
Fast and Accurate Hausdorff Distance Calculation

between Meshes

Michael Guthe

guthe@cs.uni-bonn.de

Pavel Borodin
University of Bonn

Institute of Computer Science II
Römerstraße 164

D-53117, Bonn, Germany

borodin@cs.uni-bonn.de

Reinhard Klein

rk@cs.uni-bonn.de

ABSTRACT

Complex models generated e.g. with a laser range scanner often consist of several thousand or million triangles.

For efficient rendering this high number of primitives has to be reduced. An important property of mesh

reduction – or simplification – algorithms used for rendering is the control over the introduced geometric error.

In general, the better this control is, the slower the simplification algorithm becomes. This is especially a

problem for out-of-core simplification, since the processing time quickly reaches several hours for high-quality

simplification.

In this paper we present a new efficient algorithm to measure the Hausdorff distance between two meshes by

sampling the meshes only in regions of high distance. In addition to comparing two arbitrary meshes, this

algorithm can also be applied to check the Hausdorff error between the simplified and original meshes during

simplification. By using this information to accept or reject a simplification operation, this method allows fast

simplification while guaranteeing a user-specified geometric error.

Keywords

Mesh comparison, Hausdorff error measurement, mesh simplification.

1. INTRODUCTION
Today, polygonal meshes have become ubiquitous as

three-dimensional geometric representation of

objects in computer graphics and some engineering

applications. They are used for rendering of objects

in a broad range of disciplines like medical imaging,

scientific visualization, computer aided design

(CAD), movie industry, etc. New acquisition

techniques allow the generation of highly detailed

objects with a permanently increasing polygon count.

The handling of huge scenes composed of these

high-resolution models rapidly approaches the

computational capabilities of any graphics hardware.

Therefore, level-of-detail techniques become

inevitable. In order to build such level-of-detail

representations many simplification algorithms exist

that produce high-quality approximations of complex

models with a reasonable amount of polygons.

However, for many applications it is very important

to have precise control over the geometric error

introduced by simplification. The common way to

provide an accurate error control, which can be used

to calculate image space errors during visualization,

is to measure the Hausdorff distance between the

simplified and original meshes. However, this

distance can only be approximated by sampling, and

therefore, the better the accuracy is, the slower the

measurement algorithm becomes. When used to steer

simplification, the performance of the simplification

algorithm is reduced accordingly.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

The main contribution of this work is an efficient

algorithm to measure and update the Hausdorff

distance between a simplified mesh and the original

model. The superior speed of our approach is mainly

due to its ability to quickly determine regions of high

geometric distance (or during simplification, regions

where the distance is above the desired value) and

adapt sampling there.

41

2. PREVIOUS WORK
Since mesh simplification is one of the fundamental

techniques used for polygonal meshes, there is an

extensive amount of different methods. Since there

are detailed reviews of simplification algorithms (e.g.

[Lue01]), we give only a short overview of the most

related methods.

Rossignac and Borrel [Ros93] introduced the family

of vertex clustering methods. Although very fast,

their algorithm and its derivative methods (e.g.

[Low97]) allow almost no control over the error (it is

bound by the cell size), and the reduction rate is quite

low in flat parts of the model.

Cohen et al. [Coh96] developed simplification

envelopes to guarantee fidelity bounds while

enforcing local and global topology. The

simplification envelopes consist of two offset

surfaces at some distance ε from the original

surface. Since these envelopes are not allowed to

self-intersect, ε is decreased at high curvature

regions. By keeping the simplified surface inside

these envelopes, the algorithm can guarantee a

geometric deviation of at most ε , and additionally it

checks that the surface does not self-intersect. While

this algorithm has the advantage to guarantee a

geometric error bound, it is quite slow and requires

an orientable manifold for the construction of the

offset surfaces. Zelinka and Garland [Zel02]

modified this approach by using permission grids –

spatial occupancy grids, where an operation is only

performed if all cells that are intersected by the new

triangles are allowed to be occupied. Although the

algorithm is much faster than [Coh96] and doesn’t

need an orientable manifold mesh, the simplified

model often contains much more triangles due to the

discrete grid and the fact that the Manhattan distance

is used instead of the Euclidean.

The vertex pair contraction operation introduced at

the same time by Popović and Hoppe [Pop97] and

Garland and Heckbert [Gar97] has become the most

common operation and is used in many

simplification methods. In conjunction with the

quadric error metric introduced in that work, it offers

flexible control over the quality, still at very high

reduction speed. However, the quadric metric mostly

overestimates the real geometric error which results

in non-optimal reduction rates and the need to

measure the exact error after simplification.

Klein et al. [Kle96] first used the Hausdorff distance

between the original and simplified mesh to control

the simplification error, although with significant

computational effort. In [Bor03a] Borodin et al. have

produced high-quality results by combining

generalized pair contractions – an extension of the

vertex pair contraction – with the control of the

distance between the original and simplified models

during the whole simplification process.

In the area of mesh comparison, Cignoni et al.

[Cig98] introduced the first method dedicated

exclusively to measurement of errors on simplified

surfaces, which allows to compare quality of

different simplification methods. Another method,

presented by Aspert et al. [Asp02], is more efficient

in terms of speed at the cost of higher memory use.

Both algorithms are based on sampling of the

geometry of the two models to be compared, where

the sampling density depends on the desired

accuracy. In order to double the accuracy the number

of samples needs to be multiplied by four. Therefore,

these algorithms quickly become slow for higher

accuracy.

3. TERMINOLOGY

First we define the distance between a

point on a surface and another surface

(d p,S ′)
p S S ′ as:

 () (
p S

d p,S min d p, p′ ′∈)′ ′= ,

where ()d p, p′ is the Euclidian distance between

two points in . 3E

The geometric distance – also called one-sided or

single-sided Hausdorff distance – between two

surfaces and S S ′ is then defined as:

() (
p S

d S ,S max d p,S∈)′ ′=

Note, that this distance is not symmetric in general,

i.e. () ()d S ,S d S ,S′ ′≠ . The symmetrical Hausdorff

distance is defined as:

() () ()()s
d S ,S max d S ,S ,d S ,S′ ′= ′

This value gives more accurate measure of the

distance between two surfaces by preventing the

possible underestimation, which can appear if using

only one-sided distances.

4. MESH COMPARISON
The main idea of our new mesh comparison

algorithm is to adapt the sampling density used for

distance calculation to the actual geometric deviation

in the corresponding area. Hereby, the main goal is to

draw samples only in those regions where the

maximum distance between both objects is expected.

To achieve this, we first make two observations:

• Since the Hausdorff distance is defined as the

maximum of the distances of all points on both

meshes to the other mesh, we should avoid

sampling in areas, where they are closer to each

42

other than the actual – yet unknown – Hausdorff

distance. This can be achieved by comparing

coarse voxelizations of the two objects,

considering triangles within voxels of high

distance first, and stopping comparison, when

the already found distance is larger than the

highest possible distance between remaining

voxels.

In order to consider cells containing triangles with

larger distance first, the octree traversal is steered

using a priority queue. This queue contains the

already processed octree cells sorted by their

maximum geometric distance.

When a leaf cell is reached during traversal, we

collect all contained triangles and insert them into the

same priority queue as the cells, again according to

their maximum possible geometric distance.

Depending on their minimum distance we again

update the Hausdorff distance. To prevent multiple

insertions of the same triangle into the priority queue,

we mark triangles and process only those yet

unmarked. The traversal and therefore the whole

algorithm stops if either the queue becomes empty

(e.g. when both meshes are identical) or the

maximum possible distance of all remaining cells and

triangles is less than the already found Hausdorff

distance. The main algorithm to calculate the

Hausdorff distance is shown in Fig. 1.

• When processing triangles inside a voxel cell,

we only need to subsample a triangle, if its

geometric distance can be larger than the already

found maximum. This can only happen, if any of

its vertices is farther away from the other mesh

than one of its interior points, or if any of these

distances exceeds the maximum. Therefore, a

tight upper bound of a triangle-to-mesh distance

is required.

Data Structures
To quickly determine the regions of high geometric

distance we sort the triangles of both meshes into two

voxel grids respectively. Note, that later on in our

algorithms – similarly to [Cig98] and [Asp02] – this

grid is also used to quickly find the closest point on

one of the meshes for a given sample point.

 MinError=0

AddToQueue(RootCellA)

AddToQueue(RootCellB)

while(QueueNotEmpty)

 GetCellWithHighestMaxDistance

 UpdateMinError

 if(LeafNode)

 InsertTrianglesIntoQueue

 else

 InsertChildrenIntoQueue

return minError

Figure 1. Main algorithm to calculate the

Hausdorff distance.

The grid dimensions depend on the objects’

bounding boxes and the number of triangles. We aim

to have 10 triangles per occupied cell in average.

This can be achieved approximately by calculating

the number of required cells for a cube tessellated

with the same number of triangles as is in the larger

mesh. This leads to a resolution
10 6

triangles
r ⋅= . To

avoid memory problems we restrict ourselves to

resolutions of . 3256

Cell-Based Distance To speed up finding voxels of high distances

between both voxelizations we use an octree

structure for each of them, build upon the entries

within the grids. In order to get full octrees we allow

only resolutions of . 2 2 2n n n× ×

To quickly find the closest cell, when traversing the

octree from a node to its children, we store all indices

of occupied cells, for which the minimum distance

was less than the maximum distance to the closest

cell. Then we need to check only the children of

these cells when calculating the distances of the

cells’ child nodes. Note, that for the root nodes

calculating the closest cells and the distances is

trivial.

Main Algorithm
Initially, we set the current Hausdorff distance to

zero. We start traversing the octree structures of both

meshes simultaneously, measuring the distance of

each cell to all other cells on the same level in order

to find the closest one in the other mesh. If for the

current cell the closest other cell is found, we can

calculate the minimum and maximum distances

between two points inside these cells. If the

minimum distance is larger than the current

Hausdorff distance, we update the Hausdorff

distance accordingly. If the maximum distance is less

than or equal to the current Hausdorff distance,

traversal of the subtree is skipped.

To simplify the distance calculation, we use the

bounding box of the union of both meshes to

construct the grid. Furthermore, we restrict ourselves

to cubic grid cells, which further simplifies the

distance calculation to calculations based on the cell

coordinates.

43

Distance of a Triangle
To calculate lower and upper bounds for the

geometric distance between a triangle and the other

mesh, we first need to calculate the distances of its

vertices. If a vertex is inside the currently processed

grid cell, we can use its stored closest cells to find

candidate triangles for the next surface point in the

other mesh. If it is outside the current cell, we

descend the hierarchy again to find the occupied cells

closest to the current vertex. Then we calculate

distances to all triangles starting with those contained

in the closest cell. When the distance to the closest

point found so far is closer than the distance to the

remaining cells, the distance of the currently

processed vertex is found. To prevent multiple

distance calculations for the same triangle, we store

the indices of triangles and collect only the

unprocessed triangles from each cell.

After the distances for the three vertices of the

current triangle are calculated, we know that the

minimum geometric distance of the triangle is the

maximum of the vertex distances i iV P− , and the

maximum geometric distance is at most the

maximum of the vertex distances and the distances of

the triangle barycentre to the three vertex base

points (see Fig. 2).

B

iP

1P

2P

3
P

1V

2V

3V

B

Figure 2. Minimum and maximum geometric

distances of a triangle.

Therefore, we can determine the possible interval of

the geometric distance as: d

()
()

3

1

3

1

i i min
i

min i
i

d max V P d

d max H ,max B P

=

=

≥ − =
≤ − .



Additionally, no point on the triangle can be farther

away from the other mesh than its vertices from any

of the base points, and thus

 ()3 3

1 1
i j

i j
d min max V P .= =

 ≤ −  

If the closest points of all three vertices lie on the

same triangle (see Fig. 3), the maximum vertex

distance is already the geometric distance of the

current triangle. Otherwise, the triangle is inserted

into the priority queue. Note, that we have to take

care about the fact that the closest point may lie on

several triangles (if it falls onto an edge or into a

vertex).

1P

2P

3P

1V

2V

3V

Figure 3. Exact geometric distance of a triangle.

When a triangle from the queue is processed, it is

subdivided and the distances for its children are

calculated. To prevent repeated calculation of the

closest point/triangle for the same vertex, we

calculate them for the three new vertices during

subdivision. Then we only need to calculate the

minimum and maximum possible distances before

eventually storing the child triangles in the priority

queue. The subdivision algorithm is shown in Fig. 4.

 CalculateSubdivisionBasePoints
for(allChildTriangles)

 minDistance=max(vertexDistances)

 if(AllBasePointsOnSameTriangle)

 maxDistance=minDistance

 else

 maxDistance=max(barycenterDistances)

 InsertIntoQueue

Figure 4. Subdivision sampling algorithm.

Note, that calculating the base points and checking if

they all lie on the same triangle is also necessary,

when a leaf cell is processed in order to add all

contained triangles to the queue.

5. APPLICATION TO

SIMPLIFICATION
To control the Hausdorff error during simplification,

only the part of the mesh affected by the current

operation needs to be considered. Therefore, the

affected triangles of the simplified mesh are directly

inserted into the queue, and the error measurement

for the original model is restricted to the region

around these triangles using their common bounding

box. Since the error of neighbouring triangles in the

original model may also be affected, we need to

extend this bounding box by the current Hausdorff

error.

Furthermore, it is not necessary to calculate the exact

geometric error, but only to check if it is below a

user-specified threshold. Therefore, we do not need

44

to insert cells or triangles, for which the maximum

possible distance is below this threshold, into the

queue, and thus refine sampling only in regions,

where the error may be above this value.

Analogously, if the minimum error found so far is

above this threshold, we can immediately stop the

calculation and reject the simplification operation.

When calculating the geometric error of a triangle,

we can also immediately stop searching for the base

points as soon as we found one that is closer than

the desired error minus the maximum length of the

two edges adjacent to the current vertex (according

to the triangle inequation no vertex can be farther

from a point than the distance of any vertex to this

point plus the distance to this vertex).

iP

The fact that only an accept/reject decision is

required to decide, if a simplification operation will

be performed, allows for some additional simple tests

to quickly find an answer in most cases.

The simplification algorithm delivering the best

trade-off between speed and quality of the simplified

model is the one based on the quadric error metric

[Gar97]. Choosing this simplification algorithm as

base for our method, we get the additional advantage:

the error quadric gives an (admittedly sometimes

largely overestimated) upper bound for the Hausdorff

error and can thus be used as a criterion to accept an

operation without further tests.

Then two additional simple tests are possible to

quickly reject an operation. First, the distance of the

new vertex to the simplified mesh before the current

edge collapse operation is calculated. If this exceeds

twice the desired Hausdorff error ε , the operation

can be rejected. Note, that exceeding of 2ε is

required due to possible configurations similar to the

one shown in Fig. 5.

 new vertex

 original mesh

 simplified mesh

Figure 5. Quick reject tests.

If the operation passed this test, the distance from the

new vertex to the original mesh is calculated. If this

exceeds the specified threshold, the operation is also

rejected. These two tests have the advantage that they

quickly reject many operations and no update of the

grid is required for their calculation.

When an operation passed these two tests without

being rejected, the grid and octree of the simplified

model are updated. If the operation has not been

accepted by the quadric test, the Hausdorff distance

between the updated meshes is calculated. When the

operation is rejected by the Hausdorff error check,

the vertex is split again, updating the grid and octree

of the simplified mesh, and the operation is removed

from the simplification queue. The overall pipeline

of the error-checking algorithm is shown in Fig. 6.

new vertex → simplified mesh

new vertex → original mesh

quadric error

simplified region ↔ original mesh

accept reject

fail

fail

fail

fail

pass

pass

pass

pass

Figure 6. Error testing pipeline.

If the simplification queue is empty, all possible

collapse operations that do not exceed the specified

Hausdorff error have been performed.

6. RESULTS
Since our algorithm is applicable to both, measuring

distances between meshes and controlling the

introduced Hausdorff error during simplification, we

compare it to previous approaches in both fields. We

ran all tests on a PC with an Athlon 3000+ and 2 GB

of main memory.

Mesh Comparison
To demonstrate the advantages of our algorithm, we

compare its computation time with the two standard

tools for measuring the Hausdorff distance: Metro

[Cig98] (version 4.0) and MESH [Asp02] (version

1.12). The models used for evaluation are shown in

Figure 7. Models used for mesh comparison.

45

Fig. 7; the numbers of their vertices and triangles are

listed in Tab. 1.

Figure 9. Computation times of error-measuring

algorithms.

Model # triangles # vertices

Bunny (orig.) 69,451 34,834

Bunny (simpl.) 1,001 553

Coffee set 69,696 34,860

Without lid 60,936 30,480

Table 1. Models used for mesh comparison.

Tab. 2 shows the comparison in computation time of

the three algorithms with an accuracy of 0 0 of

the model diameter.

1. %

since it ran out of memory and Metro needs more

than a day to compare the simplified and original

bunny at . 0 001. %
 Metro MESH Our alg.

Bunny 1,406 sec 395 sec 2.7 sec

Coffee set 13,008 sec 1,396 sec 2.1 sec Error Control
In the field of error control during simplification, we

compare our method with two simplification

algorithms that guarantee a user-specified geometric

error: simplification envelopes [Coh96] and high-

quality simplification [Bor03a] (using the out-of-core

simplification [Bor03b], when necessary). For

comparison, we use different scanned objects from

the Stanford 3D Scanning Repository [Sta3D] and

the Digital Michelangelo Project [DigMi] shown in

Fig. 10 and Tab. 3.

Table 2. Computation times of error-measuring

algorithms.

At this accuracy our algorithm is several orders of

magnitude faster than Metro and MESH, since we

sample the mesh surface densely in regions of high

geometric distance only. This is especially visible,

when comparing the coffee set with and without lid,

as shown in Fig. 8, where only samples in the region

of the highest Hausdorff distance were taken.

Figure 8. Visited octree cells and taken samples

for coffee set scene with and without lid.

Fig. 9 shows a detailed plot of the computation times

of the three algorithms, when comparing the

simplified bunny with the original model, using

different accuracies ranging from 1 of the

bounding box diameter (practically useless) to

 (very accurate).

%

0 001. %

Figure 10. Models used for simplification.
It is clearly visible, that in contrast to both Metro and

MESH, the computation time of our algorithm

depends only very little on the desired accuracy.

Note, that comparing the meshes with accuracy

higher than 0 0 was not possible using MESH,

1. %

Tab. 4 compares the computation times of the two

mentioned simplification algorithms with our

approach. For all models and algorithms the same

simplification errors (1 and 0 1 of the model

diameter) were used. The Hausdorff distance of 1

% . %

%

46

Model # triangles # vertices

Bunny 69,451 34,834

Dragon 871,414 437,645

Buddha 1,087,474 543,652

David 2mm 7,227,031 3,614,098

Table 3. Models used for simplification.

is especially interesting for out-of-core simplification

using hierarchical partitioning (e.g. [Bor03b]), since

it is close to the resolution of
128

e used for each

octree cell.

 [Coh96] [Bor03a] our alg.

1%ε =

Bunny 1:12 1:25 0:52

Dragon n.a. 27:58 6:48

Buddha n.a. 25:271 12:37

David 2mm n.a. 3:01:431 1:06:22

0 1. %ε =

Bunny 0:46 0:46 1:28

Dragon n.a. 15:37 14:59

Buddha n.a. 24:081 21:13

David 2mm n.a. 3:00:031 1:51:56

Table 4. Computation times of simplification

algorithms.

Note, that the simplification envelopes restricts only

the geometric error from the simplified model to the

original, which is sufficient for rendering, but may

cause inaccuracies for other applications like

collision detection. Similarly, the high-quality

simplification guarantees an upper bound for the

geometric error from the original to the simplified

model only, and thus may close large holes in the

model, which is not always desired. Additionally, the

accuracy is low, since only samples at vertex

positions are taken. If out-of-core simplification is

used, the error is only guaranteed to lie between 4

5
ε

and ε . This means that a more aggressive

simplification would be possible without exceeding

the threshold.

The computation time of the simplification envelopes

is similar to the one of the high-quality

simplification, but the algorithm requires orientable

manifold meshes, and therefore worked only for the

bunny model. Although our algorithm guarantees the

Hausdorff distance to be below a specified threshold,

the performance is even better than the simplification

envelopes and the high-quality simplification for

larger models and/or simplification errors.

7. CONCLUSION
We have presented an efficient algorithm to measure

the geometric distances and the Hausdorff distance

between two meshes. Our approach is much faster

than existing algorithms for reasonable accuracies

(i.e. less than of the model diameter), since it

needs to refine sampling only in regions of high

distance and thus hardly depends on the required

accuracy. This is accomplished by using a bi-

hierarchical search algorithm to quickly find regions

of possibly high geometric distances.

0 01. %

Furthermore, we have shown that our algorithm can

also be applied to increase performance, efficiency,

and accuracy of error-bounded simplification by

using a chain of simple accept/reject tests to quickly

determine, if exact evaluation of the Hausdorff

distance is necessary. Instead of measuring the

distance, we can stop traversing the hierarchy, when

the minimum possible error is above the desired

threshold, or the maximum possible is below. Using

this technique, our approach is up to four times as

fast as comparable algorithms when drastically

simplifying the model.

8. ACKNOWLEDGEMENTS
We thank the Stanford 3D Scanning Repository and

the Digital Michelangelo Project for providing us

with the models. The coffee set model is courtesy of

Renzo Del Fabbro.

9. REFERENCES
[Asp02] Aspert, N. Santa-Cruz, D., and Ebrahimi T.

MESH: measuring errors between surfaces using

the Hausdorff distance. Proc. of the IEEE

International Conference on Multimedia and

Expo, pp. 705-708, 2002.

[Bor03a] Borodin, P., Gumhold, S., Guthe, M., and

Klein, R. High-quality simplification with

generalized pair contractions. Proc. of GraphiCon

’03, pp. 147-154, 2003.

[Bor03b] Borodin, P., Guthe, M., and Klein, R. Out-

of-core simplification with guaranteed error

tolerance. Proc. of Vision, Modeling and

Visualisation ’03, pp. 309-316, 2003.

[Cig98] Cignoni, P., Rocchini, C., and Scopigno, R.

Metro: measuring error on simplified surfaces.

Computer Graphics Forum, vol. 17, no. 2, pp.

167-174, 1998.

[Coh96] Cohen, J., Varshney, A., Manocha, D.,

Turk, G., Weber, H., Agarwal, P., Brooks, F., and

Wright, W. Simplification envelopes. Computer

1 Out-of-core simplification [Bor03b].

47

Graphics (Proc. of SIGGRAPH ’96) 30, pp. 119-

128, 1996.

[DigMi] The Digital Michelangelo Project.

http://www-graphics.stanford.edu/projects/mich.

[Gar97] Garland, M. and Heckbert, P. S. Surface

simplification using quadric error metrics.

Computer Graphics (Proc. of SIGGRAPH ’97)

31, pp. 209-216, 1997.

[Kle96] Klein, R., Liebich, G., and Straßer, W. Mesh

reduction with error control. Proc. of IEEE

Visualization ’96, pp. 311-318, 1996.

[Low97] Low, K.-L. and Tan, T.-S. Model

simplification using vertex-clustering. Proc. of

Symposium on Interactive 3D Graphics, pp. 75-

81, 1997.

[Lue01] Luebke, D. A Developer’s Survey of

Polygonal Simplification Algorithms. IEEE

Computer Graphics and Applications, 21(3), pp.

24-35. 2001.

[Pop96] Popović, J. and Hoppe, H. Progressive

simplicial complexes. Computer Graphics (Proc.

of SIGGRAPH ’97) 31, pp. 217-224, 1997.

[Ros93] Rossignac, J. and Borrel, P. Multi-resolution

approximations for rendering. Modeling in

Computer Graphics, pp. 455-465, 1993.

[Sta3D] The Stanford 3D Scanning Repository.

http://www-graphics.stanford.edu/data/3dscanrep.

[Zel02] Zelinka, S. and Garland, M. Permission

grids: practical, error-bounded simplification.

ACM Transactions on Graphics, 21(2), pp. 1-25,

2002

48

	IPC_2005.pdf
	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	D67-full.pdf
	INTRODUCTION
	PREVIOUS WORK
	TERMINOLOGY
	MESH COMPARISON
	Data Structures
	Main Algorithm
	Cell-Based Distance
	Distance of a Triangle

	APPLICATION TO SIMPLIFICATION
	RESULTS
	Mesh Comparison
	Error Control

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	G03-full.pdf
	F53-full.pdf

