vertex to this 

point plus the distance to this vertex). 

iP

The fact that only an accept/reject decision is 

required to decide, if a simplification operation will 

be performed, allows for some additional simple tests 

to quickly find an answer in most cases. 

The simplification algorithm delivering the best 

trade-off between speed and quality of the simplified 

model is the one based on the quadric error metric 

[Gar97]. Choosing this simplification algorithm as 

base for our method, we get the additional advantage: 

the error quadric gives an (admittedly sometimes 

largely overestimated) upper bound for the Hausdorff 

error and can thus be used as a criterion to accept an 

operation without further tests. 

Then two additional simple tests are possible to 

quickly reject an operation. First, the distance of the 

new vertex to the simplified mesh before the current 

edge collapse operation is calculated. If this exceeds 

twice the desired Hausdorff error ε , the operation 

can be rejected. Note, that exceeding of 2ε  is 

required due to possible configurations similar to the 

one shown in Fig. 5. 

   new vertex 

  original mesh 

  simplified mesh 

Figure 5. Quick reject tests. 

If the operation passed this test, the distance from the 

new vertex to the original mesh is calculated. If this 

exceeds the specified threshold, the operation is also 

rejected. These two tests have the advantage that they 

quickly reject many operations and no update of the 

grid is required for their calculation. 

When an operation passed these two tests without 

being rejected, the grid and octree of the simplified 

model are updated. If the operation has not been 

accepted by the quadric test, the Hausdorff distance 

between the updated meshes is calculated. When the 

operation is rejected by the Hausdorff error check, 

the vertex is split again, updating the grid and octree 

of the simplified mesh, and the operation is removed 

from the simplification queue. The overall pipeline 

of the error-checking algorithm is shown in Fig. 6. 

 

new vertex → simplified mesh 

new vertex → original mesh 

quadric error 

simplified region ↔ original mesh 

accept reject 

fail 

fail 

fail 

fail 

pass 

pass 

pass 

pass

Figure 6. Error testing pipeline. 

If the simplification queue is empty, all possible 

collapse operations that do not exceed the specified 

Hausdorff error have been performed. 

6. RESULTS  
Since our algorithm is applicable to both, measuring 

distances between meshes and controlling the 

introduced Hausdorff error during simplification, we 

compare it to previous approaches in both fields. We 

ran all tests on a PC with an Athlon 3000+ and 2 GB 

of main memory. 

Mesh Comparison 
To demonstrate the advantages of our algorithm, we 

compare its computation time with the two standard 

tools for measuring the Hausdorff distance: Metro 

[Cig98] (version 4.0) and MESH [Asp02] (version 

1.12). The models used for evaluation are shown in  
 

 

Figure 7. Models used for mesh comparison. 
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Fig. 7; the numbers of their vertices and triangles are 

listed in Tab. 1. 

Figure 9. Computation times of error-measuring 

algorithms. 

Model # triangles # vertices 

Bunny (orig.) 69,451 34,834 

Bunny (simpl.)   1,001      553 

Coffee set 69,696 34,860 

Without lid 60,936 30,480 

Table 1. Models used for mesh comparison. 

Tab. 2 shows the comparison in computation time of 

the three algorithms with an accuracy of 0 0  of 

the model diameter. 

1. %

since it ran out of memory and Metro needs more 

than a day to compare the simplified and original 

bunny at . 0 001. %
 Metro MESH Our alg.  

Bunny   1,406 sec    395 sec 2.7 sec 

Coffee set 13,008 sec 1,396 sec 2.1 sec Error Control 
In the field of error control during simplification, we 

compare our method with two simplification 

algorithms that guarantee a user-specified geometric 

error: simplification envelopes [Coh96] and high-

quality simplification [Bor03a] (using the out-of-core 

simplification [Bor03b], when necessary). For 

comparison, we use different scanned objects from 

the Stanford 3D Scanning Repository [Sta3D] and 

the Digital Michelangelo Project [DigMi] shown in 

Fig. 10 and Tab. 3. 

Table 2. Computation times of error-measuring 

algorithms. 

At this accuracy our algorithm is several orders of 

magnitude faster than Metro and MESH, since we 

sample the mesh surface densely in regions of high 

geometric distance only. This is especially visible, 

when comparing the coffee set with and without lid, 

as shown in Fig. 8, where only samples in the region 

of the highest Hausdorff distance were taken. 

 

 

Figure 8. Visited octree cells and taken samples 

for coffee set scene with and without lid. 

Fig. 9 shows a detailed plot of the computation times 

of the three algorithms, when comparing the 

simplified bunny with the original model, using 

different accuracies ranging from 1  of the 

bounding box diameter (practically useless) to 

 (very accurate). 

%

0 001. %

Figure 10. Models used for simplification. 
It is clearly visible, that in contrast to both Metro and 

MESH, the computation time of our algorithm 

depends only very little on the desired accuracy. 

Note, that comparing the meshes with accuracy 

higher than 0 0  was not possible using MESH, 
  

1. %

Tab. 4 compares the computation times of the two 

mentioned simplification algorithms with our 

approach. For all models and algorithms the same 

simplification errors (1  and 0 1  of the model 

diameter) were used. The Hausdorff distance of 1     
 

% . %

%
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Model # triangles # vertices 

Bunny      69,451      34,834 

Dragon    871,414    437,645 

Buddha 1,087,474    543,652 

David 2mm 7,227,031 3,614,098 

Table 3. Models used for simplification. 

is especially interesting for out-of-core simplification 

using hierarchical partitioning (e.g. [Bor03b]), since 

it is close to the resolution of 
128

e  used for each 

octree cell. 

 [Coh96] [Bor03a] our alg. 

1%ε =  

Bunny 1:12     1:25      0:52 

Dragon n.a.    27:58      6:48 

Buddha n.a.    25:271    12:37 

David 2mm n.a. 3:01:431 1:06:22 

0 1. %ε =  

Bunny 0:46     0:46      1:28 

Dragon n.a.    15:37    14:59 

Buddha n.a.    24:081    21:13 

David 2mm n.a. 3:00:031 1:51:56 

Table 4. Computation times of simplification 

algorithms. 

Note, that the simplification envelopes restricts only 

the geometric error from the simplified model to the 

original, which is sufficient for rendering, but may 

cause inaccuracies for other applications like 

collision detection. Similarly, the high-quality 

simplification guarantees an upper bound for the 

geometric error from the original to the simplified 

model only, and thus may close large holes in the 

model, which is not always desired. Additionally, the 

accuracy is low, since only samples at vertex 

positions are taken. If out-of-core simplification is 

used, the error is only guaranteed to lie between 4

5
ε  

and ε . This means that a more aggressive 

simplification would be possible without exceeding 

the threshold. 

The computation time of the simplification envelopes  

is similar to the one of the high-quality 

simplification, but the algorithm requires orientable 

manifold meshes, and therefore worked only for the 

bunny model. Although our algorithm guarantees the 

Hausdorff distance to be below a specified threshold, 

the performance is even better than the simplification 

envelopes and the high-quality simplification for 

larger models and/or simplification errors. 

7. CONCLUSION  
We have presented an efficient algorithm to measure 

the geometric distances and the Hausdorff distance 

between two meshes. Our approach is much faster 

than existing algorithms for reasonable accuracies 

(i.e. less than  of the model diameter), since it 

needs to refine sampling only in regions of high 

distance and thus hardly depends on the required 

accuracy. This is accomplished by using a bi-

hierarchical search algorithm to quickly find regions 

of possibly high geometric distances. 

0 01. %

Furthermore, we have shown that our algorithm can 

also be applied to increase performance, efficiency, 

and accuracy of error-bounded simplification by 

using a chain of simple accept/reject tests to quickly 

determine, if exact evaluation of the Hausdorff 

distance is necessary. Instead of measuring the 

distance, we can stop traversing the hierarchy, when 

the minimum possible error is above the desired 

threshold, or the maximum possible is below. Using 

this technique, our approach is up to four times as 

fast as comparable algorithms when drastically 

simplifying the model. 
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