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1 Introduction

In the late 1980s, Brumer and McGuinness [2] undertook the construction of
a database of elliptic curves whose absolute discriminant |∆| was both prime
and satisfied |∆| ≤ 108. While the restriction to primality was nice for many
reasons, there are still many curves of interest lacking this property. As ten
years have passed since the original experiment, we decided to undertake an
extension of it, simultaneously extending the range for the type of curves they
considered, and also including curves with composite discriminant. Our database
can be crudely described as being the curves with |∆| ≤ 1012 which either
have conductor smaller than 108 or have prime conductor less than 1010—but
there are a few caveats concerning issues like quadratic twists and isogenous
curves. For each curve in our database, we have undertaken to compute various
invariants (as did Brumer and McGuinness), such as the Birch–Swinnerton-Dyer
L-ratio, generators, and the modular degree. We did not compute the latter two
of these for every curve. The database currently contains about 44 million curves;
the end goal is find as many curves with conductor less than 108 as possible,
and we comment below on this direction of growth of the database. Of these
44 million curves, we have started a first stage of processing (computation of
analytic rank data), with point searching to be carried out in a later second
stage of computation.

Our general frame of mind is that computation of many of the invariants is
rather trivial, for instance, the discriminant, conductor, and even the isogeny
structure. We do not even save these data, expecting them to be recomputable
quite easily in real time. For instance, for each isogeny class, we store only one
representative (the one of minimal Faltings height), as we view the construction
of isogenous curves as a “fast” process. It is only information like analytic ranks,
modular degrees (both of which use computation of the Frobenius traces lp),
and coordinates of generators that we save; saving the lp themselves would take
too much storage space. It might be seen that our database could be used a
“seed” for other more specialised databases, as we can quickly calculate the less
time-consuming information and append it to the saved data.
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2 Generating the Curves

While Brumer and McGuinness fixed the a1, a2, a3 invariants of the elliptic
curve (12 total possibilities) and then searched for a4 and a6 which made |∆|
small, we instead decided to break the c4 and c6 invariants into congruence
classes, and then find small solutions to c34 − c26 = 1728∆. We write c�

4 for the
least nonnegative residue of c4 modulo 576, and c�

6 for the least nonnegative
residue of c6 modulo 1728. The work of Connell [3] gives necessary and sufficient
conditions on c4 and c6 for an elliptic curve with such invariants to exist. We first
need that c6 ≡ 3 (mod 4) (when it follows that c4 is odd) or 24 | c4 and c6 ≡ 0, 8
(mod 32), and secondly we require a local condition at the prime 3, namely that
c6 �≡ ±9 (mod 27). Using this information and the fact that 1728 | (

c34 − c26
)
,

this leads to 288 possible (c�
4, c

�
6) pairs.

For each fixed such (c�
4, c

�
6) pair, we can simply loop over c4 and c6, finding

the curves with |∆| ≤ 1012. Of course, it is only under the ABC-conjecture that
we would have an upper bound on c4 to ensure that we would have found all
such curves, and even then the bound would be too large. Our method was to
take c4 ≤ 1.44 · 1012 in this first step; in any case, curves with larger c4 are most
likely found more easily using the method of Elkies [5].

2.1 Minimal Twists

In the sequel, we shall write Ed for the quadratic twist of E by d. For each (c4, c6)
pair (again with c4 ≤ 1.44·1012) which satisfies the |∆| ≤ 1012 condition, we then
determine whether this curve is minimal—not only in the traditional sense for
its minimal discriminant, but also whether it is has the minimal discriminant in
its family of quadratic twists. For p ≥ 5, this is rather easy to determine; unless
p6 | ∆ and p | c4, the curve is minimal for quadratic twists (the only difference
between this and the standard notion of minimality is that the exponent here
is 6 instead of 12). If both the above conditions hold, then we throw the curve
out, as Ep̃, where p̃ =

(
−1
p

)
p, is a curve with lesser discriminant (which will

be found by our search procedure). Given that the curve is minimal at a prime
divisor p ≥ 5 of ∆, the local conductor at p is p2 if p | c4 and p1 otherwise.

The case with p = 3 is a bit harder. By Connell’s conditions, we see that if
3 | c6 and 39 | (

c34 − c26
)

but 35 does not exactly divide c6, then E−3 is a curve
with invariants (c4/9,−c6/27) which has the discriminant reduced by 36. This is
the only prohibition against the curve being the minimal twist at 3. If 3 || c4, the
curve has good reduction (at 3), while if c4 is not divisible by 3, the curve has
either good or multiplicative reduction. In both cases, the local conductor can
be computed readily, it being 30 for good reduction and 31 for multiplicative.
To compute the conductor in the remaining cases of additive reduction (where
we know that 32 | c4 and 33 | c6), let c̃4 be the the least nonnegative residue of
(c4/9) modulo 3, and c̃6 be the the least nonnegative residue of (c6/27) modulo 9.
Table 1 then gives us the exponent of the local conductor. Here e = 5 if 34 | c4
and e = 4 if 33 || c4 (note that we must have 35 || c6 in this case for the curve to
be twist-minimal, and that the table assumes that the curve is twist-minimal).


