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Abstract. We study the problems of sorting signed permutations by
reversals (SBR) and sorting unsigned permutations by transpositions
(SBT), which are central problems in computational molecular biology.
While a polynomial-time solution for SBR is known, the computational
complexity of SBT has been open for more than a decade and is consid-
ered a major open problem.

In the first efficient solution of SBR, Hannenhalli and Pevzner [HP99]
used a graph-theoretic model for representing permutations, called the
interleaving graph. This model was crucial to their solution. Here, we
define a new model for SBT, which is analogous to the interleaving graph.
Our model has some desirable properties that were lacking in earlier
models for SBT. These properties make it extremely useful for studying
SBT.

Using this model, we give a linear-algebraic framework in which SBT
can be studied. Specifically, for matrices over any algebraic ring, we de-
fine a class of matrices called tight matrices. We show that an efficient
algorithm which recognizes tight matrices over a certain ring, M, implies
an efficient algorithm that solves SBT on an important class of permu-
tations, called simple permutations. Such an algorithm is likely to lead
to an efficient algorithm for SBT that works on all permutations.

The problem of recognizing tight matrices is also a generalization of
SBR and of a large class of other “sorting by rearrangements” problems,
and seems interesting in its own right as. We give an efficient algorithm
for recognizing tight symmetric matrices over any field of characteristic 2.
We leave as an open problem to find an efficient algorithm for recognizing
tight matrices over the ring M.

1 Introduction

One of the most promising ways to understand evolution between species is to
reconstruct their evolutionary history based on genome rearrangements. In the
last decade, a large body of work was devoted to a family of computational
problems, called genome rearrangement problems. Genomes are represented by
permutations, where each element stands for a gene. The basic task is, given two
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permutations, to find a shortest sequence of rearrangement operations (such as
reversals, transpositions, translocations, etc.) that transforms one permutation
into the other. Assuming (without loss of generality) that one of the permutations
is the identity permutation, the problem is to find the shortest way of sorting
a permutation using a given rearrangement operation (or set of operations). In
this paper we mainly address the problem of sorting signed permutations by
reversals and the problem of sorting (unsigned) permutations by transpositions.
For more background on genome rearrangements refer to [Pev00, SEM02].

A signed permutation is a permutation with + or − on every element, which
represent the direction of the corresponding gene. A reversal reverses the order
of the elements in a segment and flips their signs. The problem of sorting signed
permutations by reversals (SBR) is the problem of transforming a given signed
permutation to the positive identity permutation using a minimum number of
reversals.

A transposition is a rearrangement operation in which a segment is cut out
of the permutation and pasted in a different location. The problem of sorting
unsigned permutations by transpositions (SBT) is the problem of transforming
a given unsigned permutation to the identity permutation using a minimum
number of transpositions.1

Hannenhalli and Pevzner, in their seminal paper [HP99], gave a polynomial
time algorithm for SBR. Subsequent works gave algorithms with better running
times, and simplified the underlying theory [BH96, KST00, Ber01, KV03, TS04].
The computational complexity of SBT on the other hand is still open. There
are several 1.5-approximation algorithms [BP98, Chr99, HS06], and the best
algorithm to date has approximation ratio 1.375 [EH05].

To obtain a polynomial time algorithm for SBR, Hannenhalli and Pevzner
used a labelled graph called the interleaving graph [HP99]. Each vertex of this
graph is labelled either black or white. The interleaving graph models the effect of
a reversal on a permutation as a graph operation on a vertex. In this operation,
which we call clicking a black vertex v, we eliminate v while (1) replacing the
subgraph induced by the neighbors of v by its complement, and (2) flipping the
color of each neighbor of v.

There is a basic lower bound for the reversal distance called the cycle lower
bound [BP96]. A central subproblem of SBR is to characterize the permutations
whose reversal distance is equal to the cycle lower bound. We call these permu-
tations tight. Hannenhalli and Pevzner proved that a permutation is tight if and
only if each connected component of its interleaving graph contains a black ver-
tex. This leads to an efficient algorithm for finding a minimum sorting sequence
for tight permutations. They also showed how to find a minimal sorting sequence
for a permutation which is not tight.

We believe that a similar approach should be used to solve SBT. Indeed there
are models for SBT that try to capture the effect of performing a transposition
in a way similar to the clicking operation in the interleaving graph model (e.g.

1 See Section 3 for an explanation of why we study SBR on signed permutations, while
SBT is studied on unsigned permutations.


