
Dynamic Interpolation Search Revisited�

Alexis Kaporis1,2, Christos Makris1, Spyros Sioutas1, Athanasios Tsakalidis1,2,
Kostas Tsichlas1, and Christos Zaroliagis1,2

1 Dept of Computer Eng and Informatics, University of Patras, 26500 Patras, Greece
2 Computer Technology Institute, N. Kazantzaki Str, Patras University Campus,

26500 Patras, Greece
{kaporis, makri, sioutas, tsak, tsihlas, zaro}@ceid.upatras.gr

Abstract. A new dynamic Interpolation Search (IS) data structure is
presented that achieves O(log log n) search time with high probability
on unknown continuous or even discrete input distributions with mea-
surable probability of key collisions, including power law and Binomial
distributions. No such previous result holds for IS when the probabil-
ity of key collisions is measurable. Moreover, our data structure exhibits
O(1) expected search time with high probability for a wide class of in-
put distributions that contains all those for which o(log log n) expected
search time was previously known.

1 Introduction

The dynamic dictionary search problem is one of the fundamental problems in
computer science. In this problem we have to maintain a set of elements subject
to insertions and deletions such that given a query element y we can retrieve the
largest element in the set smaller or equal to y. Well known search methods use
an arbitrary rule to select a splitting element and split the stored set into two
subfiles; in binary search, each recursive split selects as splitting element, in a
“blind” manner, the middle (or a close to the middle) element of the current file.
Using this technique, known balanced search trees (e.g., (a, b)-trees [11]) support
search and update operations in O(log n) time when storing n elements. In the
Pointer Machine (PM) model of computation, the search time cannot be further
reduced, since the lower bound of Ω(n log n) for sorting n elements would be
violated. In the RAM model of computation, which we consider in this work, a
lower bound of Ω(

√
log n

log log n) was proved by Beame and Fich [4]; a data structure
achieving this time bound has been presented by Andersson and Thorup [2].

The aforementioned lower bounds can be surpassed if we take into account the
input distribution of the keys and consider expected complexities; in this case,
the extra knowledge about the probabilistic nature of the keys stored in the file
may lead to better selections of splitting elements. The main representative of
� This work was partially supported by the FET Unit of EC (IST priority – 6th

FP), under contracts no. IST-2002-001907 (integrated project DELIS) and no. FP6-
021235-2 (project ARRIVAL), and by the Action PYTHAGORAS with matching
funds from the European Social Fund and the Greek Ministry of Education.

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 382–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Dynamic Interpolation Search Revisited 383

these techniques is the method of Interpolation Search (IS) introduced by Peter-
son [21], where the splitting element was selected close to the expected location
of the target key. Yao and Yao [28] proved a Θ(log log n) average search time for
stored elements that are uniformly distributed. In [9,10,18,19,20] several aspects
of IS are described and analyzed. Willard [26] proved the same search time for the
extended class of regular input distributions. The IS method was recently gener-
alized [5] to non-random input data that possess enough “pseudo-randomness”
for effective IS to be applied. The study of dynamic insertions of elements with
respect to the uniform distribution and random deletions was initiated in [8,12].
In [8] an implicit data structure was presented supporting insertions and dele-
tions in O(nε), ε > 0, time and IS with expected time O(log log n). The structure
of [12] has expected insertion time O(log n), amortized insertion time O(log2 n)
and it is claimed, without rigorous proof, that it supports IS. Mehlhorn and
Tsakalidis [16] demonstrated a novel dynamic version of the IS method, the
Interpolation Search Tree (IST), with O(log log n) expected search and update
time for a larger class than the regular distributions. In particular, they consid-
ered μ-random insertions and random deletions1 by introducing the notion of a
(f1, f2)-smooth probability density μ, in order to control the distribution of the
elements in each subinterval dictated by an ID index. Informally, a distribution
defined over an interval I is smooth if the probability density over any subinterval
of I does not exceed a specific bound, however small this subinterval is (i.e., the
distribution does not contain sharp peaks). The class of smooth distributions is a
superset of uniform, bounded, and several non-uniform distributions (including
the class of regular distributions). The results in [16] hold for (nα,

√
n)-smooth

densities, where 1/2 ≤ α < 1. Andersson and Mattson [1], generalized and re-
fined the notion of smooth distributions, presenting a variant of the IST called
Augmented Sampled Forest extending the class of input distributions for which
Θ(log log n) search time is expected. In particular, the time complexities of their
structure holds for the larger class of (n

(log log n)1+ε , nδ)-smooth densities, where
δ ∈ (0, 1), ε > 0. Moreover, their structure exhibited o(log log n) expected search
time for some classes of input distributions. Finally in [13], a finger search version
of these structures was presented.

The analysis of all the aforementioned IS structures was heavily based on
the assumption that the conditional distribution on the subinterval dictated by
an arbitrary interpolation step remains unaffected. In particular, in [1,13,16]
IS is performed on each node of a tree structure under the assumption that
all elements in the subtree dictated by the previous interpolation step remain
μ-random.

Our first contribution in this work (Section 2) is to show that the above
assumption is valid only when the produced elements are distinct (as indeed as-
sumed in [1,9,10,13,16,19,20,21,26,28]), i.e., they are produced under some con-
tinuous distribution where the probability of collision is zero; otherwise, it fails.

1 An insertion is μ-random if the key to be inserted is drawn randomly with density
function μ; a deletion is random if every key present in the data structure is equally
likely to be deleted.

