
19. Programming SCI Clusters Using Parallel
CORBA Objects

Thierry Priol1, Christophe René1, Guillaume Alléon2

1 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
email: {priol, crene}@irisa.fr
http://www.irisa.fr/

2 Aerospatiale Joint Research Centre, 12 rue Pasteur, BP 76,
92152 Suresnes Cedex, France
email:Guillaume.Alleon@siege.aerospatiale.fr

19.1 Introduction

This chapter introduces a programming environment for SCI clusters that
takes advantage of both parallel and distributed programming paradigms. It
aims at helping programmers to design high performance applications based
on the assembling of generic software components. This environment is based
on CORBA (Common Object Request Broker Architecture), with our own
extensions to support parallelism across several cluster nodes within a distri-
buted system. Our contribution concerns extensions to support a new kind
of object, which we call a parallel CORBA object (or parallel object), as well
as the integration of message-passing paradigms, mainly MPI, within a par-
allel object. These extensions exploit as much as possible the functionality
offered by CORBA and require few modifications to an available CORBA
implementation. This paper reports on these extensions and the description
of a runtime system, called Cobra, which provides resource allocation services
for the execution of parallel objects.

The chapter is organized as follows. Section 19.2 discusses some issues re-
lated to parallel and distributed programming. Section 19.3 gives a short in-
troduction to CORBA. Section 19.4 describes the concept of parallel CORBA
objects. Section 19.5 introduces the Cobra runtime system for the execution
of parallel objects. Section 19.6 presents a case study based on a signal pro-
cessing application from Aerospatiale. Section 19.7 describes some related
work which has some similarities with our work. Finally, Section 19.8 draws
some conclusions and outlines perspectives of this work.

19.2 Parallel vs. Distributed Programming

Thanks to the rapid performance increase of today’s computers, it can be
now envisaged to couple several computationally intensive numerical codes
to simulate more accurately complex physical phenomena. Due to both the in-
creased complexity of these numerical codes and their future developments, a

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 333-348, 1999
© Springer-Verlag Berlin Heidelberg 1999



334 T. Priol, C. René, G. Alléon

tight coupling of these codes cannot be envisaged. A loose coupling approach
based on the use of several components offers a much more attractive solution.
One can envisage to couple fluid and structure components or thermal and
structure components. Other components can be devoted to pre-processing
(data format conversion) or post-processing of data (visualization). Each of
these components requires specific resources (computing power, graphics, spe-
cific I/O devices). A component which requires a huge amount of computing
power can be parallelized so that it will be seen as a collection of processes
to be run on a set of cluster nodes. Processes within a component have to
exchange data and have to synchronize. Therefore, communication has to be
performed at different levels: between components and within a component.
However, the requirements for communication between or within a compo-
nent are quite different. Within a component, since performance is critical,
low-level message-passing is required, whereas between components, although
performance is still required, modularity/interoperability and re-usability are
necessary to develop cost effective applications using generic components.

However, until now, most programmers who are faced with the design of
high-performance applications use low-level message-passing libraries such as
MPI or PVM. Such libraries can be used for both coupling components and
for handling communication among processes of a parallel component. It is
obvious to say that this approach does not contribute to the design of applica-
tions using independent software components. Such communication libraries
were developed for parallel programming; they do not offer the necessary
support for designing components which can be reused by other applications.

Solutions already exist to decrease the design complexity of such applica-
tions. Distributed object-oriented technology is one of them. A complex appli-
cation can be seen as a collection of objects which represent the components,
running on different machines and interacting using remote object invocati-
ons. Emerging standards, such as CORBA, support the design of applications
using independent software components through the use of CORBA objects.
For the rest of the chapter, we will use the term object to name a CORBA ob-
ject. CORBA is a distributed software platform which supports distributed
object computing. However, exploitation of parallelism within such an ob-
ject is restricted in a sense that it is limited to a single node within a cluster.
CORBA implementations such as Orbix from Iona Technologies [8], allow the
design of multi-threaded objects that can exploit several processors within a
single SMP (Symmetric Multi-Processing) node. Such an SMP node cannot
offer the large number of processors which is required for handling scientific
applications in a reasonable time frame. However, the required number of
processors is available at the cluster level where several dozens of machines
are connected. Nevertheless, application designers have to deal “manually”
with a large number of objects that have to be mapped onto different nodes
of a cluster, and to distribute computations and data among these objects.

2


