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Abstract. In this paper, we propose a three participants variation of
the Diffie–Hellman protocol. This variation is based on the Weil and
Tate pairings on elliptic curves, which were first used in cryptography as
cryptanalytic tools for reducing the discrete logarithm problem on some
elliptic curves to the discrete logarithm problem in a finite field.

1 Introduction

Since its discovery in 1976, the Diffie–Hellman protocol has become one of the
most famous and largely used cryptographic primitive. In its basic version, it is
an efficient solution to the problem of creating a common secret between two
participants. Since this protocol is also used as a building block in many complex
cryptographic protocols, finding a generalization of Diffie–Hellman would give a
new tool and might lead to new and more efficient protocols.

In this paper, we show that the Weil and Tate pairings can be used to build
a tripartite generalization of the Diffie–Hellman protocol. These pairings were
first used in cryptography as cryptanalytic tools to reduce the complexity of the
discrete logarithm problem on some “weak” elliptic curves. Of course, the prob-
lem of setting a common key between more than two participants has already
been addressed (see the protocol for conference keying in [1]). However, all the
known techniques require at least two round of communication. In some proto-
cols having these two rounds can be somewhat cumbersome, and a single round
would be much preferable. To give an example, exchanging an email message
key with a two round Diffie–Hellman protocol would require both participants
to be connected at the same time, which is a very undesirable property for a
key exchange protocol. For this reason, we believe that the one round tripartite
Diffie–Hellman presented here is a real improvement over conference keying even
though the computational cost will be somewhat higher.

2 The Discrete Logarithm Problem on Weak Elliptic
Curve

The discrete logarithm problem on elliptic curves is now playing an increasingly
important role in cryptography. When elliptic curve cryptosystems where first
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proposed in [9], computing the number of points of a given curve was a challeng-
ing task, since the Schoof, Elkies and Atkin algorithm was not yet mature (for a
survey of this algorithm see [6]). For this reason and also to simplify the addition
formulas, the idea of using special curves quickly arose. However, it was shown
later on that some of these special cases are not good enough. Today, three weak
special cases have been identified. In one of them, the discrete logarithm problem
becomes easy (i.e. polynomial time) as was shown in [11,10]. This easiest case
happens when the number of points of the elliptic curve over Fp is exactly p.
In the two other cases, the discrete logarithm problem on the elliptic curve is
transformed into a discrete logarithm problem in a small extension of the field
of definition of the elliptic curve. These two reductions are called the Menezes,
Okamoto, Vanstone (MOV) reduction [8] and the Frey, Rück (FR) reduction
[3]. A survey of these reductions was published at Eurocrypt’99 [4], and gave a
comparison of these two reductions. The conclusion was the FR reduction can
be applied to more curves than the MOV reduction and moreover that it can be
computed faster than the MOV reduction. Thus for all practical usage, the au-
thors recommend the FR reduction. However, they claim that the computation
of the FR and MOV reduction may be a heavy load. We will show that in fact
this is not the case and that these reductions can be turned from cryptanalytic
to cryptographic tools.

Pairings on Elliptic Curve

The MOV and FR reductions are both based on a bilinear pairing, in the MOV
case it is the Weil pairing and in the FR case it is (a variation of) the Tate
pairing. In the sequel, we describe these pairings for an elliptic curve E defined
over Fp. In order to define these pairings, we first need to introduce the function
field and the divisors of the elliptic curve. Very informally, the function field
K(E) of E is the set of rational map in x and y modulo the equation of E (e.g.
y2 − x3 − ax − b). A divisor D is an element of the free group generated by
the points on E, i.e. it can be written as a finite formal sum: D =

∑
i ai(Pi),

where the Pi are points on E and the ai are integers. In the sequel, we will only
consider divisors of degree 0, i.e. such that

∑
i ai = 0.

Given any function f in K(E), we can build a degree 0 divisor div(f) from
the zeros and poles of f simply by forming the formal sum of the zeroes (with
multiplicity) minus the formal sum of the poles (with multiplicity). Any divisor
D = div(f) will be called a principal divisor. In the reverse direction, testing
whether a degree 0 divisor D =

∑
i ai(Pi) is principal or not, can be done by

evaluating
∑

aiPi on E. The result will be the point at infinity if and only if D
is principal.

Given a function f in K(E) and a point P of E, f can be evaluated at P by
substituting the coordinates of P for x and y in any rational map representing
f . The function f can also be evaluates at a divisor D =

∑
i ai(Pi), using the

following definition:
f(D) =

∏

i

f(Pi)ai .


