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Abstract. Pattern structures consist of objects with descriptions (called
patterns) that allow a semilattice operation on them. Pattern structures
arise naturally from ordered data, e.g., from labeled graphs ordered by
graph morphisms. It is shown that pattern structures can be reduced
to formal contexts, however sometimes processing the former is often
more efficient and obvious than processing the latter. Concepts, implica-
tions, plausible hypotheses, and classifications are defined for data given
by pattern structures. Since computation in pattern structures may be
intractable, approximations of patterns by means of projections are in-
troduced. It is shown how concepts, implications, hypotheses, and clas-
sifications in projected pattern structures are related to those in original
ones.

Introduction

Our investigation is motivated by a basic problem in pharmaceutical research.
Suppose we are interested which chemical substances cause a certain effect, and
which do not. A simple assumption would be that the effect is triggered by the
presence of certain molecular substructures, and that the non-occurence of the
effect may also depend on such substructures.

Suppose we have a number of observed cases, some in which the effect does
occur and some where it does not; we then would like to form hypotheses on
which substructures are responsible for the observed results. This seems to be a
simple task, but if we allow for combinations of substructures, then this requires
an effective strategy.

Molecular graphs are only one example where such an approach is natural.
Another, perhaps even more promising domain is that of Conceptual Graphs
(CGs) in the sense of Sowa [21] and hence, of logical formulas. CGs can be used
to represent knowledge in a form that is close to language. It is therefore of
interest to study how hypotheses can be derived from Conceptual Graphs.

A strategy of hypothesis formation has been developed under the name of
JSM-method by V. Finn [8] and his co-workers. Recently, the present authors
have demonstrated [11] that the approach can neatly be formulated in the lan-
guage of another method of data analysis: Formal Concept Analysis (FCA) [12].
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The theoretical framework provided by FCA does not always suggest the
most efficient implementation right away, and there are situations where one
would choose other data representation forms. In this paper we show that this
can be done in full compliance with FCA theory.

1 Formal Contexts

From every binary relation, a complete lattice can be constructed, using a simple
and useful construction. This has been observed by Birkhoff [3] in the 1930s, and
is the basis of Formal Concept Analysis, with many applications to data analysis.

The construction can be described as follows: Start with an arbitrary relation
between two sets G and M , i.e., let I ⊆ G×M , and define

A′ := {m ∈ M | (g,m) ∈ I for all g ∈ A} for A ⊆ G,

B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B} for B ⊆ M.

Then the pairs (A,B) satisfying

A ⊆ G,B ⊆ M,A′ = B,A = B′

are called the formal concepts of the formal context (G,M, I). When ordered
by

(A1, B1) ≤ (A2, B2) : ⇐⇒ A1 ⊆ A2 ( ⇐⇒ B2 ⊆ B1),

they form a complete lattice, called the concept lattice of (G,M, I).
The name “Formal Concept” reflects the standard interpretation, where the

elements of G are viewed as “objects”, those of M as “attributes”, and where
(g,m) ∈ I encodes that object g has attribute m. It has been demonstrated that
the concept lattice indeed gives useful insight in the conceptual structure of such
data (see [12] and references there).

That data are given in form of a formal context is a particularly simple case.
If other kind of data is to be treated, the usual approach is first to bring it in this
standard form by a process called “scaling”. Recently, another suggestion was
discussed by several authors [14], [15] [16] [17]: to generalize the abovementioned
lattice construction to contexts with an additional order structure on G and/or
M . This seems quite natural, since the mappings A 7→ A′, B 7→ B′ used in the
construction above form a Galois connection between the power sets of G and
M . It is well known that a complete lattice can be derived more generally from
any Galois connection between two complete lattices.

On the other hand, one may argue that there is no need for such a gen-
eralization and that no proper generalization will be achieved, since the basic
construction already is as general as possible: it can be shown that every com-
plete lattice is isomorphic to some concept lattice.

Nevertheless, such a more general approach may be worthwhile for reasons
of efficiency, and it seems natural as well. Several authors [2], [4], [7] have con-
sidered the case where instead of having attributes the objects satisfy certain


