PurposeTo propose an efficient retrospective image-based method for motion correction of multi-co... more PurposeTo propose an efficient retrospective image-based method for motion correction of multi-contrast acquisitions with a low number of available images (MC-MoCo) and evaluate its use in 3D inhomogeneous Magnetization Transfer (ihMT) experiments in the human brain.MethodsA framework for motion correction, including image pre-processing enhancement and rigid registration to an iteratively improved target image, was developed. The proposed method was compared to Motion Correction with FMRIB’s Linear Image Registration Tool (MCFLIRT) function in FSL over 13 subjects. Native (pre-correction) and residual (post-correction) motions were evaluated by means of markers positioned at well-defined anatomical regions over each image.ResultsBoth motion correction strategies significantly reduced inter-image misalignment, and the MC-MoCo method yielded significantly better results than MCFLIRT.ConclusionMC-MoCo is a high-performance method for motion correction of multi-contrast volumes as in 3...
Multiple sclerosis and related disorders, Jan 12, 2018
Multiple sclerosis (MS) is less prevalent in African Americans (AAs) than Caucasians (CAs) but in... more Multiple sclerosis (MS) is less prevalent in African Americans (AAs) than Caucasians (CAs) but in the former the disease course tends to be more severe. In order to clarify the MRI correlates of disease severity in AAs, we performed a multimodal brain MRI study to comprehensively assess the extent of grey matter (GM) damage and the degree of functional adaptation to structural damage in AAs with MS. In this cross-sectional study, we characterized GM damage in terms of focal lesions and volume loss and functional adaptation during the execution of a simple motor task on a sample of 20 AAs and 20 CAs with MS and 20 healthy controls (CTRLs). In AAs, we observed a wider range of EDSS scores than CAs, with multisystem involvement being more likely in AAs (p < 0.01). While no significant differences were detected in lesion loads and global brain volumes, AAs showed regional atrophy in the posterior lobules of cerebellum, temporo-occipital and frontal regions in comparison with CAs (p &...
Resting-state connectivity has been widely studied in the healthy and pathological brain. Less we... more Resting-state connectivity has been widely studied in the healthy and pathological brain. Less well-characterized are the brain networks altered during pharmacological interventions and their possible interaction with vigilance. In the hopes of finding new biomarkers which can be used to identify cortical activity and cognitive processes linked to the effects of drugs to treat neurodegenerative diseases such as Alzheimer's disease, the analysis of networks altered by medication would be particularly interesting. Eleven healthy subjects were recruited in the context of the European Innovative Medicines Initiative 'PharmaCog'. Each underwent five sessions of simultaneous EEG-fMRI in order to investigate the effects of donepezil and memantine before and after sleep deprivation (SD). The SD approach has been previously proposed as a model for cognitive impairment in healthy subjects. By applying network based statistics (NBS), we observed altered brain networks significantly...
Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) a... more Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic...
Few studies have examined the relationship between CSF and structural biomarkers, and cognitive f... more Few studies have examined the relationship between CSF and structural biomarkers, and cognitive function in MCI. We examined the relationship between cognitive function, hippocampal volume and cerebrospinal fluid (CSF) Aβ42 and tau in 145 patients with MCI. Patients were assessed on cognitive tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB), the Geriatric Depression Scale and the Functional Activities Questionnaire. Hippocampal volume was measured using magnetic resonance imaging (MRI), and CSF markers of Aβ42, tau and p-tau181 were also measured. Worse performance on a wide range of memory and sustained attention tasks were associated with reduced hippocampal volume, higher CSF tau and p-tau181 and increased tau/Aβ42 ratio. Memory tasks were also associated with lower ability to conduct functional activities of daily living, providing a link between AD biomarkers, memory performance and functional outcome. These results suggest that biomarkers of Aβ and t...
Journal of neuroradiology. Journal de neuroradiologie, Jan 16, 2016
While gray matter (GM) perfusion abnormalities have been evidenced in multiple sclerosis (MS) pat... more While gray matter (GM) perfusion abnormalities have been evidenced in multiple sclerosis (MS) patients, the relationships with disability still remain unclear. Considering that atrophy is known to impact on perfusion, we aimed to assess perfusion abnormalities in GM of MS patients, outside atrophic regions and investigate relationships with disability. Brain perfusion of 23 relapsing remitting MS patients and 16 matched healthy subjects were assessed at 3T using the pseudo-continuous arterial spin labeling magnetic resonance imaging technique. In order to locate potential GM perfusion abnormalities in regions spared by atrophy, we combined voxelwise comparisons of GM cerebral blood flow (CBF) maps (cortex and deep GM) (P<0.005, FWE-corrected) and voxel-based-morphometry analysis (P<0.005, FDR-corrected) to exclude atrophic regions. Disability was assessed using the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite score (MSFC). In patients...
To investigate whether brain total sodium accumulation assessed by (23)Na MRI is associated with ... more To investigate whether brain total sodium accumulation assessed by (23)Na MRI is associated with cognitive deficit in relapsing-remitting multiple sclerosis (RRMS). Eighty-nine participants were enrolled in the study (58 patients with RRMS with a disease duration ≤10 years and 31 matched healthy controls). Patients were classified as cognitively impaired if they failed at least 2 tasks on the Brief Repeatable Battery. MRI was performed at 3T using (23)Na MRI to obtain total sodium concentration (TSC) in the different brain compartments (lesions, normal-appearing white matter [NAWM], gray matter [GM]) and (1)H- magnetization-prepared rapid gradient echo to assess GM atrophy (GM fraction). The mean disease duration was 3.1 years and the median Expanded Disability Status Scale score was 1 (range 0-4.5). Thirty-seven patients were classified as cognitively preserved and 21 as cognitively impaired. TSC was increased in GM and NAWM in cognitively impaired patients compared to cognitively ...
For the first time in research in humans, we used simultaneous icEEG-fMRI to examine the link bet... more For the first time in research in humans, we used simultaneous icEEG-fMRI to examine the link between connectivity in haemodynamic signals during the resting-state (rs) and connectivity derived from electrophysiological activity in terms of the inter-modal connectivity correlation (IMCC). We quantified IMCC in nine patients with drug-resistant epilepsy (i) within brain networks in 'healthy' non-involved cortical zones (NIZ) and (ii) within brain networks involved in generating seizures and interictal spikes (IZ1) or solely spikes (IZ2). Functional connectivity (h (2) ) estimates for 10 min of resting-state data were obtained between each pair of electrodes within each clinical zone for both icEEG and fMRI. A sliding window approach allowed us to quantify the variability over time of h (2) (vh (2)) as an indicator of connectivity dynamics. We observe significant positive IMCC for h (2) and vh (2), for multiple bands in the NIZ only, with the strongest effect in the lower icEE...
Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occ... more Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occurring in various pathologies, from both microstructural and functional perspectives. By enabling very high image resolution and enhanced tissue contrast, ultra-high field imaging may offer further opportunities for such characterization. In this study, a multi-parametric high-resolution quantitative MRI protocol is proposed to characterize in vivo the human cervical spinal cord at 7T. Multi-parametric quantitative MRI acquizitions including T1, T2(*) relaxometry mapping and axial diffusion MRI were performed on ten healthy volunteers with a whole-body 7T system using a commercial prototype coil-array dedicated to cervical spinal cord imaging. Automatic cord segmentation and multi-parametric data registration to spinal cord templates enabled robust regional studies within atlas-based WM tracts and GM horns at the C3 cervical level. T1 value, cross-sectional area and GM/WM ratio evolutions along the cervical cord were also reported. An original correction method for B1(+)-biased T1 mapping sequence was additionally proposed and validated on phantom. As a result, relaxometry and diffusion parameters derived from high-resolution quantitative MRI acquizitions were reported at 7T for the first time. Obtained images, with unmatched resolutions compared to lower field investigations, provided exquisite anatomical details and clear delineation of the spinal cord substructures within an acquisition time of 30min, compatible with clinical investigations. Regional statistically significant differences were highlighted between WM and GM based on T1 and T2* maps (p&amp;amp;lt;10(-3)), as well as between sensory and motor tracts based on diffusion tensor imaging maps (p&amp;amp;lt;0.05). The proposed protocol demonstrates that ultra-high field spinal cord high-resolution quantitative MRI is feasible and lays the groundwork for future clinical investigations of degenerative spinal cord pathologies.
Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity ... more Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labe...
Multiple sclerosis (Houndmills, Basingstoke, England), May 1, 2016
Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lowe... more Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. At the end of stimulation, improvement of spasticity was greater in real iTBS group ...
Magnetic Resonance Materials in Physics, Biology and Medicine, 2016
To demonstrate that high resolution (1)H semi-LASER MRSI acquired at 7 T permits discrimination o... more To demonstrate that high resolution (1)H semi-LASER MRSI acquired at 7 T permits discrimination of metabolic patterns of different thalamic nuclei. Thirteen right-handed healthy volunteers were explored at 7 T using a high-resolution 2D-semi-LASER (1)H-MRSI sequence to determine the relative levels of N-Acetyl Aspartate (NAA), choline (Cho) and creatine-phosphocreatine (Cr) in eight VOIs (volume &amp;amp;amp;amp;amp;amp;lt;0.3 ml) centered on four different thalamic nuclei located on the Oxford thalamic connectivity atlas. Post-processing was done using the CSIAPO software. Chemical shift displacement of metabolites was evaluated on a phantom and correction factors were applied to in vivo data. The global assessment (ANOVA p &amp;amp;amp;amp;amp;amp;lt; 0.05) of the neurochemical profiles (NAA, Cho and Cr levels) with thalamic nuclei and hemispheres as factors showed a significant global effect (F = 11.98, p &amp;amp;amp;amp;amp;amp;lt; 0.0001), with significant effect of nucleus type (p &amp;amp;amp;amp;amp;amp;lt; 0.0001) and hemisphere (p &amp;amp;amp;amp;amp;amp;lt; 0.0001). Post hoc analyses showed differences in neurochemical profiles between the left and the right hemisphere (p &amp;amp;amp;amp;amp;amp;lt; 0.05), and differences in neurochemical profiles between nuclei within each hemisphere (p &amp;amp;amp;amp;amp;amp;lt; 0.05). For the first time, using high resolution 2D-PRESS semi-LASER (1)H-MRSI acquired at 7 T, we demonstrated that the neurochemical profiles were different between thalamic nuclei, and that these profiles were dependent on the brain hemisphere.
PurposeTo propose an efficient retrospective image-based method for motion correction of multi-co... more PurposeTo propose an efficient retrospective image-based method for motion correction of multi-contrast acquisitions with a low number of available images (MC-MoCo) and evaluate its use in 3D inhomogeneous Magnetization Transfer (ihMT) experiments in the human brain.MethodsA framework for motion correction, including image pre-processing enhancement and rigid registration to an iteratively improved target image, was developed. The proposed method was compared to Motion Correction with FMRIB’s Linear Image Registration Tool (MCFLIRT) function in FSL over 13 subjects. Native (pre-correction) and residual (post-correction) motions were evaluated by means of markers positioned at well-defined anatomical regions over each image.ResultsBoth motion correction strategies significantly reduced inter-image misalignment, and the MC-MoCo method yielded significantly better results than MCFLIRT.ConclusionMC-MoCo is a high-performance method for motion correction of multi-contrast volumes as in 3...
Multiple sclerosis and related disorders, Jan 12, 2018
Multiple sclerosis (MS) is less prevalent in African Americans (AAs) than Caucasians (CAs) but in... more Multiple sclerosis (MS) is less prevalent in African Americans (AAs) than Caucasians (CAs) but in the former the disease course tends to be more severe. In order to clarify the MRI correlates of disease severity in AAs, we performed a multimodal brain MRI study to comprehensively assess the extent of grey matter (GM) damage and the degree of functional adaptation to structural damage in AAs with MS. In this cross-sectional study, we characterized GM damage in terms of focal lesions and volume loss and functional adaptation during the execution of a simple motor task on a sample of 20 AAs and 20 CAs with MS and 20 healthy controls (CTRLs). In AAs, we observed a wider range of EDSS scores than CAs, with multisystem involvement being more likely in AAs (p < 0.01). While no significant differences were detected in lesion loads and global brain volumes, AAs showed regional atrophy in the posterior lobules of cerebellum, temporo-occipital and frontal regions in comparison with CAs (p &...
Resting-state connectivity has been widely studied in the healthy and pathological brain. Less we... more Resting-state connectivity has been widely studied in the healthy and pathological brain. Less well-characterized are the brain networks altered during pharmacological interventions and their possible interaction with vigilance. In the hopes of finding new biomarkers which can be used to identify cortical activity and cognitive processes linked to the effects of drugs to treat neurodegenerative diseases such as Alzheimer's disease, the analysis of networks altered by medication would be particularly interesting. Eleven healthy subjects were recruited in the context of the European Innovative Medicines Initiative 'PharmaCog'. Each underwent five sessions of simultaneous EEG-fMRI in order to investigate the effects of donepezil and memantine before and after sleep deprivation (SD). The SD approach has been previously proposed as a model for cognitive impairment in healthy subjects. By applying network based statistics (NBS), we observed altered brain networks significantly...
Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) a... more Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic...
Few studies have examined the relationship between CSF and structural biomarkers, and cognitive f... more Few studies have examined the relationship between CSF and structural biomarkers, and cognitive function in MCI. We examined the relationship between cognitive function, hippocampal volume and cerebrospinal fluid (CSF) Aβ42 and tau in 145 patients with MCI. Patients were assessed on cognitive tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB), the Geriatric Depression Scale and the Functional Activities Questionnaire. Hippocampal volume was measured using magnetic resonance imaging (MRI), and CSF markers of Aβ42, tau and p-tau181 were also measured. Worse performance on a wide range of memory and sustained attention tasks were associated with reduced hippocampal volume, higher CSF tau and p-tau181 and increased tau/Aβ42 ratio. Memory tasks were also associated with lower ability to conduct functional activities of daily living, providing a link between AD biomarkers, memory performance and functional outcome. These results suggest that biomarkers of Aβ and t...
Journal of neuroradiology. Journal de neuroradiologie, Jan 16, 2016
While gray matter (GM) perfusion abnormalities have been evidenced in multiple sclerosis (MS) pat... more While gray matter (GM) perfusion abnormalities have been evidenced in multiple sclerosis (MS) patients, the relationships with disability still remain unclear. Considering that atrophy is known to impact on perfusion, we aimed to assess perfusion abnormalities in GM of MS patients, outside atrophic regions and investigate relationships with disability. Brain perfusion of 23 relapsing remitting MS patients and 16 matched healthy subjects were assessed at 3T using the pseudo-continuous arterial spin labeling magnetic resonance imaging technique. In order to locate potential GM perfusion abnormalities in regions spared by atrophy, we combined voxelwise comparisons of GM cerebral blood flow (CBF) maps (cortex and deep GM) (P<0.005, FWE-corrected) and voxel-based-morphometry analysis (P<0.005, FDR-corrected) to exclude atrophic regions. Disability was assessed using the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite score (MSFC). In patients...
To investigate whether brain total sodium accumulation assessed by (23)Na MRI is associated with ... more To investigate whether brain total sodium accumulation assessed by (23)Na MRI is associated with cognitive deficit in relapsing-remitting multiple sclerosis (RRMS). Eighty-nine participants were enrolled in the study (58 patients with RRMS with a disease duration ≤10 years and 31 matched healthy controls). Patients were classified as cognitively impaired if they failed at least 2 tasks on the Brief Repeatable Battery. MRI was performed at 3T using (23)Na MRI to obtain total sodium concentration (TSC) in the different brain compartments (lesions, normal-appearing white matter [NAWM], gray matter [GM]) and (1)H- magnetization-prepared rapid gradient echo to assess GM atrophy (GM fraction). The mean disease duration was 3.1 years and the median Expanded Disability Status Scale score was 1 (range 0-4.5). Thirty-seven patients were classified as cognitively preserved and 21 as cognitively impaired. TSC was increased in GM and NAWM in cognitively impaired patients compared to cognitively ...
For the first time in research in humans, we used simultaneous icEEG-fMRI to examine the link bet... more For the first time in research in humans, we used simultaneous icEEG-fMRI to examine the link between connectivity in haemodynamic signals during the resting-state (rs) and connectivity derived from electrophysiological activity in terms of the inter-modal connectivity correlation (IMCC). We quantified IMCC in nine patients with drug-resistant epilepsy (i) within brain networks in 'healthy' non-involved cortical zones (NIZ) and (ii) within brain networks involved in generating seizures and interictal spikes (IZ1) or solely spikes (IZ2). Functional connectivity (h (2) ) estimates for 10 min of resting-state data were obtained between each pair of electrodes within each clinical zone for both icEEG and fMRI. A sliding window approach allowed us to quantify the variability over time of h (2) (vh (2)) as an indicator of connectivity dynamics. We observe significant positive IMCC for h (2) and vh (2), for multiple bands in the NIZ only, with the strongest effect in the lower icEE...
Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occ... more Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occurring in various pathologies, from both microstructural and functional perspectives. By enabling very high image resolution and enhanced tissue contrast, ultra-high field imaging may offer further opportunities for such characterization. In this study, a multi-parametric high-resolution quantitative MRI protocol is proposed to characterize in vivo the human cervical spinal cord at 7T. Multi-parametric quantitative MRI acquizitions including T1, T2(*) relaxometry mapping and axial diffusion MRI were performed on ten healthy volunteers with a whole-body 7T system using a commercial prototype coil-array dedicated to cervical spinal cord imaging. Automatic cord segmentation and multi-parametric data registration to spinal cord templates enabled robust regional studies within atlas-based WM tracts and GM horns at the C3 cervical level. T1 value, cross-sectional area and GM/WM ratio evolutions along the cervical cord were also reported. An original correction method for B1(+)-biased T1 mapping sequence was additionally proposed and validated on phantom. As a result, relaxometry and diffusion parameters derived from high-resolution quantitative MRI acquizitions were reported at 7T for the first time. Obtained images, with unmatched resolutions compared to lower field investigations, provided exquisite anatomical details and clear delineation of the spinal cord substructures within an acquisition time of 30min, compatible with clinical investigations. Regional statistically significant differences were highlighted between WM and GM based on T1 and T2* maps (p&amp;amp;lt;10(-3)), as well as between sensory and motor tracts based on diffusion tensor imaging maps (p&amp;amp;lt;0.05). The proposed protocol demonstrates that ultra-high field spinal cord high-resolution quantitative MRI is feasible and lays the groundwork for future clinical investigations of degenerative spinal cord pathologies.
Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity ... more Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labe...
Multiple sclerosis (Houndmills, Basingstoke, England), May 1, 2016
Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lowe... more Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. At the end of stimulation, improvement of spasticity was greater in real iTBS group ...
Magnetic Resonance Materials in Physics, Biology and Medicine, 2016
To demonstrate that high resolution (1)H semi-LASER MRSI acquired at 7 T permits discrimination o... more To demonstrate that high resolution (1)H semi-LASER MRSI acquired at 7 T permits discrimination of metabolic patterns of different thalamic nuclei. Thirteen right-handed healthy volunteers were explored at 7 T using a high-resolution 2D-semi-LASER (1)H-MRSI sequence to determine the relative levels of N-Acetyl Aspartate (NAA), choline (Cho) and creatine-phosphocreatine (Cr) in eight VOIs (volume &amp;amp;amp;amp;amp;amp;lt;0.3 ml) centered on four different thalamic nuclei located on the Oxford thalamic connectivity atlas. Post-processing was done using the CSIAPO software. Chemical shift displacement of metabolites was evaluated on a phantom and correction factors were applied to in vivo data. The global assessment (ANOVA p &amp;amp;amp;amp;amp;amp;lt; 0.05) of the neurochemical profiles (NAA, Cho and Cr levels) with thalamic nuclei and hemispheres as factors showed a significant global effect (F = 11.98, p &amp;amp;amp;amp;amp;amp;lt; 0.0001), with significant effect of nucleus type (p &amp;amp;amp;amp;amp;amp;lt; 0.0001) and hemisphere (p &amp;amp;amp;amp;amp;amp;lt; 0.0001). Post hoc analyses showed differences in neurochemical profiles between the left and the right hemisphere (p &amp;amp;amp;amp;amp;amp;lt; 0.05), and differences in neurochemical profiles between nuclei within each hemisphere (p &amp;amp;amp;amp;amp;amp;lt; 0.05). For the first time, using high resolution 2D-PRESS semi-LASER (1)H-MRSI acquired at 7 T, we demonstrated that the neurochemical profiles were different between thalamic nuclei, and that these profiles were dependent on the brain hemisphere.
Uploads
Papers by Jean-Philippe Ranjeva