
Using Genetic Programming
to Generate Protocol Adaptors
for Interprocess Communication

Werner Van Belle�, Tom Mens��, and Theo D’Hondt

Programming Technology Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussel, Belgium

{werner.van.belle,tom.mens,tjdhondt}@vub.ac.be
http://prog.vub.ac.be

Abstract. As mobile devices become more powerful, interprocess com-
munication becomes increasingly more important. Unfortunately, this
larger freedom of mobility gives rise to unknown environments. In these
environments, processes that want to communicate with each other will
be unable to do so because of protocol conflicts. Although conflicting
protocols can be remedied by using adaptors, the number of possible
combinations of different protocols increases dramatically. Therefore we
propose a technique to generate protocol adaptors automatically. This
is realised by means of genetically engineered classifier systems that use
Petri nets as a specification for the underlying protocols. This paper
reports on an experiment that validates this approach.

1 Introduction

In the field of evolvable computing, software (and hardware) is developed that
adapts itself to new runtime environments as necessary. The runtime environ-
ments targetted in this paper are open distributed systems in which interprocess
communication forms an essential problem. In these environments an applica-
tion consists of processes that communicate with other processes to reach specific
goals.

With the advent of mobile devices these processes do not necessarily know
in which kind of runtime environments they will execute. Therefore they rely on
standardised solutions, such as JINI, to find other processes offering a certain
behaviour.

Once the other process is known, the real problems start. How can the re-
questing process communicate with the unknown offered process? Given the
fact that those processes are developed by different organisations, the protocols
provided and required can vary greatly. As a result protocol conflicts arise.
� Corresponding author. He is developing peer-to-peer embedded systems for a project

funded by the Flemish Institute for Science and Technology (IWT).
�� Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders

(Belgium)

A.M. Tyrrell, P.C. Haddow, and J. Torresen (Eds.): ICES 2003, LNCS 2606, pp. 422–433, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Using Genetic Programming to Generate Protocol Adaptors 423

On first sight, a solution to this problem would be to offer protocol adaptors
between every possible pair of processes. The problem with this approach is that
the number of adaptors grows quadratic to the number of process protocols and
as such it simply doesn’t scale. The solution is to automate the generation of
protocol adaptors between communicating processes.

As a potentially useful technique for this adaptor generation, we explored the
research domain of adaptive systems. We found that the combination of genetic
programming, classifier systems, and a formal specification in terms of Petri nets
allowed us to automate the detection of protocol conflicts, as well as the creation
of program code for adaptors that solve these conflicts. This paper reports on
an experiment we performed to validate this claim.

2 Prerequisites of Interprocess Communication

Processes communicate with each other only by sending messages over a com-
munication channel (similarily to CSP [1] and the π-calculus [2]). Communica-
tion channels are accessed by the process’ ports. Processes communicate asyn-
chronously and always copy their messages completely upon sending. The con-
nections between processes are full duplex: every process can send and receive
messages over a port. This brings us in a situation where a process provides a
certain protocol and requires a protocol from another process. A process can
have multiple communication channels: for every communication partner and
for every provided/required protocol.

We imposed other requirements on the interprocess communication to allow
us to generate adaptors:

1. Implicit addressing. No process can use an explicit address of another pro-
cess. Processes work in a connection-oriented way. The connections are set
up solely by one process: the connection broker. This connection broker will
also evolve adaptors and place them upon the connections when necessary.

2. Disciplined communication. No process can communicate with other pro-
cesses by other means than its ports. Otherwise, ‘hidden’ communication
(e.g., over a shared memory) cannot be modified by the adaptor. This also
means that all messages passed over a connection should be copied. Messages
cannot be shared by processes (even if they are on the same host), because
this would result in a massive amount of concurrency problems.

3. Explicit protocol descriptions. While humans prefer a protocol description
written in natural language, computers need an explicit formal description
of the protocol semantics. A simple syntactic description is no longer suitable.

3 Specifying Protocols

As a running example we choose a typical problem of communicating processes:
how processes synchronise with each other. Typically, a server provides a con-
currency protocol (often a transaction protocol) [3] that can be used by clients.


