Implementing Encapsulated Search
for a
Lazy Functional Logic Language

Wolfgang Lux

Universitat Miinster
wlux@uni-muenster.de

Abstract. A distinguishing feature of logic and functional logic lan-
guages is their ability to perform computations with partial data and
to search for solutions of a goal. Having a built-in search strategy is
convenient but not always sufficient. For many practical applications
the built-in search strategy (usually depth-first search via global back-
tracking) is not well suited. Also the non-deterministic instantiation of
unbound logic variables conflicts with the monadic I/O concept, which
requires a single-threaded use of the world.

A solution to these problems is to encapsulate search via a primitive
operator try, which returns all possible solutions to a search goal in a
list. In the present paper we develop an abstract machine that aims at
an efficient implementation of encapsulated search in a lazy functional
logic language.

1 Introduction

A distinguishing feature of logic and functional logic languages is their abil-
ity to perform computations with partial data and to search for solutions of a
goal. Having a built-in search strategy to explore all possible alternatives of a
non-deterministic computation is convenient but not always sufficient. In many
cases the default strategy, which is usually a depth-first traversal using global
backtracking, is not well suited to the problem domain. In addition, global non-
determinism is incompatible with the monadic I/O concept [PW93]. In this
concept the outside world is encapsulated in an abstract data type and actions
are provided to change the state of the world. These actions ensure that the
world is used in a single-threaded way. Global non-determinism would defeat this
single-threaded interaction with the world. Encapsulated search [SSW94,11598)]
provides a remedy to both of these problems.

In this paper we develop an abstract machine for the functional logic lan-
guage Curry [Han99]. Curry is a multi-paradigm language that integrates fea-
tures from functional languages, logic languages and concurrent programming.
Curry uses lazy evaluation of expressions and supports the two most important
operational principles developed in the area of functional logic programming,
narrowing and residuation. Narrowing [Red85] combines unification and reduc-
tion. With narrowing unbound logic variables in expressions may be instantiated

A. Middeldorp, T. Sato (Eds.): FLOPS’99, LNCS 1722, pp. 100-113, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Implementing Encapsulated Search for a Lazy Functional Logic Language 101

non-deterministically. With the residuation strategy [ALN&7], on the other hand,
the evaluation of expressions containing unbound logic variables may be delayed
until these variables are sufficiently instantiated by other parts of the program.
Unfortunately this strategy is known to be incomplete [Han92].

Our abstract machine is a stack-based graph reduction machine similar to the
G-machine [Joh84] and the Babel abstract machine [[XLMR92]. Its novel feature
is the implementation of encapsulated search in an efficient manner that is com-
patible with the overall lazy evaluation strategy of Curry. Due to the lack of space
we restrict the presentation of the abstract machine to the implementation of the
encapsulated search. The full semantics of the machine can be found in [LI99].
In the rest of the paper we will assume some familiarity with graph reduction
machines for functional and functional logic languages [Joh84, KKLMR92].

The rest of this paper is organized as follows. In the next section the computa-
tion model of Curry is briefly reviewed and the search operator try is introduced.
The third section introduces the abstract machine. In section 4 an example is
presented, which demonstrates the operation of the abstract machine. The sixth
section presents some runtime results for our prototypical implementation. The
last two sections present related work and conclude.

2 The Computation Model of Curry

Curry uses a syntax that is similar to Haskell [HPW92], but with a few additions.

The basic computational domain of Curry is a set of data terms. A data
term t is either a variable z or constructed from an n-ary data constructor c,
which is applied to n argument terms:

tu=x|cty ...ty

New data constructors can be introduced through data type declarations, e.g.
data Nat = Zero | Succ Nat. This declaration defines the nullary data con-
structor Zero and the unary data constructor Succ.

An expression e is either a variable x, a data constructor ¢, a defined function
f, or the application of an expression e; to an argument expression es:

ex=az|cl|fler e

Curry provides a predefined type Constraint. Expressions of this type are
checked for satisfiability. The predefined nullary function success reduces to a
constraint that is always satisfied. An equational constraint e;=:=e5 is satisfied,
if e; and ey can be reduced to the same (finite) data term. If e; or es contain
unbound logic variables, an attempt will be made to unify both terms by instan-
tiating variables to terms. If the unification succeeds, the constraint is satisfied.
E.g the constraint Succ m=:=Succ Zero can be solved by binding m to Zero, if
m is an unbound variable.

Functions are defined by conditional equations of the form

fti...thlg=e

