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Abstract. This study proposes a data mining framework to discover
qualitative and quantitative patterns in discrete-valued time series(DTS).
In our method, there are three levels for mining temporal patterns. At the
�rst level, a structural method based on distance measures through poly-
nomial modelling is employed to �nd pattern structures; the second level
performs a value-based search using local polynomial analysis; and then
the third level based on multilevel-local polynomial models(MLPMs),
�nds global patterns from a DTS set. We demonstrate our method on
the analysis of \Exchange Rates Patterns" between the U.S. dollar and
Australian dollar.

1 Introduction

Discovering both qualitative and quantitative temporal patterns in temporal
databases is a challenging task for research in the area of temporal data mining.
Although there are various results to date on discovering periodic patterns and
similarity patterns in discrete-valued time series (DTS) datasets (e.g. [5, 2, 3]),
a general theory and method of data analysis of discovering patterns for DTS
data analysis is not well known.

The framework we introduce here is based on a new model of DTS, where the
qualitative aspects of the time series are analysed separately to the quantitative
aspects. This new approach also allows us to �nd important characteristics in
the DTS relevant to the discovery of temporal patterns. The �rst step of the
framework involves a distance measure function for discovering structural pat-
terns (shapes). In this step, the rough shapes of patterns are only decided from
the DTS and a distance measure is employed to compute the nearest neighbors
(NN) to, or the closest candidates of, given patterns among the similar ones
selected. In the second step, the degree of similarity and periodicity between the
extracted patterns are measured based on local polynomial models. The third
step of the framework consists of a multilevel-local polynomial model analysis
for discovering all temporal patterns based on results of the �rst two steps which
are similarity and periodicity between the structure level and pure value level.
We also demonstrate our method on a real-world DTS.
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The rest of the paper is organised as follows. Section 2 presents the de�ni-
tions, basic methods and our new method of multilevel-local polynomial mod-
els(MLPM). Section 3 applies new models to \Daily Foreign Exchange Rates"
data. The last section concludes the paper with a short summary.

2 De�nitions and Basic Methods

We �rst give a de�nition for what we mean by DTS, and some other notations
will be seen later. Then the basic models and our new method which we called
multilevel-local polynomial model will be given and studied in detail in the rest
of the paper.

2.1 De�nitions and Properties

De�nition 1 Suppose that f
;�;�g is a probability space, and T is a discrete-
valued time index set. If for any t 2 T , there exists a random variable �t(!)
de�ned on f
;�;�g, then the family of random variables f�t(!); t 2 Tg is called
a discrete-valued time series(DTS).

The random variables �t(!), t 2 T in the above de�nition should be under-
stood as complex-valued variables in general, and in a sequel, a succinct form of
stochastic process is f�t(!); t 2 Tg, the element ! will be omitted.

In a DTS, we assume that for every successive pair of two time points: ti+1 -
ti = f(t) is a function of time. For every successive three time points: Xj , Xj+1

and Xj+2, the triple value of (Yj , Yj+1, Yj+2) has only nine distinct states (or,
called nine local features). If we let states: Ss is the same state as prior one, Su

is the go-up state compare with prior one and Sd is the go-down state compare
with prior one, then we have state-space S = fs1, s2, s3, s4, s5, s6, s7, s8, s9g =
f(Yj , Su, Su), (Yj , Su, Ss), (Yj , Su, Sd), (Yj , Ss, Su), (Yj , Ss, Ss), (Yj , Ss, Sd),
(Yj , Sd, Su), (Yj , Sd, Ss), (Yj , Sd, Sd) g.

De�nition 2 If let h = fh1; h2; : : :g be a sequence. If for every hj 2 h, hj 2 S,
then the sequence h is called a Structural Base sequence. Let y = fy1; y2; : : : :g
be a real value sequence, then y called a value-point process.

A sequence is called a full periodic sequence if its every point in time con-
tributes (precisely or approximately) to the cyclic behavior of the overall time
series (that is, there are cyclic patterns with the same or di�erent periods of
repetition). A sequence is called a partial periodic sequence if the behavior of the
sequence is periodic at some but not all points in the time series.

We have the following results 1:

Lemma 1. If let h = fh1; h2; : : :g be a sequence and every hj 2 h, hj 2 S. If h
is a periodic sequence, then h is a structural periodic sequence (existence periodic
pattern(s)).

1 The proofs are straightforward from above de�nitions
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