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1 Introduction

Problem formulation is often an important first step for solving a problem effec-
tively. In sequential decision problems, Markov decision process (MDP) (Bellman
[2]; Puterman [22]) is a model formulation that has been commonly used, due to
its generality, flexibility, and applicability to a wide range of problems. Despite
these advantages, there are three necessary conditions that must be satisfied
before the MDP model can be applied; that is,

1. The environment model is given in advance (a completely-known environ-
ment).

2. The environment states are completely observable (fully-observable states,
implying a Markovian environment).

3. The environment parameters do not change over time (a stationary environ-
ment).

These prerequisites, however, limit the usefulness of MDPs. In the past, re-
search efforts have been made towards relaxing the first two conditions, leading
to different classes of problems as illustrated in Figure 1.
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Fig. 1. Categorization into four related problems with different conditions. Note that
the degree of difficulty increases from left to right and from upper to lower.

R. Sun and C.L. Giles (Eds.): Sequence Learning, LNAI 1828, pp. 264–287, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Hidden-Mode Markov Decision Processes 265

This paper mainly addresses the first and third conditions, whereas the se-
cond condition is only briefly discussed. In particular, we are interested in a
special type of nonstationary environments that repeat their dynamics in a cer-
tain manner. We propose a formal model for such environments. We also develop
algorithms for learning the model parameters and for computing optimal poli-
cies.

Before we proceed, let us briefly review the four categories of problems shown
in Figure 1 and define the terminology that will be used in this paper.

1.1 Four Problem Types

Markov Decision Process

MDP is the central framework for all the problems we discuss in this section.
An MDP formulates the interaction between an agent and its environment. The
environment consists of a state space, an action space, a probabilistic state tran-
sition function, and a probabilistic reward function. The goal of the agent is to
find, according to its optimality criterion, a mapping from states to actions (i.e.
policy) that maximizes the long-term accumulated rewards. This policy is called
an optimal policy. In the past, several methods for solving Markov decision pro-
blems have been developed, such as value iteration and policy iteration (Bellman
1).

Reinforcement Learning

Reinforcement learning (RL) (Kaelbling et al. 12; Sutton and Barto 28) is ori-
ginally concerned with learning to perform a sequential decision task based
only on scalar feedbacks, without any knowledge about what the correct ac-
tions should be. Around a decade ago researchers realized that RL problems
could naturally be formulated into incompletely known MDPs. This realization
is important because it enables one to apply existing MDP algorithms to RL
problems. This has led to research on model-based RL. The model-based RL ap-
proach first reconstructs the environment model by collecting experience from
its interaction with the world, and then applies conventional MDP methods to
find a solution. On the contrary, model-free RL learns an optimal policy direc-
tly from the experience. It is this second approach that accounts for the major
difference between RL and MDP algorithms. Since less information is available,
RL problems are in general more difficult than the MDP ones.

Partially Observable Markov Decision Process

The assumption of having fully-observable states is sometimes impractical in
the real world. Inaccurate sensory devices, for example, could make this con-
dition difficult to hold true. This concern leads to studies on extending MDP
to partially-observable MDP (POMDP) (Monahan 20; Lovejoy 17; White III
29). A POMDP basically introduces two additional components to the original


