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Abstract. We present a parallelization of Petkov, Christov, and Kon-
stantinov’s algorithm for the pole assignment problem of single-input sys-
tems. Our new implementation is specially appropriate for current high
performance processors and shared memory multiprocessors and obtains
a high performance by reordering the access pattern, while maintaining
the same numerical properties.

The experimental results on two different platforms (SGI PowerChal-
lenge and SUN Enterprise) report a higher performance of the new im-
plementation over traditional algorithms.

1 Introduction

Consider the continuous, time-invariant linear system defined by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

with n states, in vector x(t), and m inputs, in vector y(t). Here, A is the n × n
state matrix, and B is the n × m input matrix.
In the design of linear control systems, u(t) is used to control the behaviour

of the system. Specifically, the control

u(t) = −Fx(t),

where F is an m × n feedback matrix, is used to modify the properties of the
closed-loop system

ẋ(t) = (A − BF )x(t).
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The problem of finding an appropriate feedback F is referred to as the prob-
lem of synthesis of a state regulator [11]. In some applications, e.g., for asymp-
totic stability [4,11], F can be chosen so that the eigenvalues of the closed-loop
matrix are in the open left-half complex plane.
In this paper we are interested in the pole assignment problem of single-input

systems (m = 1 and B = b is a vector), or PAPSIS, which consists in the
determination of a feedback vector F = f , such that the poles of the closed-
loop system are allocated to a pre-specified set Λ = {λ1, λ2, . . . , λn} [4]. This
problem has a solution (unique in the single-input case) if and only if the system
is controllable [15]. We assume hereafter that this condition is satisfied.
A survey of existing algorithms for the pole assignment problem can be found,

e.g., in [4,5,6,11,14]. Among these, methods based on the Schur form of the
closed-loop state matrix [6,9,10] are numerically stable [3,7].
In [2] we apply block-partitioned techniques to obtain efficient implementa-

tions of Miminis and Paige’s algorithm for PAPSIS [6]. In this paper we apply
similar techniques to obtain LAPACK-like [1] block-partitioned variants and par-
allel implementations of Petkov, Christov, and Konstantinov’s algorithm (here-
after, PCK) [10] for PAPSIS.
We assume the system to be initially in unreduced controller Hessenberg

form [13]. This reduction can be carried out by means of efficient blocked algo-
rithms based on (rank-revealing) orthogonal factorizations [12].
Our algorithms are specially designed to provide a better use of the cache

memory, while maintaining the same numerical properties. The experimental
results on SGI PowerChallenge and SUN Enterprise multiprocessors report the
performance of our block-partitioned serial and parallel algorithms.

2 The Sequential PCK Algorithm

Consider the controllable single-input system in controller Hessenberg form de-
fined by (A, b), with real entries,

(b|A) =




β1 α11 . . . α1,n−1 α1n

α21 . . . α2,n−1 α2n

. . .
...

...
αn,n−1 αnn


 . (1)

As the system is controllable, it can be shown that β1, α21, . . . , αn,n−1 �= 0 [13].
The PCK algorithm is based on orthogonal transformations of the eigenvec-

tors and proceeds as follows. (For simplicity we only describe the algorithm for
pole assignment of real eigenvalues.) Let λ ∈ IR and v ∈ IRn be, respectively, an
eigenvalue and its corresponding eigenvector of the closed-loop matrix A − bf .
Let Q be an orthogonal matrix such that Qv = (v1, 0, . . . , 0)T . This matrix
can be constructed so that QT AQ and QT (A − bf)Q are in Hessenberg form.
Furthermore,

QT (A − bf)Qe1 = (λ, 0, . . . , 0)T , (2)


