
The Memory Behavior of the WWW, or
The WWW Considered as a Persistent Store

Nicolas Richer and Marc Shapiro

INRIA - SOR group, BP. 105,
78153 Le Chesnay Cedex, France

{Nicolas.Richer, Marc.Shapiro}@inria.fr
http://www-sor.inria.fr/

Abstract. This paper presents the performance evaluation of five mem-
ory allocation strategies for the PerDiS Persistent Distributed Object
store in the context of allocating two different web sites in the store. The
evaluation was conducted using (i) a web gathering tool, to log the web
objects graph, and (ii) a PerDiS memory simulator that implements the
different allocation strategies. Our results show that for all the strategies
and parameters we have evaluated, reference and cycle locality are quiet
poor. The best policy seems to be first sequential fits. Results are linear
with the size of the garbage collection Unit (a bunch). There is no clear
optimum, but 64K to 128K appear to be good choices.

1 Introduction

PerDiS [FSB+98] is a new technology for sharing information over the Internet:
Its abstraction is a Persistent Distributed Object Store. PerDiS provide a simple,
efficient and safe abstraction to the application programmer. To attain this goal,
it is necessary to understand the way target applications use the persistent store
and how the different mechanisms and heuristics perform. This study is the
target of task T.C 3 of the PerDiS project. This paper presents the results we
have obtained.

The PerDiS persistent store is logically divided into clusters. A cluster is the
naming and security unit visible by the programmer. A cluster is attached to
a “home” site1 but can be accessed from any site. From the garbage collection
point of view, cluster is further subdivided into bunches, i.e. garbage collection
Units. The Garbage Collector always runs on whole bunch and this unit will be
completely replicated at one site in order for the GC to run on2. This means also
that bunches will be stored in a contiguous area in memory. A reference inside
a bunch is cheaper than between two bunches (an inter-bunch reference). The
latter needs using stubs and scions. The fewer references will be inter-bunch, the
better the PerDiS system will perform.
1 The home site ensures data security and reliability.
2 For latency reasons, bunches could be divided in pages but the page forming a bunch
should be fully located at a site for the Garbage Collection to operate on.

G.N.C. Kirby, A. Dearle, and D.I.K. Sjøberg (Eds.): POS-9, LNCS 2135, pp. 161–176, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



162 N. Richer and M. Shapiro

1.1 What Are Garbage Collection Components

A Garbage Collection components is a set of objects reclaimed by the garbage
collector all at the same time. This could be a single object or several objects link
together in a way that they become unreachable all at the same time. Typically,
this can be a set of objects with circular references between them.

In this context, Strongly Connected component is an approximation for
Garbage Collection component. Rigorously, Garbage Collection components are
Strongly Connected component plus all the objects reachable only from this com-
ponents, but we don’t make the difference in this study, because, unfortunately,
we are not able to extract real Garbage Collection components from an object
graph yet. This approximation may grow up the overall proportion of objects
and bytes included in Garbage Collection components. Studying Strongly Con-
nected component provide only minimum proportions, and we don’t currently
know the maximums.

Note also that Garbage Collection components are often called cycles in this
paper because it’s shorter.

1.2 The PerDiS Garbage Collector

The PerDiS Garbage Collector use a reference counting algorithm to handle
inter-bunches references, this to avoid costly distributed Garbage Collection Al-
gorithms. In consequences, some garbage could not be reclaimed in some situ-
ation. This is the case of Garbage Collection components composed by several
objects spread between different bunches. This kind of garbage could be re-
claimed on the of all the bunch is containing the objects were run located at the
same site. This is, unfortunately, the drawback of using reference counting.

The assumption we have made during the design of the PerDiS Garbage
Collector is that such kind of unreclaimable components are sufficiently rare to
be forgotten and we don’t put any kind of global tracing collector for them. Of
course, this assumption should be verified in practice and this is precisely why
we are interested by Garbage Collection components in this study. Depending
of our experimental results, the need for a global tracing collector mechanism
will be reconsidered. The important point here is the fewer cycles are inter-
bunches, the less garbage will remain unreclaimable. This suggest that object
placement strategies (i.e. allocation algorithms) should minimize inter-bunch
Garbage Collection components and inter-bunch references. A secondary goal
will be to minimize also the number of scions and store fragmentation.

In the current PerDiS implementation, the initial allocator clustering is per-
manent, because PerDiS support the uncooperative C++ language that does not
provide natively all the informations required to perform object relocation. In
the future, we plan to implement object relocation in PerDiS using type infor-
mation extracted by typedesc [Sal99], a tool we have specifically implemented
for that.

A complete description of the PerDiS Garbage Collection Algorithm is avail-
able in [FS94,FS96]. [BFS98] describe more deeply the implementation.


